EP2936936B1 - Detection of an led module - Google Patents

Detection of an led module Download PDF

Info

Publication number
EP2936936B1
EP2936936B1 EP13831887.8A EP13831887A EP2936936B1 EP 2936936 B1 EP2936936 B1 EP 2936936B1 EP 13831887 A EP13831887 A EP 13831887A EP 2936936 B1 EP2936936 B1 EP 2936936B1
Authority
EP
European Patent Office
Prior art keywords
led
led module
converter
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13831887.8A
Other languages
German (de)
French (fr)
Other versions
EP2936936A2 (en
Inventor
Mathias DÜNSER
Jürgen FINK
Thomas Ondrisek
Klaus MÜNDLE
Günter MARENT
Andre Mitterbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201210224141 external-priority patent/DE102012224141A1/en
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2936936A2 publication Critical patent/EP2936936A2/en
Application granted granted Critical
Publication of EP2936936B1 publication Critical patent/EP2936936B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Definitions

  • the present invention relates to an LED module, an LED converter and a method which make it possible to transmit operating parameters of the LED module to the LED converter without a specific communication line between the LED module and the LED converter.
  • One approach known from the prior art is to set the operating parameters to be set for the connected LED module on the LED converter via DIP switches or resistors. However, this requires interaction with the LED converter.
  • configuration resistors are used on the LED module in order to specify the required operating parameters for the LED converter.
  • additional connections are necessary, on the other hand, interaction is required.
  • the international application WO 201 0/092504 A1 Figure 3 shows a driver for a lighting system having power supply connections and a detector circuit.
  • the power supply connections are set up for supplying electrical energy from the driver to the lighting system.
  • the detector circuit is designed to detect information from the lighting system via the supply connections by detecting an electrical load on the connections by the lighting system and determining an operating state of the lighting system.
  • the driver is also set up to control the energy supplied as a function of the specific operating state.
  • the European patent application EP 1 517 588 A1 Fig. 13 shows a lighting method capable of generating individual light emitting devices in a headlamp connected to a power supply, each with a rated current regardless of the specification of the headlamp, using a power supply having an identical specification and a lighting device used for the lighting method.
  • the lighting device includes headlights, each having one or more light-emitting devices which are arranged in an arbitrary pattern and which include a lighting circuit.
  • the lighting circuit supplies a current to the light emitting devices when a voltage is equal to or less than a lower limit voltage VLmin determined by the arrangement of the light emitting devices.
  • An identification circuit outputs a current identification signal in accordance with an appropriate current for the lighting circuit when the voltage is applied when the voltage is lower than the lower limit voltage.
  • the power supply includes an operating power supply that applies a voltage at or above the lower limit voltage for the lighting, an identification power supply that provides a characteristic voltage at or below the lower limit voltage for lighting, a current setting device that sets a suitable current to be supplied to the lighting circuit based on the current identification signal outputted from the identification circuit and a lighting current control circuit that maintains the current flowing in the light circuit in a lighting state of the light emitting devices at an appropriate current according to the current setting signal.
  • the disclosure EP 1 244 334 A2 discloses a circuit arrangement with a lamp and two connecting lines, a light source of the lamp having at least one LED.
  • An adjustable power source is designed to provide a power supply via the connection lines.
  • the circuit arrangement is characterized by a coding element arranged parallel to the LED light source in the circuit, the coding of which denotes the nominal current of the light source.
  • An evaluation circuit arranged outside the lamp is connected to at least one of the connecting lines of the lamp. The evaluation circuit evaluates the coding of the coding element. Based on the determined coding, the adjustable current source is set to the nominal current of the light source.
  • the object of the present invention is to improve the known prior art, particularly with regard to the disadvantages mentioned above.
  • the invention relates to a system in which information can be transmitted to the LED converter by a generated load or load changes of the LED module.
  • information can be transmitted to the LED converter through a generated load or load changes of the LED module in a preferably time-limited start phase.
  • information can be exchanged between the LED converter and the LED module by means of bidirectional communication, the communication being preferably transmitted from the LED module by a generated load or load changes of the LED module.
  • the present invention makes use of the fact that to operate an LED module, in particular to light up an LED path of the LED module, a certain forward voltage on the LED path, ie a certain supply voltage on the LED module, is necessary .
  • the LED path blocks below the forward voltage.
  • the LED path is therefore non-conductive and represents an almost infinite resistance for the LED converter. Only at or above the forward voltage does the LED path represent an active power load for the LED converter.
  • a supply voltage on an LED path that is not equal to zero but below the forward voltage defines a voltage window in which the LED path is not yet conductive. This voltage window is used by the present invention in order to transmit information to the LED converter due to a generated load or load changes of the LED module.
  • the present invention relates to an LED module which has: connections for an LED converter that supplies the LED module with a supply voltage, further connections for an LED path, a circuit that can be activated when the connections are switched on predetermined constant current, which is less than the nominal current of the LED path, or a predetermined constant voltage, which is lower than the forward voltage of the LED path, is applied to the LED module, with the system of the predetermined constant current or the constant voltage a start phase begins.
  • the circuit is designed to display a current-variable active power load when activated, which causes a repeated change in the power consumption of the LED module in accordance with at least one predetermined protocol.
  • the circuit can be deactivated and, when deactivated, is designed not to represent an active power load.
  • the circuit is distinguished by the fact that the circuit also has means to automatically deactivate itself after a predetermined period of time from the beginning of the start phase.
  • a circuit designed to represent an active power load will be activated in a time-limited start phase. After the start phase, which is limited in time, the circuit can be designed not to represent a load. The load for the time-limited start phase causes the LED module to consume power.
  • the invention also relates to an LED module that has connections for an LED path, as well as a circuit that is designed to represent an active power load when a constant current or a constant voltage is applied to the LED module in a starting phase, and which is designed to represent no load when the start phase has expired, the circuit being designed to represent a current-variable load that causes a change in the power consumption of the LED module in accordance with at least one predetermined protocol.
  • the present invention relates to an LED module that has: connections for an LED path, a circuit that is designed to represent an active power load when a first non-zero supply current is fed to the LED module, and that is designed to do so not to represent a load when a second supply current, unlike the first supply current, is fed to the LED module or when a time-limited start phase has expired.
  • the load on the voltage window (readout window) in which the LED path is non-conductive causes the LED module to consume power.
  • An LED converter can recognize this power consumption and can determine parameters of the LED module based on the detected power consumption.
  • the LED converter can, for example, based on stored tables, infer operating and / or maintenance parameters of the LED module to be set from the detected power consumption.
  • the circuit is designed to be activated every time a supply voltage is applied to the LED module. Furthermore, the circuit is designed to automatically deactivate itself when a time-limited start phase has expired or ended. This means that there is no power loss in the continuous lighting operation of the LED path. No additional connections are required to operate the circuit.
  • the circuit is integrated in the LED module and does not have to be provided as a separate component.
  • the circuit works automatically after a supply voltage is applied, i.e. a start phase, so no additional interaction has to be carried out.
  • the circuit is designed to be activated every time a supply voltage between zero and the forward voltage of the LED path is applied to the LED module. Furthermore, the circuit is designed to automatically deactivate itself when the applied supply voltage reaches or exceeds the forward voltage of the connected LED path. Thus, there is no power loss when the LED path is lit. No additional connections are required to operate the circuit.
  • the circuit is integrated in the LED module and does not have to be provided as a separate component. The circuit works automatically according to the applied supply voltage, so no additional interaction has to be carried out.
  • a predetermined supply current can also be fed into the LED path to activate the circuit in order to activate the circuit on the LED path.
  • the LED converter can output the nominally minimum output current according to its specification or a low minimum current value, at which it is ensured that the LED module is not overloaded.
  • the circuit is designed to automatically deactivate itself, for example when the supplied supply current reaches or exceeds the nominal current of the connected LED path or when a time-limited start phase has expired.
  • the circuit is preferably designed to represent a current-constant or power-constant load which causes a constant current consumption or a constant power consumption of the LED module.
  • the circuit is therefore a constant load that can be selectively activated in the readout window of the supply voltage.
  • Such a circuit enables a particularly simple implementation of the present invention.
  • the circuit is designed to represent a current-variable load which causes a change in the power consumption of the LED module in accordance with at least one predetermined protocol.
  • a variable power consumption i.e. a load change of the LED module in the readout window, more complex information can be displayed.
  • the circuit is preferably designed to encode at least one operating and / or maintenance parameter of the LED module by changing the power consumption in accordance with the at least one predetermined protocol.
  • the circuit on the LED module is designed so that it is only activated in a time-limited start phase of the LED module.
  • An LED converter can detect the change in the power consumption of the LED module and decode it in accordance with the at least one protocol that is stored in the LED converter, for example.
  • a communication path from the LED module to the LED converter is thus made possible without additional lines or pins.
  • Operating parameters of the LED module can be, for example, the forward current of an LED segment of the LED module, the corresponding forward voltage of the LED segment, a target current of the LED module, or a spectrum of the light emitted by the LED segment.
  • Maintenance parameters can be, for example, aging parameters of the LED module or the LED path, an operating time of the LED module, or a temperature on the LED module.
  • the at least one predetermined protocol preferably specifies a frequency and / or an amplitude and / or a pulse duty factor of the change in the power consumption of the LED module.
  • the at least one protocol can therefore be coded in many ways, namely with regard to a frequency of the power consumption, an amplitude and a switch-on clock. This enables complex information to be encoded. Several differently coded protocols can also be used.
  • the circuit is preferably designed such that the change in the power consumption of the LED module is independent of a value of a first supply voltage.
  • the circuit on the LED module therefore reproduces the coding parameters (e.g. amplitude, frequency, duty cycle of the load change) in the readout window (i.e. supply voltage not equal to zero but below the forward voltage of the LED path) independently of the supply voltage.
  • the readout window i.e. supply voltage not equal to zero but below the forward voltage of the LED path
  • the circuit is designed in such a way that the change in the power consumption of the LED module is brought about as a function of a value of the first supply voltage in accordance with one of several predetermined protocols.
  • the same return information is not always transmitted to an LED converter that is connected to the LED module. Rather, the voltage range of the supply voltage at which a connected LED path is not yet conductive can be divided into several sub-ranges of the supply voltage. A different predefined protocol can apply to each sub-area.
  • the circuit preferably comprises a timer circuit which is designed to specify a frequency of the change in the power consumption of the LED module.
  • the timer circuit therefore specifies the frequency of the load change of the LED module.
  • the circuit is preferably integrated into a semiconductor material of the LED module. As a result, the circuit can be designed to be particularly space-saving and inexpensive.
  • At least one sensor which is designed to influence an electrical parameter of the circuit, is advantageously provided on the LED module.
  • the LED converter can supply the sensor in an operating mode when the LED path is not active by the LED converter emitting a reduced supply voltage to the LED module.
  • the at least one sensor can be, for example, a sensor or a combination of several sensors that can be light sensors, temperature sensors, color sensors, presence sensors, etc.
  • the influenced electrical parameter of the circuit on the LED module can be, for example, a resistance value or a conductivity.
  • the at least one sensor is preferably a light sensor with a light-dependent resistor and the light sensor is connected to the circuit in such a way that a change in the light-dependent resistance changes the load resistance of the circuit.
  • a light sensor with a light-dependent resistor i.e. a "Light Dependent Resistor” is easy to implement. A light power that falls on this resistor has a direct influence on its resistance value and thus also on the circuit's real power load in the readout window.
  • the present invention relates to a system with an LED module, as described above, and an LED converter.
  • the system has an LED module according to one of the preceding embodiments with an LED path and an LED converter.
  • the LED converter has a high-frequency clocked converter, preferably an isolated flyback converter.
  • the high-frequency clocked converter is operated as a constant current source in a time-limited start phase.
  • the LED converter is designed to supply the LED module with the specified constant current, which is smaller than the nominal current of the LED path, or the constant voltage, which is lower than the forward voltage of the LED path, during the start phase .
  • the clocked converter is designed to detect a repeatedly changing power consumption of the LED module on the primary side of a transformer of the high-frequency clocked converter during the starting phase and to assign at least one operating and / or maintenance parameter of the LED module based on the recorded power consumption determine.
  • the LED converter is designed to measure a power consumption of the LED module for a first supply voltage applied to the LED module, at which a supply voltage connected to the LED module LED path is non-conductive, to be recorded and based on the recorded power consumption at least one operating and / or maintenance parameter of the LED module.
  • the LED converter can determine these parameters, for example, based on one or more stored or stored tables which, for example, correlate operating and / or maintenance parameters with constant or variable power consumption within the readout window.
  • the LED converter is preferably designed to use the at least one specific operating and / or maintenance parameter: to set or regulate the operation of the LED module, to store it in an assigned memory, to display it optically and / or acoustically, and / or via to send out a wireless or wired interface, possibly in response to an external query.
  • the LED converter is therefore suitable for comprehensively controlling the LED module. There is no need for a separate communication path or additional lines or pins between the LED module and the LED converter.
  • the transfer of information e.g. The transmission of the operating and / or maintenance parameters takes place via the connections for the supply voltage that are already present.
  • the at least one operating and / or maintenance parameter is advantageously a target current through an LED path connected to the LED module, an aging parameter, an operating time and / or a spectrum of light emitted by the LED path.
  • the LED converter is advantageously designed to identify the LED module based on the least one specific operating and / or maintenance parameter.
  • the identification can be carried out, for example, using one or more stored tables. Once the LED converter has identified the LED module, further information can be stored in the one or more tables that allow comprehensive control of the LED module. In particular, a forward current of the LED path of the LED module is advantageous as stored information.
  • the LED converter is advantageously designed to signal the LED module by changing the supply voltage of the LED module, for example via pulse or amplitude modulation of the supply voltage, selectively in a mode for changing the power consumption of the LED module ( Load change).
  • the modulation of the supply voltage can adopt different patterns or values, which enables a targeted selection of individual LED modules when an LED converter supplies several LED modules.
  • the LED module selected in this way can then selectively switch to the mode of load change in order to transmit information to the LED converter.
  • the multiple LED modules can be arranged in a series connection or a parallel connection.
  • the LED converter can be designed to query different types of information from the LED module or modules, depending on the particular pattern or value, by changing the supply voltage, for example via pulse or amplitude modulation of the supply voltage. For this purpose, various tables can be stored in the LED module for reporting the various information.
  • the LED converter is designed to selectively between a mode for detecting a power consumption of the LED module and a mode for lighting operation of an LED connected to the LED module by setting a first supply voltage or a second supply voltage for the LED module. To change route.
  • the first supply voltage is a voltage in the readout window, that is, a supply voltage between zero and a forward voltage at which the connected LED path is not yet conductive.
  • the second supply voltage is a voltage above the forward voltage at which the connected LED path is conductive, preferably lights up.
  • the LED converter is automatically set to the appropriate mode based on the set supply voltage. The power consumption is only recorded in the aforementioned recording mode. This makes it possible to switch off the converter detection circuits in light mode and to save energy. External interaction with the LED converter is not necessary to change the mode.
  • the LED converter is preferably designed to carry out a current measurement for direct detection of the power consumption of the LED module.
  • the LED converter is designed to indirectly record the power consumption of the LED module.
  • the LED converter is preferably designed to detect a change in the power consumption of the LED module by changing a duty cycle of a clocking of the LED converter, for example a buck converter (also called a step-down converter) or an isolated flyback converter.
  • the LED converter can also detect a change in the peak current in the LED converter, for example in an isolated converter, preferably an isolated flyback converter.
  • the LED converter is advantageously designed to discharge a capacitor via a load of the LED module, to determine a discharge current of the capacitor directly or indirectly via a discharge time, and based on the at least one operating and / or maintenance parameter of the LED module to determine this discharge current.
  • this embodiment of the LED converter is preferably used for an LED module with a constant current load in the area of the readout window of the supply voltage.
  • a capacitor in the LED converter is discharged, for example, via a constant current sink on the LED module, whereby the discharge current flowing can be measured directly or indirectly via a discharge rate (negative slope) of the voltage of the capacitor.
  • the directly or indirectly detected discharge current can then be interpreted by the LED converter with regard to the operating and / or maintenance parameters.
  • the information about the operating and / or maintenance parameters is therefore encoded in the slope of the voltage that the LED converter outputs when the capacitor is discharged. Measuring the discharge rate eliminates the dependence on the absolute supply voltage.
  • a detection of the discharge current over the discharge time of the capacitor is also conceivable.
  • the LED converter can also receive information about the absolute voltage at the beginning and at the end of the measurement, i.e. the discharge of the capacitor, are present or returned.
  • the system is an LED luminaire comprising an LED module, as described above, and an LED converter, as also described above.
  • the present invention also relates to a method for transmitting information from an LED module to an LED converter.
  • the LED converter has a high-frequency clocked converter, preferably an isolated flyback converter or resonant half-bridge converter.
  • the LED module shows connections for the LED converter supplying the LED module.
  • the LED converter supplies the LED module with a predetermined constant current, which is less than the nominal current of the LED path, or a predetermined constant voltage, which is less than the forward voltage of the LED path, with application of the predetermined constant current or the constant voltage begins a start phase.
  • a circuit of the LED module which is designed to represent an active power load, is activated when the specified constant current or the specified constant voltage is applied.
  • the activated switching of the LED module causes a repeated change in the power consumption of the LED module according to at least one predetermined protocol.
  • the LED converter detects a repeatedly changing power consumption of the LED module.
  • the circuit of the LED module can be deactivated and the deactivated circuit does not represent an active power load.
  • the circuit is characterized in that the circuit automatically deactivates itself after a specified period of time from the start of the start phase.
  • One embodiment of the method comprises activating the circuit in order to display a load, preferably an active power load, when a first non-zero supply voltage is applied to the LED module, at which a connected LED path is non-conductive, and deactivating the circuit in order to avoid any Load when a second non-zero supply voltage is applied to the LED module at which a connected LED path is conductive.
  • One embodiment of the method also relates to a method for determining information relating to an LED module on an LED converter, which comprises: detecting a power consumption of the LED module for a first supply voltage applied to the LED module, at which one is applied to the LED Module connected LED path is not conductive, and determine at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.
  • One embodiment of the method further relates to a method for transmitting information from an LED module to an LED converter having a high-frequency clocked converter with a transformer, which includes activating a circuit at least during a time-limited start phase around a load, preferably an active power load , and a detection of a power consumption of the LED module on the primary side of the transformer of the high-frequency clocked converter.
  • the present invention also relates to a method for determining information relating to an LED module on an LED converter having a high-frequency clocked converter with a transformer, which comprises detecting a power consumption of the LED module on the primary side of the transformer of the high-frequency clocked converter, wherein a circuit on the LED module causes a modulated load change at least during a start phase, and determining at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.
  • the present invention enables information relating to the operating and / or maintenance parameters to be set on an LED module to be transmitted to an LED converter. No further connections or connections between the LED converter and the LED module are necessary. No further component is necessary apart from a load modulation circuit which is advantageously integrated in a semiconductor material of the LED module. There is no additional interaction with the LED module or the LED converter for the transmission of the information.
  • the present invention thus enables a simpler control of an LED module, as well as a more cost-effective and more compact production of the LED module and / or LED converter.
  • the present invention also relates to a method for determining information relating to an LED module on an LED converter, comprising: detecting a power consumption of the LED module, a circuit on the LED module causing a modulated load change at least during a start phase, and determining at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.
  • FIG. 1 shows schematically an LED lamp according to the invention, which consists of an LED module 1 according to the invention and an LED converter 10 according to the invention.
  • the LED converter 10 is connected to the LED module 1 via one or more voltage connections 12.
  • the LED converter 10 thus supplies the LED module 1 with a supply voltage.
  • the LED converter 10 can also be designed to operate a plurality of LED modules 1.
  • the supply voltage is preferably a direct voltage, but can also be a clocked voltage or alternating voltage.
  • the LED converter 10 preferably has a high-frequency clocked converter, for example a buck converter (step-down converter), isolated flyback converter or a resonant half-bridge converter (preferably isolated, e.g. an LLC converter).
  • the LED converter 10 can, for example, output a constant output voltage or a constant output current at its voltage connections 12, the voltage at these connections corresponding to the supply voltage of the LED module 1.
  • the supply voltage is applied via one or more connections 2 of the LED module 1 to at least one LED path 3 connected to it (this also includes a single LED).
  • the LED segment 3 does not have to be part of the LED module 1 according to the invention, but can be a connectable and exchangeable LED segment 3.
  • the LED module 1 according to the invention therefore only requires connections 2 for at least one LED line 3.
  • the LED line 3 can, however, also be permanently installed with the LED module 1.
  • the LED path 3 can have one or more LEDs, which, for example, as in FIG Figure 1 shown are connected in series. LEDs in an LED segment 3 can all light up in the same color, ie emit light of the same wavelength, or light up in different colors. For example, several LEDs, preferably red, green and blue-glowing LEDs, can be combined in order to generate mixed radiation, preferably white light.
  • the LED path 3 When it is connected to the connections 2, the LED path 3 is connected in parallel with a circuit 4 with respect to the supply voltage.
  • the circuit 4 is designed, for example, in such a way that it represents a load, preferably an active power load, for the LED converter 10 if the supply voltage applied by the LED converter 10 to the connections 12 is not equal to zero, but is still so low that the LED path 3 connected to connections 2 is not yet conductive.
  • the circuit 4 can therefore also be referred to as a load circuit or a load modulation circuit.
  • Figure 2 shows an example of a current-voltage characteristic of an LED path 3 in which a current through the LED path in the vertical direction and the voltage at the LED path (ie the supply voltage in Figure 1 ) is applied in the horizontal direction.
  • a first voltage range ie a first supply voltage 5a within the readout window
  • the voltage across the LED path 3 is not equal to zero, but the current through the LED path 3 is also almost zero, since the LED path 3 is not conductive .
  • the supply voltage is therefore below the forward voltage.
  • the LED path 3 represents an infinite load for the LED converter 10.
  • the LED module 1 therefore does not consume any power via the LED path 3.
  • a second voltage range ie for a second supply voltage 5b outside the readout window
  • the LED path 3 becomes conductive and a current flows through the LED path 3, which makes it glow.
  • the supply voltage is therefore above the forward voltage.
  • the circuit 4 on the LED module 1 is designed, for example, in such a way that it is activated when the first supply voltage 5a is applied and thereby represents a load, preferably an active power load, for the LED converter 10.
  • the circuit 4 is deactivated and does not represent a load for the LED converter.
  • FIG Figure 1 represented schematically by the switch 6, which automatically activates or deactivates the circuit 4 depending on the applied supply voltage.
  • the circuit 4 can represent either a current-constant load or a current-variable load for the LED converter 10.
  • the circuit 4 causes the LED module 1 to consume power, although an LED path 3 is not yet conductive and does not consume any power. A conventional LED module 1 would not consume any power in the readout window. Additionally or alternatively, the circuit 4 on the LED module 1 can also be designed such that it is only activated in a time-limited start phase of the LED module 1.
  • the power consumption of the LED module 1 in the readout window can be constant or variable, depending on the type of circuit 4.
  • the LED converter 10 can detect the power consumption of the LED module 1 or a change in the power consumption of the LED module 1 and, based on the detected power consumption, deduce operating and / or maintenance parameters of the LED module 1 to be set.
  • the LED converter 10 can use the operating and / or maintenance parameters directly for setting or regulating the LED module 1.
  • the LED converter 10 can also store the operating and / or maintenance parameters in a memory assigned to it and, if necessary, use them later, or display the parameters optically and / or acoustically to a user, or to another device, for example a control unit of a lighting system , send.
  • the transmission can be done either wirelessly or wired and can be carried out either automatically or only on request from the further device.
  • the LED converter 10 supplies the LED module 1, for example, with a constant supply voltage, preferably a constant DC voltage.
  • the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved.
  • the supply voltage is included a first supply voltage 5a, ie it is in the readout window shown in Figure 2 is shown. Since the first supply voltage 5a is not equal to zero, the circuit 4 is activated on the LED module 1 and represents a load for the LED converter 10.
  • the load is preferably an active power load and generates a power consumption of the LED module 1.
  • the LED converter 10 can measure, for example, a discharge current of a capacitor via this load, an absolute current consumption of the circuit 4, a frequency of a change in the power consumption of the LED module 1, or a duty cycle or an amplitude of a change in power consumption. Based on the result of the measurement, the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1. A connected LED path 3 thus becomes conductive and the LED converter 10 operates the LED module 1 in lighting mode.
  • the circuit 4 is now preferably deactivated automatically. The circuit 4 therefore does not consume any power in the lighting operation of the LED path 3 and therefore does not influence the lighting operation of the LED path 3.
  • the LED converter 10 of the LED lamp has automatically recognized the LED module 1 and set the appropriate operating parameters .
  • the LED converter 10 can also read out the LED module 1 for a limited time, in that the circuit 4 is only active during a start phase on the basis of a predetermined period of time as soon as a supply voltage is applied to the LED module 1.
  • this supply voltage can also correspond to the nominal output voltage of the LED converter 10 for normal operation.
  • the circuit 4 on the LED module 1 activated and represents a load for the LED converter 10.
  • the load is preferably a repeatedly changing active power load and generates a power consumption of the LED module 1.
  • the connected LED path 3 can also become conductive in this case, whereby the LED Converter 10 operates the LED module 1 in lighting mode.
  • the LED converter 10 can now measure, for example, a discharge current of a capacitor via this load, an absolute current consumption of the circuit 4, a frequency of a change in the power consumption of the LED module 1, or a duty cycle or an amplitude of a change in power consumption. Based on the result of the measurement, the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1.
  • the circuit 4 is now preferably deactivated automatically after the predetermined time period for the start phase has elapsed.
  • this time period for the start phase can be established, for example, by a time charging circuit, with a timer capacitor being charged and, after the timer capacitor has been charged, the circuit 4 is deactivated. As a result, the circuit 4 does not consume any power in the continuous lighting operation of the LED segment 3 and therefore does not influence the lighting operation of the LED segment 3.
  • Figure 3 shows a circuit which is at least a part of the circuit 4 in order to automatically deactivate it when the supply voltage is in the range of the second supply voltage 5b, that is, above the forward voltage of the LED path 3.
  • the circuit 4 can be deactivated by means of the transistors M4 and M3. As the supply voltage, which is provided by the LED converter 10 and is applied to the circuit 4 on the LED module 1, increases, the voltage across the resistor R8 also increases. If this voltage reaches a threshold voltage of the transistor M4, the latter closes and also deactivates the transistor M3 by connecting the gate voltage of the transistor M3 to ground.
  • the threshold voltage can for example be 1.4 volts (at a voltage of 12.5 volts) of the LED converter 10).
  • the resistance values should be high, preferably in the range from 20 to 200 k ⁇ , even more preferably in the range from 40 to 100 k ⁇ . It is also important that the transistor M3 is designed to withstand the maximum supply voltage that the LED converter 10 can apply, and that the voltage across the resistor R8 does not exceed the maximum permitted gate voltage of the transistor M4 when the LED is normally lit. - Distance exceeds 3.
  • this circuit can be designed, for example by means of an RC element, in such a way that it deactivates itself after a predetermined starting time has elapsed (this time corresponding to the starting phase) by deactivating transistor M3 as a function thereof, ie opening it.
  • a capacitor can be arranged in parallel with the resistor R8.
  • This capacitor can be designed so that it is charged by the applied supply voltage after the specified start time has elapsed and thus the voltage at the parallel resistor R8 has also risen so far that this voltage has reached a threshold voltage of the transistor M4, so that it closes and the Transistor M3 deactivates by pulling the gate voltage of transistor M3 to ground.
  • Figure 4 shows an example of a circuit TL432, which is at least part of the circuit 4, which is designed to display a current-constant load for the LED converter 10 in the readout window.
  • the left side of the Figure 4 shows a circuit diagram of the circuit, the right-hand side shows a corresponding equivalent circuit diagram for the TL431 circuit or TL432.
  • the constant current is determined by a ratio of the reference voltage of the switching circuit TL431 to the resistance value of the selection resistor R11 (Rcfg).
  • a transistor Q1 is preferably controlled such that the voltage across resistor R11 (Rcfg) is always approximately 2.5 volts.
  • a minimum current of about 1 mA should flow through the TL431 circuit.
  • the in Figure 3 The circuit shown can be used in series with the in Figure 4
  • the circuit shown can be arranged so that the series circuit of the two is arranged in parallel with the LED path on the LED module 1.
  • the virtual ground GNDX of the circuit is the Figure 4 connected to the drain of the transistor M3.
  • the LED converter 10 can discharge a capacitor 11, for example, for measuring the constant current.
  • the constant current through the circuit 4 (which corresponds to the discharge current of the capacitor 11) can be determined directly or indirectly based on either the discharge duration and / or the discharge rate. Based on the discharge current, the LED converter can draw conclusions about the circuit 4 used and thus about the connected LED module 1.
  • the LED converter 10 can determine operating and / or maintenance parameters of the LED module, for example using stored tables.
  • the LED converter 10 can be designed as a buck converter.
  • the LED converter 10 is provided with the capacitor 11, which can be connected in parallel to the connections 12 for the supply voltage.
  • the voltage at the connections 12 is monitored by the LED converter 10.
  • the capacitor 11 discharges via the preferably constant current load, which is caused by the circuit 4 on the LED Module 1 is shown.
  • the discharge rate ie the change in the voltage of the capacitor which is applied to the connections 12, is preferably measured by the LED converter 10 in order to draw conclusions about the operating and / or maintenance parameters of the LED module 1 as described.
  • resistor R11 which is shown in Figure 4 constant current load shown, can be determined when the capacitance of the capacitor 11 is known. This resistance value can then encode the operating and / or maintenance parameter, ie the LED converter 10 can, for example, correlate this resistance value with operating and / or maintenance parameters in stored tables.
  • FIG. 6 shows a circuit TLC555, which is at least part of the circuit 4 and is suitable for generating a load change of the LED module 1 with a certain frequency, ie a change in the power consumption of the LED module 1.
  • a capacitor C1 can be charged and discharged between 1/3 and 2/3 of the supply voltage 5a applied by the LED converter 10.
  • a duty cycle (pulse duty factor) of the load change or an amplitude of the load change ie a difference between a load before and a load after the change
  • This also requires a change in the power consumption with a corresponding frequency, pulse duty factor (pulse ratio) or an amplitude.
  • the duty cycle can be changed by changing the pulse duration (switch-on time, ON time, T high ) or by changing the pause duration (switch-off time, OFF time, T low ).
  • the size of the load is determined by the resistor R5 and the converter voltage V CONV (more precisely the ratio V CONV / R5).
  • the circuit 4 is designed so that it is only activated during the starting phase of the LED light. This can be achieved, for example, by supplying the circuit TLC555 with the aid of a timing element such as an RC element, for example, this timing element can be designed in such a way that the supply for the circuit TLC555 is only present for a time of 100 milliseconds, and thereafter due to When the capacitor of the RC element is charged via a series resistor (based on the supply voltage of the LED module 1), a predetermined voltage level is reached, which leads to the switching off of the supply voltage Vcc for the TLC555 circuit (example not shown).
  • a timing element such as an RC element
  • the base of a switch-off transistor (not shown) can be controlled, which pulls the supply Vcc for the circuit TLC555 to ground as soon as the RC element has been charged.
  • the charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is achieved, this time corresponding to the start phase.
  • a start-up of the TLC555 circuit at the beginning of the start phase can take place by means of a high-impedance feed directly from the supply voltage of the LED module 1, whereby this occurs at the end of the start phase by means of the voltage drop across the RC element via the shutdown transistor in a kind of pull-down configuration Mass is pulled.
  • the circuit 4 can have a controllable switch which switches the resistor R5 on or off as a function of the output signal OUT of the circuit TLC555 and thus causes the load change.
  • the in Figure 3 The circuit shown can be used in series with the in Figure 6
  • the circuit shown can be arranged so that the series circuit of the two is arranged in parallel with the LED path on the LED module 1.
  • the virtual ground GNDX of the circuit is the Figure 6 connected to the drain of the transistor M3.
  • a deactivation of the circuit of the Figure 6 can be time-controlled, for example.
  • a capacitor can be arranged in parallel with the resistor R8.
  • an RC element is also formed.
  • the charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is achieved, this time corresponding to the start phase.
  • the voltage at the gate of transistor 4 has reached a threshold voltage of transistor M4, so that it closes and deactivates transistor M3 by setting the gate voltage of transistor M3 to ground sets. In this way the circuit of the Figure 6 can only be activated for a specified start phase.
  • the circuit 4 If the circuit 4 generates and outputs a repetitively changing load change (that is to say a modulated load change), two different items of information can also be transmitted, for example.
  • a repetitively changing load change that is to say a modulated load change
  • both the frequency and the duty cycle of the load change can be changed.
  • a first piece of information for example the setpoint voltage
  • a second piece of information for example the setpoint current
  • Another possibility for the combined transmission of at least two pieces of information would be to change the pulse duration (switch-on time, ON time, T high ) and the pause duration (switch-off time, OFF time, T low ) of the load change accordingly.
  • the change in the power consumption of the LED module 1 can be determined by the LED converter 10, for example, by direct current measurement of the current through the circuit 4.
  • the LED converter can take 10 measurements on a buck converter as in Figure 7 perform shown, wherein the buck converter is preferably part of the LED converter 10. So shows for example Figure 8 how the current through the circuit 4 and the current at the Buck converter, which is measured via a shunt, correlates.
  • Figure 8 shows the current "load current" through circuit 4 and the current "inductor current” through Buck converter plotted against time.
  • the buck converter is only an exemplary example of a high-frequency clocked converter; alternatively, an isolated flyback converter, boost converter (step-up converter) or a resonant half-bridge converter (preferably isolated, for example an LLC converter) for feeding the LED module 1.
  • the LED converter can be used as in Figure 7 shown have a buck converter.
  • the buck converter can be operated as a constant current source, i.e. regulate to a constant output current.
  • the output voltage of the buck converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1 can be recorded and evaluated.
  • the duration of the switch-on time and the switch-off time of the activation of the high-frequency clocked switch of the buck converter can be monitored and evaluated in order to detect a load change and thus read information from the LED module 1.
  • the buck converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage.
  • a load change on the LED module 1 will lead to a change in the peak current that occurs through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the buck converter, and this change can be detected.
  • the duration of the switch-on time and the duty cycle of the activation of the high-frequency clocked switch of the buck converter can also be monitored and evaluated in order to detect a change in load and thus read information from the LED module 1.
  • the level of the output current can also be evaluated in order to detect a change in load.
  • the buck converter can be operated with a fixed pulse duty factor at a fixed frequency, preferably in a non-discontinuous current mode (continuous conduction mode). In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load.
  • the buck converter of the LED converter 10 can supply the LED module 1 with a constant supply voltage, preferably a constant DC voltage, in a starting phase, for example.
  • the buck converter is operated as a constant voltage source in the start phase.
  • the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved.
  • the supply voltage can be a first supply voltage 5a, ie it can be in the readout window shown in FIG Figure 2 is shown.
  • the buck converter can also supply the LED module 1 with a regulated current, then the buck converter is preferably operated as a constant current source.
  • Figure 8 shows an enlarged view of this plot below.
  • a peak current can also be measured at the shunt of the buck converter or a change in the duty cycle at the buck converter.
  • the change in the load of the circuit 4 or the power consumption of the LED module 1 can be detected directly on the shunt on the low-potential switch of the buck converter. Either through a periodic change in the duty cycle or a periodic change in the Peak current, which correlates with a periodic change in the power consumption of the LED module 1.
  • the LED converter 10 can for example have an isolated converter with a transformer for high-frequency energy transmission (isolated, preferably an isolated flyback converter) for supplying the LED module 1. If the LED converter 10 is designed to be isolated (for example as an isolated flyback converter), that is to say has a transformer, the load change can also be detected by the LED converter 10 on the primary side of the LED converter 10.
  • isolated for example as an isolated flyback converter
  • the current on the primary side of the LED converter 10, which flows through the primary side of the transformer can be detected.
  • the current through the clock switch, which is arranged in series with the primary winding of the transformer, or the current through the primary winding of the transformer, preferably by means of a shunt connected in series (current measuring resistor) can be detected.
  • the applied load or the load change of the LED module 1 and thus, for example, a change in the duty cycle on the primary side of the LED converter 10 can be measured on the basis of the peak current at the shunt.
  • the change in the primary-side current can also be recorded over time.
  • the power transmitted from the primary side can be detected using the measurement of the primary-side current and a measurement or at least knowledge of the voltage feeding the converter.
  • an active power factor correction circuit such as a step-up converter circuit
  • This predetermined value for the input voltage regulated by the active power factor correction circuit for the high-frequency clocked converter is known due to the specification (for example via a voltage divider) and can therefore be taken into account when detecting the power transmitted from the primary side.
  • the LED converter can have an isolated flyback converter.
  • the isolated flyback converter can be operated as a constant current source, i.e. regulate to a constant output current.
  • the output voltage of the isolated flyback converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1 can be recorded and evaluated.
  • This output voltage can be detected directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the isolated flyback converter.
  • the duration of the switch-off time of the control of the high-frequency clocked switch of the isolated flyback converter can be monitored and evaluated in order to recognize a change in load and thus to read information from the LED module 1.
  • the isolated flyback converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage.
  • a change in load on the LED module 1 will lead to a change in the output current, and this change can be detected.
  • This change in the output current can, for example, be due to a change in the peak current that occurs lead through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the isolated speech converter.
  • the monitoring of the primary-side current by the high-frequency clocked switch can thus be used to monitor a change in load in order to read out information from the LED module 1.
  • the isolated flyback converter can also be operated with a fixed pulse duty factor at a fixed frequency. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load. If only the LED path of the LED module is active, the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through circuit 4, then the output voltage will drop. This change can be recorded as a load change.
  • the LED converter can have an isolated resonant half-bridge converter such as a so-called LLC converter.
  • the LLC converter can be operated as a constant current source, i.e. regulate to a constant output current.
  • the output voltage of the isolated flyback converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1 can be recorded and evaluated.
  • This output voltage can be detected directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the LLC converter. If only the LED path of the LED module is active, the output voltage will take on the value of the forward voltage of the LED path. If a load change occurs through the circuit 4, then the Output voltage drop.
  • This change can be recorded as a load change.
  • the clock frequency of the LLC converter that is set on the basis of the control loop can also be monitored and evaluated in order to detect a change in load and thus to read out information from the LED module 1. If the control loop of the LLC converter is designed in such a way that when the load changes by the circuit 4, a frequency limit of the control of the half bridge of the LLC converter is reached, this can also be evaluated in order to read out the information.
  • the isolated resonant half-bridge converter such as LLC converter can also be operated as a constant voltage source by operating it at a fixed frequency, the frequency being selected so that the resulting voltage at the output is below the value of the forward voltage of the LED path.
  • a change in load on the LED module 1 will lead to a change in the output current, and this change can be detected.
  • This change in the output current can take place, for example, on the secondary side of the LLC converter and be transmitted to the primary side by means of a coupling element such as a current transformer.
  • the monitoring of the output current can thus be used to monitor a change in load in order to read out information from the LED module 1.
  • Fig. 13 shows, as an exemplary embodiment for the LED converter 10, an isolated resonant half-bridge converter B, which is shown here as an LLC converter.
  • the bus voltage Vbus is fed to an inverter 20 which, for example, can be designed as a half-bridge inverter with two switches S1, S2.
  • the bus voltage Vbus can be, for example, the output voltage of a PFC circuit (not shown here).
  • the control signals for clocking the switches S1, S2 can be generated in a known manner by the switch control unit.
  • the higher-potential switch S1 is controlled by the ctr_HS signal, the lower-potential switch S2 by the ctrl_LS signal.
  • a resonance circuit designed here as a series resonance circuit, namely an LLC resonance circuit 22, is connected to the center point 21 of the inverter 10.
  • this resonant circuit 22 has a first inductance Lsigma, a primary winding of the transformer T and a capacitor Cres.
  • the primary winding of the transformer T has a parallel inductance Lm, which carries the magnetizing current.
  • the transformer T is followed by a load load, which can be fed with a supply voltage that is lower than that of the bus voltage Vbus.
  • the load includes the LED module 3.
  • additional elements (not shown) for smoothing and stabilizing the output voltage can be present.
  • the resonance circuit 22 is designed as a series resonance circuit.
  • the invention can also be applied to other resonance circuits such as, for example, parallel resonance circuits Find.
  • the resonance circuit according to the invention can accordingly be designed as a parallel resonance circuit in which the resonance capacitor Cres is connected in parallel to the load, namely in parallel to the primary winding of the transformer T.
  • the combination of the inverter 20 with the resonance circuit 22 forms a DC / DC converter, which is isolated by the transformer T, as an LED converter which transmits energy.
  • the switches S1, S2 of the inverter 20 are preferably operated in the vicinity of the resonance frequency of the resonance circuit or in the vicinity of a harmonic of a resonance of the output circuit.
  • the output voltage or the output current of the resonant converter or the galvanic decoupling F is a function of the frequency of the control of the switches S1, S2 of the inverter 20, here as a half-bridge inverter.
  • the LED converter 10 is operated, for example, in a start phase in a certain mode, for example in a fixed-frequency mode or also operated as a current source or voltage source, in order to recognize a change in load and thus to read out information from the circuit 4 which, for example, according to at least one protocol is transmitted.
  • the circuit 4 can also have a digital control unit IC1 which is designed to output various types of modulated signals as a preferably modulated load change, for example also a specific pulse sequence as digital coding (sequence of zeros and ones).
  • the LED converter 10 can be designed to transmit different types of information, that is to say different types, by changing the supply voltage Query operating parameters and / or maintenance parameters from the LED module 1 and also selectively query one of several LED modules.
  • the supply voltage can be changed, for example, by means of a low-frequency (in the range from a few Hertz to one kilohertz) or high-frequency modulation (in the tens or hundreds of kilohertz or up to the megahertz range).
  • the digital control unit IC1 of the circuit 4 can be designed as an integrated circuit.
  • the integrated circuit can be designed as an integrated control circuit with only three or four connections.
  • the digital control unit IC1 would have a first connection Vp which is connected to the supply voltage of the LED module 1 ( Fig. 9 ).
  • the digital control unit IC1 can detect the supply voltage of the LED module 1 via this first connection Vp by means of the first analog-digital converter A / D1 connected to this connection Vp.
  • a second connection Vn is connected to the ground of the LED module 1 and enables an internal ground connection within the digital control unit IC1.
  • a third connection Vdd can be connected to a capacitor, the other connection of which is also connected to ground of the LED module 1.
  • the second terminal Vp can be internally connected to the first terminal Vp via a diode and a switch Svdd.
  • This switch Svdd can be compared with a reference value Ref by means of a comparator Compl as a function of a comparison of the voltage currently present at the connection Vdd. Depending on the comparison result, the switch Svdd can be switched on by the driver unit VddCtrl when the actual value of the voltage at the at the terminal Vdd is smaller than the reference value Ref. A current then flows through the switch Svdd into the capacitor, which is connected to the third terminal Vdd.
  • the voltage present at the third terminal Vdd can be used as an internal voltage supply for the digital control unit IC1. In this case, the connection Vdd serves to stabilize the internal voltage supply of the digital control unit IC1.
  • the digital control unit IC1 can be programmed in advance, for example during manufacture or assembly of the LED module 1. This programming of the digital control unit IC1 can, for example, specify an operating parameter of the LED module 1 such as the target current or the target voltage.
  • a switching element S6 is integrated, which in the function of the switch 6 of the example of Fig. 1 and is designed to output at least one modulated signal or different types of modulated signals, preferably as a modulated load change.
  • the voltage at the first terminal Vp is connected internally by closing the integrated switching element S6 to the second terminal Vn directly or indirectly, for example via an integrated resistor R6, and thus pulls the voltage at the terminal Vp to a lower potential.
  • the modulated signal can be a specific pulse sequence and output as digital coding (sequence of zeros and ones).
  • the digital control unit IC1 can thus transmit information, for example in a run-up phase (i.e.
  • a time-limited start phase of the LED converter and LED module 1) preferably in accordance with the at least one protocol, which is for example in the LED module 1 and is stored in the LED converter 10.
  • the current through the switching element S6 can be monitored by means of the resistor R6, the switching element S6 being able to be opened if the current through the switching element S6 and thus the resistor R6 becomes too great.
  • the voltage drop across resistor R6, and thus the current flowing through it, can be detected by means of a second analog-digital converter A / D2.
  • the reading and evaluation of the two analog-digital converters as well as the control of the switching element S6 can be done by a "Config and Com" control block integrated in the digital control unit IC1. All other operations such as signal evaluations and outputs can also be carried out using this control block.
  • a sensor system for detecting the temperature can also be integrated into the digital control unit IC1, whereby the digital control unit IC1 can transmit an excess temperature or an operating temperature as a maintenance parameter to the LED converter as information according to the at least one protocol.
  • the digital control unit IC1 can for example also have a counter for the operating time and the digital control unit IC1 can be designed to output an aging parameter of the LED module or the LED path or an operating time of the LED module as a maintenance parameter.
  • the digital control unit IC1 can also detect an overvoltage on the LED module 1 and output a corresponding error message as a maintenance parameter.
  • the LED path of the LED module 1 can be bridged by closing the switching element S6 and thus protected against the overvoltage.
  • the digital control unit IC1 can, for example, also be connected to one or more sensors and / or one or more sensors several sensors can be integrated into the digital control unit IC1.
  • a sensor system can be formed by a sensor such as a light sensor, temperature sensor, color sensor and / or presence sensor.
  • the digital control unit IC1 can be designed so that it can also supply and read the sensor when the LED converter 10 outputs a reduced supply voltage to the LED module 1 and the LED path is not active.
  • the LED converter 10 can supply the sensor in an operating mode when the LED path is not active, in that the LED converter 10 outputs a reduced supply voltage to the LED module 1.
  • the circuit 4, in particular the digital control unit IC1 can be designed so that when the supply voltage is in a readout window (ie supply voltage not equal to zero but below the forward voltage of the LED path), that it represents a current-variable load in it that changes the power consumption of the LED module 1 caused in accordance with at least one predetermined protocol. Additionally or alternatively, information from a sensor can also be transmitted directly to the LED converter 10 by the digital control unit IC1 in accordance with at least one predetermined protocol.
  • a detected presence or a drop in ambient brightness can be detected by the digital control unit IC1 with the aid of a sensor and accordingly transmitted to the LED converter 10 with the aid of a transmission by the circuit 4, so that the latter can react accordingly and for example the supply voltage increases so that a second non-zero supply voltage is applied to the LED module, in which a connected LED path is conductive.
  • a system can thus be set up comprising an LED converter 10 and an LED module 1 supplied by it with a circuit 4 comprising a digital control unit IC1 and with at least one sensor, the digital control unit IC1 sending information from the sensor to the LED converter 10 can transmit through a load change.
  • the connected LED path can be deactivated by reducing the supply voltage output by the LED converter 10 to a low value, i.e. below a second non-zero supply voltage at which a connected LED path is conductive , be lowered.
  • the LED converter 10 it would also be possible for the LED converter 10 to have the first non-zero supply voltage applied repeatedly one after the other, at which a connected LED path is not conductive. In this time window of the temporarily applied first supply voltage, the digital control unit IC1 can be activated and read out the at least one sensor.
  • the digital control unit IC1 can then bring about a load change.
  • This change in load can be detected and evaluated by the LED converter 10.
  • information from a sensor can be transmitted from the LED module 1 to the LED converter 10 by means of the digital control unit IC1 in accordance with at least one predetermined protocol. Since the LED converter 10, as already explained, can be designed to detect a load change as information transmission from the LED module 1 when a first supply voltage other than zero is output, a complex lighting system with LED converter and LED module can be built with the integration of sensors.
  • the information is transmitted from the LED module 1 to the LED converter 10 by means of at least one predetermined protocol.
  • the LED converter 10 can be designed to receive at least one piece of information from a sensor from the digital control unit IC1 as at least one specific operating and / or maintenance parameter.
  • the information from a sensor can be used to set or control the operation of the LED module 1.
  • the information from a sensor can also be stored in an assigned memory, displayed optically and / or acoustically, and / or transmitted by the LED converter 10 via a wireless or wired interface, possibly in response to an external query.
  • FIG. 10 shows an embodiment of the digital control unit IC1 with four connections.
  • the digital control unit IC1 has a fourth connection Cfg, to which a configuration element such as a resistor Rcfg (selection resistor R11) can be connected.
  • a controllable current source Icfg can be connected internally to this fourth connection Cfg.
  • the voltage drop across the resistor Rcfg, which results from the current fed in by the controllable current source Icfg and the resistance value of the resistor Rcfg, can be controlled by the control block "Config and Com" of the digital control unit IC1 via a third analog-digital converter A / D3 can be detected.
  • This detected voltage at the fourth connection Cfg can specify an operating parameter of the LED module 1, such as, for example, the target current or the target voltage.
  • a temperature-dependent resistor can also be arranged between the fourth connection Cfg and the third connection Vdd.
  • the temperature-dependent resistor can be designed in such a way that its resistance is on the LED module 1 in the event of excess temperature changes greatly, as a result of which the voltage at the fourth terminal Cfg also changes. This change can be detected by the digital control unit IC1 and, for example, an excess temperature can be transmitted to the LED converter as a maintenance parameter as information according to the at least one protocol.
  • an NTC can be used as a temperature-dependent resistor, which lowers its resistance when the temperature is too high, as a result of which the voltage at the fourth terminal Cfg increases.
  • the controllable current source Icfg can, for example, only be active when the digital control unit IC1 is started in order to read out the value of the resistance R11, while in continuous operation of the LED module 1, only the voltage resulting from the voltage divider from the temperature-dependent resistance and resistance R11 is used to detect excess temperature is monitored.
  • the switch not as an integrated switching element S6 but as an external switch 6 analogous to the example of FIG Fig. 1 executed.
  • This switch 6 is controlled via a fifth connection Sdrv by the digital control unit IC1.
  • a resistor R6 is arranged in series with the switch 6. The current through the resistor R6 can be detected and monitored by the digital control unit IC1 on the basis of the voltage drop across the resistor R6 by means of a sixth connection Imon.
  • Fig. 12 shows a further embodiment of the digital control unit IC1.
  • This example like the example of the Fig. 10 the connections Vp, Vn and Vdd.
  • the fourth connection Cfg to which a resistor R11 (Riled) is in turn connected as a configuration element.
  • the digital control unit IC1 also has two further connections.
  • Another Connection Vovt is a resistor Rovt, which is a temperature-dependent resistor, connected. An excess temperature can be detected by monitoring the resistance value of this resistance Rovt.
  • a further controllable current source can be arranged in the digital control unit IC1, which outputs a current at the further connection Vovt, which current flows into the resistor Rovt.
  • the digital control unit IC1 can conclude that the LED module 1 is overheating.
  • a current can be fed into the temperature-dependent resistor Ritm connected to it via a further controllable current source at the further connection Vitm, and the digital control unit IC1 can use the current resistance value, which is monitored on the basis of the detected voltage at this connection Vitm, to the Close the operating temperature on the LED module 1.
  • this can be transmitted to the LED converter as information in exactly the same way as an excess temperature as information in accordance with the at least one protocol.
  • the information about the operating temperature can be evaluated by the LED converter, with an intelligent regulation of the current through the LED module 1 without an excess temperature having to be reached.
  • the switch 6 or the switching element S6 can perform further functions on the LED module 1, which can be controlled by the digital control unit IC1. For example, afterglow protection can be enabled.
  • the digital control unit IC1 can for example recognize when the LED module 1 is to be switched off or has already been switched off by switching off the supply voltage. To avoid parasitic effects or remaining To avoid residual charges coupled in voltages, the switch 6 or the switching element S6 can be closed in order to prevent the LED from glowing due to the coupled in voltages.
  • protection of the LED module 1 against overvoltages can also be made possible by at least briefly closing the switch 6 or the switching element S6 in the event of an overvoltage at the supply input of the LED module 1 in order to reduce the overvoltage or to close the LED protect.
  • Protection against overvoltages when the LED module 1 is disconnected from the LED converter when the LED module 1 is in operation can thus also be made possible, as a so-called "hot-plug" protection.
  • Such a disconnection can occur unintentionally as a result of a sudden contact interruption in the supply line or as a result of a user error due to an intervention, such as, for example, changing the LED module 1 during operation.
  • the LED converter 10 can effect a change of the LED module into a communication mode by selectively changing the supply voltage for the LED module 1, and then the LED converter 10 can detect the change in the power consumption of the LED module 1 and according to the decode at least one protocol that is stored in the LED module 1 and in the LED converter 10, for example.
  • the LED converter 10 can thus request various information from the LED module 1, a specific protocol being able to be stored for each request. This enables a bidirectional communication path between the LED module and the LED converter without additional lines or pins.
  • the change in the power consumption of the LED module 1 can depend on a value of the first supply voltage 5a according to one of several predetermined protocols are effected and thus a different load change can be effected according to one of several predetermined protocols.
  • three concepts for detecting the change in the power consumption of the LED module 1 by the LED converter 10 are preferred.
  • the determination of a current-constant load with the constant current being able to be measured, for example, via a discharge rate of a capacitor on the LED converter 10.
  • determining a frequency of the change in the power consumption of the LED module 1 for example by directly detecting the current on the converter side.
  • indirect detection by determining a peak current within the LED converter, which has, for example, an isolated flyback converter or buck converter that is measured via a shunt. The peak current follows the change in the power consumption of the LED module 1.
  • the present invention proposes to transmit information from an LED module 1 to an LED converter 10 which allows conclusions to be drawn about operating and / or maintenance parameters to be set on the LED module 1.
  • the operating parameter to be set can be, for example, the target current or the target voltage.
  • a circuit 4 load modulation circuit
  • a circuit 4 is provided according to the invention on the LED module, which, for example, in a voltage range of a first supply voltage 5a that is not equal to zero and in which an LED path 3 connected to the LED module 1 is non-conductive, a Represents load for the LED converter, and in a voltage range of a second supply voltage 5b, which is not equal to zero and at which a connected LED path 3 is conductive, no load for the LED converter 10 represents.
  • the circuit 4 is only activated temporarily, namely only during a starting phase of the LED light.
  • the load is variable according to a given protocol. For example, a modulated change in load can take place in accordance with the specified protocol.
  • the power consumption is recorded by the LED converter 10, in particular also a change in the power consumption (amplitude, frequency, duty cycle).
  • the LED converter 10 can determine the operating and / or maintenance parameters.
  • the transmission of this information between the LED module 1 and the LED converter 10 does not require any additional connections (only the connection of the supply voltage).
  • no interaction with LED module 1 and / or LED converter 10 is necessary. This improves the disadvantages of the known prior art.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

Die vorliegende Erfindung betrifft ein LED-Modul, einen LED-Konverter und Verfahren, die es ermöglichen, Betriebsparameter des LED-Moduls an den LED-Konverter ohne eine spezifische Kommunikationsleitung zwischen LED-Modul und LED-Konverter zu übermitteln.The present invention relates to an LED module, an LED converter and a method which make it possible to transmit operating parameters of the LED module to the LED converter without a specific communication line between the LED module and the LED converter.

Aus dem Stand der Technik sind bereits mehrere Ansätze bekannt, um einem LED-Konverter Betriebsparameter für ein angeschlossenes LED-Modul vorzugeben. Dies ist zum Beispiel deshalb notwendig, da für verschiedene LED-Module unterschiedliche Durchlassströme notwendig sind, um die LED-Strecken der LED-Module zum Leuchten zu bringen. Betriebsparameter sind zum Beispiel ein benötigter Durchlassstrom oder eine anzulegende Soll- oder Durchlassspannung.Several approaches are already known from the prior art for specifying operating parameters for a connected LED module to an LED converter. This is necessary, for example, because different forward currents are required for different LED modules in order to make the LED sections of the LED modules glow. Operating parameters are, for example, a required forward current or a setpoint or forward voltage to be applied.

Ein aus dem Stand der Technik bekannter Ansatz ist, am LED-Konverter über Dip-Schalter oder Widerstände die einzustellenden Betriebsparameter für das angeschlossene LED-Modul einzustellen. Dafür ist allerdings eine Interaktion mit dem LED-Konverter nötig.One approach known from the prior art is to set the operating parameters to be set for the connected LED module on the LED converter via DIP switches or resistors. However, this requires interaction with the LED converter.

In einem anderen Ansatz werden Konfigurationswiderstände auf dem LED-Modul verwendet, um dem LED-Konverter die benötigten Betriebsparameter vorzugeben. Dazu sind allerdings einerseits zusätzliche Anschlüsse nötig, andererseits ist wiederum eine Interaktion erforderlich.In another approach, configuration resistors are used on the LED module in order to specify the required operating parameters for the LED converter. On the one hand, however, additional connections are necessary, on the other hand, interaction is required.

Es ist auch bekannt, dem LED-Konverter über einen separaten digitalen Signalkanal die notwendigen Betriebsparameter zu übermitteln. Allerdings müssen dafür zusätzliche Komponenten verbaut werden und es ist wiederum eine Interaktion nötig.It is also known to transmit the necessary operating parameters to the LED converter via a separate digital signal channel. However, additional components have to be installed for this and an interaction is again necessary.

Schließlich ist es auch bekannt, dem LED Modul beispielsweise ein EPROM zuzuordnen, aus dem der LED-Konverter Informationen hinsichtlich der am LED-Modul einzustellenden Betriebsparameter ermitteln kann.Finally, it is also known to assign an EPROM, for example, to the LED module, from which the LED converter can determine information with regard to the operating parameters to be set on the LED module.

Die aus dem Stand der Technik bekannten Ansätze erfordern aber alle entweder eine Interaktion mit dem LED-Konverter oder dem LED-Modul, oder erfordern zusätzliche Anschlüsse oder Komponenten. Dadurch erhöhen sich die Kosten des LED-Moduls und/oder des LED-Konverters. Zudem wird mehr Platz für die Komponenten benötigt, was eine kompaktere Bauweise verhindert.However, the approaches known from the prior art all require either an interaction with the LED converter or the LED module, or require additional connections or components. This increases the cost of the LED module and / or the LED converter. In addition, more space is required for the components, which prevents a more compact design.

Die internationale Anmeldung WO 201 0/092504 A1 zeigt einen Treiber für ein Beleuchtungssystem, der Stromversorgungsanschlüsse und eine Detektorschaltung aufweist. Die Stromversorgungsanschlüsse sind zum Zuführen von elektrischer Energie von dem Treiber zu dem Beleuchtungssystem eingerichtet. Die Detektorschaltung ist für Erfassen von Informationen des Beleuchtungssystems über die Versorgungsanschlüsse mittels Erfassen einer elektrischen Belastung der Anschlüsse durch das Beleuchtungssystem und Bestimmen eines Betriebszustands des Beleuchtungssystems ausgelegt. Der Treiber ist weiterhin eingerichtet, die zugeführte Energie in Abhängigkeit von dem bestimmten Betriebszustand zu steuern.The international application WO 201 0/092504 A1 Figure 3 shows a driver for a lighting system having power supply connections and a detector circuit. The power supply connections are set up for supplying electrical energy from the driver to the lighting system. The detector circuit is designed to detect information from the lighting system via the supply connections by detecting an electrical load on the connections by the lighting system and determining an operating state of the lighting system. The driver is also set up to control the energy supplied as a function of the specific operating state.

Die europäische Patentanmeldung EP 1 517 588 A1 zeigt ein Beleuchtungsverfahren, das in der Lage ist, einzelne lichtemittierende Vorrichtungen in einem mit einer Stromversorgung verbundenen Scheinwerfer mit jeweils einem Nennstrom unabhängig von der Spezifikation des Scheinwerfers unter Verwendung einer Stromversorgung mit einer identischen Spezifikation und einer für das Beleuchtungsverfahren verwendeten Beleuchtungsvorrichtung. Die Beleuchtungsvorrichtung umfasst Scheinwerfer, die jeweils eine oder mehrere lichtemittierende Vorrichtungen aufweisen, die in einem beliebigen Muster angeordnet sind und einen Beleuchtungsschaltkreis umfassen. Der Beleuchtungsschaltkreis liefert einen Strom an die lichtemittierenden Vorrichtungen, wenn eine Spannung gleich oder geringer als eine untere Grenzspannung VLmin ist, die durch die Anordnung der lichtemittierenden Vorrichtungen bestimmt wird. Eine Identifizierungsschaltung gibt ein Stromidentifikationssignal in Übereinstimmung mit einem geeigneten Strom für die Beleuchtungsschaltung bei Anlegen der Spannung aus, wenn die Spannung niedriger ist als die untere Grenzspannung ist.The European patent application EP 1 517 588 A1 Fig. 13 shows a lighting method capable of generating individual light emitting devices in a headlamp connected to a power supply, each with a rated current regardless of the specification of the headlamp, using a power supply having an identical specification and a lighting device used for the lighting method. The lighting device includes headlights, each having one or more light-emitting devices which are arranged in an arbitrary pattern and which include a lighting circuit. The lighting circuit supplies a current to the light emitting devices when a voltage is equal to or less than a lower limit voltage VLmin determined by the arrangement of the light emitting devices. An identification circuit outputs a current identification signal in accordance with an appropriate current for the lighting circuit when the voltage is applied when the voltage is lower than the lower limit voltage.

Die Stromversorgung umfasst eine Betriebsstromversorgung, die eine Spannung bei oder über der unteren Grenzspannung für die Beleuchtung anlegt, eine Kennungsstromversorgung, die eine Kennspannung bei oder unter der unteren Grenzspannung zum Beleuchten bereitstellt, eine Stromeinstelleinrichtung, die einen geeigneten, dem Beleuchtungsschaltkreis zuzuführenden Strom einstellt, basierend auf dem von der Identifikationsschaltung ausgegebenen Stromidentifikationssignal und eine Beleuchtungsstromsteuerschaltung, die den in der Lichtschaltung fließenden Strom in einem Beleuchtungszustand der lichtemittierenden Vorrichtungen auf einem geeigneten Strom gemäß dem Stromeinstellsignal hält.The power supply includes an operating power supply that applies a voltage at or above the lower limit voltage for the lighting, an identification power supply that provides a characteristic voltage at or below the lower limit voltage for lighting, a current setting device that sets a suitable current to be supplied to the lighting circuit based on the current identification signal outputted from the identification circuit and a lighting current control circuit that maintains the current flowing in the light circuit in a lighting state of the light emitting devices at an appropriate current according to the current setting signal.

Die Offenlegungsschrift EP 1 244 334 A2 offenbart eine Schaltungsanordnung mit einer Leuchte und zwei Anschlussleitungen, wobei eine Lichtquelle der Leuchte mindestens eine LED aufweist. Eine einstellbare Stromquelle ist zur Bereitstellung einer Stromversorgung über die Anschlussleitungen ausgelegt. Die Schaltungsanordnung zeichnet sich durch ein parallel zur LED-Lichtquelle in dem Stromkreis angeordnetes Kodierelement aus, dessen Kodierung den Nennstrom der Lichtquelle bezeichnet. Eine außerhalb der Leuchte angeordnete Auswerteschaltung ist mit mindestens einer der Anschlussleitungen der Leuchte verbunden. Die Auswerteschaltung wertet die Kodierung des Kodierelements aus. Anhand der ermittelten Kodierung wird die einstellbare Stromquelle auf den Nennstrom der Lichtquelle eingestellt.The disclosure EP 1 244 334 A2 discloses a circuit arrangement with a lamp and two connecting lines, a light source of the lamp having at least one LED. An adjustable power source is designed to provide a power supply via the connection lines. The circuit arrangement is characterized by a coding element arranged parallel to the LED light source in the circuit, the coding of which denotes the nominal current of the light source. An evaluation circuit arranged outside the lamp is connected to at least one of the connecting lines of the lamp. The evaluation circuit evaluates the coding of the coding element. Based on the determined coding, the adjustable current source is set to the nominal current of the light source.

Die Aufgabe der vorliegenden Erfindung ist es, den bekannten Stand der Technik zu verbessern, besonders hinsichtlich der oben genannten Nachteile. Insbesondere ist es Aufgabe der vorliegenden Erfindung, einem LED-Konverter Informationen bspw. hinsichtlich Betriebsparameter eines LED-Moduls zu übermitteln (zurückzumelden), ohne dass zusätzliche Bauteile oder Anschlüsse, oder eine Interaktion notwendig sind. Es ist also Aufgabe der vorliegenden Erfindung, ein LED-Modul und einen LED-Konverter kostengünstiger herzustellen und kompakter zu bauen.The object of the present invention is to improve the known prior art, particularly with regard to the disadvantages mentioned above. In particular, it is the object of the present invention to transmit (report back) information to an LED converter, for example with regard to the operating parameters of an LED module, without additional components or connections or interaction being necessary. It is therefore the object of the present invention to produce an LED module and an LED converter more cost-effectively and to build them more compactly.

Die Aufgaben der vorliegenden Erfindung werden von den Merkmalen der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche bilden den Kerngedanken der Erfindung vorteilhaft weiter.The objects of the present invention are achieved by the features of the independent claims. The dependent claims advantageously develop the core concept of the invention.

Die Erfindung betrifft ein System, bei durch eine erzeugte Last oder Laständerungen des LED-Moduls Informationen an den LED-Konverter übermittelt werden können. Beispielsweise können gemäß der vorliegenden Erfindung in einer vorzugsweise zeitlich begrenzten Startphase Informationen an den LED-Konverter durch eine erzeugte Last oder Laständerungen des LED-Moduls übermittelt werden. Alternativ oder zusätzlich können gemäß der vorliegenden Erfindung mittels einer bidirektionalen Kommunikation Informationen zwischen dem LED-Konverter und dem LED-Modul ausgetauscht werden, wobei vorzugsweise die Kommunikation von dem LED-Modul durch eine erzeugte Last oder Laständerungen des LED-Moduls übermittelt werden.The invention relates to a system in which information can be transmitted to the LED converter by a generated load or load changes of the LED module. For example, according to the present invention, information can be transmitted to the LED converter through a generated load or load changes of the LED module in a preferably time-limited start phase. Alternatively or additionally, according to the present invention, information can be exchanged between the LED converter and the LED module by means of bidirectional communication, the communication being preferably transmitted from the LED module by a generated load or load changes of the LED module.

Die vorliegende Erfindung nützt die Tatsache aus, dass zum Betreiben eines LED-Moduls, insbesondere um eine LED-Strecke des LED-Moduls zum Leuchten zu bringen, eine bestimmte Durchlassspannung an der LED-Strecke, d.h. eine bestimmte Versorgungsspannung am LED-Modul notwendig ist. Unterhalb der Durchlassspannung sperrt die LED-Strecke. Die LED-Strecke ist also nicht leitend und stellt einen nahezu unendlichen Widerstand für den LED-Konverter dar. Erst an oder oberhalb der Durchlassspannung stellt die LED-Strecke eine Wirkleistungslast für den LED-Konverter dar. Eine Versorgungsspannung an einer LED-Strecke, die ungleich Null aber unterhalb der Durchlassspannung ist, definiert ein Spannungsfenster, bei dem die LED-Strecke noch nicht leitend ist. Dieses Spannungsfenster wird von der vorliegenden Erfindung verwendet, um durch eine erzeugte Last oder Laständerungen des LED-Moduls Informationen an den LED-Konverter zu übermitteln.The present invention makes use of the fact that to operate an LED module, in particular to light up an LED path of the LED module, a certain forward voltage on the LED path, ie a certain supply voltage on the LED module, is necessary . The LED path blocks below the forward voltage. The LED path is therefore non-conductive and represents an almost infinite resistance for the LED converter. Only at or above the forward voltage does the LED path represent an active power load for the LED converter. A supply voltage on an LED path that is not equal to zero but below the forward voltage defines a voltage window in which the LED path is not yet conductive. This voltage window is used by the present invention in order to transmit information to the LED converter due to a generated load or load changes of the LED module.

In einem Aspekt betrifft die vorliegende Erfindung ein LED-Modul, das aufweist: Anschlüsse für einen das LED-Modul mit einer Versorgungsspannung versorgenden LED-Konverter, weitere Anschlüsse für eine LED-Strecke, eine Schaltung, die aktivierbar ist, wenn an den Anschlüssen ein vorgegebener konstanter Strom, der kleiner als der Nennstrom der LED-Strecke ist, oder eine vorgegebene konstante Spannung, die kleiner als die Durchlassspannung der LED-Strecke ist, an das LED-Modul angelegt wird, wobei mit dem Analgen des vorgegebenen konstanten Stroms oder der konstanten Spannung eine Startphase beginnt.In one aspect, the present invention relates to an LED module which has: connections for an LED converter that supplies the LED module with a supply voltage, further connections for an LED path, a circuit that can be activated when the connections are switched on predetermined constant current, which is less than the nominal current of the LED path, or a predetermined constant voltage, which is lower than the forward voltage of the LED path, is applied to the LED module, with the system of the predetermined constant current or the constant voltage a start phase begins.

Dabei ist die Schaltung ausgebildet, bei einer Aktivierung eine stromveränderliche Wirkleistungslast darzustellen, die eine wiederholte Änderung der Leistungsaufnahme des LED-Moduls gemäß wenigstens einem vorgegebenen Protokoll bewirkt. Die Schaltung ist deaktivierbar und bei einer Deaktivierung dazu ausgebildet, keine Wirkleistungslast darzustellen. Die Schaltung zeichnet sich dabei dadurch aus, dass die Schaltung ferner Mittel aufweist, um sich nach Ablauf einer vorgegebenen Zeitspanne ab Beginn der Startphase automatisch selbst zu deaktivieren.In this case, the circuit is designed to display a current-variable active power load when activated, which causes a repeated change in the power consumption of the LED module in accordance with at least one predetermined protocol. The circuit can be deactivated and, when deactivated, is designed not to represent an active power load. The circuit is distinguished by the fact that the circuit also has means to automatically deactivate itself after a predetermined period of time from the beginning of the start phase.

Es wird in einer zeitlich begrenzten Startphase eine Schaltung, die dazu ausgebildet ist, eine Wirkleistungslast darzustellen, aktiviert werden. Nach Ablauf der zeitlich begrenzten Startphase kann die Schaltung dazu ausgebildet sein, keine Last darzustellen. Die Last für die zeitlich begrenzten Startphase bewirkt eine Leistungsaufnahme des LED-Moduls.A circuit designed to represent an active power load will be activated in a time-limited start phase. After the start phase, which is limited in time, the circuit can be designed not to represent a load. The load for the time-limited start phase causes the LED module to consume power.

Die Erfindung betrifft auch ein LED-Modul, das Anschlüsse für eine LED-Strecke aufweist, sowie eine Schaltung, die dazu ausgebildet ist, eine Wirkleistungslast darzustellen, wenn in einer Startphase ein konstanter Strom oder eine konstante Spannung an dem LED-Modul angelegt wird, und die dazu ausgebildet ist, keine Last darzustellen, wenn die Startphase abgelaufen ist, wobei die Schaltung dazu ausgelegt ist, eine stromveränderliche Last darzustellen, die eine Änderung der Leistungsaufnahme des LED-Moduls gemäß wenigstens einem vorgegebenen Protokoll bewirkt.The invention also relates to an LED module that has connections for an LED path, as well as a circuit that is designed to represent an active power load when a constant current or a constant voltage is applied to the LED module in a starting phase, and which is designed to represent no load when the start phase has expired, the circuit being designed to represent a current-variable load that causes a change in the power consumption of the LED module in accordance with at least one predetermined protocol.

Beispielsweise betrifft die vorliegende Erfindung ein LED-Modul, das aufweist: Anschlüsse für eine LED-Strecke, eine Schaltung, die dazu ausgebildet ist, eine Wirkleistungslast darzustellen, wenn ein erster Versorgungsstrom ungleich Null dem LED-Modul zugeführt wird, und die dazu ausgebildet ist, keine Last darzustellen, wenn ein zweiter Versorgungsstrom ungleich dem ersten Versorgungsstrom dem LED-Modul zugeführt wird oder wenn eine zeitlich begrenzte Startphase abgelaufen ist. Die Last für das Spannungsfenster (Auslesefenster), in dem die LED-Strecke nichtleitend ist, bewirkt eine Leistungsaufnahme des LED-Moduls.For example, the present invention relates to an LED module that has: connections for an LED path, a circuit that is designed to represent an active power load when a first non-zero supply current is fed to the LED module, and that is designed to do so not to represent a load when a second supply current, unlike the first supply current, is fed to the LED module or when a time-limited start phase has expired. The load on the voltage window (readout window) in which the LED path is non-conductive causes the LED module to consume power.

Diese Leistungsaufnahme kann ein LED-Konverter erkennen und kann basierend auf der erkannten Leistungsaufnahme Parameter des LED-Moduls ermitteln. Der LED-Konverter kann beispielsweise basierend auf abgelegten Tabellen von der erkannten Leistungsaufnahme auf einzustellende Betriebs- und/oder Wartungsparameter des LED-Moduls schließen.An LED converter can recognize this power consumption and can determine parameters of the LED module based on the detected power consumption. The LED converter can, for example, based on stored tables, infer operating and / or maintenance parameters of the LED module to be set from the detected power consumption.

Gemäß der Erfindung ist die Schaltung dazu ausgebildet, jedes Mal aktiviert zu sein, wenn eine Versorgungsspannung an das LED-Modul angelegt wird. Ferner ist die Schaltung dazu ausgelegt, sich automatisch selbst zu deaktivieren, wenn eine zeitlich begrenzte Startphase abgelaufen bzw. beendet ist. Somit ist im dauerhaften Leuchtbetrieb der LED-Strecke keine Verlustleistung vorhanden. Um die Schaltung zu betätigen, sind keine zusätzlichen Anschlüsse nötig. Die Schaltung ist in dem LED-Modul integriert und muss nicht als separate Komponente bereitgestellt werden.According to the invention, the circuit is designed to be activated every time a supply voltage is applied to the LED module. Furthermore, the circuit is designed to automatically deactivate itself when a time-limited start phase has expired or ended. This means that there is no power loss in the continuous lighting operation of the LED path. No additional connections are required to operate the circuit. The circuit is integrated in the LED module and does not have to be provided as a separate component.

Die Schaltung funktioniert automatisch nach Anlegen einer Versorgungsspannung, also einer Startphase, es muss deshalb keine zusätzliche Interaktion durchgeführt werden.The circuit works automatically after a supply voltage is applied, i.e. a start phase, so no additional interaction has to be carried out.

Gemäß der Erfindung ist die Schaltung dazu ausgebildet, jedes Mal aktiviert zu sein, wenn eine Versorgungsspannung zwischen Null und der Durchlassspannung der LED-Strecke an das LED-Modul angelegt wird. Ferner ist die Schaltung dazu ausgelegt, sich automatisch selbst zu deaktivieren, wenn die angelegte Versorgungsspannung die Durchlassspannung der angeschlossenen LED-Strecke erreicht bzw. überschreitet. Somit ist im Leuchtbetrieb der LED-Strecke keine Verlustleistung vorhanden. Um die Schaltung zu betätigen, sind keine zusätzlichen Anschlüsse nötig. Die Schaltung ist in dem LED-Modul integriert und muss nicht als separate Komponente bereitgestellt werden. Die Schaltung funktioniert automatisch gemäß der angelegten Versorgungsspannung, es muss deshalb keine zusätzliche Interaktion durchgeführt werden.According to the invention, the circuit is designed to be activated every time a supply voltage between zero and the forward voltage of the LED path is applied to the LED module. Furthermore, the circuit is designed to automatically deactivate itself when the applied supply voltage reaches or exceeds the forward voltage of the connected LED path. Thus, there is no power loss when the LED path is lit. No additional connections are required to operate the circuit. The circuit is integrated in the LED module and does not have to be provided as a separate component. The circuit works automatically according to the applied supply voltage, so no additional interaction has to be carried out.

Alternativ zu dem Anlegen einer Versorgungsspannung mit einem Wert zwischen Null und der Durchlassspannung der LED-Strecke kann zum Aktivieren der Schaltung auch ein vorgegebener Versorgungsstrom in die LED-Strecke eingespeist werden, um die Schaltung auf der LED-Strecke zu aktivieren. Beispielsweise kann der LED-Konverter den nominell minimalen Ausgangsstrom gemäß seiner Spezifikation ausgeben oder einen niedrigen minimalen Stromwert, bei dem gesichert ist, dass das LED-Modul nicht überlastet wird. In diesem Fall ist die Schaltung dazu ausgelegt, sich automatisch selbst zu deaktivieren, beispielsweise wenn der eingespeiste Versorgungsstrom den Nennstrom der angeschlossenen LED-Strecke erreicht bzw. überschreitet oder wenn eine zeitlich begrenzte Startphase abgelaufen ist.As an alternative to applying a supply voltage with a value between zero and the forward voltage of the LED path, a predetermined supply current can also be fed into the LED path to activate the circuit in order to activate the circuit on the LED path. For example, the LED converter can output the nominally minimum output current according to its specification or a low minimum current value, at which it is ensured that the LED module is not overloaded. In this case, the circuit is designed to automatically deactivate itself, for example when the supplied supply current reaches or exceeds the nominal current of the connected LED path or when a time-limited start phase has expired.

Vorzugsweise ist die Schaltung dazu ausgebildet, eine stromkonstante oder leistungskonstante Last darzustellen, die eine konstante Stromaufnahme oder eine konstante Leistungsaufnahme des LED-Moduls bewirkt.The circuit is preferably designed to represent a current-constant or power-constant load which causes a constant current consumption or a constant power consumption of the LED module.

Die Schaltung ist also eine selektiv im Auslesefenster der Versorgungsspannung aktivierbare konstante Last. Eine solche Schaltung ermöglicht eine besonders einfache Ausführung der vorliegenden Erfindung.The circuit is therefore a constant load that can be selectively activated in the readout window of the supply voltage. Such a circuit enables a particularly simple implementation of the present invention.

Erfindungsgemäß ist die Schaltung dazu ausgelegt, eine stromveränderliche Last darzustellen, die eine Änderung der Leistungsaufnahme des LED-Moduls gemäß wenigstens einem vorgegebenen Protokoll bewirkt.According to the invention, the circuit is designed to represent a current-variable load which causes a change in the power consumption of the LED module in accordance with at least one predetermined protocol.

Durch eine veränderliche Leistungsaufnahme, d.h. eine Laständerung des LED-Moduls im Auslesefenster, können komplexere Informationen dargestellt werden.A variable power consumption, i.e. a load change of the LED module in the readout window, more complex information can be displayed.

Vorzugsweise ist die Schaltung dazu ausgelegt, wenigstens einen Betriebs- und/oder Wartungsparameter des LED-Moduls durch die Änderung der Leistungsaufnahme gemäß dem wenigstens einen vorgegebenen Protokoll zu kodieren.The circuit is preferably designed to encode at least one operating and / or maintenance parameter of the LED module by changing the power consumption in accordance with the at least one predetermined protocol.

Die Schaltung auf dem LED-Modul ist so ausgebildet, dass sie nur in einer zeitlich begrenzten Startphase des LED-Moduls aktiviert ist.The circuit on the LED module is designed so that it is only activated in a time-limited start phase of the LED module.

Ein LED-Konverter kann die Änderung der Leistungsaufnahme des LED-Moduls erfassen und gemäß dem wenigstens einen Protokoll, das beispielsweise im LED-Konverter abgelegt ist, dekodieren. Somit wird ohne zusätzliche Leitungen oder Pins einen Kommunikationspfad von dem LED-Modul zu dem LED-Konverter ermöglicht. Betriebsparameter des LED-Moduls können beispielsweise der Durchlassstrom einer LED-Strecke des LED-Moduls, die entsprechende Durchlassspannung der LED-Strecke, ein Sollstrom des LED-Moduls, oder ein Spektrum des von der LED-Strecke emittierten Lichts sein. Wartungsparameter können beispielsweise Alterungsparameter des LED-Moduls bzw. der LED- Strecke, eine Betriebszeitdauer des LED-Moduls, oder eine Temperatur am LED-Modul sein. Vorzugsweise gibt das wenigstens eine vorgegebene Protokoll eine Frequenz und/oder eine Amplitude und/oder ein Tastverhältnis der Änderung der Leistungsaufnahme des LED-Moduls vor.An LED converter can detect the change in the power consumption of the LED module and decode it in accordance with the at least one protocol that is stored in the LED converter, for example. A communication path from the LED module to the LED converter is thus made possible without additional lines or pins. Operating parameters of the LED module can be, for example, the forward current of an LED segment of the LED module, the corresponding forward voltage of the LED segment, a target current of the LED module, or a spectrum of the light emitted by the LED segment. Maintenance parameters can be, for example, aging parameters of the LED module or the LED path, an operating time of the LED module, or a temperature on the LED module. The at least one predetermined protocol preferably specifies a frequency and / or an amplitude and / or a pulse duty factor of the change in the power consumption of the LED module.

Das wenigstens eine Protokoll kann also in vielfacher Weise kodiert sein, nämlich hinsichtlich einer Frequenz der Leistungsaufnahme, einer Amplitude, sowie einer Einschalttaktung. Dadurch können komplexe Informationen kodiert werden. Es können auch mehrere verschieden kodierte Protokolle verwendet werden.The at least one protocol can therefore be coded in many ways, namely with regard to a frequency of the power consumption, an amplitude and a switch-on clock. This enables complex information to be encoded. Several differently coded protocols can also be used.

Vorzugsweise ist die Schaltung derart ausgelegt, dass die Änderung der Leistungsaufnahme des LED-Moduls unabhängig von einem Wert einer ersten Versorgungsspannung ist.The circuit is preferably designed such that the change in the power consumption of the LED module is independent of a value of a first supply voltage.

Die Schaltung auf dem LED-Modul gibt also die Kodierungsparameter (z.B. Amplitude, Frequenz, Tastverhältnis der Laständerung) in dem Auslesefenster (d.h. Versorgungsspannung ungleich Null aber unterhalb der Durchlassspannung der LED-Strecke) von der Versorgungsspannung unabhängig wieder. Dadurch muss keine genaue, sondern lediglich eine konstante Spannungsvorgabe in diesem Auslesefenster der Versorgungsspannung eingestellt werden.The circuit on the LED module therefore reproduces the coding parameters (e.g. amplitude, frequency, duty cycle of the load change) in the readout window (i.e. supply voltage not equal to zero but below the forward voltage of the LED path) independently of the supply voltage. As a result, it is not necessary to set an exact, but only a constant voltage specification in this readout window of the supply voltage.

Alternativ ist die Schaltung derart ausgelegt, dass die Änderung der Leistungsaufnahme des LED-Moduls abhängig von einem Wert der ersten Versorgungsspannung gemäß einem von mehreren vorgegebenen Protokollen bewirkt wird.Alternatively, the circuit is designed in such a way that the change in the power consumption of the LED module is brought about as a function of a value of the first supply voltage in accordance with one of several predetermined protocols.

Gemäß dieser Ausführungsform der Erfindung wird bei Anlegen einer Versorgungsspannung in dem Auslesefenster nicht wie oben beschrieben stets die gleiche Rückinformation an einen LED-Konverter übertragen, der an das LED-Modul angeschlossen ist. Vielmehr kann der Spannungsbereich der Versorgungsspannung, bei der eine angeschlossene LED-Strecke noch nicht leitend ist, in mehrere Unterbereiche der Versorgungsspannung unterteilt sein. Für jeden Unterbereich kann ein anderes vorgegebenes Protokoll gelten.According to this embodiment of the invention, when a supply voltage is applied in the readout window, as described above, the same return information is not always transmitted to an LED converter that is connected to the LED module. Rather, the voltage range of the supply voltage at which a connected LED path is not yet conductive can be divided into several sub-ranges of the supply voltage. A different predefined protocol can apply to each sub-area.

Das bedeutet, dass in jedem Unterbereich eine andersartige Änderung der Leistungsaufnahme erfolgen kann (d.h. unterschiedlich in der Frequenz der Leistungsaufnahmeänderung, der Amplitude der Leistungsaufnahmeänderung oder dem Tastverhältnis je nach angelegter Versorgungsspannung). Dadurch können unterschiedliche Informationen an den LED-Konverter zurückübermittelt werden. Dabei sind auch komplexere Protokolle denkbar, die zum Beispiel die Modulation der Versorgungsspannung, ein selektives Ein- und Ausschalten der Versorgungsspannung zwischen Null und einer Spannung im Auslesefenster etc. umfassen. Um den Bereich der Informationsübertragung noch weiter zu unterteilen, sind auch Frequenzmodulationen, Amplitudenmodulationen oder PWM der Versorgungsspannung denkbar.This means that a different type of change in power consumption can occur in each sub-area (i.e. different in the frequency of the change in power consumption, the amplitude of the change in power consumption or the duty cycle depending on the applied supply voltage). This means that different information can be transmitted back to the LED converter. More complex protocols are also conceivable, which include, for example, the modulation of the supply voltage, selective switching on and off of the supply voltage between zero and a voltage in the readout window, etc. In order to subdivide the area of information transmission even further, frequency modulations, amplitude modulations or PWM of the supply voltage are also conceivable.

Vorzugsweise umfasst die Schaltung eine Timer-Schaltung, die dazu ausgelegt ist, eine Frequenz der Änderung der Leistungsaufnahme des LED-Moduls vorzugeben. Die Timer-Schaltung gibt also die Frequenz der Laständerung des LED-Moduls vor.The circuit preferably comprises a timer circuit which is designed to specify a frequency of the change in the power consumption of the LED module. The timer circuit therefore specifies the frequency of the load change of the LED module.

Vorzugsweise ist die Schaltung in ein Halbleitermaterial des LED-Moduls integriert. Dadurch kann die Schaltung besonders platzsparend und kostengünstig ausgebildet werden.The circuit is preferably integrated into a semiconductor material of the LED module. As a result, the circuit can be designed to be particularly space-saving and inexpensive.

Vorteilhafterweise ist auf dem LED-Modul wenigstens ein Sensor vorgesehen, der dazu ausgelegt ist einen elektrischen Parameter der Schaltung zu beeinflussen. Der LED-Konverter kann in einem Betriebsmodus, wenn die LED-Strecke nicht aktiv ist, den Sensor versorgen, indem der LED-Konverter eine verringerte Versorgungsspannung an das LED-Modul abgibt. Der wenigstens eine Sensor kann z.B. ein Sensor oder eine Kombination mehrerer Sensoren sein, die Lichtsensoren, Temperatursensoren, Farbsensoren, Anwesenheitssensoren etc. sein können. Der beeinflusste elektrische Parameter der Schaltung auf dem LED-Modul kann beispielsweise ein Widerstandswert oder eine Leitfähigkeit sein.At least one sensor, which is designed to influence an electrical parameter of the circuit, is advantageously provided on the LED module. The LED converter can supply the sensor in an operating mode when the LED path is not active by the LED converter emitting a reduced supply voltage to the LED module. The at least one sensor can be, for example, a sensor or a combination of several sensors that can be light sensors, temperature sensors, color sensors, presence sensors, etc. The influenced electrical parameter of the circuit on the LED module can be, for example, a resistance value or a conductivity.

Vorzugsweise ist der wenigstens eine Sensor ein Lichtsensor mit lichtabhängigem Widerstand und ist der Lichtsensor so mit der Schaltung verbunden, dass eine Änderung des lichtabhängigen Widerstands den Lastwiderstand der Schaltung verändert.The at least one sensor is preferably a light sensor with a light-dependent resistor and the light sensor is connected to the circuit in such a way that a change in the light-dependent resistance changes the load resistance of the circuit.

Ein Lichtsensor mit lichtabhängigem Widerstand (d.h. ein "Light Dependent Resistor") ist einfach realisierbar. Eine Lichtleistung, die auf diesen Widerstand fällt, beeinflusst direkt dessen Widerstandswert und somit auch im Auslesefenster die Wirkleistungslast der Schaltung.A light sensor with a light-dependent resistor (i.e. a "Light Dependent Resistor") is easy to implement. A light power that falls on this resistor has a direct influence on its resistance value and thus also on the circuit's real power load in the readout window.

Gemäß einem zweiten Aspekt betrifft die vorliegende Erfindung ein System mit einem LED-Modul, wie oben beschrieben, und einem LED-Konverter.According to a second aspect, the present invention relates to a system with an LED module, as described above, and an LED converter.

Das System weist ein LED-Modul gemäß einer der vorstehenden Ausführungsformen mit einer LED-Strecke und einen LED-Konverter auf. Der LED-Konverter weist einen hochfrequent getakteten Wandler auf, vorzugsweise einen isolierten Sperrwandler. Der hochfrequent getaktete Wandler wird in einer zeitlich begrenzten Startphase als Konstantstromquelle betrieben. Der LED-Konverter ist dazu ausgelegt, während der Startphase das LED-Modul mit dem vorgegebenen konstanten Strom, der kleiner als der Nennstrom der LED-Strecke ist, oder der konstanten Spannung, die kleiner als die Durchlassspannung der LED-Strecke ist, zu versorgen. Der getaktete Wandler ist dazu ausgelegt, während der Startphase eine sich wiederholt ändernde Leistungsaufnahme des LED-Moduls auf der Primärseite eines Transformators des hochfrequent getakteten Wandlers zu erfassen, und basierend auf der erfassten Leistungsaufnahme wenigstens einen Betriebs- und/oder Wartungsparameter des LED-Moduls zu bestimmen.The system has an LED module according to one of the preceding embodiments with an LED path and an LED converter. The LED converter has a high-frequency clocked converter, preferably an isolated flyback converter. The high-frequency clocked converter is operated as a constant current source in a time-limited start phase. The LED converter is designed to supply the LED module with the specified constant current, which is smaller than the nominal current of the LED path, or the constant voltage, which is lower than the forward voltage of the LED path, during the start phase . The clocked converter is designed to detect a repeatedly changing power consumption of the LED module on the primary side of a transformer of the high-frequency clocked converter during the starting phase and to assign at least one operating and / or maintenance parameter of the LED module based on the recorded power consumption determine.

Gemäß einer Ausführung des LED-Konverters für ein LED-Modul wie oben beschrieben, ist der LED-Konverter dazu ausgelegt , eine Leistungsaufnahme des LED-Moduls für eine an dem LED-Modul anliegende erste Versorgungsspannung, bei der eine an das LED-Modul angeschlossene LED-Strecke nichtleitend ist, zu erfassen und basierend auf der erfassten Leistungsaufnahme wenigstens einen Betriebs- und/oder Wartungsparameter des LED-Moduls zu bestimmen.According to an embodiment of the LED converter for an LED module as described above, the LED converter is designed to measure a power consumption of the LED module for a first supply voltage applied to the LED module, at which a supply voltage connected to the LED module LED path is non-conductive, to be recorded and based on the recorded power consumption at least one operating and / or maintenance parameter of the LED module.

Durch die erfasste Leistungsaufnahme wird dem LED-Konverter die notwendige Information übertragen, um den Betriebs- und/oder Wartungsparameter zu bestimmen. Der LED-Konverter kann diese Parameter beispielsweise basierend auf einer oder mehrere abgelegter oder abgespeicherter Tabellen bestimmen, die beispielweise Betriebs- und/oder Wartungsparameter mit konstanten oder veränderlichen Leistungsaufnahmen innerhalb des Auslesefensters korrelieren.Due to the recorded power consumption, the necessary information is transmitted to the LED converter in order to determine the operating and / or maintenance parameters. The LED converter can determine these parameters, for example, based on one or more stored or stored tables which, for example, correlate operating and / or maintenance parameters with constant or variable power consumption within the readout window.

Vorzugsweise ist der LED-Konverter dazu ausgelegt, den wenigstens einen bestimmten Betriebs- und/oder Wartungsparameter: zur Einstellung oder Regelung des Betriebs des LED-Moduls zu verwenden, in einem zugeordneten Speicher abzulegen, optisch und/oder akustisch anzuzeigen, und/oder über eine drahtlose oder drahtgebundene Schnittstelle, gegebenenfalls auf externe Abfrage hin, auszusenden.The LED converter is preferably designed to use the at least one specific operating and / or maintenance parameter: to set or regulate the operation of the LED module, to store it in an assigned memory, to display it optically and / or acoustically, and / or via to send out a wireless or wired interface, possibly in response to an external query.

Der LED-Konverter ist somit dazu geeignet, das LED-Modul umfassend zu steuern. Dazu sind zwischen dem LED-Modul und dem LED-Konverter kein separater Kommunikationspfad oder zusätzliche Leitungen bzw. Pins notwendig. Die Informationsübertragung, z.B. die Übertragung der Betriebs- und/oder Wartungsparameter, erfolgt über die sowieso vorhandenen Anschlüsse für die Versorgungsspannung.The LED converter is therefore suitable for comprehensively controlling the LED module. There is no need for a separate communication path or additional lines or pins between the LED module and the LED converter. The transfer of information, e.g. The transmission of the operating and / or maintenance parameters takes place via the connections for the supply voltage that are already present.

Vorteilhafterweise ist der wenigstens eine Betriebs- und/oder Wartungsparameter ein Sollstrom durch eine an das LED-Modul angeschlossene LED-Strecke, ein Alterungsparameter, eine Betriebszeitdauer, und/oder ein Spektrum eines von der LED-Strecke emittierten Lichts.The at least one operating and / or maintenance parameter is advantageously a target current through an LED path connected to the LED module, an aging parameter, an operating time and / or a spectrum of light emitted by the LED path.

Vorteilhafterweise ist der LED-Konverter dazu ausgelegt, das LED-Modul basierend auf den wenigsten einen bestimmten Betriebs- und/oder Wartungsparameter zu identifizieren.The LED converter is advantageously designed to identify the LED module based on the least one specific operating and / or maintenance parameter.

Die Identifikation kann beispielsweise anhand einer oder mehrere abgelegter Tabellen durchgeführt werden. Hat der LED-Konverter das LED-Modul identifiziert, so können weitere Informationen in der einen oder den mehreren Tabellen abgelegt werden, die eine umfassende Steuerung des LED-Moduls erlauben. Insbesondere ein Durchlassstrom der LED-Strecke des LED-Moduls ist als abgelegte Information vorteilhaft.The identification can be carried out, for example, using one or more stored tables. Once the LED converter has identified the LED module, further information can be stored in the one or more tables that allow comprehensive control of the LED module. In particular, a forward current of the LED path of the LED module is advantageous as stored information.

Vorteilhafterweise ist der LED-Konverter dazu ausgelegt, durch Ändern der Versorgungsspannung des LED-Moduls, beispielsweise über eine Puls- oder Amplituden-Modulation der Versorgungsspannung, dem LED-Modul zu signalisieren, selektiv in einen Modus zur Änderung der Leistungsaufnahme des LED-Moduls (Laständerung) zu wechseln. Die Modulation der Versorgungsspannung kann dabei verschiedene Muster oder Werte einnehmen, wodurch eine gezielte Auswahl einzelner LED-Module ermöglicht werden kann, wenn ein LED-Konverter mehrere LED-Module versorgt. Das jeweils auf diese Weise ausgewählte LED-Modul kann dann selektiv in den Modus der Laständerung wechseln, um Informationen an den LED-Konverter zu übertragen. Die mehreren LED-Module können in einer Serienschaltung oder Parallelschaltung angeordnet sein. Der LED-Konverter kann dazu ausgelegt sein, durch Ändern der Versorgungsspannung, beispielsweise über eine Puls- oder Amplituden-Modulation der Versorgungsspannung, je nach dem jeweiligen Muster oder Wert verschiedene Arten von Informationen von dem oder den LED-Modulen abfragen. In dem LED-Modul können dafür verschiedene Tabellen zur Rückmeldung der verschiedenen Informationen abgelegt sein.The LED converter is advantageously designed to signal the LED module by changing the supply voltage of the LED module, for example via pulse or amplitude modulation of the supply voltage, selectively in a mode for changing the power consumption of the LED module ( Load change). The modulation of the supply voltage can adopt different patterns or values, which enables a targeted selection of individual LED modules when an LED converter supplies several LED modules. The LED module selected in this way can then selectively switch to the mode of load change in order to transmit information to the LED converter. The multiple LED modules can be arranged in a series connection or a parallel connection. The LED converter can be designed to query different types of information from the LED module or modules, depending on the particular pattern or value, by changing the supply voltage, for example via pulse or amplitude modulation of the supply voltage. For this purpose, various tables can be stored in the LED module for reporting the various information.

Beispielsweise ist der LED-Konverter dazu ausgelegt, durch Einstellen einer ersten Versorgungsspannung oder einer zweiten Versorgungsspannung für das LED-Modul, selektiv zwischen einem Modus zur Erfassung einer Leistungsaufnahme des LED-Moduls und einem Modus zum Leuchtbetrieb einer an das LED-Modul angeschlossenen LED-Strecke zu wechseln.For example, the LED converter is designed to selectively between a mode for detecting a power consumption of the LED module and a mode for lighting operation of an LED connected to the LED module by setting a first supply voltage or a second supply voltage for the LED module. To change route.

Die erste Versorgungsspannung ist dabei eine Spannung im Auslesefenster, das heißt eine Versorgungsspannung zwischen Null und einer Durchlassspannung, bei der die angeschlossene LED-Strecke noch nicht leitend ist. Die zweite Versorgungsspannung ist eine Spannung oberhalb der Durchlassspannung, bei der die angeschlossene LED-Strecke leitend ist, vorzugsweise leuchtet. Der LED-Konverter wird also automatisch basierend auf der eingestellten Versorgungsspannung in den entsprechenden Modus gesetzt. Eine Erfassung der Leistungsaufnahme findet nur in dem genannten Erfassungsmodus statt. Dadurch ist es möglich Erfassungsschaltungen des Konverters im Leuchtbetrieb abzuschalten und Energie einzusparen. Eine Interaktion mit dem LED-Konverter von außen ist nicht notwendig für den Wechsel des Modus.The first supply voltage is a voltage in the readout window, that is, a supply voltage between zero and a forward voltage at which the connected LED path is not yet conductive. The second supply voltage is a voltage above the forward voltage at which the connected LED path is conductive, preferably lights up. The LED converter is automatically set to the appropriate mode based on the set supply voltage. The power consumption is only recorded in the aforementioned recording mode. This makes it possible to switch off the converter detection circuits in light mode and to save energy. External interaction with the LED converter is not necessary to change the mode.

Vorzugsweise ist der LED-Konverter dazu ausgelegt, eine Strommessung zur direkten Erfassung der Leistungsaufnahme des LED-Moduls durchzuführen.The LED converter is preferably designed to carry out a current measurement for direct detection of the power consumption of the LED module.

Alternativ ist der LED-Konverter dazu ausgelegt, eine indirekte Erfassung der Leistungsaufnahme des LED-Moduls durchzuführen.
Vorzugsweise ist der LED-Konverter dazu ausgelegt, eine Änderung der Leistungsaufnahme des LED-Moduls durch eine Änderung eines Tastverhältnisses einer Taktung des LED-Konverters, beispielsweise eines Buck-Konverters (auch Tiefsetzsteller genannt) oder eines isolierten Sperrwandlers (Flyback Konverter) zu erfassen.
Alternatively, the LED converter is designed to indirectly record the power consumption of the LED module.
The LED converter is preferably designed to detect a change in the power consumption of the LED module by changing a duty cycle of a clocking of the LED converter, for example a buck converter (also called a step-down converter) or an isolated flyback converter.

Je nach Steuerkonzept für ein LED-Modul kann der LED-Konverter auch eine Änderung des Peak-Stroms in dem LED-Konverter beispielsweise in einem isolierten Konverter, vorzugsweise einem isolierten Sperrwandlers, erfassen.Depending on the control concept for an LED module, the LED converter can also detect a change in the peak current in the LED converter, for example in an isolated converter, preferably an isolated flyback converter.

Vorteilhafterweise ist der LED-Konverter dazu ausgelegt, einen Kondensator über eine Last des LED-Moduls zu entladen, einen Entladestrom des Kondensators direkt, oder indirekt über eine Entladezeit zu bestimmen und den wenigstens eine Betriebs- und/oder Wartungsparameter des LED-Moduls basierend auf diesem Entladestrom zu bestimmen.The LED converter is advantageously designed to discharge a capacitor via a load of the LED module, to determine a discharge current of the capacitor directly or indirectly via a discharge time, and based on the at least one operating and / or maintenance parameter of the LED module to determine this discharge current.

Insbesondere wird diese Ausführungsform des LED-Konverters bevorzugt für ein LED-Modul mit stromkonstanter Last im Bereich des Auslesefensters der Versorgungsspannung verwendet. Ein Kondensator im LED-Konverter wird dabei beispielsweise über eine konstante Stromsenke auf dem LED-Modul entladen, wobei der dabei fließende Entladestrom direkt oder indirekt über eine Entladerate (negative Steigung) der Spannung des Kondensators gemessen werden kann. Der direkt oder indirekt erfasste Entladestrom kann dann durch den LED-Konverter hinsichtlich des Betriebs- und/oder Wartungsparameters interpretiert werden. Die Information über den Betriebs- und/oder Wartungsparameter ist also in der Steigung der Spannung kodiert, die der LED-Konverter ausgibt, wenn der Kondensator entladen wird. Die Messung der Entladerate eliminiert die Abhängigkeit von der absoluten Versorgungsspannung. Ebenso denkbar ist auch eine Detektion des Entladestroms über die Entladedauer des Kondensators. Dazu kann dem LED-Konverter ferner noch die Information über die absolute Spannung zu Beginn und zum Ende der Messung, d.h. dem Entladen des Kondensators, vorliegen oder zurückgeführt werden.In particular, this embodiment of the LED converter is preferably used for an LED module with a constant current load in the area of the readout window of the supply voltage. A capacitor in the LED converter is discharged, for example, via a constant current sink on the LED module, whereby the discharge current flowing can be measured directly or indirectly via a discharge rate (negative slope) of the voltage of the capacitor. The directly or indirectly detected discharge current can then be interpreted by the LED converter with regard to the operating and / or maintenance parameters. The information about the operating and / or maintenance parameters is therefore encoded in the slope of the voltage that the LED converter outputs when the capacitor is discharged. Measuring the discharge rate eliminates the dependence on the absolute supply voltage. A detection of the discharge current over the discharge time of the capacitor is also conceivable. In addition, the LED converter can also receive information about the absolute voltage at the beginning and at the end of the measurement, i.e. the discharge of the capacitor, are present or returned.

Gemäß einer Ausführung der vorliegenden Erfindung ist das System eine LED-Leuchte aufweisend ein LED-Modul, wie oben beschrieben, und einen LED-Konverter, wie ebenso oben beschrieben.According to one embodiment of the present invention, the system is an LED luminaire comprising an LED module, as described above, and an LED converter, as also described above.

Die vorliegende Erfindung betrifft ferner ein Verfahren zum Übermitteln von Informationen von einem LED-Modul an einen LED-Konverter. Der LED-Konverter weist einen hochfrequent getakteten Wandler auf, vorzugsweise einen isolierten Sperrwandler oder resonanten Halbbrückenwandler. Das LED-Modul zeigt Anschlüsse für den das LED-Modul versorgenden LED-Konverter. Der LED-Konverter versorgt das LED-Modul mit einem vorgegebenen konstanten Strom, der kleiner als der Nennstrom der LED-Strecke ist, oder einer vorgegebenen konstanten Spannung, die kleiner als die Durchlassspannung der LED-Strecke ist, Mit Anlegen des vorgegebenen konstanten Stroms oder der konstanten Spannung beginnt eine Startphase. Eine Schaltung des LED-Moduls, die ausgebildet ist eine Wirkleistungslast darzustellen, wird aktiviert, wenn der vorgegebene konstante Strom oder die vorgegebene konstante Spannung angelegt wird.The present invention also relates to a method for transmitting information from an LED module to an LED converter. The LED converter has a high-frequency clocked converter, preferably an isolated flyback converter or resonant half-bridge converter. The LED module shows connections for the LED converter supplying the LED module. The LED converter supplies the LED module with a predetermined constant current, which is less than the nominal current of the LED path, or a predetermined constant voltage, which is less than the forward voltage of the LED path, with application of the predetermined constant current or the constant voltage begins a start phase. A circuit of the LED module, which is designed to represent an active power load, is activated when the specified constant current or the specified constant voltage is applied.

Die aktivierte Schaltung des LED-Moduls bewirkt eine wiederholte Änderung der Leistungsaufnahme des LED-Moduls gemäß wenigstens einem vorgegebenen Protokoll. Der LED-Konverter erfasst während der Startphase eine sich wiederholt ändernde Leistungsaufnahme des LED-Moduls. Die Schaltung des LED-Moduls ist deaktivierbar und die deaktivierte Schaltung stellt keine Wirkleistungslast dar. Die Schaltung zeichnet sich dadurch aus, dass die Schaltung sich nach Ablauf einer vorgegebenen Zeitspanne ab Beginn der Startphase automatisch selbst deaktiviert.The activated switching of the LED module causes a repeated change in the power consumption of the LED module according to at least one predetermined protocol. During the start-up phase, the LED converter detects a repeatedly changing power consumption of the LED module. The circuit of the LED module can be deactivated and the deactivated circuit does not represent an active power load. The circuit is characterized in that the circuit automatically deactivates itself after a specified period of time from the start of the start phase.

Eine Ausführung des Verfahrens umfasst Aktivieren der Schaltung, um eine Last, vorzugsweise eine Wirkleistungslast, darzustellen, wenn eine erste Versorgungsspannung ungleich Null an dem LED-Modul anliegt, bei der eine angeschlossene LED-Strecke nicht leitend ist, und Deaktivieren der Schaltung, um keine Last darzustellen, wenn eine zweite Versorgungsspannung ungleich Null an dem LED-Modul anliegt, bei der eine angeschlossene LED-Strecke leitend ist.One embodiment of the method comprises activating the circuit in order to display a load, preferably an active power load, when a first non-zero supply voltage is applied to the LED module, at which a connected LED path is non-conductive, and deactivating the circuit in order to avoid any Load when a second non-zero supply voltage is applied to the LED module at which a connected LED path is conductive.

Eine Ausführung des Verfahrens betrifft auch ein Verfahren zum Bestimmen von Informationen bezüglich eines LED-Moduls an einem LED-Konverter, das umfasst: Erfassen einer Leistungsaufnahme des LED-Moduls für eine an dem LED-Modul anliegende erste Versorgungsspannung, bei der eine an das LED-Modul angeschlossene LED-Strecke nicht leitend ist, und bestimmen von wenigstens einem Betriebs- und/oder Wartungsparameter des LED-Moduls basierend auf der erfassten Leistungsaufnahme.One embodiment of the method also relates to a method for determining information relating to an LED module on an LED converter, which comprises: detecting a power consumption of the LED module for a first supply voltage applied to the LED module, at which one is applied to the LED Module connected LED path is not conductive, and determine at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.

Eine Ausführung des Verfahrens betrifft weiterhin ein Verfahren zum Übermitteln von Informationen von einem LED-Modul an einen LED-Konverter aufweisend einen hochfrequent getakteten Wandler mit einem Transformator, das umfasst ein Aktivieren einer Schaltung zumindest während einer zeitlich begrenzten Startphase um eine Last, vorzugsweise eine Wirkleistungslast, darzustellen, und eine Erfassung einer Leistungsaufnahme des LED-Moduls auf der Primärseite des Transformators des hochfrequent getakteten Wandlers.One embodiment of the method further relates to a method for transmitting information from an LED module to an LED converter having a high-frequency clocked converter with a transformer, which includes activating a circuit at least during a time-limited start phase around a load, preferably an active power load , and a detection of a power consumption of the LED module on the primary side of the transformer of the high-frequency clocked converter.

Die vorliegende Erfindung betrifft auch ein Verfahren zum Bestimmen von Informationen bezüglich eines LED-Moduls an einem LED-Konverter aufweisend einen hochfrequent getakteten Wandler mit einem Transformator, das umfasst ein Erfassen einer Leistungsaufnahme des LED-Moduls auf der Primärseite des Transformators des hochfrequent getakteten Wandlers, wobei eine Schaltung auf dem LED-Modul zumindest während einer Startphase eine modulierte Laständerung bewirkt, und Bestimmen von wenigstens einem Betriebs- und/oder Wartungsparameter des LED-Moduls basierend auf der erfassten Leistungsaufnahme.The present invention also relates to a method for determining information relating to an LED module on an LED converter having a high-frequency clocked converter with a transformer, which comprises detecting a power consumption of the LED module on the primary side of the transformer of the high-frequency clocked converter, wherein a circuit on the LED module causes a modulated load change at least during a start phase, and determining at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.

Insgesamt ermöglicht die vorliegende Erfindung Informationen hinsichtlich an einem LED-Modul einzustellender Betriebs- und/oder Wartungsparameter, an einen LED-Konverter zu übermitteln. Dabei sind keine weiteren Anschlüsse oder Verbindung zwischen LED-Konverter und LED-Modul nötig. Es ist keine weitere Komponente außer eine, vorteilhafterweise in ein Halbleitermaterial des LED-Moduls integrierte, Lastmodulationsschaltung nötig. Es muss keine zusätzliche Interaktion mit LED-Modul oder dem LED-Konverter für die Übertragung der Information durchgeführt werden. Die vorliegende Erfindung ermöglicht also eine einfachere Steuerung eines LED-Moduls, sowie eine kostengünstigere und kompaktere Herstellung von LED-Modul und/oder LED-Konverter.Overall, the present invention enables information relating to the operating and / or maintenance parameters to be set on an LED module to be transmitted to an LED converter. No further connections or connections between the LED converter and the LED module are necessary. No further component is necessary apart from a load modulation circuit which is advantageously integrated in a semiconductor material of the LED module. There is no additional interaction with the LED module or the LED converter for the transmission of the information. The present invention thus enables a simpler control of an LED module, as well as a more cost-effective and more compact production of the LED module and / or LED converter.

Die vorliegende Erfindung betrifft auch ein Verfahren zum Bestimmen von Informationen bezüglich eines LED-Moduls an einem LED-Konverter, das umfasst: Erfassen einer Leistungsaufnahme des LED-Moduls, wobei eine Schaltung auf dem LED-Modul zumindest während einer Startphase eine modulierte Laständerung bewirkt, und Bestimmen von wenigstens einem Betriebs- und/oder Wartungsparameter des LED-Moduls basierend auf der erfassten Leistungsaufnahme.The present invention also relates to a method for determining information relating to an LED module on an LED converter, comprising: detecting a power consumption of the LED module, a circuit on the LED module causing a modulated load change at least during a start phase, and determining at least one operating and / or maintenance parameter of the LED module based on the detected power consumption.

Die vorliegende Erfindung wird nun anhand der beigefügten Figuren genauer beschrieben.

Fig. 1
zeigt schematisch das Grundprinzip der vorliegenden Erfindung anhand einer erfindungsgemäßen LED-Leuchte (bestehend aus einem erfindungsgemäßen LED-Modul und einem erfindungsgemäßen LED-Konverters).
Fig. 2
zeigt eine Stromspannungskennlinie einer LED-Strecke und das erfindungsgemäße Auslesefenster.
Fig. 3
zeigt einen Schaltkreis, der eine automatische Deaktivierung der Schaltung auf dem erfindungsgemäßen LED-Modul ermöglicht.
Fig. 4
zeigt ein Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul, die eine stromkonstante Last darstellt.
Fig. 5
zeigt schematisch die Erfassung einer stromkonstanten Last auf dem erfindungsgemäßen LED-Modul durch den erfindungsgemäßen LED-Konverter.
Fig. 6
zeigt eine Schaltung auf dem erfindungsgemäßen LED-Modul, die eine stromveränderliche Last darstellt und insbesondere eine Frequenz der Änderung der Leistungsaufnahme des erfindungsgemäßen LED-Moduls einstellt.
Fig. 7
zeigt wie eine Änderung der Leistungsaufnahme des erfindungsgemäßen LED-Moduls an einem Buck-Konverter als Beispiel eines erfindungsgemäßen LED-Konverters gemessen werden kann.
Fig. 8
zeigt wie eine Änderung des Stroms durch die Schaltung auf dem erfindungsgemäßen LED-Modul mit dem Strom in einem Buck-Konverter des erfindungsgemäßen LED-Konverters korreliert
Fig. 9
zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
Fig. 10
zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
Fig. 11
zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
Fig. 12
zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul.
The present invention will now be described in more detail with reference to the accompanying figures.
Fig. 1
shows schematically the basic principle of the present invention using an LED light according to the invention (consisting of an LED module according to the invention and an LED converter according to the invention).
Fig. 2
shows a current-voltage characteristic of an LED path and the readout window according to the invention.
Fig. 3
shows a circuit which enables automatic deactivation of the circuit on the LED module according to the invention.
Fig. 4
shows an example of the circuit on the LED module according to the invention, which represents a current-constant load.
Fig. 5
shows schematically the detection of a constant current load on the LED module according to the invention by the LED converter according to the invention.
Fig. 6
shows a circuit on the LED module according to the invention, which represents a current-variable load and in particular sets a frequency of the change in the power consumption of the LED module according to the invention.
Fig. 7
shows how a change in the power consumption of the LED module according to the invention can be measured on a buck converter as an example of an LED converter according to the invention.
Fig. 8
shows how a change in the current through the circuit on the LED module according to the invention correlates with the current in a buck converter of the LED converter according to the invention
Fig. 9
shows another example of the circuit on the LED module according to the invention
Fig. 10
shows another example of the circuit on the LED module according to the invention
Fig. 11
shows another example of the circuit on the LED module according to the invention
Fig. 12
shows another example of the circuit on the LED module according to the invention.

Figur 1 zeigt schematisch eine erfindungsgemäße LED-Leuchte, die aus einem erfindungsgemäßen LED-Modul 1 und einem erfindungsgemäßen LED-Konverter 10 besteht. Der LED-Konverter 10 ist über einen oder mehrere Spannungsanschlüsse 12 mit dem LED-Modul 1 verbunden. Der LED-Konverter 10 versorgt das LED-Modul 1 also mit einer Versorgungsspannung. Der LED-Konverter 10 kann auch zum Betreiben mehrerer LED-Module 1 ausgelegt sein. Vorzugsweise ist die Versorgungsspannung eine Gleichspannung, kann aber auch eine getaktete Spannung oder Wechselspannung sein. Der LED-Konverter 10 weist vorzugsweise einen hochfrequent getakteten Wandler auf, beispielsweise einen Buck-Konverter (Tiefsetzsteller), isolierten Sperrwandler (Flyback Konverter) oder einen resonanten Halbbrücken-Konverter (vorzugsweise isoliert, beispielsweise einen LLC Konverter). Der LED-Konverter 10 kann beispielsweise eine konstante Ausgangsspannung oder einen konstanten Ausgangsstrom an seinen Spannungsanschlüssen 12 ausgeben, wobei die Spannung an diesen Anschlüssen der Versorgungsspannung des LED-Moduls 1 entspricht. Figure 1 shows schematically an LED lamp according to the invention, which consists of an LED module 1 according to the invention and an LED converter 10 according to the invention. The LED converter 10 is connected to the LED module 1 via one or more voltage connections 12. The LED converter 10 thus supplies the LED module 1 with a supply voltage. The LED converter 10 can also be designed to operate a plurality of LED modules 1. The supply voltage is preferably a direct voltage, but can also be a clocked voltage or alternating voltage. The LED converter 10 preferably has a high-frequency clocked converter, for example a buck converter (step-down converter), isolated flyback converter or a resonant half-bridge converter (preferably isolated, e.g. an LLC converter). The LED converter 10 can, for example, output a constant output voltage or a constant output current at its voltage connections 12, the voltage at these connections corresponding to the supply voltage of the LED module 1.

Die Versorgungsspannung wird über einen oder mehrere Anschlüsse 2 des LED-Moduls 1 an wenigstens eine daran angeschlossene LED-Strecke 3 (diese umfasst auch eine einzelne LED) angelegt. Die LED-Strecke 3 muss nicht Teil des erfindungsgemäßen LED-Moduls 1 sein, sondern kann eine anschließbare und austauschbare LED-Strecke 3 sein. Das erfindungsgemäße LED-Modul 1 benötigt also lediglich Anschlüsse 2 für wenigstens eine LED-Strecke 3. Die LED-Strecke 3 kann aber auch fest mit dem LED-Modul 1 verbaut sein. Die LED-Strecke 3 kann eine oder mehrere LEDs aufweisen, die beispielsweise wie in Figur 1 gezeigt in Serie geschaltet sind. LEDs einer LED-Strecke 3 können alle gleichfarbig leuchten, d.h. Licht gleicher Wellenlänge emittieren, oder verschiedenfarbig leuchten. Zum Beispiel können mehrere LEDs, vorzugsweise rot-, grün- und blau-leuchtende LEDs, kombiniert werden, um eine Mischstrahlung, vorzugsweise weißes Licht, zu erzeugen.The supply voltage is applied via one or more connections 2 of the LED module 1 to at least one LED path 3 connected to it (this also includes a single LED). The LED segment 3 does not have to be part of the LED module 1 according to the invention, but can be a connectable and exchangeable LED segment 3. The LED module 1 according to the invention therefore only requires connections 2 for at least one LED line 3. The LED line 3 can, however, also be permanently installed with the LED module 1. The LED path 3 can have one or more LEDs, which, for example, as in FIG Figure 1 shown are connected in series. LEDs in an LED segment 3 can all light up in the same color, ie emit light of the same wavelength, or light up in different colors. For example, several LEDs, preferably red, green and blue-glowing LEDs, can be combined in order to generate mixed radiation, preferably white light.

Die LED-Strecke 3 ist wenn sie an die Anschlüsse 2 angeschlossen ist, parallel bezüglich der Versorgungsspannung mit einer Schaltung 4 verschaltet. Die Schaltung 4 ist beispielsweise derart ausgebildet, dass sie für den LED-Konverter 10 eine Last, vorzugsweise eine Wirkleistungslast, darstellt, wenn die vom LED-Konverter 10 an die Anschlüsse 12 angelegte Versorgungsspannung ungleich Null ist, aber noch so niedrig ist, dass die an die Anschlüsse 2 angeschlossene LED-Strecke 3 noch nicht leitend ist. Die Schaltung 4 kann daher auch als Lastschaltung oder Lastmodulationsschaltung bezeichnet werden.When it is connected to the connections 2, the LED path 3 is connected in parallel with a circuit 4 with respect to the supply voltage. The circuit 4 is designed, for example, in such a way that it represents a load, preferably an active power load, for the LED converter 10 if the supply voltage applied by the LED converter 10 to the connections 12 is not equal to zero, but is still so low that the LED path 3 connected to connections 2 is not yet conductive. The circuit 4 can therefore also be referred to as a load circuit or a load modulation circuit.

Figur 2 zeigt beispielhaft eine Stromspannungskennlinie einer LED-Strecke 3, bei der ein Strom durch die LED-Strecke in vertikaler Richtung und die Spannung an der LED-Strecke (d.h. die Versorgungsspannung in Figur 1) in horizontaler Richtung aufgetragen ist. Für einen ersten Spannungsbereich (d.h. eine erste Versorgungsspannung 5a innerhalb des Auslesefensters) ist die Spannung an der LED-Strecke 3 ungleich Null, der Strom durch die LED-Strecke 3 ist aber auch noch nahezu Null, da die LED-Strecke 3 nicht leitend ist. Die Versorgungsspannung ist also unterhalb der Durchlassspannung. Die LED-Strecke 3 stellt für den LED-Konverter 10 eine unendliche Last dar. Das LED-Modul 1 nimmt damit keine Leistung über die LED-Strecke 3 auf. In einem zweiten Spannungsbereich (d.h. für eine zweite Versorgungsspannung 5b außerhalb des Auslesefensters) wird die LED-Strecke 3 leitend und es fließt ein Strom durch die LED-Strecke 3, der diese zum Leuchten bringt. Die Versorgungsspannung ist also oberhalb der Durchlassspannung. Figure 2 shows an example of a current-voltage characteristic of an LED path 3 in which a current through the LED path in the vertical direction and the voltage at the LED path (ie the supply voltage in Figure 1 ) is applied in the horizontal direction. For a first voltage range (ie a first supply voltage 5a within the readout window), the voltage across the LED path 3 is not equal to zero, but the current through the LED path 3 is also almost zero, since the LED path 3 is not conductive . The supply voltage is therefore below the forward voltage. The LED path 3 represents an infinite load for the LED converter 10. The LED module 1 therefore does not consume any power via the LED path 3. In a second voltage range (ie for a second supply voltage 5b outside the readout window) the LED path 3 becomes conductive and a current flows through the LED path 3, which makes it glow. The supply voltage is therefore above the forward voltage.

Die Schaltung 4 auf dem LED-Modul 1 ist beispielsweise so ausgebildet, dass sie aktiviert ist, wenn die erste Versorgungsspannung 5a anliegt, und dadurch eine Last, vorzugsweise eine Wirkungsleistungslast, für den LED-Konverter 10 darstellt. Für die zweite Versorgungsspannung 5b, also im Leuchtbetrieb der LED-Strecke 3, ist die Schaltung 4 deaktiviert und stellt keine Last für den LED-Konverter dar. Dies ist in Figur 1 durch den Schalter 6 schematisch dargestellt, der die Schaltung 4 abhängig von der anliegenden Versorgungsspannung automatisch aktiviert oder deaktiviert. Die Schaltung 4 kann entweder eine stromkonstante Last oder eine stromveränderliche Last für den LED-Konverter 10 darstellen. Die Schaltung 4 bewirkt eine Leistungsaufnahme des LED-Moduls 1, obwohl eine LED-Strecke 3 noch nicht leitend ist und keine Leistung aufnimmt. Ein herkömmliches LED-Modul 1 würde im Auslesefenster keine Leistung aufnehmen. Zusätzlich oder alternativ kann die Schaltung 4 auf dem LED-Modul 1 auch so ausgebildet sein, dass sie nur in einer zeitlich begrenzten Startphase des LED-Moduls 1 aktiviert ist.The circuit 4 on the LED module 1 is designed, for example, in such a way that it is activated when the first supply voltage 5a is applied and thereby represents a load, preferably an active power load, for the LED converter 10. For the second supply voltage 5b, that is to say when the LED path 3 is lit, the circuit 4 is deactivated and does not represent a load for the LED converter. This is shown in FIG Figure 1 represented schematically by the switch 6, which automatically activates or deactivates the circuit 4 depending on the applied supply voltage. The circuit 4 can represent either a current-constant load or a current-variable load for the LED converter 10. The circuit 4 causes the LED module 1 to consume power, although an LED path 3 is not yet conductive and does not consume any power. A conventional LED module 1 would not consume any power in the readout window. Additionally or alternatively, the circuit 4 on the LED module 1 can also be designed such that it is only activated in a time-limited start phase of the LED module 1.

Die Leistungsaufnahme des LED-Moduls 1 im Auslesefenster kann je nach Art der Schaltung 4 stromkonstant oder stromveränderlich sein. Der LED-Konverter 10 kann die Leistungsaufnahme des LED-Moduts 1 bzw. eine Änderung der Leistungsaufnahme des LED-Moduls 1 erfassen und basierend auf der erfassten Leistungsaufnahme auf einzustellende Betriebs- und/oder Wartungsparameter des LED-Moduls 1 schließen. Der LED-Konverter 10 kann die Betriebs- und/oder Wartungsparameter direkt zur Einstellung oder Regelung des LED-Moduls 1 verwenden. Der LED-Konverter 10 kann die Betriebs- und/oder Wartungsparameter aber auch in einem ihm zugeordneten Speicher ablegen und gegebenenfalls später verwenden, oder die Parameter optisch und/oder akustisch einem Benutzer anzeigen, oder sie an eine weitere Einrichtung, beispielsweise eine Steuereinheit eines Beleuchtungssystems, senden. Das Senden kann entweder drahtlos oder drahtgebunden geschehen und kann entweder automatisch oder nur auf Abfrage von der weiteren Einrichtung durchgeführt werden.The power consumption of the LED module 1 in the readout window can be constant or variable, depending on the type of circuit 4. The LED converter 10 can detect the power consumption of the LED module 1 or a change in the power consumption of the LED module 1 and, based on the detected power consumption, deduce operating and / or maintenance parameters of the LED module 1 to be set. The LED converter 10 can use the operating and / or maintenance parameters directly for setting or regulating the LED module 1. The LED converter 10 can also store the operating and / or maintenance parameters in a memory assigned to it and, if necessary, use them later, or display the parameters optically and / or acoustically to a user, or to another device, for example a control unit of a lighting system , send. The transmission can be done either wirelessly or wired and can be carried out either automatically or only on request from the further device.

Zum Betreiben eines LED-Moduls 1 durch den LED-Konverter 1 der vorliegenden Erfindung können in einer vorzugsweise zeitlich begrenzten Startphase der LED-Leuchte verschiedene Vorgänge ausgeführt werden. Zunächst versorgt der LED-Konverter 10 das LED-Modul 1 beispielsweise mit einer konstanten Versorgungsspannung, vorzugsweise einer konstanten DC-Spannung. Beispielsweise kann der LED-Konverter 10 mit im Vergleich zum Normalbetrieb verringertem Einschaltverhältnis betrieben werden, wodurch eine geringere Ausgangsspannung erreicht wird. Die Versorgungsspannung ist dabei eine erste Versorgungsspannung 5a, d.h. sie liegt im Auslesefenster, das in Figur 2 gezeigt ist. Da die erste Versorgungsspannung 5a ungleich Null ist, wird die Schaltung 4 auf dem LED-Modul 1 aktiviert und stellt eine Last für den LED-Konverter 10 dar. Die Last ist vorzugsweise eine Wirkleistungslast und erzeugt eine Leistungsaufnahme des LED-Moduls 1. Nun kann der LED-Konverter 10 beispielsweise einen Entladestrom eines Kondensators über diese Last, eine absolute Stromaufnahme der Schaltung 4, eine Frequenz einer Änderung der Leistungsaufnahme des LED-Moduls 1, oder ein Tastverhältnis oder eine Amplitude einer Leistungsaufnahmeänderung messen. Basierend auf dem Resultat der Messung kann der LED-Konverter 10 auf Betriebs- und/oder Wartungsparameter schließen. Beispielweise kann der LED-Konverter 10 eine Soll- oder Durchlassspannung oder einen Sollstrom des LED-Moduls bestimmen und diese an das LED-Modul 1 anlegen. Damit wird eine angeschlossene LED-Strecke 3 leitend und der LED-Konverter 10 betreibt das LED-Modul 1 im Leuchtbetrieb. Vorzugsweise wird nun automatisch die Schaltung 4 deaktiviert. Die Schaltung 4 nimmt dadurch keine Leistung im Leuchtbetrieb der LED-Strecke 3 auf und beeinflusst deshalb nicht den Leuchtbetrieb der LED-Strecke 3. Der LED-Konverter 10 der LED-Leuchte hat also automatisch das LED-Modul 1 erkannt und die passenden Betriebsparameter eingestellt.To operate an LED module 1 by the LED converter 1 of the present invention, various processes can be carried out in a preferably time-limited starting phase of the LED light. First, the LED converter 10 supplies the LED module 1, for example, with a constant supply voltage, preferably a constant DC voltage. For example, the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved. The supply voltage is included a first supply voltage 5a, ie it is in the readout window shown in Figure 2 is shown. Since the first supply voltage 5a is not equal to zero, the circuit 4 is activated on the LED module 1 and represents a load for the LED converter 10. The load is preferably an active power load and generates a power consumption of the LED module 1. Now can the LED converter 10 can measure, for example, a discharge current of a capacitor via this load, an absolute current consumption of the circuit 4, a frequency of a change in the power consumption of the LED module 1, or a duty cycle or an amplitude of a change in power consumption. Based on the result of the measurement, the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1. A connected LED path 3 thus becomes conductive and the LED converter 10 operates the LED module 1 in lighting mode. The circuit 4 is now preferably deactivated automatically. The circuit 4 therefore does not consume any power in the lighting operation of the LED path 3 and therefore does not influence the lighting operation of the LED path 3. The LED converter 10 of the LED lamp has automatically recognized the LED module 1 and set the appropriate operating parameters .

Alternativ oder zusätzlich kann auch ein Auslesen des LED-Moduls 1 durch den LED-Konverter 10 zeitlich begrenzt erfolgen, indem die Schaltung 4 nur während einer Startphase aufgrund einer vorgegebenen Zeitspanne aktiv ist, sobald eine Versorgungsspannung an das LED-Modul 1 angelegt wird. Diese Versorgungsspannung kann in diesem Fall auch der nominellen Ausgangsspannung des LED-Konverters 10 für den Normalbetrieb entsprechen. Nach dem Anlegen der Versorgungsspannung wird die Schaltung 4 auf dem LED-Modul 1 aktiviert und stellt eine Last für den LED-Konverter 10 dar. Die Last ist vorzugsweise eine sich wiederholt ändernde Wirkleistungslast und erzeugt eine Leistungsaufnahme des LED-Moduls 1. Zusätzlich kann in diesem Fall auch die angeschlossene LED-Strecke 3 leitend werden womit der LED-Konverter 10 das LED-Modul 1 im Leuchtbetrieb betreibt. Nun kann der LED-Konverter 10 beispielsweise einen Entladestrom eines Kondensators über diese Last, eine absolute Stromaufnahme der Schaltung 4, eine Frequenz einer Änderung der Leistungsaufnahme des LED-Moduls 1, oder ein Tastverhältnis oder eine Amplitude einer Leistungsaufnahmeänderung messen. Basierend auf dem Resultat der Messung kann der LED-Konverter 10 auf Betriebs- und/oder Wartungsparameter schließen. Beispielweise kann der LED-Konverter 10 eine Soll- oder Durchlassspannung oder einen Sollstrom des LED-Moduls bestimmen und diese an das LED-Modul 1 anlegen. Vorzugsweise wird nun automatisch nach Ablauf der vorgegebenen Zeitspanne für die Startphase die Schaltung 4 deaktiviert. Die Vorgabe dieser Zeitspanne für die Startphase kann beispielsweise durch eine Zeitladeschaltung festgelegt sein, wobei ein Zeitgeber-Kondensator aufgeladen wird und nach erfolgtem Aufladen des Zeitgeber-Kondensators die Schaltung 4 deaktiviert wird. Die Schaltung 4 nimmt dadurch keine Leistung im dauernden Leuchtbetrieb der LED-Strecke 3 auf und beeinflusst deshalb nicht den Leuchtbetrieb der LED-Strecke 3.As an alternative or in addition, the LED converter 10 can also read out the LED module 1 for a limited time, in that the circuit 4 is only active during a start phase on the basis of a predetermined period of time as soon as a supply voltage is applied to the LED module 1. In this case, this supply voltage can also correspond to the nominal output voltage of the LED converter 10 for normal operation. After the supply voltage has been applied, the circuit 4 on the LED module 1 activated and represents a load for the LED converter 10. The load is preferably a repeatedly changing active power load and generates a power consumption of the LED module 1. In addition, the connected LED path 3 can also become conductive in this case, whereby the LED Converter 10 operates the LED module 1 in lighting mode. The LED converter 10 can now measure, for example, a discharge current of a capacitor via this load, an absolute current consumption of the circuit 4, a frequency of a change in the power consumption of the LED module 1, or a duty cycle or an amplitude of a change in power consumption. Based on the result of the measurement, the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1. The circuit 4 is now preferably deactivated automatically after the predetermined time period for the start phase has elapsed. The specification of this time period for the start phase can be established, for example, by a time charging circuit, with a timer capacitor being charged and, after the timer capacitor has been charged, the circuit 4 is deactivated. As a result, the circuit 4 does not consume any power in the continuous lighting operation of the LED segment 3 and therefore does not influence the lighting operation of the LED segment 3.

Figur 3 zeigt einen Schaltkreis, der zumindest ein Teil der Schaltung 4 ist, um diese automatisch zu deaktivieren, wenn die Versorgungsspannung im Bereich der zweiten Versorgungsspannung 5b ist, also oberhalb der Durchlassspannung der LED-Strecke 3 ist. Die Schaltung 4 kann mittels der Transistoren M4 und M3 deaktiviert werden. Mit ansteigender Versorgungsspannung, die vom LED-Konverter 10 bereitgestellt wird und an der Schaltung 4 auf dem LED-Modul 1 anliegt, steigt auch die Spannung am Widerstand R8. Wenn diese Spannung eine Schwellenspannung des Transistors M4 erreicht, schließt dieser und deaktiviert auch den Transistor M3, indem er die Gate-Spannung des Transistors M3 auf Erde legt. Die Schwellenspannung kann beispielsweise 1,4 Volt sein (bei einer Spannung von 12,5 Volt) des LED-Konverters 10). Um Verluste des Spannungsteilers R8 und R10 zu reduzieren, sollten die Widerstandswerte hoch sein, vorzugsweise im Bereich von 20 bis 200 kΩ, noch mehr bevorzugt im Bereich von 40 bis 100 kΩ. Außerdem ist es wichtig, dass der Transistor M3 dazu ausgelegt ist, der maximalen Versorgungsspannung zu widerstehen, die der LED-Konverter 10 angelegen kann, und dass die Spannung am Widerstand R8 nicht die maximale erlaubte Gate-Spannung des Transistors M4 bei normalem Leuchtbetrieb der LED-Strecke 3 übersteigt. Alternativ oder optinoal kann diese Schaltung beispielsweise mittels eines RC-Gliedes so ausgelegt sein, dass sie sich nach Ablauf einer vorgegebenen Startzeit (wobei diese Zeit der Startphase entspricht) deaktiviert, indem der Transistor M3 abhängig davon deaktiviert, also geöffnet wird. Beispielsweise kann parallel zu dem Widerstand R8 ein Kondensator angeordnet sein. Dieser Kondensator kann so ausgelegt sein, dass dieser nach Ablauf der vorgegebenen Startzeit durch die angelegte Versorgungsspannung geladen ist und somit auch die Spannung am parallelen Widerstand R8 soweit gestiegen ist, dass diese Spannung eine Schwellenspannung des Transistors M4 erreicht hat, so dass dieser schließt und den Transistor M3 deaktiviert, indem er die Gate-Spannung des Transistors M3 auf Erde legt. Figure 3 shows a circuit which is at least a part of the circuit 4 in order to automatically deactivate it when the supply voltage is in the range of the second supply voltage 5b, that is, above the forward voltage of the LED path 3. The circuit 4 can be deactivated by means of the transistors M4 and M3. As the supply voltage, which is provided by the LED converter 10 and is applied to the circuit 4 on the LED module 1, increases, the voltage across the resistor R8 also increases. If this voltage reaches a threshold voltage of the transistor M4, the latter closes and also deactivates the transistor M3 by connecting the gate voltage of the transistor M3 to ground. The threshold voltage can for example be 1.4 volts (at a voltage of 12.5 volts) of the LED converter 10). In order to reduce losses of the voltage divider R8 and R10, the resistance values should be high, preferably in the range from 20 to 200 kΩ, even more preferably in the range from 40 to 100 kΩ. It is also important that the transistor M3 is designed to withstand the maximum supply voltage that the LED converter 10 can apply, and that the voltage across the resistor R8 does not exceed the maximum permitted gate voltage of the transistor M4 when the LED is normally lit. - Distance exceeds 3. Alternatively or optionally, this circuit can be designed, for example by means of an RC element, in such a way that it deactivates itself after a predetermined starting time has elapsed (this time corresponding to the starting phase) by deactivating transistor M3 as a function thereof, ie opening it. For example, a capacitor can be arranged in parallel with the resistor R8. This capacitor can be designed so that it is charged by the applied supply voltage after the specified start time has elapsed and thus the voltage at the parallel resistor R8 has also risen so far that this voltage has reached a threshold voltage of the transistor M4, so that it closes and the Transistor M3 deactivates by pulling the gate voltage of transistor M3 to ground.

Figur 4 zeigt beispielhaft einen Schaltkreis TL432, der zumindest ein Teil der Schaltung 4 ist, die dazu ausgelegt ist, im Auslesefenster eine stromkonstante Last für den LED-Konverter 10 darzustellen. Die linke Seite der Figur 4 zeigt ein Schaltbild des Schaltkreises, die rechte Seite zeigt ein entsprechendes Ersatzschaltbild für den Schaltkreis TL431 oder TL432. Der konstante Strom ist durch ein Verhältnis der Referenzspannung des Schalkreises TL431 zum Widerstandswert des Auswahlwiderstands R11 (Rcfg) bestimmt. Ein Transistor Q1 wird vorzugsweise dermaßen gesteuert, dass die Spannung an dem Widerstand R11 (Rcfg) immer ungefähr 2,5 Volt beträgt. Ein Minimalstrom von etwa 1 mA sollte durch den Schaltkreis TL431 fließen. Der in Figur 3 gezeigte Schaltkreis kann in Serie mit dem in Figur 4 gezeigten Schaltkreis angeordnet werden, so dass die Serienschaltung aus beiden parallel zu der LED-Strecke auf dem LED-Modul 1 angeordnet ist. Vorzugsweise ist die virtuelle Masse GNDX des Schaltkreises der Figur 4 mit dem Drain-Anschluß des Transistors M3 verbunden.
Über eine stromkonstante Last wie beispielweise in Figur 4 gezeigt kann der LED-Konverter 10 zur Messung des konstanten Stroms beispielweise einen Kondensator 11 entladen. Der konstante Strom durch die Schaltung 4 (der dem Entladestrom des Kondensators 11 entspricht) kann direkt oder indirekt basierend auf entweder der Entladedauer und/oder der Entladerate bestimmt werden. Basierend auf dem Entladestrom kann der LED-Konverter auf die verwendete Schaltung 4 und somit auf das angeschlossene LED-Modul 1 schließen. Ferner kann der LED-Konverter 10 Betriebs- und/oder Wartungsparameter des LED-Moduls ermitteln, beispielweise anhand abgelegter Tabellen.
Figure 4 shows an example of a circuit TL432, which is at least part of the circuit 4, which is designed to display a current-constant load for the LED converter 10 in the readout window. The left side of the Figure 4 shows a circuit diagram of the circuit, the right-hand side shows a corresponding equivalent circuit diagram for the TL431 circuit or TL432. The constant current is determined by a ratio of the reference voltage of the switching circuit TL431 to the resistance value of the selection resistor R11 (Rcfg). A transistor Q1 is preferably controlled such that the voltage across resistor R11 (Rcfg) is always approximately 2.5 volts. A minimum current of about 1 mA should flow through the TL431 circuit. The in Figure 3 The circuit shown can be used in series with the in Figure 4 The circuit shown can be arranged so that the series circuit of the two is arranged in parallel with the LED path on the LED module 1. Preferably, the virtual ground GNDX of the circuit is the Figure 4 connected to the drain of the transistor M3.
Via a constant current load such as in Figure 4 As shown, the LED converter 10 can discharge a capacitor 11, for example, for measuring the constant current. The constant current through the circuit 4 (which corresponds to the discharge current of the capacitor 11) can be determined directly or indirectly based on either the discharge duration and / or the discharge rate. Based on the discharge current, the LED converter can draw conclusions about the circuit 4 used and thus about the connected LED module 1. Furthermore, the LED converter 10 can determine operating and / or maintenance parameters of the LED module, for example using stored tables.

Das Konzept der Ermittlung des konstanten Stroms durch die Schaltung 4 ist schematisch in Figur 5 dargestellt. Zum Beispiel kann der LED-Konverter 10 beispielhaft als Buck-Konverter ausgeführt sein. Der LED-Konverter 10 ist mit dem Kondensator 11 versehen, der parallel zu den Anschlüssen 12 für die Versorgungsspannung angeschlossen sein kann. Die Spannung an den Anschlüssen 12 wird vom LED-Konverter 10 überwacht. Wenn die Versorgungsspannung durch Öffnen des Schalters 13, welcher in dem LED-Konverter 10 angeordnet ist und vorzugsweise beim Betrieb des LED-Konverters hochfrequent getaktet wird, vom LED-Modul 1 getrennt wird, entlädt sich der Kondensator 11 über die vorzugsweise stromkonstante Last, die durch die Schaltung 4 auf dem LED-Modul 1 dargestellt wird. Die Entladerate, d.h. die Änderung der Spannung des Kondensators, die an den Anschlüssen 12 anliegt, wird vom LED-Konverter 10 vorzugsweise gemessen, um wie beschrieben auf die Betriebs- und/oder Wartungsparameter des LED-Moduls 1 zu schließen. Beispielweise kann der Widerstand R11, der in Figur 4 gezeigten stromkonstanten Last, bestimmt werden, wenn die Kapazität des Kondensators 11 bekannt ist. Dieser Widerstandswert kann dann den Betriebs- und/oder Wartungsparameter kodieren, d.h. der LED-Konverter 10 kann beispielsweise diesen Widerstandswert mit Betriebs- und/oder Wartungsparametern in abgelegten Tabellen korrelieren.The concept of determining the constant current through the circuit 4 is shown schematically in FIG Figure 5 shown. For example, the LED converter 10 can be designed as a buck converter. The LED converter 10 is provided with the capacitor 11, which can be connected in parallel to the connections 12 for the supply voltage. The voltage at the connections 12 is monitored by the LED converter 10. When the supply voltage by opening the switch 13, which is arranged in the LED converter 10 and is preferably clocked at high frequency when the LED converter is in operation, is separated from the LED module 1, the capacitor 11 discharges via the preferably constant current load, which is caused by the circuit 4 on the LED Module 1 is shown. The discharge rate, ie the change in the voltage of the capacitor which is applied to the connections 12, is preferably measured by the LED converter 10 in order to draw conclusions about the operating and / or maintenance parameters of the LED module 1 as described. For example, resistor R11, which is shown in Figure 4 constant current load shown, can be determined when the capacitance of the capacitor 11 is known. This resistance value can then encode the operating and / or maintenance parameter, ie the LED converter 10 can, for example, correlate this resistance value with operating and / or maintenance parameters in stored tables.

Figur 6 zeigt einen Schaltkreis TLC555, der zumindest Teil der Schaltung 4 ist und dazu geeignet ist, eine Laständerung des LED-Moduls 1 mit einer bestimmten Frequenz, d.h. eine Änderung der Leistungsaufnahme des LED-Moduls 1 zu erzeugen. Auf der linken Seite der Figur 6 ist ein Schaltbild, auf der rechten Seite ist ein entsprechendes Ersatzschaltbild für den Schaltkreis TLC555 gezeigt. Beispielsweise kann ein Kondensator C1 zwischen 1/3 und 2/3 der vom LED-Konverter 10 angelegten Versorgungsspannung 5a geladen und entladen werden. Solange die vom LED-Konverter 10 angelegte Versorgungsspannung 5a konstant ist, kann so eine Frequenz der Laständerung, ein Tastverhältnis (Taktverhältnis) der Laständerung oder eine Amplitude der Laständerung (d.h. ein Unterschied zwischen einer Last vor und einer Last nach der Änderung) eingestellt werden. Dies bedingt auch eine Änderung der Leistungsaufnahme mit einer entsprechenden Frequenz, Tastverhältnis (Taktverhältnis) oder einer Amplitude. Figure 6 shows a circuit TLC555, which is at least part of the circuit 4 and is suitable for generating a load change of the LED module 1 with a certain frequency, ie a change in the power consumption of the LED module 1. On the left of the Figure 6 is a circuit diagram, on the right side a corresponding equivalent circuit diagram for the circuit TLC555 is shown. For example, a capacitor C1 can be charged and discharged between 1/3 and 2/3 of the supply voltage 5a applied by the LED converter 10. As long as the supply voltage 5a applied by the LED converter 10 is constant, a frequency of the load change, a duty cycle (pulse duty factor) of the load change or an amplitude of the load change (ie a difference between a load before and a load after the change) can be set. This also requires a change in the power consumption with a corresponding frequency, pulse duty factor (pulse ratio) or an amplitude.

Die Frequenz f der Änderung ist dabei definiert als f = 1 / R 3 + 2 R 4 C1 ln 2 ,

Figure imgb0001
wobei R3, R4 und C1 Widerstands- bzw. Kapazitätswerte der in Fig. 6 gezeigten Komponenten sind.The frequency f of the change is defined as f = 1 / R. 3rd + 2nd R. 4th C1 ln 2nd ,
Figure imgb0001
where R3, R4 and C1 are resistance or capacitance values of the in Fig. 6 components shown.

Das Tastverhältnis (Taktverhältnis) ist durch die AN-Zeit (Thigh,) und die AUS-Zeit (Tlow) definiert, wobei

  • Thigh = (R3+R4)·C1·ln(2) und
  • Tlow= R4·C1·In(2).
The duty cycle (clock ratio) is defined by the ON time (T high, ) and the OFF time (T low ), with
  • T high = (R3 + R4) * C1 * ln (2) and
  • T low = R4 * C1 * In (2).

Eine Änderung des Tastverhältnisses ist sowohl durch eine Änderung der Pulsdauer (Einschaltzeitdauer, AN-Zeit, Thigh) als auch durch eine Änderung der Pausendauer (Ausschaltzeitdauer, AUS-Zeit, Tlow) möglich.The duty cycle can be changed by changing the pulse duration (switch-on time, ON time, T high ) or by changing the pause duration (switch-off time, OFF time, T low ).

Die Größe der Last ist durch den Widerstand R5 und der Konverterspannung VCONV (genauer gesagt das Verhältnis VCONV/R5) bestimmt.The size of the load is determined by the resistor R5 and the converter voltage V CONV (more precisely the ratio V CONV / R5).

Die Schaltung 4 ist so ausgelegt, dass sie nur während der Startphase der LED-Leuchte aktiviert ist. Dies kann beispielsweise dadurch erreicht werden, dass die Versorgung des Schaltkreises TLC555 mit Hilfe eines Zeitgliedes wie beispielsweise eines RC-Gliedes kann beispielsweise dieses Zeitglied derart ausgelegt sein, dass nur für eine Zeit von beispielsweise 100 Millisekunden die Versorgung für den Schaltkreis TLC555 anliegt und danach aufgrund einer Aufladung des Kondensators des RC-Gliedes über einen Vorwiderstand (ausgehend von der Versorgungsspannung des LED-Modules 1) ein vorgegebener Spannungspegel erreicht wird, der zum Abschalten der Versorgungsspannung Vcc für den Schaltkreis TLC555 führt (Beispiel nicht dargestellt). Beispielsweise kann über die an dem RC-Glied abfallende Spannung die Basis eines Abschalttransistors (nicht dargestellt) angesteuert werden, der die Versorgung Vcc für den Schaltkreis TLC555 auf Masse zieht, sobald das RC-Glied aufgeladen worden ist. Die Ladezeit des RC-Gliedes kann dabei so ausgelegt werden, dass eine Zeit von beispielsweise 100 Millisekunden erreicht wird, wobei diese Zeit der Startphase entspricht. Ein Anlauf des Schaltkreis TLC555 zu Beginn der Startphase kann durch eine hochohmige Speisung direkt von der Versorgungsspannung des LED-Modules 1 erfolgen, wobei diese am Ende der Startphase mittels der am RC-Glied abfallenden Spannung über den Abschalttransistors in einer Art Pull-Down Konfiguration auf Masse gezogen wird. Die Schaltung 4 kann einen steuerbaren Schalter aufweisen, der den Widerstand R5 abhängig vom Ausgangssignal OUT des Schaltkreis TLC555 zu- oder wegschaltet und somit die Laständerung bewirkt.The circuit 4 is designed so that it is only activated during the starting phase of the LED light. This can be achieved, for example, by supplying the circuit TLC555 with the aid of a timing element such as an RC element, for example, this timing element can be designed in such a way that the supply for the circuit TLC555 is only present for a time of 100 milliseconds, and thereafter due to When the capacitor of the RC element is charged via a series resistor (based on the supply voltage of the LED module 1), a predetermined voltage level is reached, which leads to the switching off of the supply voltage Vcc for the TLC555 circuit (example not shown). For example, via the RC element dropping voltage, the base of a switch-off transistor (not shown) can be controlled, which pulls the supply Vcc for the circuit TLC555 to ground as soon as the RC element has been charged. The charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is achieved, this time corresponding to the start phase. A start-up of the TLC555 circuit at the beginning of the start phase can take place by means of a high-impedance feed directly from the supply voltage of the LED module 1, whereby this occurs at the end of the start phase by means of the voltage drop across the RC element via the shutdown transistor in a kind of pull-down configuration Mass is pulled. The circuit 4 can have a controllable switch which switches the resistor R5 on or off as a function of the output signal OUT of the circuit TLC555 and thus causes the load change.

Der in Figur 3 gezeigte Schaltkreis kann in Serie mit dem in Figur 6 gezeigten Schaltkreis angeordnet werden, so dass die Serienschaltung aus beiden parallel zu der LED-Strecke auf dem LED-Modul 1 angeordnet ist. Vorzugsweise ist die virtuelle Masse GNDX des Schaltkreises der Figur 6 mit dem Drain-Anschluß des Transistors M3 verbunden. Eine Deaktivierung des Schaltkreises der Figur 6 kann beispielsweise zeitgesteuert erfolgen. Wie bereits bei dem Beispiel der Figur 3 erläutert, kann ein Kondensator parallel zu dem Widerstand R8 angeordnet sein. In diesem Fall wird ebenfalls ein RC-Glied gebildet. Die Ladezeit des RC-Gliedes kann dabei so ausgelegt werden, dass eine Zeit von beispielsweise 100 Millisekunden erreicht wird, wobei diese Zeit der Startphase entspricht. Nach Ablauf der durch die Dimensionierung des RC-Gliedes vorgegebenen Startzeit hat die Spannung am Gate des Transistors 4 eine Schwellenspannung des Transistors M4 erreicht, so dass dieser schließt und den Transistor M3 deaktiviert, indem er die Gate-Spannung des Transistors M3 auf Erde legt. Auf diese Weise kann die Schaltung der Figur 6 nur für eine vorgegebene Startphase aktiviert werden.The in Figure 3 The circuit shown can be used in series with the in Figure 6 The circuit shown can be arranged so that the series circuit of the two is arranged in parallel with the LED path on the LED module 1. Preferably, the virtual ground GNDX of the circuit is the Figure 6 connected to the drain of the transistor M3. A deactivation of the circuit of the Figure 6 can be time-controlled, for example. As with the example of the Figure 3 explained, a capacitor can be arranged in parallel with the resistor R8. In this case an RC element is also formed. The charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is achieved, this time corresponding to the start phase. After the start time specified by the dimensioning of the RC element has elapsed, the voltage at the gate of transistor 4 has reached a threshold voltage of transistor M4, so that it closes and deactivates transistor M3 by setting the gate voltage of transistor M3 to ground sets. In this way the circuit of the Figure 6 can only be activated for a specified start phase.

Wird durch die Schaltung 4 eine sich wiederholend ändernde Laständerung (also eine modulierte Laständerung) erzeugt und ausgegeben, können beispielsweise auch zwei verschiedene Informationen übertragen werden. Beispielsweise kann sowohl die Frequenz als auch das Tastverhältnis der Laständerung geändert werden. In diesem Fall könnte eine erste Information (beispielsweise die Sollspannung) mittels der Frequenz kodiert übertragen werden, während eine zweite Information (beispielsweise der Sollstrom) über das Tastverhältnis kodiert übertragen werden kann. Eine weitere Möglichkeit zur kombinierten Übertragung von zumindest zwei Informationen wäre die entsprechende Änderung der Pulsdauer (Einschaltzeitdauer, AN-Zeit, Thigh) und der Pausendauer (Ausschaltzeitdauer, AUS-Zeit, Tlow) der Laständerung.If the circuit 4 generates and outputs a repetitively changing load change (that is to say a modulated load change), two different items of information can also be transmitted, for example. For example, both the frequency and the duty cycle of the load change can be changed. In this case, a first piece of information (for example the setpoint voltage) could be transmitted encoded by means of the frequency, while a second piece of information (for example the setpoint current) can be transmitted in coded form using the pulse duty factor. Another possibility for the combined transmission of at least two pieces of information would be to change the pulse duration (switch-on time, ON time, T high ) and the pause duration (switch-off time, OFF time, T low ) of the load change accordingly.

Die Änderung der Leistungsaufnahme des LED-Moduls 1 kann durch den LED-Konverter 10 beispielsweise durch direkte Strommessung des Stroms durch die Schaltung 4 bestimmt werden. Alternativ kann der LED-Konverter 10 Messungen an einem Buck-Konverter wie in Figur 7 gezeigt durchführen, wobei der Buck-Konverter vorzugsweise ein Teil des LED-Konverters 10 ist. So zeigt zum Beispiel Figur 8, wie der Strom durch die Schaltung 4 und der Strom am Buck-Konverter, der über einen Shunt gemessen wird, korreliert. Figur 8 zeigt oben den Strom "load current" durch Schaltung 4 und den Strom "inductor current" durch Buck-Konverter gegen die Zeit aufgetragen. Der Buck-Konverter stellt dabei nur ein exemplarisches Beispiel für einen hochfrequent getakteten Wandler dar, alternativ kann beispielsweise auch ein isolierten Sperrwandler, Boost-Konverter (Hochsetzsteller) oder einen resonanten Halbbrücken-Konverter (vorzugsweise isoliert, beispielsweise einen LLC Konverter) zum Speisen des LED-Moduls 1 angewendet werden.The change in the power consumption of the LED module 1 can be determined by the LED converter 10, for example, by direct current measurement of the current through the circuit 4. Alternatively, the LED converter can take 10 measurements on a buck converter as in Figure 7 perform shown, wherein the buck converter is preferably part of the LED converter 10. So shows for example Figure 8 how the current through the circuit 4 and the current at the Buck converter, which is measured via a shunt, correlates. Figure 8 shows the current "load current" through circuit 4 and the current "inductor current" through Buck converter plotted against time. The buck converter is only an exemplary example of a high-frequency clocked converter; alternatively, an isolated flyback converter, boost converter (step-up converter) or a resonant half-bridge converter (preferably isolated, for example an LLC converter) for feeding the LED module 1.

Der LED-Konverter kann wie in Figur 7 gezeigt einen Buck-Konverter aufweisen. Der Buck-Konverter kann als Konstantstromquelle betrieben werden, also auf einen konstanten Ausgangsstrom regeln. In diesem Fall kann beispielsweise die Ausgangsspannung des Buck-Konverters, also die Spannung, die am Ausgang des LED-Konverters 10 ausgegeben wird und der Spannung über dem LED-Modul 1 entspricht, erfasst und ausgewertet werden. Zusätzlich oder alternativ kann auch die Dauer der Einschaltzeit und der Ausschaltzeit der Ansteuerung des hochfrequent getakteten Schalters (Switch) des Buck-Konverters überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen.The LED converter can be used as in Figure 7 shown have a buck converter. The buck converter can be operated as a constant current source, i.e. regulate to a constant output current. In this case, for example, the output voltage of the buck converter, that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1, can be recorded and evaluated. Additionally or alternatively, the duration of the switch-on time and the switch-off time of the activation of the high-frequency clocked switch of the buck converter can be monitored and evaluated in order to detect a load change and thus read information from the LED module 1.

Der Buck-Konverter kann auch als Konstantspannungsquelle betrieben werden, also auf eine konstante Ausgangspannung regeln. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des sich einstellenden Spitzenstroms durch den hochfrequent getakteten Schalter während der Einschaltphase des hochfrequent getakteten Schalters des Buck-Konverters führen, wobei diese Änderung erfasst werden kann. Zusätzlich oder alternativ kann auch die Dauer der Einschaltzeit und des Tastverhältnisses der Ansteuerung des hochfrequent getakteten Schalters des Buck-Konverters überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen. Alternativ kann bei einem Betrieb als Konstantspannungsquelle auch die Höhe des Ausgangsstromes ausgewertet werden, um eine Laständerung zu erkennen.The buck converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage. In this case, a load change on the LED module 1 will lead to a change in the peak current that occurs through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the buck converter, and this change can be detected. Additionally or alternatively, the duration of the switch-on time and the duty cycle of the activation of the high-frequency clocked switch of the buck converter can also be monitored and evaluated in order to detect a change in load and thus read information from the LED module 1. Alternatively, when operating as a constant voltage source, the level of the output current can also be evaluated in order to detect a change in load.

Der Buck-Konverter kann mit fixem Tastverhältnis bei fixer Frequenz betrieben werden, vorzugsweise in einem nichtlückendem Strombetrieb (continuous conduction mode). Bei einem derartigen Betrieb können die Höhe des Ausgangsstromes und / oder der Ausgangsspannung ausgewertet werden, um eine Laständerung zu erkennen.The buck converter can be operated with a fixed pulse duty factor at a fixed frequency, preferably in a non-discontinuous current mode (continuous conduction mode). In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load.

Der Buck-Konverter des LED-Konverters 10 kann das LED-Modul 1 beispielsweise in einer Startphase mit einer konstanten Versorgungsspannung versorgen, vorzugsweise einer konstanten DC-Spannung. In diesem Fall wird der Buck-Konverter in der Startphase als Konstantspannungsquelle betrieben. Beispielsweise kann der LED-Konverter 10 mit im Vergleich zum Normalbetrieb verringertem Einschaltverhältnis betrieben werden, wodurch eine geringere Ausgangsspannung erreicht wird. Die Versorgungsspannung kann dabei eine erste Versorgungsspannung 5a sein, d.h. sie kann im Auslesefenster liegen, das in Figur 2 gezeigt ist. Der Buck-Konverter kann in einer Startphase auch das LED-Modul 1 mit einem geregelten Strom versorgen, dann wird der Buck-Konverter vorzugsweise als Konstantstromquelle betrieben.The buck converter of the LED converter 10 can supply the LED module 1 with a constant supply voltage, preferably a constant DC voltage, in a starting phase, for example. In this case, the buck converter is operated as a constant voltage source in the start phase. For example, the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved. The supply voltage can be a first supply voltage 5a, ie it can be in the readout window shown in FIG Figure 2 is shown. In a starting phase, the buck converter can also supply the LED module 1 with a regulated current, then the buck converter is preferably operated as a constant current source.

Figur 8 zeigt unten eine vergrößerte Ansicht dieser Auftragung. Je größer die Last der Schaltung 4 ist, desto größer wird ein Tastverhältnis oder ein Peak-Strom am Messwiderstand (Shunt). Abhängig von einem Steuerprinzip des LED-Moduls 1 durch den LED-Konverter 10 kann auch ein Peak-Strom an dem Shunt des Buck-Konverters oder auch eine Änderung des Tastverhältnisses am Buck-Konverter gemessen werden. Die Änderung der Last der Schaltung 4 bzw. der Leistungsaufnahme des LED-Moduls 1 kann direkt an dem Shunt am Niederpotentialschalter des Buck-Konverters erfasst werden. Entweder durch eine periodische Änderung des Tastverhältnisses oder eine periodische Änderung des Peak-Stroms, der mit einer periodischen Änderung der Leistungsaufnahme des LED-Moduls 1 korreliert. Figure 8 shows an enlarged view of this plot below. The greater the load on the circuit 4, the greater a pulse duty factor or a peak current at the measuring resistor (shunt). Depending on a control principle of the LED module 1 by the LED converter 10, a peak current can also be measured at the shunt of the buck converter or a change in the duty cycle at the buck converter. The change in the load of the circuit 4 or the power consumption of the LED module 1 can be detected directly on the shunt on the low-potential switch of the buck converter. Either through a periodic change in the duty cycle or a periodic change in the Peak current, which correlates with a periodic change in the power consumption of the LED module 1.

Wie bereits erwähnt kann der LED-Konverter 10 beispielsweise einen isolierten Wandler mit einem Transformator zur hochfrequenten Energieübertragung (isoliert, vorzugsweise ein isolierter Sperrwandler) zur Versorgung des LED-Moduls 1 aufweisen. Wenn der LED-Konverter 10 isoliert ausgeführt ist (beispielsweise als isolierter Sperrwandler), also einen Transformator aufweist, kann die Erfassung der Laständerung durch den LED-Konverter 10 auch auf der Primärseite des LED-Konverters 10 erfolgen.As already mentioned, the LED converter 10 can for example have an isolated converter with a transformer for high-frequency energy transmission (isolated, preferably an isolated flyback converter) for supplying the LED module 1. If the LED converter 10 is designed to be isolated (for example as an isolated flyback converter), that is to say has a transformer, the load change can also be detected by the LED converter 10 on the primary side of the LED converter 10.

Beispielsweise kann bei Anwendung eines isolierten Sperrwandlers der Strom auf der Primärseite des LED-Konverters 10, welcher durch die Primärseite des Transformators fließt, erfasst werden. Dabei kann beispielsweise der Strom durch den Taktschalter, welcher in Serie zu der Primärwicklung des Transformators angeordnet ist, oder aber der Strom durch die Primärwicklung des Transformators vorzugsweise mittels eines in Serie dazu geschalteten Shunts (Strommeßwiderstandes) erfasst werden. Beispielsweise kann anhand des Peak-Stromes an dem Shunt die anliegende Last oder auch die Laständerung des LED-Moduls 1 und somit beispielsweise eine Änderung des Tastverhältnisses an der Primärseite des LED-Konverters 10 gemessen werden. Beispielsweise kann auch die Änderung des primärseitigen Stromes über die Zeit erfasst werden. Beispielsweise kann eine Erfassung der von der Primärseite übertragenen Leistung anhand der Messung des primärseitigen Stromes sowie einer Messung oder zumindest der Kenntnis der den Konverter speisenden Spannung erfolgen. Es wäre beispielsweise möglich, dass dem Konverter eine aktive Leistungsfaktorkorrekturschaltung wie beispielsweise eine Hochsetzstellerschaltung vorgeschaltet ist, die die Eingangsspannung für den hochfrequent getakteten, isolierten Wandler wie beispielsweise den isolierten Sperrwandlers bereitstellt und auf einen vorgegebenen Wert regelt. Dieser vorgegebene Wert für die von der aktiven Leistungsfaktorkorrekturschaltung geregelte Eingangsspannung für den hochfrequent getakteten Wandler ist aufgrund der Vorgabe (beispielsweise über einen Spannungsteiler) bekannt und kann somit bei der Erfassung der von der Primärseite übertragenen Leistung berücksichtigt werden.For example, when using an isolated flyback converter, the current on the primary side of the LED converter 10, which flows through the primary side of the transformer, can be detected. For example, the current through the clock switch, which is arranged in series with the primary winding of the transformer, or the current through the primary winding of the transformer, preferably by means of a shunt connected in series (current measuring resistor) can be detected. For example, the applied load or the load change of the LED module 1 and thus, for example, a change in the duty cycle on the primary side of the LED converter 10 can be measured on the basis of the peak current at the shunt. For example, the change in the primary-side current can also be recorded over time. For example, the power transmitted from the primary side can be detected using the measurement of the primary-side current and a measurement or at least knowledge of the voltage feeding the converter. For example, it would be possible for an active power factor correction circuit, such as a step-up converter circuit, to be connected upstream of the converter, which would supply the input voltage for the high-frequency clocked, isolated converter such as the isolated flyback converter and regulates it to a specified value. This predetermined value for the input voltage regulated by the active power factor correction circuit for the high-frequency clocked converter is known due to the specification (for example via a voltage divider) and can therefore be taken into account when detecting the power transmitted from the primary side.

Der LED-Konverter kann wie bereits erwähnt einen isolierten Sperrwandler (Flyback-Konverter) aufweisen. Der isolierte Sperrwandler kann als Konstantstromquelle betrieben werden, also auf einen konstanten Ausgangsstrom regeln. In diesem Fall kann beispielsweise die Ausgangsspannung des isolierten Sperrwandler, also die Spannung, die am Ausgang des LED-Konverters 10 ausgegeben wird und der Spannung über dem LED-Modul 1 entspricht, erfasst und ausgewertet werden. Diese Ausgangsspannung kann direkt oder auch indirekt, beispielsweise mittels einer Messung der Spannung an einer primärseitigen Wicklung des Transformators des isolierten Sperrwandlers, erfasst werden. Zusätzlich oder alternativ kann auch die Dauer der der Ausschaltzeit der Ansteuerung des hochfrequent getakteten Schalters des isolierten Sperrwandlers überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen.As already mentioned, the LED converter can have an isolated flyback converter. The isolated flyback converter can be operated as a constant current source, i.e. regulate to a constant output current. In this case, for example, the output voltage of the isolated flyback converter, that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1, can be recorded and evaluated. This output voltage can be detected directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the isolated flyback converter. Additionally or alternatively, the duration of the switch-off time of the control of the high-frequency clocked switch of the isolated flyback converter can be monitored and evaluated in order to recognize a change in load and thus to read information from the LED module 1.

Der isolierte Sperrwandler kann auch als Konstantspannungsquelle betrieben werden, also auf eine konstante Ausgangspannung regeln. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des Ausgangsstromes führen, wobei diese Änderung erfasst werden kann. Diese Änderung des Ausgangsstromes kann beispielsweise an einer Änderung des sich einstellenden Spitzenstroms durch den hochfrequent getakteten Schalters während der Einschaltphase des hochfrequent getakteten Schalters des isolierten Speerwandlers führen. Die Überwachung des primärseitigen Stromes durch den hochfrequent getakteten Schalters kann somit zur Überwachung einer Laständerung genutzt werden, um somit eine Information von dem LED-Modul 1 auszulesen.The isolated flyback converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage. In this case, a change in load on the LED module 1 will lead to a change in the output current, and this change can be detected. This change in the output current can, for example, be due to a change in the peak current that occurs lead through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the isolated speech converter. The monitoring of the primary-side current by the high-frequency clocked switch can thus be used to monitor a change in load in order to read out information from the LED module 1.

Der isolierte Sperrwandler kann auch mit fixem Tastverhältnis bei fixer Frequenz betrieben werden. Bei einem derartigen Betrieb können die Höhe des Ausgangsstromes und / oder der Ausgangsspannung ausgewertet werden, um eine Laständerung zu erkennen. Wenn nur die LED-Strecke des LED-Moduls aktiv ist, dann wird die Ausgangsspannung den Wert der Durchflußspannung der LED-Strecke annehmen. Wenn eine Laständerung durch die Schaltung 4 erfolgt, dann wird die Ausgangsspannung abfallen. Diese Änderung kann als Laständerung erfasst werden.The isolated flyback converter can also be operated with a fixed pulse duty factor at a fixed frequency. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load. If only the LED path of the LED module is active, the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through circuit 4, then the output voltage will drop. This change can be recorded as a load change.

Der LED-Konverter kann wie bereits erwähnt einen isolierten resonanten Halbbrückenwandler wie beispielsweise einen sogenannten LLC-Konverter aufweisen. Der LLC-Konverter kann als Konstantstromquelle betrieben werden, also auf einen konstanten Ausgangsstrom regeln. In diesem Fall kann beispielsweise die Ausgangsspannung des isolierten Sperrwandler, also die Spannung, die am Ausgang des LED-Konverters 10 ausgegeben wird und der Spannung über dem LED-Modul 1 entspricht, erfasst und ausgewertet werden. Diese Ausgangsspannung kann direkt oder auch indirekt, beispielsweise mittels einer Messung der Spannung an einer primärseitigen Wicklung des Transformators des LLC-Konverters, erfasst werden. Wenn nur die LED-Strecke des LED-Moduls aktiv ist, dann wird die Ausgangsspannung den Wert der Durchflußspannung der LED-Strecke annehmen. Wenn eine Laständerung durch die Schaltung 4 erfolgt, dann wird die Ausgangsspannung abfallen. Diese Änderung kann als Laständerung erfasst werden. Zusätzlich oder alternativ kann auch die sich aufgrund der Regelschleife einstellende Taktfrequenz des LLC-Konverters überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen. Wenn die Regelschleife des LLC-Konverters so ausgelegt ist, dass bei der Laständerung durch die Schaltung 4 ein Frequenzanschlag der Ansteuerung der Halbbrücke des LLC-Konverters erreicht wird, kann auch dies ausgewertet werden, um die Information auszulesen.As already mentioned, the LED converter can have an isolated resonant half-bridge converter such as a so-called LLC converter. The LLC converter can be operated as a constant current source, i.e. regulate to a constant output current. In this case, for example, the output voltage of the isolated flyback converter, that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1, can be recorded and evaluated. This output voltage can be detected directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the LLC converter. If only the LED path of the LED module is active, the output voltage will take on the value of the forward voltage of the LED path. If a load change occurs through the circuit 4, then the Output voltage drop. This change can be recorded as a load change. Additionally or alternatively, the clock frequency of the LLC converter that is set on the basis of the control loop can also be monitored and evaluated in order to detect a change in load and thus to read out information from the LED module 1. If the control loop of the LLC converter is designed in such a way that when the load changes by the circuit 4, a frequency limit of the control of the half bridge of the LLC converter is reached, this can also be evaluated in order to read out the information.

Der isolierte resonante Halbbrückenwandler wie beispielsweise LLC-Konverter kann auch als Konstantspannungsquelle betrieben werden, indem er bei fixer Frequenz betrieben wird, wobei die Frequenz so gewählt ist, dass die sich ergebende Spannung am Ausgang unterhalb des Wertes der Durchflußspannung der LED-Strecke befindet. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des Ausgangsstromes führen, wobei diese Änderung erfasst werden kann. Diese Änderung des Ausgangsstromes kann beispielsweise an der Sekundärseite des LLC-Konverters erfolgen und mittels eines Koppelelements wie beispielsweise eines Stromtransformators auf die Primärseite übertragen werden. Die Überwachung des Ausgangsstromes kann somit zur Überwachung einer Laständerung genutzt werden, um somit eine Information von dem LED-Modul 1 auszulesen.The isolated resonant half-bridge converter such as LLC converter can also be operated as a constant voltage source by operating it at a fixed frequency, the frequency being selected so that the resulting voltage at the output is below the value of the forward voltage of the LED path. In this case, a change in load on the LED module 1 will lead to a change in the output current, and this change can be detected. This change in the output current can take place, for example, on the secondary side of the LLC converter and be transmitted to the primary side by means of a coupling element such as a current transformer. The monitoring of the output current can thus be used to monitor a change in load in order to read out information from the LED module 1.

Fig. 13 zeigt als ein Ausführungsbeispiel für den LED-Konverter 10 einen isolierten resonanten Halbbrückenwandler B, der hier beispielhaft als LLC-Konverter dargestellt ist. Fig. 13 shows, as an exemplary embodiment for the LED converter 10, an isolated resonant half-bridge converter B, which is shown here as an LLC converter.

In Fig. 13 ist gezeigt, dass die Busspannung Vbus einem Wechselrichter 20 zugeführt ist, der beispielsweise als Halbbrücken-Wechselrichter mit zwei Schaltern S1, S2 ausgebildet sein kann. Die Busspannung Vbus kann beispielsweise die Ausgangsspannung einer hier nicht dargestellten PFC-Schaltung sein. Die Ansteuersignale für die Taktung der Schalter S1, S2 kann in bekannter Weise von der Schaltersteuereinheit erzeugt werden. Der potentialhöhere Schalter S1 wird vom Signal ctr_HS gesteuert, der potentialniedrigere Schalter S2 vom Signal ctrl_LS.In Fig. 13 it is shown that the bus voltage Vbus is fed to an inverter 20 which, for example, can be designed as a half-bridge inverter with two switches S1, S2. The bus voltage Vbus can be, for example, the output voltage of a PFC circuit (not shown here). The control signals for clocking the switches S1, S2 can be generated in a known manner by the switch control unit. The higher-potential switch S1 is controlled by the ctr_HS signal, the lower-potential switch S2 by the ctrl_LS signal.

An den Mittenpunkt 21 des Wechselrichters 10 schließt sich im dargestellten Beispiel ein Resonanzkreis, hier als Serienresonanzkreis ausgebildet, nämlich ein LLC-Resonanzkreis 22, an. Im dargestellten Beispiel weist dieser Resonanzkreis 22 eine erste Induktivität Lsigma, eine Primärwicklung des Transformators T und einen Kondensator Cres auf.In the example shown, a resonance circuit, designed here as a series resonance circuit, namely an LLC resonance circuit 22, is connected to the center point 21 of the inverter 10. In the example shown, this resonant circuit 22 has a first inductance Lsigma, a primary winding of the transformer T and a capacitor Cres.

Die Primärwicklung des Transformators T weist dabei eine parallele Induktivität Lm auf, die den Magnetisierungsstrom führt.The primary winding of the transformer T has a parallel inductance Lm, which carries the magnetizing current.

Auf den Transformator T folgt eine Last Load, die mit einer im Vergleich zur Busspannung Vbus heruntergesetzten Versorgungsspannung gespeist werden kann. Nach den Ausführungsbeispielen bspw. der Fig. 1 umfasst die Last das LED-Modul 3. Am Ausgang des Transformators T können zusätzlich Elemente (nicht gezeigt) zur Glättung und Stabilisierung der Ausgangsspannung vorhanden sein.The transformer T is followed by a load load, which can be fed with a supply voltage that is lower than that of the bus voltage Vbus. According to the exemplary embodiments, for example Fig. 1 the load includes the LED module 3. At the output of the transformer T additional elements (not shown) for smoothing and stabilizing the output voltage can be present.

In Fig. 13 ist der Resonanzkreis 22 als Serienresonanzkreis ausgebildet. Alternativ kann die Erfindung genauso auch Anwendung auf andere Resonanzschaltungen wie beispielsweise Parallelresonanzschaltungen finden. Der erfindungsgemäße Resonanzkreis kann entsprechend als Parallelresonanzkreis ausgebildet sein, bei welchem der Resonanz-Kondensator Cres in Parallel zur Last und nämlich in Parallel zur Primärwicklung des Transformators T geschaltet ist.In Fig. 13 the resonance circuit 22 is designed as a series resonance circuit. Alternatively, the invention can also be applied to other resonance circuits such as, for example, parallel resonance circuits Find. The resonance circuit according to the invention can accordingly be designed as a parallel resonance circuit in which the resonance capacitor Cres is connected in parallel to the load, namely in parallel to the primary winding of the transformer T.

Die Kombination des Wechselrichters 20 mit dem Resonanzkreis 22 bildet einen durch den Transformator T isolierenden DC/DC-Wandler als Energie übertragenden LED-Konverter.The combination of the inverter 20 with the resonance circuit 22 forms a DC / DC converter, which is isolated by the transformer T, as an LED converter which transmits energy.

Die Schalter S1, S2 des Wechselrichters 20 werden vorzugsweise in der Nähe der Resonanzfrequenz des Resonanzkreises oder in der Nähe einer harmonischen einer Resonanz des Ausgangskreises gearbeitet. Die Ausgangsspannung oder der Ausgangsstrom des resonanten Konverters bzw. der galvanischen Entkopplung F ist eine Funktion der Frequenz der Ansteuerung der Schalter S1, S2 des Wechselrichters 20, hier als Halbbrücken-Wechselrichter.The switches S1, S2 of the inverter 20 are preferably operated in the vicinity of the resonance frequency of the resonance circuit or in the vicinity of a harmonic of a resonance of the output circuit. The output voltage or the output current of the resonant converter or the galvanic decoupling F is a function of the frequency of the control of the switches S1, S2 of the inverter 20, here as a half-bridge inverter.

Der LED-Konverter 10 wird beispielsweise in einer Startphase in einem bestimmten Modus betrieben, beispielsweise in einem fix-frequenten Modus oder aber auch als Stromquelle oder Spannungsquelle betrieben werden, um eine Laständerung zu erkennen und somit eine Information der Schaltung 4 auszulesen, die beispielsweise gemäß zumindest einem Protokoll übertragen wird.The LED converter 10 is operated, for example, in a start phase in a certain mode, for example in a fixed-frequency mode or also operated as a current source or voltage source, in order to recognize a change in load and thus to read out information from the circuit 4 which, for example, according to at least one protocol is transmitted.

Die Schaltung 4 kann auch eine digitale Steuereinheit IC1 aufweisen, die dazu ausgelegt ist, als vorzugsweise modulierte Laständerung verschiedene Arten von modulierten Signalen auszugeben, beispielsweise auch eine bestimmte Pulsfolge als digitale Kodierung (Folge von Nullen und Einsen). Der LED-Konverter 10 kann dazu ausgelegt sein, durch eine Änderung der Versorgungsspannung verschiedene Arten von Informationen, also verschiedene Betriebsparameter und / oder Wartungsparameter von dem LED-Modul 1 abzufragen und auch selektiv eines von mehreren LED-Modulen abzufragen. Die Änderung der Versorgungsspannung kann beispielsweise mittels einer niederfrequenten (im Bereich von wenigen Hertz bis zu einem Kilohertz) oder hochfrequenten Modulation (im mehrerer zehn oder hundert Kilohertz oder bis zum Megahertzbereich) erfolgen.The circuit 4 can also have a digital control unit IC1 which is designed to output various types of modulated signals as a preferably modulated load change, for example also a specific pulse sequence as digital coding (sequence of zeros and ones). The LED converter 10 can be designed to transmit different types of information, that is to say different types, by changing the supply voltage Query operating parameters and / or maintenance parameters from the LED module 1 and also selectively query one of several LED modules. The supply voltage can be changed, for example, by means of a low-frequency (in the range from a few Hertz to one kilohertz) or high-frequency modulation (in the tens or hundreds of kilohertz or up to the megahertz range).

Die digitale Steuereinheit IC1 der Schaltung 4 kann als integrierte Schaltung ausgeführt sein. Beispielsweise kann die integrierte Schaltung als integrierter Steuerschaltkreis mit nur drei oder vier Anschlüssen ausgeführt sein.The digital control unit IC1 of the circuit 4 can be designed as an integrated circuit. For example, the integrated circuit can be designed as an integrated control circuit with only three or four connections.

In einer Ausführungsform mit drei Anschlüssen hätte die digitale Steuereinheit IC1 einen ersten Anschluß Vp, der mit der Versorgungsspannung des LED-Moduls 1 verbunden ist (Fig. 9). Über diesen ersten Anschluß Vp kann die digitale Steuereinheit IC1 mittels des mit diesem Anschluß Vp verbundenen ersten Analog-Digital-Wandlers A/D1 die Versorgungsspannung des LED-Moduls 1 erfassen. Ein zweiter Anschluß Vn ist mit der Masse des LED-Moduls 1 verbunden und ermöglicht eine interne Masseverbindung innerhalb der digitalern Steuereinheit IC1. Ein dritter Anschluß Vdd kann mit einem Kondensator verbunden sein, der mit seinem anderen Anschluß ebenfalls mit Masse des LED-Moduls 1 verbunden ist. Der zweite Anschluß Vp kann intern über eine Diode und eine Schalter Svdd mit dem ersten Anschluß Vp verbunden sein. Dieser Schalter Svdd kann abhängig von einem Vergleicht der aktuell an dem Anschluß Vdd anliegenden Spannung mit einem Referenzwert Ref mittels eines Komperators Compl verglichen werden. Abhängig von dem Vergleichsergebnis kann der Schalter Svdd durch die Treibereinheit VddCtrl eingeschaltet werden, wenn der Istwert der Spannung an dem an dem Anschluß Vdd kleiner als der Referenzwert Ref ist. Dann fließt über den Schalter Svdd ein Strom in den Kondensator, der mit dem dritten Anschluß Vdd verbunden ist. Die an dem dritten Anschluß Vdd anliegende Spannung kann als interne Spannungsversorgung für die digitale Steuereinheit IC1 verwendet werden. Der Anschluß Vdd dient in diesem Fall zur Stabilisierung der internen Spannungsversorgung der digitale Steuereinheit IC1.In an embodiment with three connections, the digital control unit IC1 would have a first connection Vp which is connected to the supply voltage of the LED module 1 ( Fig. 9 ). The digital control unit IC1 can detect the supply voltage of the LED module 1 via this first connection Vp by means of the first analog-digital converter A / D1 connected to this connection Vp. A second connection Vn is connected to the ground of the LED module 1 and enables an internal ground connection within the digital control unit IC1. A third connection Vdd can be connected to a capacitor, the other connection of which is also connected to ground of the LED module 1. The second terminal Vp can be internally connected to the first terminal Vp via a diode and a switch Svdd. This switch Svdd can be compared with a reference value Ref by means of a comparator Compl as a function of a comparison of the voltage currently present at the connection Vdd. Depending on the comparison result, the switch Svdd can be switched on by the driver unit VddCtrl when the actual value of the voltage at the at the terminal Vdd is smaller than the reference value Ref. A current then flows through the switch Svdd into the capacitor, which is connected to the third terminal Vdd. The voltage present at the third terminal Vdd can be used as an internal voltage supply for the digital control unit IC1. In this case, the connection Vdd serves to stabilize the internal voltage supply of the digital control unit IC1.

Die digitale Steuereinheit lC1 kann gemäß diesem Beispiel vorab, beispielsweise während der Fertigung oder Bestückung des LED-Moduls 1, programmiert werden. Diese Programmierung der digitale Steuereinheit IC1 kann beispielsweise einen Betriebsparameter des LED-Moduls 1 wie beispielsweise den Sollstrom oder die Sollspannung vorgeben.According to this example, the digital control unit IC1 can be programmed in advance, for example during manufacture or assembly of the LED module 1. This programming of the digital control unit IC1 can, for example, specify an operating parameter of the LED module 1 such as the target current or the target voltage.

In die digitale Steuereinheit IC1 ist ein Schaltelement S6 integriert, welches in der Funktion dem Schalter 6 des Beispiels der Fig. 1 entspricht und dazu ausgelegt ist, vorzugsweise als modulierte Laständerung zumindest ein moduliertes Signal oder auch verschiedene Arten von modulierten Signalen auszugeben. Dabei wird die Spannung an dem ersten Anschluß Vp intern durch Schließen des integrierten Schaltelements S6 mit dem zweiten Anschluß Vn direkt oder indirekt, beispielsweise über einen integrierten Widerstand R6, verbunden und somit die Spannung an dem Anschluß Vp auf ein niedrigeres Potential zieht. Beispielsweise kann das modulierte Signal eine bestimmte Pulsfolge sein und als digitale Kodierung (Folge von Nullen und Einsen) ausgegeben werden. Mittels des Schaltelements S6 kann die digitale Steuereinheit IC1 somit beispielsweise in einer Hochlaufphase (also einer zeitlich begrenzten Startphase des LED-Konverters und LED-Moduls 1) eine Information übermitteln, vorzugsweise gemäß dem wenigstens einen Protokoll, das beispielsweise in dem LED-Modul 1 und im LED-Konverter 10 abgelegt ist. Der Strom durch das Schaltelement S6 kann mittels des Widerstandes R6 überwacht werden, wobei das Schaltelement S6 geöffnet werden kann, wenn der Strom durch das Schaltelement S6 und somit den Widerstand R6 zu groß wird. Die Erfassung der über dem Widerstand R6 abfallenden Spannung und somit des dadurch fließenden Stromes kann mittels eines zweiten Analog-Digital-Wandlers A/D2 erfolgen. Das Auslesen und Auswerten der beiden Analog-Digital-Wandler sowie die Ansteuerung des Schaltelements S6 kann durch einen in die digitale Steuereinheit IC1 integrierten Steuerblock "Config and Com" erfolgen. Auch alle weiteren Operationen wie Signalauswertungen und Ausgaben können durch diesen Steuerblock ausgeführt werden.In the digital control unit IC1, a switching element S6 is integrated, which in the function of the switch 6 of the example of Fig. 1 and is designed to output at least one modulated signal or different types of modulated signals, preferably as a modulated load change. The voltage at the first terminal Vp is connected internally by closing the integrated switching element S6 to the second terminal Vn directly or indirectly, for example via an integrated resistor R6, and thus pulls the voltage at the terminal Vp to a lower potential. For example, the modulated signal can be a specific pulse sequence and output as digital coding (sequence of zeros and ones). By means of the switching element S6, the digital control unit IC1 can thus transmit information, for example in a run-up phase (i.e. a time-limited start phase of the LED converter and LED module 1), preferably in accordance with the at least one protocol, which is for example in the LED module 1 and is stored in the LED converter 10. The current through the switching element S6 can be monitored by means of the resistor R6, the switching element S6 being able to be opened if the current through the switching element S6 and thus the resistor R6 becomes too great. The voltage drop across resistor R6, and thus the current flowing through it, can be detected by means of a second analog-digital converter A / D2. The reading and evaluation of the two analog-digital converters as well as the control of the switching element S6 can be done by a "Config and Com" control block integrated in the digital control unit IC1. All other operations such as signal evaluations and outputs can also be carried out using this control block.

In die digitale Steuereinheit IC1 kann beispielsweise auch eine Sensorik zur Erfassung der Temperatur integriert sein, wodurch die digitale Steuereinheit IC1 als Wartungsparameter eine Übertemperatur oder eine Betriebstemperatur als Information gemäß dem wenigstens einem Protokoll an den LED-Konverter übermitteln kann. Als Wartungsparameter kann die digitale Steuereinheit IC1 beispielsweise auch einen Zähler für die Betriebszeit aufweisen und die digitale Steuereinheit IC1 kann dazu ausgelegt sein, einen Alterungsparameter des LED-Moduls bzw. der LED-Strecke oder eine Betriebszeitdauer des LED-Moduls als Wartungsparameter auszugeben. Die digitale Steuereinheit IC1 kann auch eine Überspannung an dem LED-Modul 1 erfassen und eine entsprechende Fehlermeldung als Wartungsparameter ausgeben. Optional oder alternativ kann durch Schließen des Schaltelements S6 die LED-Strecke des LED-Moduls 1 überbrückt und somit vor der Überspannung geschützt werden.For example, a sensor system for detecting the temperature can also be integrated into the digital control unit IC1, whereby the digital control unit IC1 can transmit an excess temperature or an operating temperature as a maintenance parameter to the LED converter as information according to the at least one protocol. As a maintenance parameter, the digital control unit IC1 can for example also have a counter for the operating time and the digital control unit IC1 can be designed to output an aging parameter of the LED module or the LED path or an operating time of the LED module as a maintenance parameter. The digital control unit IC1 can also detect an overvoltage on the LED module 1 and output a corresponding error message as a maintenance parameter. Optionally or alternatively, the LED path of the LED module 1 can be bridged by closing the switching element S6 and thus protected against the overvoltage.

Die digitale Steuereinheit IC1 kann beispielsweise auch mit einem oder mehreren Sensoren verbunden sein und / oder es können einer oder mehrere Sensoren in die digitale Steuereinheit IC1 integriert sein. Beispielsweise kann eine derartige Sensorik durch einen Sensor wie einen Lichtsensor, Temperatursensor, Farbsensor und / oder Anwesenheitssensor gebildet werden. Die digitale Steuereinheit IC1 so ausgelegt sein, dass sie den Sensor auch versorgen und auslesen kann, wenn der LED-Konverter 10 eine verringerte Versorgungsspannung an das LED-Modul 1 abgibt und die LED-Strecke nicht aktiv ist. Der LED-Konverter 10 kann in einem Betriebsmodus, wenn die LED-Strecke nicht aktiv ist, den Sensor versorgen, indem der LED-Konverter 10 eine verringerte Versorgungsspannung an das LED-Modul 1 abgibt.The digital control unit IC1 can, for example, also be connected to one or more sensors and / or one or more sensors several sensors can be integrated into the digital control unit IC1. For example, such a sensor system can be formed by a sensor such as a light sensor, temperature sensor, color sensor and / or presence sensor. The digital control unit IC1 can be designed so that it can also supply and read the sensor when the LED converter 10 outputs a reduced supply voltage to the LED module 1 and the LED path is not active. The LED converter 10 can supply the sensor in an operating mode when the LED path is not active, in that the LED converter 10 outputs a reduced supply voltage to the LED module 1.

Die Schaltung 4, insbesondere die digitale Steuereinheit IC1, kann dazu ausgelegt sein, dass wenn die Versorgungsspannung in einem Auslesefenster liegt (d.h. Versorgungsspannung ungleich Null aber unterhalb der Durchlassspannung der LED-Strecke), dass sie in diesem eine stromveränderliche Last darstellt, die eine Änderung der Leistungsaufnahme des LED-Moduls 1 gemäß wenigstens einem vorgegebenen Protokoll bewirkt. Zusätzlich oder alternativ können auch direkt Informationen von einem Sensor durch die digitale Steuereinheit IC1 gemäß wenigstens einem vorgegebenen Protokoll an den LED-Konverter 10 übertragen werden. So kann beispielsweise eine erkannte Anwesenheit oder ein Abfall der Umgebungshelligkeit von der digitalen Steuereinheit IC1 mit Hilfe eines Sensors erkannt werden und entsprechend mit Hilfe einer Übertragung durch die Schaltung 4 erzeugte Laständerung an den LED-Konverter 10 übertragen, so dass dieser entsprechend reagieren kann und beispielsweise die Versorgungsspannung anhebt, so dass eine zweite Versorgungsspannung ungleich Null an dem LED-Modul anliegt, bei der eine angeschlossene LED-Strecke leitend ist.The circuit 4, in particular the digital control unit IC1, can be designed so that when the supply voltage is in a readout window (ie supply voltage not equal to zero but below the forward voltage of the LED path), that it represents a current-variable load in it that changes the power consumption of the LED module 1 caused in accordance with at least one predetermined protocol. Additionally or alternatively, information from a sensor can also be transmitted directly to the LED converter 10 by the digital control unit IC1 in accordance with at least one predetermined protocol. For example, a detected presence or a drop in ambient brightness can be detected by the digital control unit IC1 with the aid of a sensor and accordingly transmitted to the LED converter 10 with the aid of a transmission by the circuit 4, so that the latter can react accordingly and for example the supply voltage increases so that a second non-zero supply voltage is applied to the LED module, in which a connected LED path is conductive.

So kann ein System aufgebaut werden, aufweisend einen LED-Konverter 10 und ein davon versorgtes LED-Modul 1 mit einer Schaltung 4 aufweisend eine digitalen Steuereinheit IC1 und mit zumindest einem Sensor, wobei die digitalen Steuereinheit IC1 Informationen von dem Sensor an den LED-Konverter 10 durch eine Laständerung übermitteln kann. Beispielsweise kann in einem sog. Stand-by oder Bereitschaftsmodus die angeschlossene LED-Strecke deaktivieren, indem die von dem LED-Konverter 10 ausgegebene Versorgungsspannung auf einen niedrigen Wert, also unterhalb einer zweite Versorgungsspannung ungleich Null, bei der eine angeschlossene LED-Strecke leitend ist, abgesenkt werden. Dabei wäre es auch möglich, dass der LED-Konverter 10 nur zeitweise wiederholt nacheinander die erste Versorgungsspannung ungleich Null anliegt, bei der eine angeschlossene LED-Strecke nicht leitend ist. In diesem Zeitfenster der zeitweise angelegten ersten Versorgungsspannung kann die digitale Steuereinheit IC1 aktiviert werden und den zumindest einen Sensor auslesen.A system can thus be set up comprising an LED converter 10 and an LED module 1 supplied by it with a circuit 4 comprising a digital control unit IC1 and with at least one sensor, the digital control unit IC1 sending information from the sensor to the LED converter 10 can transmit through a load change. For example, in a so-called stand-by or standby mode, the connected LED path can be deactivated by reducing the supply voltage output by the LED converter 10 to a low value, i.e. below a second non-zero supply voltage at which a connected LED path is conductive , be lowered. In this case, it would also be possible for the LED converter 10 to have the first non-zero supply voltage applied repeatedly one after the other, at which a connected LED path is not conductive. In this time window of the temporarily applied first supply voltage, the digital control unit IC1 can be activated and read out the at least one sensor.

Abhängig davon, ob und welche Information von dem Sensor erfasst wurde, kann dann die digitalen Steuereinheit IC1 eine Laständerung bewirken. Diese Laständerung kann von dem LED-Konverter 10 erfasst und ausgewertet werden. Auf diese Weise kann von dem LED-Modul 1 mittels der digitalen Steuereinheit IC1 eine Information von einem Sensor gemäß wenigstens einem vorgegebenen Protokoll an den LED-Konverter 10 übertragen werden. Da der LED-Konverter 10 wie bereits erläutert dazu ausgelegt sein kann, bei Ausgeben einer ersten Versorgungsspannung ungleich Null eine Laständerung als Informationsübertragung von dem LED-Modul 1 zu erkennen, kann auf diese Weise auf sehr einfache Weise ein komplexes Beleuchtungssystem mit LED-Konverter und LED-Modul unter Einbindung von Sensoren aufgebaut werden.Depending on whether and which information was detected by the sensor, the digital control unit IC1 can then bring about a load change. This change in load can be detected and evaluated by the LED converter 10. In this way, information from a sensor can be transmitted from the LED module 1 to the LED converter 10 by means of the digital control unit IC1 in accordance with at least one predetermined protocol. Since the LED converter 10, as already explained, can be designed to detect a load change as information transmission from the LED module 1 when a first supply voltage other than zero is output, a complex lighting system with LED converter and LED module can be built with the integration of sensors.

Erfindungsgemäß erfolgt dabei die Übertragung der Information von dem LED-Modul 1 an den LED-Konverter 10 mittels gemäß wenigstens einem vorgegebenen Protokoll. Der LED-Konverter 10 kann dazu ausgelegt sein, zumindest eine Information eines Sensors von der digitalen Steuereinheit IC1 als wenigstens einen bestimmten Betriebs- und/oder Wartungsparameter zu empfangen. Die Information eines Sensors kann dabei zur Einstellung oder Regelung des Betriebs des LED-Moduls 1 verwendet werden. Die Information eines Sensors kann auch in einem zugeordneten Speicher abgelegt werden, optisch und/oder akustisch angezeigt werden, und/oder über eine drahtlose oder drahtgebundene Schnittstelle, ggf. auf externe Abfrage hin, von dem LED-Konverter 10 ausgesendet werden.According to the invention, the information is transmitted from the LED module 1 to the LED converter 10 by means of at least one predetermined protocol. The LED converter 10 can be designed to receive at least one piece of information from a sensor from the digital control unit IC1 as at least one specific operating and / or maintenance parameter. The information from a sensor can be used to set or control the operation of the LED module 1. The information from a sensor can also be stored in an assigned memory, displayed optically and / or acoustically, and / or transmitted by the LED converter 10 via a wireless or wired interface, possibly in response to an external query.

In der Fig. 10 ist eine Ausführungsform der digitalen Steuereinheit IC1 mit vier Anschlüssen dargestellt. Die digitalen Steuereinheit IC1 weist einen vierten Anschluß Cfg auf, an diesen kann ein Konfigurationselement wie beispielsweise ein Widerstand Rcfg (Auswahlwiderstand R11) angeschlossen sein. Mit diesem vierten Anschluß Cfg kann intern eine steuerbare Stromquelle Icfg verbunden sein. Die über dem Widerstand Rcfg abfallende Spannung, die sich aufgrund des durch die steuerbare Stromquelle Icfg eingespeisten Stromes und des Widerstandswertes des Widerstandes Rcfg ergibt, kann durch den Steuerblock "Config and Com" der digitalen Steuereinheit IC1 über einen dritten Analog-Digital-Wandler A/D3 erfasst werden. Diese erfasste Spannung an dem vierten Anschluß Cfg kann einen Betriebsparameter des LED-Moduls 1 wie beispielsweise den Sollstrom oder die Sollspannung vorgeben. Optional kann auch beispielsweise ein temperaturabhängiger Widerstand zwischen dem vierten Anschluß Cfg und dem dritten Anschluß Vdd angeordnet sein. Der temperaturabhängige Widerstand kann derart ausgelegt sein, dass sich sein Widerstand bei einer Übertemperatur auf dem LED-Modul 1 stark ändert, wodurch sich auch die Spannung an dem vierten Anschluß Cfg ändert. Diese Änderung kann durch die digitale Steuereinheit IC1 erfasst werden und es kann beispielsweise als Wartungsparameter eine Übertemperatur als Information gemäß dem wenigstens einem Protokoll an den LED-Konverter übermittelt werden. Beispielsweise kann als temperaturabhängiger Widerstand ein NTC angewendet werden, der bei zu hoher Temperatur seinen Widerstand absenkt, wodurch die Spannung am vierten Anschluß Cfg ansteigt. Die steuerbare Stromquelle Icfg kann beispielsweise nur beim Start der digitalen Steuereinheit IC1 aktiv sein, um den Wert des Widertandes R11 auszulesen, während im Dauerbetrieb des LED-Moduls 1 nur die sich über den Spannungsteiler aus temperaturabhängigen Widerstand und Widerstand R11 ergebende Spannung zum Erkennen einer Übertemperatur überwacht wird.In the Fig. 10 shows an embodiment of the digital control unit IC1 with four connections. The digital control unit IC1 has a fourth connection Cfg, to which a configuration element such as a resistor Rcfg (selection resistor R11) can be connected. A controllable current source Icfg can be connected internally to this fourth connection Cfg. The voltage drop across the resistor Rcfg, which results from the current fed in by the controllable current source Icfg and the resistance value of the resistor Rcfg, can be controlled by the control block "Config and Com" of the digital control unit IC1 via a third analog-digital converter A / D3 can be detected. This detected voltage at the fourth connection Cfg can specify an operating parameter of the LED module 1, such as, for example, the target current or the target voltage. Optionally, for example, a temperature-dependent resistor can also be arranged between the fourth connection Cfg and the third connection Vdd. The temperature-dependent resistor can be designed in such a way that its resistance is on the LED module 1 in the event of excess temperature changes greatly, as a result of which the voltage at the fourth terminal Cfg also changes. This change can be detected by the digital control unit IC1 and, for example, an excess temperature can be transmitted to the LED converter as a maintenance parameter as information according to the at least one protocol. For example, an NTC can be used as a temperature-dependent resistor, which lowers its resistance when the temperature is too high, as a result of which the voltage at the fourth terminal Cfg increases. The controllable current source Icfg can, for example, only be active when the digital control unit IC1 is started in order to read out the value of the resistance R11, while in continuous operation of the LED module 1, only the voltage resulting from the voltage divider from the temperature-dependent resistance and resistance R11 is used to detect excess temperature is monitored.

Im Unterschied zu den Beispielen der Fig. 9 und 10 ist in dieser Variante der Fig. 11. der Schalter nicht als integriertes Schaltelement S6 sondern als externer Schalter 6 analog zu dem Beispiel der Fig. 1 ausgeführt. Dieser Schalter 6 wird über einen fünften Anschluß Sdrv durch die digitale Steuereinheit IC1 angesteuert. In Serie zu dem Schalter 6 ist ein Widerstand R6 angeordnet. Der Strom durch den Widerstand R6 kann anhand der über dem Widerstand R6 abfallenden Spannung mittels eines sechsten Anschluß Imon durch die digitale Steuereinheit IC1 erfasst und überwacht werden.In contrast to the examples of the Fig. 9 and 10th is in this variant the Fig. 11 . the switch not as an integrated switching element S6 but as an external switch 6 analogous to the example of FIG Fig. 1 executed. This switch 6 is controlled via a fifth connection Sdrv by the digital control unit IC1. A resistor R6 is arranged in series with the switch 6. The current through the resistor R6 can be detected and monitored by the digital control unit IC1 on the basis of the voltage drop across the resistor R6 by means of a sixth connection Imon.

Das Beispiel der Fig. 12 zeigt eine weitere Ausgestaltungsform der digitalen Steuereinheit IC1. Dieses Beispiel weist wie das Beispiel der Fig. 10 die Anschlüsse Vp, Vn und Vdd auf. Auch ist der vierte Anschluß Cfg vorhanden, an diesem ist wiederum ein Widerstand R11 (Riled) als Konfigurationselement angeschlossen. Weiterhin weist die digitale Steuereinheit IC1 zwei weitere Anschlüsse auf. An einen weiteren Anschluß Vovt ist ein Widerstand Rovt, welcher ein temperaturabhängiger Widerstand ist, angeschlossen. Mit der Überwachung des Widerstandswertes dieses Widerstandes Rovt kann eine Übertemperatur erkannt werden. Dazu kann in der digitalen Steuereinheit IC1 eine weitere steuerbare Stromquelle angeordnet sein, die einen Strom an dem weiteren Anschluß Vovt ausgibt, der in den Widerstand Rovt fließt. Abhängig vom aktuellen Widerstandswert, der anhand der erfassten Spannung an diesem Anschluß Vovt überwacht wird, kann die digitale Steuereinheit IC1 auf eine Übertemperatur auf dem LED-Modul 1 schließen. In analoger Weise kann über eine weitere steuerbare Stromquelle an dem weiteren Anschluß Vitm ein Strom in den daran angeschlossenen temperaturabhängigen Widerstand Ritm gespeist werden, und vom aktuellen Widerstandswert, der anhand der erfassten Spannung an diesem Anschluß Vitm überwacht wird, kann die digitale Steuereinheit IC1 auf die Betriebstemperatur auf dem LED-Modul 1 schließen. Abhängig vom Wert der erfassten Betriebstemperatur kann diese als Information genau so wie eine Übertemperatur als Information gemäß dem wenigstens einem Protokoll an den LED-Konverter übermittelt werden. Die Information über die Betriebstemperatur kann durch den LED-Konverter ausgewertet werden, wobei eine intelligente Rückregelung des Stromes durch das LED-Modul 1 erfolgen kann, ohne dass eine Übertemperatur erreicht werden muß.The example of Fig. 12 shows a further embodiment of the digital control unit IC1. This example, like the example of the Fig. 10 the connections Vp, Vn and Vdd. There is also the fourth connection Cfg, to which a resistor R11 (Riled) is in turn connected as a configuration element. The digital control unit IC1 also has two further connections. Another Connection Vovt is a resistor Rovt, which is a temperature-dependent resistor, connected. An excess temperature can be detected by monitoring the resistance value of this resistance Rovt. For this purpose, a further controllable current source can be arranged in the digital control unit IC1, which outputs a current at the further connection Vovt, which current flows into the resistor Rovt. Depending on the current resistance value, which is monitored on the basis of the detected voltage at this connection Vovt, the digital control unit IC1 can conclude that the LED module 1 is overheating. In an analogous manner, a current can be fed into the temperature-dependent resistor Ritm connected to it via a further controllable current source at the further connection Vitm, and the digital control unit IC1 can use the current resistance value, which is monitored on the basis of the detected voltage at this connection Vitm, to the Close the operating temperature on the LED module 1. Depending on the value of the detected operating temperature, this can be transmitted to the LED converter as information in exactly the same way as an excess temperature as information in accordance with the at least one protocol. The information about the operating temperature can be evaluated by the LED converter, with an intelligent regulation of the current through the LED module 1 without an excess temperature having to be reached.

Der Schalter 6 bzw. das Schaltelement S6 kann weitere Funktionen auf dem LED-Modul 1 ausführen, welche durch die digitale Steuereinheit IC1 gesteuert werden können. So kann beispielsweise ein Nachglimm-Schutz ermöglicht werden. Die digitale Steuereinheit IC1 kann beispielsweise erkennen, wann das LED-Modul 1 abgeschaltet werden soll oder bereits durch Wegschalten der Versorgungsspannung abgeschaltet worden ist. Um durch parasitäre Effekte oder verbliebene Restladungen eingekoppelte Spannungen zu vermeiden, kann der Schalter 6 bzw. das Schaltelement S6 geschlossen werden, um ein Glimmen der LED aufgrund der eingekoppelten Spannungen zu vermeiden. Alternativ oder zusätzlich kann auch ein Schutz des LED-Moduls 1 vor Überspannungen ermöglicht werden, indem bei Überspannung an dem Versorgungseingang des LED-Moduls 1 der Schalter 6 bzw. das Schaltelement S6 zumindest kurzzeitig geschlossen wird, um die Überspannung abzubauen bzw. die LED zu schützen. Somit kann auch ein Schutz vor Überspannungen beim Trennen des LED-Moduls 1 von dem LED-Konverter im Betrieb des LED-Moduls 1 ermöglicht werden, als ein sogenannter "Hot-Plug" Schutz. Ein derartiges Abtrennen kann sowohl ungewollt durch einen plötzlichen Kontaktunterbruch in der Versorgungsleitung oder auch durch einen Nutzerfehler durch einen Eingriff, wie beispielsweise einen Wechsel des LED-Moduls 1 während des Betriebs, auftreten.The switch 6 or the switching element S6 can perform further functions on the LED module 1, which can be controlled by the digital control unit IC1. For example, afterglow protection can be enabled. The digital control unit IC1 can for example recognize when the LED module 1 is to be switched off or has already been switched off by switching off the supply voltage. To avoid parasitic effects or remaining To avoid residual charges coupled in voltages, the switch 6 or the switching element S6 can be closed in order to prevent the LED from glowing due to the coupled in voltages. Alternatively or additionally, protection of the LED module 1 against overvoltages can also be made possible by at least briefly closing the switch 6 or the switching element S6 in the event of an overvoltage at the supply input of the LED module 1 in order to reduce the overvoltage or to close the LED protect. Protection against overvoltages when the LED module 1 is disconnected from the LED converter when the LED module 1 is in operation can thus also be made possible, as a so-called "hot-plug" protection. Such a disconnection can occur unintentionally as a result of a sudden contact interruption in the supply line or as a result of a user error due to an intervention, such as, for example, changing the LED module 1 during operation.

Der LED-Konverter 10 kann durch eine selektive Änderung der Versorgungsspannung für das LED-Modul 1 einen Wechsel des LED-Moduls in einen Kommunikationsmodus bewirken, und dann kann der LED-Konverter 10 die Änderung der Leistungsaufnahme des LED-Moduls 1 erfassen und gemäß dem wenigstens einen Protokoll, das beispielsweise in dem LED-Modul 1 und im LED-Konverter 10 abgelegt ist, dekodieren. Beispielsweise kann somit der LED-Konverter 10 verschiedene Informationen von dem LED-Modul 1 abfragen, wobei für jede Abfrage ein spezifisches Protokoll hinterlegt sein kann. Somit wird ohne zusätzliche Leitungen oder Pins einen bidirektionaler Kommunikationspfad zwischen dem LED-Modul und dem LED-Konverter ermöglicht.The LED converter 10 can effect a change of the LED module into a communication mode by selectively changing the supply voltage for the LED module 1, and then the LED converter 10 can detect the change in the power consumption of the LED module 1 and according to the decode at least one protocol that is stored in the LED module 1 and in the LED converter 10, for example. For example, the LED converter 10 can thus request various information from the LED module 1, a specific protocol being able to be stored for each request. This enables a bidirectional communication path between the LED module and the LED converter without additional lines or pins.

Die Änderung der Leistungsaufnahme des LED-Moduls 1 kann abhängig von einem Wert der ersten Versorgungsspannung 5a gemäß einem von mehreren vorgegebenen Protokollen bewirkt werden und somit eine unterschiedliche Laständerung gemäß einem von mehreren vorgegebenen Protokollen bewirkt werden.The change in the power consumption of the LED module 1 can depend on a value of the first supply voltage 5a according to one of several predetermined protocols are effected and thus a different load change can be effected according to one of several predetermined protocols.

Es werden von der vorliegenden der Erfindung drei Konzepte zur Erfassung der Änderung der Leistungsaufnahme des LED-Moduls 1 durch den LED-Konverter 10 bevorzugt. Zum einen das Bestimmen einer stromkonstanten Last, wobei der konstante Strom beispielweise über eine Entladerate eines Kondensators am LED-Konverter 10 gemessen werden kann. Zum anderen durch Bestimmen einer Frequenz der Änderung der Leistungsaufnahme des LED-Moduls 1, beispielweise durch direktes Erfassen des Stroms auf der Konverterseite. Und schließlich durch indirektes Erfassen mittels Bestimmen eines Peak-Stroms innerhalb des LED-Konverters, der beispielsweise einen isolierten Sperrwandler oder Buck-Konverter aufweist, der über einen Shunt gemessen wird. Der Peak-Strom folgt der Änderung der Leistungsaufnahme des LED-Moduls 1.According to the present invention, three concepts for detecting the change in the power consumption of the LED module 1 by the LED converter 10 are preferred. On the one hand, the determination of a current-constant load, with the constant current being able to be measured, for example, via a discharge rate of a capacitor on the LED converter 10. On the other hand, by determining a frequency of the change in the power consumption of the LED module 1, for example by directly detecting the current on the converter side. And finally by indirect detection by determining a peak current within the LED converter, which has, for example, an isolated flyback converter or buck converter that is measured via a shunt. The peak current follows the change in the power consumption of the LED module 1.

Zusammenfassend schlägt die vorliegende Erfindung vor, Informationen von einem LED-Modul 1 an einem LED-Konverter 10 zu übermitteln, die auf an dem LED-Modul 1 einzustellende Betriebs- und/oder Wartungsparameter schließen lassen. Der einzustellende Betriebsparameter kann beispielsweise der Sollstrom oder die Sollspannung sein. Dazu ist erfindungsgemäß auf dem LED-Modul eine Schaltung 4 (Lastmodulationsschaltung) vorgesehen, die beispielsweise in einem Spannungsbereich einer ersten Versorgungsspannung 5a, die ungleich Null ist und bei der eine an das LED-Modul 1 angeschlossene LED-Strecke 3 nicht leitend ist, eine Last für den LED-Konverter darstellt, und in einem Spannungsbereich einer zweiten Versorgungsspannung 5b, die ungleich Null ist und bei der eine angeschlossene LED-Strecke 3 leitend ist, keine Last für den LED-Konverter 10 darstellt. Die Schaltung 4 erfindungsgemäß nur zeitweise aktiviert, nämlich nur während einer Startphase der LED-Leuchte. Die Last ist veränderlich, gemäß einem vorgegebenen Protokoll. Es kann beispielsweise eine modulierte Laständerung erfolgen, gemäß dem vorgegebenen Protokoll. Die Leistungsaufnahme wird vom LED-Konverter 10 erfasst, insbesondere auch eine Änderung der Leistungsaufnahme (Amplitude, Frequenz, Tastverhältnis). Dadurch kann der LED-Konverter 10 die Betriebs- und/oder Wartungsparameter bestimmen. Die Übermittlung dieser Informationen zwischen dem LED-Modul 1 und dem LED-Konverter 10 bedarf keiner zusätzlichen Anschlüsse (nur den Anschluss der Versorgungsspannung). Außerdem ist keine Interaktion mit LED-Modul 1 und/oder LED-Konverter 10 nötig. Dadurch werden die Nachteile des bekannten Stands der Technik verbessert.In summary, the present invention proposes to transmit information from an LED module 1 to an LED converter 10 which allows conclusions to be drawn about operating and / or maintenance parameters to be set on the LED module 1. The operating parameter to be set can be, for example, the target current or the target voltage. For this purpose, a circuit 4 (load modulation circuit) is provided according to the invention on the LED module, which, for example, in a voltage range of a first supply voltage 5a that is not equal to zero and in which an LED path 3 connected to the LED module 1 is non-conductive, a Represents load for the LED converter, and in a voltage range of a second supply voltage 5b, which is not equal to zero and at which a connected LED path 3 is conductive, no load for the LED converter 10 represents. According to the invention, the circuit 4 is only activated temporarily, namely only during a starting phase of the LED light. The load is variable according to a given protocol. For example, a modulated change in load can take place in accordance with the specified protocol. The power consumption is recorded by the LED converter 10, in particular also a change in the power consumption (amplitude, frequency, duty cycle). As a result, the LED converter 10 can determine the operating and / or maintenance parameters. The transmission of this information between the LED module 1 and the LED converter 10 does not require any additional connections (only the connection of the supply voltage). In addition, no interaction with LED module 1 and / or LED converter 10 is necessary. This improves the disadvantages of the known prior art.

Claims (19)

  1. LED module (1) having:
    - terminals for an LED converter (10) that supplies the LED module (1) with a supply voltage;
    - additional terminals (2) for an LED series (3);
    - a circuit (4) that can be activated if a predetermined constant current that is less than the rated current of the LED series (3) or a predetermined constant voltage that is less than the forward voltage of the LED series (3) is applied to the LED module (1) at the terminals for the LED converter (10), wherein a start phase begins with the application of the predetermined constant current or of the constant voltage;
    wherein the circuit (4) is designed to represent, upon activation, a variable-current, active power load which produces a repeated change in the power consumption of the LED module (1) according to at least one predetermined protocol,
    wherein the circuit (4) can be deactivated and, upon being deactivated, is designed to not represent an active power load, and
    characterized in that
    the circuit (4) has means for automatically deactivating itself after a predetermined time interval has elapsed since the beginning of the start phase.
  2. LED module (1) according to claim 1, wherein
    the circuit (4) is designed to encode at least one operating and/or maintenance parameter of the LED module (1) via the change in the power consumption according to the at least one predetermined protocol.
  3. LED module (1) according to claim 1 or 2, wherein
    the at least one predetermined protocol specifies a frequency and/or an amplitude and/or a duty cycle of the change in the power consumption of the LED module (1).
  4. LED module (1) according to one of claims 1 through 3, wherein
    the circuit (4) is designed in such a way that the change in the power consumption of the LED module (1) is effected depending on a value of the constant voltage according to one of several predetermined protocols.
  5. LED module (1) according to one of claims 1 through 4, wherein
    the circuit (4) comprises a timer circuit (6) which is designed to specify a frequency of the change in the power consumption of the LED module (1).
  6. LED module (1) according to one of claims 1 through 5, wherein
    at least one sensor is provided on the LED module (1), which sensor is designed to influence an electrical parameter of the circuit (4).
  7. LED module (1) according to claim 6, wherein
    the at least one sensor is a light sensor having a light-dependent resistance, and
    the light sensor is connected to the circuit (4) in such a way that a change in the light-dependent resistance changes the active power load of the circuit (4).
  8. System having an LED module (1) according to one of claims 1 through 7 with an LED series (3) and an LED converter (10),
    wherein the LED converter (10) has a high-frequency clocked converter, preferably an isolated flyback converter, and
    the high-frequency clocked converter is operated as a constant current source at least in a time-limited start phase, and
    the LED converter (10) is designed to supply the LED module (1) during the start phase with the predetermined constant current that is less than the rated current of the LED series (3) or with the constant voltage that is less than the forward voltage of the LED series (3),
    wherein the clocked converter is designed to detect a repeatedly changing power consumption of the LED module (1) on the primary side of a transformer of the high-frequency clocked converter during the start phase and
    to determine, based upon the detected power consumption, at least one operating and/or maintenance parameter of the LED module (1).
  9. System according to claim 8, wherein the LED converter (10) is designed:
    - to use the at least one determined operating and/or maintenance parameter to adjust or regulate the operation of the LED module (1),
    - to store the at least one determined operating and/or maintenance parameter in an associated memory,
    - to optically and/or acoustically indicate the at least one determined operating and/or maintenance parameter, and/or
    - to send out the at least one determined operating and/or maintenance parameter via a wireless or wired interface, optionally upon an external query.
  10. System according to claim 8 or 9, wherein
    the at least one operating and/or maintenance parameter is a rated current through an LED series (3) connected to the LED module (1), an aging parameter, an operation time duration, and/or a spectrum of a light emitted by the LED series (3).
  11. System according to one of claims 8 through 10, wherein the LED converter (10) is designed
    to identify the LED module (1) on the basis of the at least one determined operating and/or maintenance parameter.
  12. System according to one of claims 8 through 11, wherein the LED converter (10) is designed
    to selectively switch between a mode for detecting a power consumption of the LED module (1) and a mode for illuminating an LED series (3) connected to the LED module (1) by adjusting a first supply current or a second supply current for the LED module (1).
  13. System according to one of claims 8 through 12, wherein the LED converter (10) is designed
    to carry out a voltage measurement for directly detecting the power consumption of the LED module (1).
  14. System according to one of claims 8 through 12, wherein the LED converter (10) is designed
    to carry out an indirect detection of the power consumption of the LED module (1).
  15. System according to claim 14, wherein the LED converter (10) is designed
    to detect a change in the power consumption of the LED module (1) through a change of a duty cycle of a clocking of the LED converter (10).
  16. System according to one of claims 8 through 15, wherein the LED converter (10) is designed
    - to discharge a capacitor (11) via a load of the LED module (1),
    - to determine a discharge current of the capacitor (11) directly, or indirectly via a discharge time, and
    - to determine the at least one operating and/or maintenance parameter of the LED module (1) on the basis of said discharge current.
  17. System according to one of claims 8 through 16, wherein the system is an LED luminaire.
  18. Method for transmitting information from an LED module (1) to an LED converter (10), the LED converter (10) having a high-frequency clocked converter, preferably an isolated flyback converter or resonant half-bridge converter, and
    the LED module (1) having terminals for the LED converter (10) that supplies the LED module (1);
    wherein, in a first step, the LED converter (10) supplies the LED module (1) with a predetermined constant current that is less than the rated current of the LED series (3) or with a predetermined constant voltage that is less than the forward voltage of the LED series (3), wherein a start phase begins with the application of the predetermined constant current or of the constant voltage;
    wherein, in a second step, a circuit (4) of the LED module (1), which is designed to represent an active power load upon activation, is activated if the constant current or the constant voltage is applied, wherein
    the activated circuit (4) of the LED module (1) effects a repeated change in the power consumption of the LED module (1) according to at least one predetermined protocol, and wherein
    the LED converter (10) detects a repeatedly changing power consumption of the LED module (1) during the start phase; and
    wherein, in a third step, the circuit (4) of the LED module (1) is deactivated, wherein the deactivated circuit (4) does not represent an active power load,
    characterized in that
    the circuit (4) automatically deactivates itself in the third step after a predetermined time interval has elapsed since the beginning of the start phase.
  19. Method according to claim 18,
    wherein the converter (10) determines at least one operating and/or maintenance parameter of the LED module (1) on the basis of the detected power consumption of the LED module (1).
EP13831887.8A 2012-12-21 2013-12-20 Detection of an led module Active EP2936936B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210224141 DE102012224141A1 (en) 2012-12-21 2012-12-21 LED module for LED lamp, has LED circuit that is turned on and light is emitted with connection of LED path, when active power load is not applied to LED circuit
AT3982013 2013-11-28
PCT/AT2013/000212 WO2014094016A2 (en) 2012-12-21 2013-12-20 Detection of an led module

Publications (2)

Publication Number Publication Date
EP2936936A2 EP2936936A2 (en) 2015-10-28
EP2936936B1 true EP2936936B1 (en) 2020-08-12

Family

ID=50979323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13831887.8A Active EP2936936B1 (en) 2012-12-21 2013-12-20 Detection of an led module

Country Status (4)

Country Link
US (1) US9544970B2 (en)
EP (1) EP2936936B1 (en)
CN (1) CN104885564B (en)
WO (1) WO2014094016A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468062B2 (en) * 2013-01-02 2016-10-11 Austin Ip Partners Light emitting diode light structures
CN103616561B (en) * 2013-11-06 2016-09-28 浙江生辉照明有限公司 The power consumption testing circuit of LED light device and detection method
FR3025687B1 (en) 2014-09-08 2019-05-24 Schneider Electric Industries Sas DEVICE FOR TRANSMITTING AN ELECTRICAL PARAMETER SIGNAL TO A CONTROLLING MEMBER OF A LIGHT EMITTING DIODE LIGHT MODULE, POWER SUPPLY SYSTEM, LIGHTING ASSEMBLY AND TRANSMISSION METHOD THEREOF
CN107211493B (en) * 2014-12-19 2019-08-06 路创技术有限责任公司 The calibration of load control device for LED source
DE102015200128A1 (en) * 2015-01-08 2016-07-14 Tridonic Gmbh & Co Kg Bulb converter and light bulb module with two-wire communication
DE102015210710A1 (en) * 2015-06-11 2016-12-15 Tridonic Gmbh & Co Kg Clocked flyback converter circuit
JP6654367B2 (en) * 2015-07-08 2020-02-26 シーシーエス株式会社 Power supply device and light irradiation system including the same
JP2017135225A (en) * 2016-01-27 2017-08-03 シーシーエス株式会社 Power supply device for use in led light-emitting device
DE102016210798B3 (en) 2016-06-16 2017-11-23 Siemens Aktiengesellschaft Power semiconductor circuit
DE102016220198B3 (en) * 2016-10-17 2018-02-15 Continental Automotive Gmbh Method for regulating an operating current of a lighting unit and control unit and motor vehicle
TWI664788B (en) * 2018-01-02 2019-07-01 偉詮電子股份有限公司 Control circuit and control method
CN110461056B (en) * 2019-07-05 2024-04-09 欧普照明股份有限公司 Power supply driving, lamp and driving method capable of automatically matching loads of multiple light sources
CN110366291B (en) * 2019-07-05 2024-04-09 欧普照明股份有限公司 Power supply driving and lamp automatically matched with loads of light sources with multiple specifications and driving method
NL2023562B1 (en) 2019-07-24 2021-02-10 Eldolab Holding Bv Smart starting up method by an LED driver
DE102020210254A1 (en) * 2020-08-12 2022-02-17 Osram Gmbh ELECTRONIC LOAD FOR INSTALLATION IN THE POWER SUPPLY OF A VEHICLE LAMP
TWI746292B (en) * 2020-11-27 2021-11-11 茂達電子股份有限公司 Circuit measuring device and method
US11462988B1 (en) * 2021-07-19 2022-10-04 Infineon Technologies Austria Ag Power supply system and current control based on consumption by dynamic loads
GB2613141A (en) * 2021-10-01 2023-05-31 Simmtronic Ltd Lighting system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159132A1 (en) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co. Kg Apparatus and method for supplying power to an illuminant

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929029A1 (en) * 1989-09-01 1991-03-07 Bosch Gmbh Robert CIRCUIT ARRANGEMENT FOR OPERATING A GAS DISCHARGE LAMP
US5696670A (en) * 1995-05-26 1997-12-09 Webster Heating And Specialty Products, Inc. Power supply for arc-discharge load
US6445598B1 (en) * 1999-12-09 2002-09-03 Sanken Electric Co., Ltd. Dc-dc converter
DE10114124A1 (en) * 2001-03-22 2002-09-26 Hella Kg Hueck & Co circuitry
JP3494223B2 (en) * 2001-12-03 2004-02-09 サンケン電気株式会社 DC-DC converter
DE10230154A1 (en) 2002-07-04 2004-01-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH supply unit
JP2005093196A (en) 2003-09-17 2005-04-07 Moritex Corp Lighting method, and lighting system and component for the same
DE102008039530A1 (en) 2008-08-23 2010-02-25 Hella Kgaa Hueck & Co. Diode assembly i.e. LED, temperature detecting device, has measuring device connected with connecting terminals, where measuring device has resistor with temperature dependent resistance value indicating temperature of diode assembly
US8288954B2 (en) 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
CN101483953B (en) 2009-02-10 2012-05-23 黄华南 Current automatic identification method of LED for illumination
JP5881155B2 (en) 2009-02-12 2016-03-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light emitting device system and driver
US8466628B2 (en) * 2009-10-07 2013-06-18 Lutron Electronics Co., Inc. Closed-loop load control circuit having a wide output range
CN101951177B (en) * 2010-09-06 2014-05-07 Bcd半导体制造有限公司 Switching power supply system and switching power supply control circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159132A1 (en) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co. Kg Apparatus and method for supplying power to an illuminant

Also Published As

Publication number Publication date
WO2014094016A2 (en) 2014-06-26
EP2936936A2 (en) 2015-10-28
WO2014094016A3 (en) 2014-12-18
CN104885564B (en) 2017-05-17
US20150373811A1 (en) 2015-12-24
CN104885564A (en) 2015-09-02
US9544970B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
EP2936936B1 (en) Detection of an led module
EP2837259B1 (en) Method of operating a llc resonance converter for a light source, and corresponding converter and led power source
DE102006034371B4 (en) Operating circuit and operating method for light-emitting diodes
EP2556726B1 (en) Modular led lighting system having emergency light function
DE112009002486B4 (en) Adaptive PFC for lamp load circuit, especially load circuit with LED
EP2548410B1 (en) Low-voltage power supply for an led lighting system
EP3085202B1 (en) Led driver for reading information from a led module
WO2011113960A2 (en) Led operating circuit comprising an adaptive insulating energy transmission dc/dc-converter
WO2011113948A1 (en) Modular led lighting system with internal bus
EP3075213B1 (en) Led module
AT14906U1 (en) LED module
EP3075212B1 (en) Led converter for an led module
EP3075211B1 (en) Method and apparatus for detecting led modules
AT15045U1 (en) Acquisition of operating parameters of an LED module
AT16340U1 (en) Clocked converter for dimmable bulbs with dynamically adjustable filter
EP3637959B1 (en) Semiconductor component
EP3100591B1 (en) Recognition of a led modul
AT15046U1 (en) Capture of an LED module
AT15039U1 (en) Detection of an LED module
EP3231253B1 (en) Driver circuit with llc start-up control
AT16546U1 (en) Pulse-width-modulated control of a clocked circuit with adjustable power transmission
EP2335457B1 (en) Determination of lamp type or circuit topology for several lamps
DE102014104447A1 (en) Electronic ballast for LED bulbs
AT15167U1 (en) Capture of an LED module
AT15120U1 (en) LED driver for reading information from an LED module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150611

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ONDRISEK, THOMAS

Inventor name: MITTERBACHER, ANDRE

Inventor name: DUENSER, MATHIAS

Inventor name: MUENDLE, KLAUS

Inventor name: FINK, JUERGEN

Inventor name: MARENT, GUENTER

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013015024

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0047185000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/14 20200101ALI20200305BHEP

Ipc: H05B 45/50 20200101ALI20200305BHEP

Ipc: H05B 47/185 20200101AFI20200305BHEP

Ipc: H05B 45/37 20200101ALI20200305BHEP

Ipc: H05B 45/10 20200101ALI20200305BHEP

INTG Intention to grant announced

Effective date: 20200323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015024

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1302875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201218

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1302875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221222

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013015024

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 11