EP2937561B1 - Support arrangement of a wind turbine tower - Google Patents

Support arrangement of a wind turbine tower Download PDF

Info

Publication number
EP2937561B1
EP2937561B1 EP14166018.3A EP14166018A EP2937561B1 EP 2937561 B1 EP2937561 B1 EP 2937561B1 EP 14166018 A EP14166018 A EP 14166018A EP 2937561 B1 EP2937561 B1 EP 2937561B1
Authority
EP
European Patent Office
Prior art keywords
support arrangement
connection means
tower
wind turbine
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14166018.3A
Other languages
German (de)
French (fr)
Other versions
EP2937561A1 (en
Inventor
Soeren Linde Bjoernskov
Henning Poulsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14166018.3A priority Critical patent/EP2937561B1/en
Priority to DK14166018.3T priority patent/DK2937561T3/en
Priority to US14/615,760 priority patent/US9260875B2/en
Priority to CN201510198953.8A priority patent/CN105041583B/en
Publication of EP2937561A1 publication Critical patent/EP2937561A1/en
Application granted granted Critical
Publication of EP2937561B1 publication Critical patent/EP2937561B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/108Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means for lifting parts of wind turbines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/40Arrangements or methods specially adapted for transporting wind motor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Description

  • The invention relates to a support arrangement of a wind turbine tower and a method to support the tower.
  • A wind turbine comprises a rotor, a nacelle and a tower. The rotor is rotatable connected to the nacelle and the nacelle is connected rotatable to the tower.
  • Parts of the wind turbine are prefabricated and are then transported to the installation site of the wind turbine. At the installation site the prefabricated parts of the wind turbine are connected to build a wind turbine.
  • The tower of the wind turbine is prefabricated in segments. The segments are transported to the installation site and are there connected to form the tower of the wind turbine.
  • Nowadays wind turbine towers are more than 60m high, often more than 90m. They have a circular crosscut and have a diameter of more than three meters, and are made of steel. For transportation and installation a tower is segmented into several segments. The segments comprise means for connection at their ends, for example flanges, to connect the tower segments to each other during installation.
  • The wind turbine tower segments are stored and transported in a horizontal orientation, thus in a lying manner.
  • Due to gravity the horizontally oriented tower segments tend to deform in a way that the circular crosscut ovalizes. It is therefore known to support the tower segment at the flanges in a vertical direction to avoid the deformation.
  • WO 2013/117182 A1 describes a method for handling tower sections for a tower, in particular a wind power plant, wherein the finished tower sections are at least stored, transported and sequentially set up at least partially one on top of another. The tower sections are each already equipped on their ends with a handling device during or after their completion. Then the finished tower sections are coupled to the load-bearing equipment of transport means using the handling device with unchanged linkage thereof on the tower section and then the tower sections are brought in the horizontal position to the location of their erection. The tower sections transported to the erection location are then brought to a vertical position by means o the handling device with unchanged linkage thereof on the tower section by means of at least one lifting device.
  • US 2011/0194896 A1 describes a fixture for attachment of an end of a member, such as a wind turbine tower section, blade or hub for a wind turbine, which characteristically has an end flange. To enable clamping while being able to compensate for different hole patterns in the flanges, by the invention, the fixture provides for retaining of ends of members with flanges, regardless of flange diameter and hole patterns, and which is also quickly and easily installed. Additionally, it is possible to firmly clamp the flange end to upstanding frame parts of the fixture with fastening elements, thereby providing a stable connection between a console of the fixture and the upstanding frame parts.
  • This shows the disadvantage that the tower segment is attached to the frame in the shape it already acquired. A tower segment in a horizontal orientation deforms in an elastic deformation as soon as it reaches this orientation. The tower segment is then connected to the transportation frame. Thus the tower segment is stored and transported in a slightly elastically deformed shape.
  • This leads to problems during transportation. The tower segment in its slightly elastically deformed shape is connected to a rigid transportation frame. Due to changing forces during transportation, the tower segment varies its elastic deformation, whereby the connection means between the tower segment and the transportation frame might be damaged.
  • The aim of the invention is therefore to provide a transportation frame that preserves the tower segment in its original shape.
  • The object of the invention is achieved by the independent claims 1 and 13. Further features of the invention are disclosed in the dependant claims.
  • A support arrangement for a wind turbine tower is disclosed. The support arrangement comprises a first connection means to connect to a first part of the tower. The support arrangement comprises a second connection means to connect to a second part of the tower.
  • The first connection means are fixed in their position in respect to the support arrangement. The second connection means are adjustable connected to the support arrangement, so that the distance between the first connection means and the second connection means is adjustable to counteract a deformation of the tower due to gravity.
  • The support arrangement comprises a third connection means to detachably fix the position of the second connection means in respect to the support arrangement to support the counter acted shape of the tower.
  • The tower of a nowadays wind turbine has a diameter of several meters and is over 80 meters in heights. To transport the tower from a manufacturing site to the installation site of the wind turbine, the tower is transported in segments. During storage and transportation, the segments of the tower are oriented mainly horizontally with their longitudinal axis.
  • Wind turbines often comprise metal towers. Thus, the segments of the tower are made of hollow, cylindrical, metal pieces. Due to gravity, the segments of the wind turbine tower tend to deform during storage and transportation.
  • The support arrangement is disclosed to be connected to a wind turbine tower segment. The support arrangement comprises a first connection means. The first connection means is connected to a first part of the tower.
  • Preferably the first connection means is connected to the flange of the wind turbine tower. The first connection means is fixed in its position to the support arrangement.
  • The support arrangement comprises a second connection means that is connected to a second part of the wind turbine tower.
  • Preferably the second connection means is connected to the flange of the wind turbine tower. The second connection means are adjustable connected to the support arrangement. Thus, the distance between the first connection means and the second connection means is adjustable.
  • The first connection means and the second connection means are connected to the wind turbine tower. Preferably, the first connection means are connected to the upper end of a flange of a wind turbine tower segment. The second connection means are connected to the lower part of a flange of a wind turbine tower segment of a horizontally oriented wind turbine tower.
  • The distance between the first connection means and the second connection means can be adjusted. Thus, the distance of the upper part of the flange of the wind turbine tower and the lower part of the flange of the wind turbine tower can be adjusted.
  • Thus, a certain predetermined distance between the first and the second connection means can be achieved. Thus, a certain predefined shape of the tower can be achieved. Thus, deformation of the tower due to gravity can be counteracted.
  • The support arrangement comprises a third connection means to detachedly fix the position of the second connection means in respect to the support arrangement. Thus, the achieved shape of the tower segment can be fixed.
  • The third connection means comprise screws or bolts, for example, to fix the second connection means in respect to the support arrangement.
  • A certain deformation that already occurred during storage of the wind turbine tower segment is eliminated by adjusting the second connection means.
  • The predetermined shape of the wind turbine tower segment can be fixed by fixing the second connection means to the support arrangement. Thus, a further deformation of the tower can be avoided during storage and transportation of the wind turbine tower segment.
  • Preferably the support arrangement is connected to the tower at the production site of the tower after the production. The support arrangement stays connected to the tower until the tower is set up at the installation site of the wind turbine.
  • Thus, the support arrangement avoids a further deformation of the tower during the transportation and storage from the production site of the tower to the installation site of the wind turbine.
  • A support arrangement comprises a linear actuator to adjust the position of the second connection means in respect to the support arrangement.
  • The linear actuator is used to increase or decrease the linear distance between the first connection means and the second connection means. Thus, the distance between the first connection means and the second connection means can be adjusted by using a linear actuator.
  • The linear actuator can be used to adjust the distance between the first connection means and the second connection means until the second connection means are fixed to the support arrangement.
  • Thus, the distance between the first connection means and the second connection means is fixed by the support arrangement and a linear actuator can be removed from the support arrangement.
  • The linear actuator may comprise a bolt and a nut, or a worm gear that is actuated by an electric motor, or a mechanical arrangement with a gear, for example.
  • The linear actuator is a hydraulic cylinder.
  • A hydraulic cylinder can be designed to be strong enough to adjust the distance between the first and the second connection means.
  • A smooth adjustment can be performed by using hydraulic pressure.
  • Thus, the distance between the first connection means and the second connection means can be adjusted with less human effort.
  • The support arrangement comprises a frame to connect the first and the second connection means wherein the frame comprises at least two vertical and two horizontal beams.
  • The support arrangement comprises a frame. The first connection means are connected to the frame and the second connection means are adjustable connected to the frame.
  • After the second connection means are fixed in their position in respect to the support arrangement, the support arrangement supports the distance between the first connection means and the second connection means.
  • Thus the frame supports the distance between the first and the second connection means, and thus supports the desired shape of the wind turbine tower segment.
  • The frame of the support arrangement comprises at least two vertical beams that are connected by at least two horizontal beams.
  • Thus, the frame of the support arrangement is ridged enough to support the distance between the first and the second connection means.
  • In addition, the frame of the support arrangement is ridged enough to serve as a tool for transportation and storage of the wind turbine tower segment.
  • The first and/or the second connection means comprise a pad that is attachable to a flange of the tower.
  • The pads are detachably connected to the first and/or the second connection means.
  • Thus, the pads can be connected to the flange of the wind turbine tower and thereafter the pads can be connected to the first connection means or the second connection means.
  • Thus, the pads can be connected to the wind turbine tower segment independently from the support arrangement. Thus, the connection between the support arrangement and the wind turbine tower segment can be performed easier.
  • The pad is attached to the support arrangement by a pin.
  • A locking pin is used to attach a pad to the first and/or the second connection means.
  • Thus, the pads can be connected to the connection means in a quick and easy manner.
  • The second connection means comprise an adjustable locking pin system to connect to the support arrangement and the locking pin system interacts with a through-hole in the support arrangement.
  • The support arrangement comprises a through-hole. To connect the second connection means to the support arrangement, the locking pin is pushed through the through-hole.
  • The through-hole shows a longish shape. Thus, the locking pin can move along within the longish shape of the through-hole.
  • Thus, the connection between the second connection means and the support arrangement can be established by arranging the locking pin through the through-hole.
  • In addition, the position of the second connection means can be adjusted after establishing the connection between the second connection means and the support arrangement.
  • The position of the second connection means in respect to the support arrangement can be adjusted by sliding the locking pin up and down in the longish shape of the through-hole.
  • Thus, an adjustment of the position of the second connection means at the support arrangement is possible after establishing the connection between the second connection means in the support arrangement.
  • A linear actuator is attachable to the locking pin system to adjust the position of the locking pin system in respect to the through-hole in the support arrangement.
  • The connection between the second connection means in the support arrangement is established by attaching the locking pin through the through-hole of the support arrangement. The position of the second connection means in respect to the support arrangement is adjusted by moving the locking pin up and down in the longish shape of the through-hole.
  • After the adjustment of the locking pin a certain slack is present in the system. This means that the locking pin is still able to move within the through-hole.
  • A linear actuator is attached to the locking pin system to adjust the position of the locking pin system in respect to the through-hole to eliminate the slack from the system.
  • After eliminating the slack from the system, the locking pin is no longer able to move and change its position within the through-hole of the support arrangement.
  • The first connection means comprise an adjustable locking pin system to connect to the support arrangement and the locking pin system interacts with the through-hole in the support arrangement.
  • The first connection means is connectable to the support arrangement. The support arrangement comprises a through-going hole to be used by a locking pin. To connect the first connection means to the support arrangement, the locking pin is pushed through the through-hole in the support arrangement.
  • Thus, the connection between the first connection means and the support arrangement can be established quickly and easily.
  • The first and/or the second connection means comprise adapter plates as brackets to support a connection of the pads to the support arrangement.
  • To connect the first and/or the second connection means to the support arrangement, the connection is established by pushing the locking pin through the through-hole of the support arrangement.
  • The diameter of the locking pin is smaller than the size of the through-hole in the support arrangement. Thus, the locking pin can still move within the through-hole.
  • Adapter plates are used as brackets to support the connection of the locking pin within the through-hole of the support arrangement.
  • The adapter plates are used to push the locking pin into a certain direction to eliminate the slack of the locking pin within the through-hole.
  • The adapter plates at the first connection means are pushed upwards to force the locking pin into a position where it is fixed in respect to the support arrangement.
  • The adapter plates at the second connection means are used to push the locking pin downward into a position where it is fixed in respect to the support arrangement.
  • The adapter plates are used to fix the position of the second connection means in respect to the support arrangement. The third connection means comprise the adapter plate of the second connection means.
  • Thus the adapter plates are used as the third connection means of the support arrangement, to fix the position of the second connection means in respect to the support arrangement.
  • The locking in system comprises the locking pin and the adapter plate that is used to fix the position of the locking pin.
  • Thus, the connection between the first connection means and the support arrangement, or the second connection means and the support arrangement, can be established quite quickly by introducing the locking pin into the through-hole. The position of the locking pin within the through hole can be fixed by using the adapter plate.
  • The adapter plate at the second connection means comprise adjustment screws so that the position of the adapter plate is adjustable in respect to the support arrangement by the use of the adjustment screws.
  • To get the slack out of the system and to fix the position of the locking pin in respect to the support arrangement the adapter plate at the second connection means can be adjusted.
  • To adjust the position of the adapter plate at the second connection means, the adapter plate comprises adjustment screws. The adjustment screws are arranged in a way to allow an adjustment of the adapter plate in respect to the support arrangement in three orthogonal directions.
  • Thus, the position of the adapter plate in respect to the support arrangement can be adjusted in three directions in space.
  • The support arrangement comprises connection means to connect a crane or a load restraint assembly for handling storage or transportation.
  • The support arrangement is connected to the wind turbine tower segment during storage handling and transportation of the tower segment.
  • The support arrangement is equipped with connection means to connect a crane or a load restraint assembly to the support arrangement.
  • Thus, the support arrangement can be used to handle the tower segment by connecting the hook of a crane to the support arrangement.
  • In addition, the support arrangement can be fixed in its position to a transportation device by adding a load restraint assembly that is connected to connection means at the support arrangement.
  • A method is disclosed to support the tower of a wind turbine, whereby a support arrangement comprises a first connection means to connect to a first part of the tower and the support arrangement comprises a second connection means to connect to a second part of the tower. The first connection means are fixed in their position in respect to the support arrangement and a second connection means are adjustable connected to the support arrangement, so that the distance between the first connection means and the second connection means is adjustable to counteract deformation of the tower due to gravity.
  • The support arrangement comprises third connection means to detachably fix the position of the second connection means in respect to the support arrangement to support the counteracted shape of the tower. The method comprises the steps of connecting the first connection means to the tower, connecting the second connection means to the tower, adjusting the position of the second connection means in respect to the support arrangement, and fixing the position of the second connection means in respect to the support arrangement.
  • A method is disclosed that comprises the additional steps of attaching a linear actuator to the second connection means, using the linear actuator to adjust the position of the second connection means in respect to the support arrangement, fixing the position of the second connection means in respect to the support arrangement, and detaching the linear actuator.
  • A method is disclosed whereby the second connection means comprise a locking pin system. The method comprises the additional steps of attaching a second linear actuator to the locking pin system, adjusting the position of the locking pin system with the second linear actuator, and fixing the position of the second connection means in respect to the support arrangement.
  • The invention is shown in more detail by the help of figures. The figures show a preferred configuration and do not limit the scope of the invention.
  • FIG 1
    shows a support arrangement for a wind turbine tower,
    FIG 2
    shows the connection means at a flange of a tower,
    FIG 3
    shows a detail of the second connection means,
    FIG 4
    shows a second view of the second connection means,
    FIG 5
    shows a detail of the connection means,
    FIG 6
    shows a second embodiment of the support arrangement,
    FIG 7
    shows a third embodiment of the support arrangement.
  • FIG 1 shows a support arrangement for a wind turbine tower.
  • FIG 1 shows a support arrangement 1 for a wind turbine tower 4. The support arrangement 1 comprises first connection means 2 that are connected to a first part of the wind turbine tower 4 and second connection means 3 that are connected to a second part of the wind turbine tower 4.
  • The wind turbine tower 4 in FIG 1 comprises a flange 5. The first connection means 2 and a second connection means 3 are connected to the flange 5 of the tower 4.
  • The support arrangement 1 shows the form of a frame. The frame of the support arrangement shows vertical beams 10 and 11 and horizontal beams 12 that connect the vertical beams 10 and 11.
  • The frame of the support arrangement 1 comprises attachment points for a crane 15 and also attachment points for a forklift 9.
  • In addition, the support arrangement 1 is equipped with foot plates 16 for storage of the fame.
  • The vertical bars 10 and 11 of support arrangement 1 show eyes 17 for a load restraint assembly. Thus, the support arrangement 1 can be used for transportation handling and storage of a wind turbine tower 4.
  • The connection means 2 and 3 comprises plates that are connected to the flange 5 of the wind turbine tower 4. The plates of the connection means 2 and 3 are then connected to the frame of the support arrangement 1.
  • The first connection means 2 comprises an adapter plate 13 that connects the connection means 2 to the support arrangement 1 by a locking pin arrangement.
  • An adjustable locking pin 8 at an upper end of the frame connects the pads of the first connection means 2 to the support arrangement 1. An adapter plate 13 is used to fix the locking pin 8 in its position in respect to the support arrangement 1.
  • The second connection means 3 comprises an adapter plate 14 to fix the position of the locking pin 7 in respect to the support arrangement 1. The adjustable locking pin 7 connects the pad of the second connection means 3 to the support arrangement 1.
  • The adapter plate 14 comprises adjustment screws to adjust the position of the adapter plate in respect to the support arrangement 1. The adjustment screws can be arranged in a way to adjust the position of the adapter plate in three orthogonal directions.
  • The adjustable locking pins 7 and 8 interact with a through-going hole in the frame of the support arrangement 1.
  • The pads of the first connection means 2 are connected to the flange 5 of the tower 4. The pads of the second connection means 3 are connected to the flange 5 of the tower 4.
  • The second connection means 3 are adjustable in their position in respect to the support arrangement 1.
  • A linear actuator 6 preferably a hydraulic cylinder is arranged between the second connection means 3 and the support arrangement 1. The position of the second connection means 3 at the support arrangement 1 is adjusted by activating the linear actuator 6.
  • The upper end of the flange of the horizontally arranged tower 4 is fixedly connected to the support arrangement 1. The lower end of the flange 5 of the tower 4 is adjusted in its position in respect to the support arrangement 1 by the linear actuator 6.
  • After the adjustment of the position of the lower part of the flange 5 in respect to the support arrangement 1, the second connection means 1 are detachable but fixed connected to the support arrangement 1.
  • Segments of a tower, like the tower 4 in FIG 1, tend to deform due to gravitation during transportation and storage. Thus, the circular shape of the crosscut of the tower tends to ovalize.
  • The adjustment of the second connection means 3 in respect to the support arrangement 1 counteracts the deformation of the tower 4 and prevents a further ovalization of the crosscut of the tower.
  • Before the second connection means 3 is fixed in its position in respect to the support arrangement 1 a second linear actuator is introduced between the support arrangement 1 and the adjustable locking pin system of the second connection means 3.
  • Thus, the adjustable locking pin 7 of the second connection means 3 are brought into a final position before fixing the position of the second connection means 3 in respect to the support arrangement 1.
  • The linear actuator 6 and/or the second linear actuator can be removed after the position of the second connection means 3 is fixed in relation to the support arrangement 1.
  • FIG 2 shows the connection means at a flange of a tower.
  • FIG 2 shows a tower 4 with a flange 5. The connection means 2 and 3 are connected to the flange 5 of the tower 4. The first connection means 2 are connected at an upper end of the tower flange 5 and the second connection means 3 are connected to the lower part of the flange 5 of the tower 4.
  • The first connection means 2 comprise pads that are connected to the flange of the tower. The first connection means comprise adapter plates 13 and an adjustable locking pin 8 that are used to connect the first connection means 2 to the support arrangement 1.
  • In addition, the first connection means 2 comprise connection means for a crane 15. Thus, the first connection means 2 and also the support arrangement 1 can be used to transport and handle the tower 4 by crane.
  • The second connection means 3 are connected to the lower part of the tower flange. The second connection means 3 comprise pads that are connected to the flange 5 of the tower 4.
  • In addition, the second connection means 3 comprise adapter plates 14 and an adjustable locking pin 7 to connect the second connection means 3 to the support arrangement 1.
  • The linear actuator 6 is shown in FIG 2. The linear actuator 6 preferably a hydraulic cylinder is used to adjust the position of the second connection means 3 in respect to the first connection means 2.
  • Thus, an ovalization of the tower 4 can be eliminated by adjusting the position of the second connection means 3 in respect to the first connection means 2.
  • FIG 3 shows a detail of the second connection means.
  • FIG 3 shows a detail of the second connection means 3. The second connection means 3 comprise a pad that is connected to the flange 5 of the tower 4. The second connection means 3 in addition comprises an adapter plate 14 and an adjustable locking pin 7.
  • The support arrangement 1 comprises through-going holes that are used by the adjustable locking pin 7. The adjustable locking pin 7 is used to connect the second connection means 3 to the support arrangement 1. The adapter plate 14 is used to fix the locking pin 7 in its position after adjusting the locking pin within the hole in the support arrangement 1.
  • The position of the adjustable locking pin 7 can be adjusted in the longish holes of the support arrangement 1 to adjust the position of the second connection means 3 in respect to the support arrangement 1, or the first connection means 2.
  • FIG 4 shows a second view of the second connection means.
  • FIG 4 shows a second view of the second connection means 3. The second connection means 3 are connected to the flange 5 of the tower 4. The second connection means 3 are connected to the support arrangement 1 by an adapter plate 14 and an adjustable locking pin 7. The support arrangement 1 shows a longish through-going hole that is used by the adjustable locking pin 7.
  • FIG 5 shows a detail of the connection means.
  • FIG 5 shows a detail of the second connection means 3.
  • The second connection means 3 are connected to the support arrangement 1 by adjustable locking pins 7. The adjustable locking pins 7 are arranged in a longish hole in the adapter plate 14.
  • The second connection means 3 are adjustable in their position in respect to the support arrangement 1. The second connection means 3 comprise an adapter plate 14 to fix the adjusted position of the locking pin 7 in respect to the support arrangement 1, and thus to fix the position of the second connection means 3 in respect to the support arrangement 1.
  • The position of the locking pin 7 is adjusted by sliding the adapter plate 14 down. The adapter plate 14 pushes the locking pin 7 downward within the longish hole in the support arrangement 1. Thus any air or slag can be removed from the connection between the second connection means 3 and the support arrangement 1.
  • In FIG 5 the adapter plate 14 is in its locking position, to lock the position of the locking pin 7.
  • FIG 6 shows a second embodiment of the support arrangement.
  • FIG 6 shows a second embodiment of the support arrangement 1. The support arrangement 1 is a frame-like structure comprising vertical beams 10 and 11 and horizontal beams 12.
  • The support arrangement 1 comprises first connection means 2 that are connected to an upper part of a flange 5. The flange 5 is the flange of the tower 4.
  • The support arrangement 1 is connected to the flange 5 of the tower 4 to support the shape of the tower and to allow transportation storage and handling of the tower segment 4.
  • The support arrangement 1 comprises a second connection means 3 that are connected to a lower part of the tower flange.
  • The first connection means 2 are fixed in their position in respect to the support arrangement 1.
  • The second connection means 3 are adjustable in their position in respect to the support arrangement 1. The tower is connected to the first connection means 2 that are connected to the support arrangement 1.
  • The tower is then connected to the second connection means 3 and the second connection means 3 are adjusted in their position in respect to the support arrangement 1.
  • Thus, a deformation of the tower can be compensated. As soon as the tower is in the desired shape, the second connection means 3 are connected to the support arrangement 1 by third connection means, like an adjustable locking pin system, and are fixed in their position.
  • For the adjustment of the second connection means 3 in respect to the support arrangement 1, a linear actuator 6 is arranged at a support arrangement 1.
  • Connection means 15 to connect a hook of a crane are arranged at the first connection means 2 and at the second connection means 3. Thus, the support arrangement 1 can be used to lift the tower segment 4 from a horizontal into a vertical position.
  • The frame-like structure of the support arrangement 1 shows attachment points 9 for a forklift. In addition, the support arrangement 1 shows foot plates 16 for storage.
  • In addition, the support arrangement 1 shows eyes 17 for a load restraint assembly. Thus the support arrangement 1 can be fixed to a transport vehicle during transportation of the tower 4.
  • FIG 7 shows a third embodiment of the support arrangement.
  • FIG 7 shows a third embodiment of the support arrangement 1. The support arrangement 1 is used to support a segment of a tower 4. The tower 4 comprises a flange 5 at its end.
  • The support arrangement 1 is connected to the flange 5 of the tower 4. The support arrangement 1 shows a first connection means 2 and a second connection means 3. The first and second connection means are connected to the flange 5 of the tower by bolts.
  • The first connection means 2 are detachably attached to the support arrangement 1, but they are fixed in their position in respect to the support arrangement 1.
  • The second connection means 3 are detachably attached to the support arrangement 1, but the position of the second connection means 3 in respect to the support arrangement 1 is adjustable. Thus, the distance between the first connection means two and the second connection means 3 is adjustable.
  • Thus, the shape of the crosscut of the tower is adjustable.
  • The tower 4 is first connected to the first connection means 2. The tower is then connected to the second connection means 3. The distance between the second connection means 3 and the first connection means 2 is then adjusted.
  • As soon as the tower shows the desired shape, and the deformation of the tower is compensated, the second connection means 3 are fixed in their position in relation to the support arrangement 1.
  • Thus, the segment of the tower 4 can be transported, stored and handled without losing the desired shape of the tower 4.
  • The support arrangement 1 shows a frame-like structure, this can be an H-shaped frame. The support arrangement 1 shows vertical beams 10 and 11 that are connected by horizontal beams 12.
  • One of the horizontal beams 12 shows attachment points 9 for a forklift. Thus, the support arrangement 1 can be handled by a forklift.
  • On the lower end, the support arrangement 1 shows foot plates 16 for storage.
  • Connection means 15 for a crane are present at a first connection means 2 and at a second connection means 3.
  • The vertical beams 10 and 11 of the support arrangement 1 show eyes 17 to arrange a load restraint assembly. Thus, the support arrangement 1 can be attached to a transportation vehicle by belts during transportation.
  • The first connection means 2 are connected to support arrangement 1 by an adjustable locking pin system comprising an adjustable locking pin 8 and an adapter plate 13.
  • The second connection means 3 are connected to the support arrangement 1 by an adjustable locking pin system. The adjustable locking pin system of the second connection means 3 comprises a locking pin 7 and an adapter plate 15.
  • The illustration in the drawings is in schematic form. It is noted that in different figures, similar or identical elements are provided with the same reference signs.
  • Although the present invention has been described in detail with reference to the preferred embodiment, it is to be understood that the present invention is not limited by the disclosed examples, and that numerous additional modifications and variations could be made thereto by a person skilled in the art without departing from the scope of the invention.
  • It should be noted that the use of "a" or "an" throughout this application does not exclude a plurality, and "comprising" does not exclude other steps or elements. Also elements described in association with different embodiments may be combined. It should also be noted that reference signs in the claims should not be construed as limiting the scope of the claims.

Claims (15)

  1. Wind turbine tower support arrangement (1),
    - comprising at least a segment of a wind turbine tower(4) that is oriented horizontally and a support arrangement (1),
    - whereby the support arrangement (1) comprises a first connection means (2) to connect to a first part of the segment of the tower (4),
    - whereby the support arrangement (1) comprises a second connection means (3) to connect to a second part of the segment of the tower (4),
    - the first connection means (2) are connected to the upper part of a flange of the wind turbine tower segment and the second connection means (3) are connected to the lower part of a flange of the wind turbine tower segment,
    characterized in that the first connection means (2) are fixed in their position in respect to the support arrangement (1), and
    - that the second connection means (3) are adjustable connected to the support arrangement (1), so that the distance between the first connection means (2) and the second connection means (3) is adjustable to counteract a deformation of the tower (4) due to gravity, and
    - that the support arrangement (1) comprises a third connection means to detachably fix the position of the second connection means (3) in respect to the support arrangement (1) to support the counteracted shape of the tower (4).
  2. Support arrangement (1) according to claim 1, characterized in that the support arrangement (1) comprises a linear actuator (6) to adjust the position of the second connection means (3) in respect to the support arrangement (1).
  3. Support arrangement (1) according to claim 2, characterized in that the linear actuator (6) is a hydraulic cylinder.
  4. Support arrangement (1) according to one of the preceding claims, characterized in that the support arrangement (1) comprises a frame to connect the first and the second connection means (2, 3), wherein the frame comprises at least two vertical (10, 11) and two horizontal beams (12).
  5. Support arrangement (1) according to one of the preceding claims, characterized in that the first and/or the second connection means (2, 3) comprise a pad that is attachable to a flange (5) of the tower (4).
  6. Support arrangement (1) according to claim 5, characterized in that the pad is attached to the support arrangement by a pin (7, 8).
  7. Support arrangement (1) according to one of the preceding claims, characterized in that the second connection means (3) comprises an adjustable locking pin system to connect to the support arrangement (1) and that the locking pin system interacts with a through-hole in the support arrangement (1).
  8. Support arrangement (1) according to claim 7, characterized in that a second linear actuator is attachable to the locking pin system, to adjust the position of the locking pin system in respect to the through-hole in the support arrangement (1).
  9. Support arrangement (1) according to one of the preceding claims, characterized in that the first connection means (2) comprises an adjustable locking pin system to connect to the support arrangement (1) and that the locking pin system interacts with a through-hole in the support arrangement (1).
  10. Support arrangement (1) according to one of the preceding claims, characterized in that the first and/or the second connection means (2, 3) comprise adapter plates (13, 14) as brackets, to support the connection of the pads to the support arrangement (1).
  11. Support arrangement (1) according claim 10, characterized in that the adapter plate (14) at the second connection means (3) comprise adjustment screws, so that the position of the adapter plate (14) is adjustable in respect to the support arrangement (1) by the use of the adjustment screws.
  12. Support arrangement (1) according to one of the preceding claims, characterized in that the support arrangement (1) comprises connection means (15, 17) to connect a crane or a load restraint assembly for handling, storage or transportation.
  13. Method to operate a wind turbine tower support arrangement to support the tower (4) of a wind turbine,
    - whereby the wind turbine tower support arrangement comprises at least a segment of a wind turbine tower that is oriented horizontally and a support arrangement,
    - whereby a support arrangement (1) comprises a first connection means (2) to connect to a first part of the segment of the tower (4),
    - whereby the support arrangement (1) comprises a second connection means (3) to connect to a second part of the segment of the tower (4),
    - whereby the first connection means (2) are connected to the upper part of a flange of the wind turbine tower segment and the second connection means are connected to the lower part of a flange of the wind turbine tower segment,
    - whereby the first connection means (2) are fixed in their position in respect to the support arrangement (1), and
    - whereby the second connection means (3) are adjustable connected to the support arrangement (1), so that the distance between the first connection means (2) and the second connection means (3) is adjustable to counteract deformation of the tower (4) due to gravity, and
    - whereby the support arrangement (1) comprises third connection means to detachably fix the position of the second connection means (3) in respect to the support arrangement (1) to support the counteracted shape of the tower (4),
    - comprising the steps of
    - connecting the first connection means (2) to the tower (4),
    - connecting the second connection means (3) to the tower (4),
    - adjusting the position of the second connection means (3) in respect to the support arrangement (1),
    - fixing the position of the second connection means (3) in respect to the support arrangement (1).
  14. Method according to claim 13, comprising the step of
    - attaching a linear actuator (6) to the second connection means (3),
    - using the linear actuator (6) to adjust the position of the second connection means (3) in respect to the support arrangement (1),
    - fixing the position of the second connection means (3) in respect to the support arrangement (1), and
    - detaching the linear actuator (6).
  15. Method according to claim 14, whereby the second connection means (3) comprise a locking pin system, comprising the step of
    - attaching a second linear actuator at the locking pin system and
    - adjusting the position of the locking pin system with the second linear actuator, and
    - fixing the position of the second connection means (3) in respect to the support arrangement (1).
EP14166018.3A 2014-04-25 2014-04-25 Support arrangement of a wind turbine tower Active EP2937561B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14166018.3A EP2937561B1 (en) 2014-04-25 2014-04-25 Support arrangement of a wind turbine tower
DK14166018.3T DK2937561T3 (en) 2014-04-25 2014-04-25 Support device for a wind turbine tower
US14/615,760 US9260875B2 (en) 2014-04-25 2015-02-06 Support arrangement of a wind turbine tower
CN201510198953.8A CN105041583B (en) 2014-04-25 2015-04-24 The support of wind turbine tower is arranged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14166018.3A EP2937561B1 (en) 2014-04-25 2014-04-25 Support arrangement of a wind turbine tower

Publications (2)

Publication Number Publication Date
EP2937561A1 EP2937561A1 (en) 2015-10-28
EP2937561B1 true EP2937561B1 (en) 2018-03-07

Family

ID=50549037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14166018.3A Active EP2937561B1 (en) 2014-04-25 2014-04-25 Support arrangement of a wind turbine tower

Country Status (4)

Country Link
US (1) US9260875B2 (en)
EP (1) EP2937561B1 (en)
CN (1) CN105041583B (en)
DK (1) DK2937561T3 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098435A1 (en) * 2012-10-26 2016-11-30 LM WP Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
CN105438957B (en) * 2015-12-15 2017-04-19 南通蓝岛海洋工程有限公司 Wind-power barrel marine transport tool
DK3507488T3 (en) * 2016-09-02 2021-08-30 Lm Wind Power Int Tech Ii Aps Transport and storage system for a wind turbine blade
DK179300B1 (en) 2016-09-08 2018-04-16 Liftra Ip Aps Adjustable retention fixture for wind turbine members
DE102016220626A1 (en) * 2016-10-20 2018-04-26 Siemens Aktiengesellschaft Connecting device for a wind turbine component
CN110402331B (en) * 2017-03-31 2021-02-02 维斯塔斯风力系统有限公司 Transport system and method for loading wind turbine tower segments
DE102017127035A1 (en) 2017-11-16 2019-05-16 Wobben Properties Gmbh Flange frame and mounting kit for pre-assembly and / or transport and / or installation of a tower segment for a wind turbine and method
CN109955180A (en) * 2017-12-14 2019-07-02 红塔烟草(集团)有限责任公司 Atlas air compressor machine drier core dismantling device
ES2965941T3 (en) 2017-12-21 2024-04-17 Lm Wind Power As Procedure and system for transporting wind turbine blades
EP3736442A1 (en) * 2019-05-06 2020-11-11 Siemens Gamesa Renewable Energy A/S Tool arrangement for unloading a tower or a tower segment from a transportation vehicle and/or for storing the tower or the tower segment
US11434876B2 (en) * 2019-07-12 2022-09-06 Tpi Composites, Inc. Movement and positioning adaptor for handling root-ring of wind turbine blade
DK3800348T3 (en) * 2019-10-01 2023-11-20 Siemens Gamesa Renewable Energy As MODULAR TOOLS
EP3926164A1 (en) * 2020-06-19 2021-12-22 Vestas Offshore Wind A/S Device and method for assembling wind turbine
CN113928475B (en) * 2020-06-29 2023-01-24 江苏金风科技有限公司 Tower section supporting tool and tower section supporting module
US11939954B2 (en) * 2020-09-28 2024-03-26 Bnsf Logistics, Llc Transit bracket assembly for wind turbine tower section
US11859593B2 (en) 2020-11-27 2024-01-02 Wobben Properties Gmbh Method for transporting a tower section, tower section, transportation system and method for installing a wind turbine
EP4043722B1 (en) * 2021-02-15 2023-09-20 Siemens Gamesa Renewable Energy A/S Transport system and method of transporting a tower of a wind turbine
EP4202214A1 (en) * 2021-12-22 2023-06-28 Nordex Energy Spain, S.A.U. System for handling a wind turbine tower section and corresponding method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063136B4 (en) * 2000-07-10 2007-03-08 Wobben, Aloys, Dipl.-Ing. Device for handling piece goods
JP3809855B2 (en) * 2000-08-17 2006-08-16 日本通運株式会社 Transportation vehicle
US8186916B2 (en) * 2008-06-09 2012-05-29 General Electric Company System and method for transporting wind turbine tower sections on a shipping vessel
DK176948B1 (en) * 2008-07-30 2010-06-21 Liftra Aps Fixture for retaining the end of a workpiece, such as a section of a wind turbine tower, a blade for a wind turbine, or a wind turbine hub.
ES2341525B1 (en) 2008-12-19 2011-05-20 GAMESA INNOVATION & TECHNOLOGY, S.L. USEFUL FOR THE TRANSPORTATION OF TOWERS.
DK2345810T3 (en) * 2010-01-18 2013-01-02 Siemens Ag Device and method for transporting a wind turbine tower segment
WO2011131254A2 (en) * 2010-04-21 2011-10-27 Siemens Aktiengesellschaft Fixture and frame which is connectable to an end of a member and method for connecting a fixture to an end of a member
CN201771687U (en) 2010-05-11 2011-03-23 江苏宇杰钢机有限公司 Internal brace stay used for preventing deformation of flange on wind power generation tower during transportation
DK2418376T3 (en) * 2010-08-12 2016-07-18 Lm Wp Patent Holding As Transport and storage system for wind turbine blades
EP2617990B1 (en) * 2012-01-17 2015-04-15 ALSTOM Renewable Technologies Anti-ovalization tool for introduction into a wind turbine blade root and method of reducing ovalization of a wind turbine blade root
DK2620389T3 (en) * 2012-01-26 2016-03-07 Siemens Ag Attachment for the blades of a wind turbine and method of transporting blades of a wind turbine thus
DE102012002755A1 (en) 2012-02-11 2013-08-14 Ge Wind Energy Gmbh Method for handling tower segments for a tower and apparatus for handling tower segments
DK2824057T3 (en) 2013-07-11 2017-09-11 Siemens Ag Lifting of a tower segment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK2937561T3 (en) 2018-05-07
CN105041583A (en) 2015-11-11
US9260875B2 (en) 2016-02-16
EP2937561A1 (en) 2015-10-28
US20150308134A1 (en) 2015-10-29
CN105041583B (en) 2018-12-28

Similar Documents

Publication Publication Date Title
EP2937561B1 (en) Support arrangement of a wind turbine tower
CN101410618B (en) Lifting tool for mounting a wind-power generator
US9669497B2 (en) Method for assembling a blade of a wind turbine
CN1856644B (en) Method of conducting service on a wind turbine using equipment mounted on the hub
US9476403B2 (en) Wind turbine blade lowering apparatus
EP3019433B1 (en) Assembly and method for lifting loads
EP2569533B1 (en) An assembly rig for assembling a wind turbine tower or wind turbine tower sections
EP2661550B1 (en) Wind turbine blade bearing removal apparatus and method
EP2816224A1 (en) Assembly method for a main rotor shaft and an installation tool thereto
US9546573B2 (en) Method and equipment for turning a blade or a blade part for a wind turbine during production or installation
JP6942264B2 (en) Flange frames and assembly sets and methods for pre-assembling and / or transporting and / or assembling wind turbine tower segments.
US8171614B2 (en) Systems and method of assembling a tower section
EP3394426B1 (en) Methods for mounting or dismounting wind turbine components of a multirotor wind turbine
EP3177774B1 (en) Scaffold for supporting a working platform for bridges
US11448197B2 (en) Modular tool
MX2014015241A (en) Foundation for wind turbines.
CN111661746B (en) Lifting appliance
KR101676202B1 (en) Platform for wind tower
WO2023095003A1 (en) Wind turbine blade installation system and related methods
EP2644557A1 (en) Crane using support structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160421

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014021868

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F03D0011000000

Ipc: F03D0013400000

RIC1 Information provided on ipc code assigned before grant

Ipc: E04H 12/08 20060101ALI20170921BHEP

Ipc: B66C 1/10 20060101ALN20170921BHEP

Ipc: F03D 13/40 20160101AFI20170921BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 976858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014021868

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180430

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 976858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014021868

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

26N No opposition filed

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021868

Country of ref document: DE

Owner name: SIEMENS GAMESA RENEWABLE ENERGY A/S, DK

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20191128 AND 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 10

Ref country code: DK

Payment date: 20230419

Year of fee payment: 10

Ref country code: DE

Payment date: 20230418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 10