EP2935151A1 - Ceramic material - Google Patents

Ceramic material

Info

Publication number
EP2935151A1
EP2935151A1 EP13811508.4A EP13811508A EP2935151A1 EP 2935151 A1 EP2935151 A1 EP 2935151A1 EP 13811508 A EP13811508 A EP 13811508A EP 2935151 A1 EP2935151 A1 EP 2935151A1
Authority
EP
European Patent Office
Prior art keywords
ppm
ceramic material
ceramic
material according
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13811508.4A
Other languages
German (de)
French (fr)
Inventor
Lars Schnetter
Frank Wittig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec ETEC GmbH
Original Assignee
Ceramtec ETEC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec ETEC GmbH filed Critical Ceramtec ETEC GmbH
Publication of EP2935151A1 publication Critical patent/EP2935151A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the invention relates to ceramic materials;
  • the invention relates to ceramic materials for the production of transparent ceramics.
  • Transparent ceramics and their preparation are known from the prior art.
  • DE 10 2004 004 259 B3 discloses a polycrystalline ceramic with a high mechanical load capacity, which has a true in-line transmission (RIT) of more than 75% of the theoretical maximum value for a 0.8 mm thick polished disk and at wavelengths between 600 and 650 nm, wherein the mean grain size D is in the range between 60 nm and 10 ⁇ .
  • RIT true in-line transmission
  • polycrystalline ceramic disks The transparency of polycrystalline ceramic disks is influenced by various factors. So of course, a material must be used that has only a very low light absorption. In addition, the transparency of polycrystalline ceramic discs depends essentially on the light scattering, which results from the crystal structure on the one hand and from the microstructure of the ceramic body on the other hand. Materials with cubic crystal systems are preferably used because birefringence does not occur. Furthermore, the processes for the production of transparent ceramics are optimized in such a way that the lowest possible porosity occurs, or the pore size is below the wavelength of the light, in order to minimize the light scattering at phase boundaries.
  • the object of the invention is thus to provide alternative ceramic materials which are suitable for the production of transparent ceramics and which are less expensive than the high purity raw materials known in the art.
  • This ceramic material is characterized in that it consists of metal oxides, which are obtained by calcination of hydrotalcites.
  • the material can preferably be used to produce transparent ceramics.
  • Hydrotalcites according to the invention are metal hydroxides prepared by a hydrotalcite process.
  • a transparent ceramic according to the invention is understood to mean a ceramic which has an RIT of at least 40% at 300 nm, 600 nm and / or 1500 nm wavelength of the light. Theoretically, the transparency is independent of thickness, if a perfect material is present and from it a perfect ceramic was produced. As soon as the ceramic, however, pores o.ä. contains a scattering effect at the phase boundaries of the pores, which becomes stronger with increasing thickness of the ceramic. This effect leads to a decreasing transparency. Therefore, referred to in this document transparencies refer to ceramics with wall thicknesses between 50 ⁇ and 100 mm.
  • the hydrotalcites, from which the ceramic material according to the invention is obtained by calcining are produced by means of a hydrotalcite process.
  • Hydrotalcite processes are known in the art. Such a method is described for example in EP 0 807 086 B1.
  • a hydrotalcite process in the context of this invention is understood as meaning a process which comprises at least the following steps:
  • the metal oxides which are obtained by calcination from the metal hydroxides between 100 and 500 ppm, preferably between 100 and 200 ppm impurities, in particular of Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca, Na, K, Li, Y, Ni, Co, Cu.
  • impurities in particular of Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca, Na, K, Li, Y, Ni, Co, Cu.
  • the higher level of contamination is possible because the impurities are very finely divided and very homogeneous, possibly at the atomic level, present in the material. In any case, they do not form a separate phase, for example a grain boundary phase, which would lead to a reduction in transparency in the sintered ceramic. It is believed that the impurities are incorporated in the lattice of metal oxides. This means the incorporation of the metal cations in the lattice of the spinel, for example, cation lattice, interstitial sites, or the like.
  • transparent ceramics can be produced with the raw material according to the invention which have a deviation in the RIT value of ⁇ 10% between 300 nm and 700 nm, in particular at 300 nm and 700 nm, and thus obtain a high white value.
  • metal hydroxides whose metal oxides have a cubic crystal system.
  • oxides like the Al 2 O 3 or MgO particularly preferably spinels, in particular Mg-Al spinels are produced.
  • transparent ceramics of ZrO 2 oxides of mixtures of Y and Al and materials of the mixtures of Al, N, O or even non-cubic aluminum oxide can preferably be produced by this process.
  • the use of the material according to the invention completely dispenses with the use of sintering aids.
  • Sintering aids allow the use of lower sintering temperatures with less grain growth.
  • the sintering aids must be at least partially expelled again by means of volatile compounds such as LiF, since they would otherwise be present as a separate phase in the ceramic, which in turn would have negative effects on the transparency.
  • volatile compounds such as LiF
  • Diammonium hydrogen citrate stirred is ground with a stirred ball mill (500 m Al 2 O 3 grinding beads) until an energy input of 1.60 kWh / kg is reached.
  • the following particle size distribution is then available: d90: 375 nm, d50: 224 nm, d10: 138 nm (measured with a Nanoflex measuring instrument from Microtrac).
  • the specific surface area (BET) is 25.5 m 2 / g.
  • the thus prepared slurry is mixed with 6% of a short-chain polyethylene glycol and granulated by means of a freeze-spray process. After this
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement:
  • the treatment is carried out analogously to Example 1 until an energy input of 1.05 kWh / kg is reached.
  • the following particle size distribution is then present: d90: 345 nm, d50: 195 nm, d10: 124 nm (measured with a Nanoflex measuring instrument from Microtrac), BET 23.5 m 2 / g.
  • the thus prepared slurry is mixed with 6% of a short-chain polyethylene glycol and granulated by means of a freeze-spray process. After this
  • Freeze-drying is a moldable granulate from which test pieces are formed having a net basis of 2.07 g / cm 3 . These are pre-sintered at 1400 ° C for 2 h at 3.512 g / cm 3 and then post-densified at 1650 ° C for 6 h at 200 MPa hot isostatic.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement:
  • Example 3 A MgOAl 2 O 3 raw material with 156 ppm impurities, which was produced by the hydrotalcite process and has the following composition (ICP analysis), is used:
  • 600 g of the raw material are added to 600 g of deionized water at 4.7%
  • Diammonium hydrogen citrate stirred is ground with a stirred ball mill (500 m Al 2 O 3 grinding beads) until an energy input of 1.5 kWh / kg is reached.
  • the specific surface area (BET) is then 51.3 m 2 / g.
  • the thus prepared slip is admixed with 5% of an aqueous polymer dispersion and 4% of a fatty acid preparation and granulated by means of a freeze spray method. After freeze-drying, there is a moldable granule from which test pieces having a net basis of 2.18 g / cm 3 are formed. These are pre-sintered at 1550 ° C for 2 h to 3.413 g / cm 3 and then post-densified at 1650 ° C for 6 h at 200 MPa hot isostatic.
  • the samples are ground and polished to a transmission measurement of 2 mm thickness: The following RIT values were determined as a function of the wavelength: 300 nm: 70%, 600 nm: 75%, 700 nm: 77%, 1500 nm: 79%.
  • the compacts produced with a net comparable green density of 1 89 g / cm 3 are at 1430 ° C for 2 h to 3.524 g / cm 3 pre-sintered and then hot isostatic pressed at 1650 ° C, for 6 hours at 200 MPa.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured.
  • the samples are
  • Freeze-drying is a moldable granulate, are formed from the sample with a net green density of 1, 91 g / cm 3 . These are pre-sintered at 1530 ° C for 2 h at 3.057 g / cm 3 and then post-densified at 1650 ° C for 4 h at 200 MPa hot isostatic.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement:
  • the slip is granulated as described in Example 5.
  • the comparatively produced compacts having a net green density of 1.87 g / cm 3 are pre-sintered at 1410 ° C. for 2 h to 3.452 g / cm 3 and then hot isostatically compressed at 1650 ° C. for 6 h at 200 MPa.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured.
  • the samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured.
  • the samples are

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The invention relates to the production of transparent ceramics. The invention relates in particular to the use of raw materials containing impurities for producing transparent ceramics.

Description

Keramikwerkstoff  Ceramic material
Die Erfindung betrifft Keramikwerkstoffe; insbesondere betrifft die Erfindung Keramikwerkstoffe zur Herstellung von transparenten Keramiken. The invention relates to ceramic materials; In particular, the invention relates to ceramic materials for the production of transparent ceramics.
Aus dem Stand der Technik sind transparente Keramiken und ihre Herstellung bekannt. Die DE 10 2004 004 259 B3 offenbart beispielsweise eine polykristalline Keramik mit einer hohen mechanischen Belastbarkeit, die eine wahre In-Line- Transmission (RIT) von mehr als 75% des theoretischen Maximalwerts für eine 0,8 mm dicke polierte Scheibe und bei Wellenlängen zwischen 600 und 650 nm aufweist, wobei die mittlere Korngröße D im Bereich zwischen 60 nm und 10 μιτι liegt. Transparent ceramics and their preparation are known from the prior art. DE 10 2004 004 259 B3, for example, discloses a polycrystalline ceramic with a high mechanical load capacity, which has a true in-line transmission (RIT) of more than 75% of the theoretical maximum value for a 0.8 mm thick polished disk and at wavelengths between 600 and 650 nm, wherein the mean grain size D is in the range between 60 nm and 10 μιτι.
Die Transparenz von polykristallinen Keramikscheiben wird von verschiedenen Faktoren beeinflusst. So muss natürlich ein Material verwendet werden, das nur eine äußerst geringe Licht-Absorption aufweist. Darüber hinaus ist die Transparenz von polykristallinen Keramikscheiben im Wesentlichen von der Lichtstreuung abhängig, die zum einen aus der Kristallstruktur und zum anderen aus der Gefügestruktur des Keramikkörpers resultiert. Materialien mit kubischen Kristallsystemen werden bevorzugt verwendet, weil keine Doppelbrechung auftritt. Weiterhin sind die Verfahren zur Herstellung von transparenten Keramiken dahingehend optimiert, dass eine möglichst geringe Porosität auftritt, bzw. die Porengröße unterhalb der Wellenlänge des Lichts liegt, um die Lichtstreuung an Phasengrenzen zu minimieren. The transparency of polycrystalline ceramic disks is influenced by various factors. So of course, a material must be used that has only a very low light absorption. In addition, the transparency of polycrystalline ceramic discs depends essentially on the light scattering, which results from the crystal structure on the one hand and from the microstructure of the ceramic body on the other hand. Materials with cubic crystal systems are preferably used because birefringence does not occur. Furthermore, the processes for the production of transparent ceramics are optimized in such a way that the lowest possible porosity occurs, or the pore size is below the wavelength of the light, in order to minimize the light scattering at phase boundaries.
Ein weiterer wesentlicher Faktor bei der Herstellung von transparenten Keramiken ist die Verwendung von hochreinen Rohstoffen, da bereits geringste Verunreinigungen von mehr als 100 ppm zu weißen oder schwarzen Flecken in der Keramik führen. Daher werden grundsätzlich nur Rohstoffe verwendet, die eine Reinheit von > 99,99%, bevorzugt sogar > 99,9999 % aufweisen. Diese Rohstoffe sind allerdings sehr teuer. Another important factor in the production of transparent ceramics is the use of high-purity raw materials, since even the smallest impurities of more than 100 ppm lead to white or black spots in the ceramic. Therefore, in principle, only raw materials are used which have a purity of> 99.99%, preferably even> 99.9999%. These raw materials are very expensive.
Die Aufgabe der Erfindung besteht somit darin, alternative Keramikwerkstoffe zur Verfügung zu stellen, die zur Herstellung von transparenten Keramiken geeignet sind und die weniger kostenintensiv als die aus dem Stand der Technik bekannten hochreinen Rohstoffe sind. The object of the invention is thus to provide alternative ceramic materials which are suitable for the production of transparent ceramics and which are less expensive than the high purity raw materials known in the art.
Die Aufgabe wird mittels eines Keramikwerkstoffs nach Anspruch 1 gelöst. Dieser Keramikwerkstoff zeichnet sich dadurch aus, dass er aus Metalloxiden besteht, die durch Kalzinierung von Hydrotalciten erhalten werden. Der Werkstoff kann bevorzugt dazu verwendet werden, transparente Keramiken herzustellen. The object is achieved by means of a ceramic material according to claim 1. This ceramic material is characterized in that it consists of metal oxides, which are obtained by calcination of hydrotalcites. The material can preferably be used to produce transparent ceramics.
Hydrotalcite gemäß der Erfindung sind Metallhydroxide, die nach einem Hydrotalcit- Verfahren hergestellt wurden. Unter einer transparenten Keramik im Sinne der Erfindung wird eine Keramik verstanden, die eine RIT von mindestens 40% bei 300 nm, 600 nm und/oder 1500 nm Wellenlänge des Lichts besitzt. Rein theoretisch ist die Transparenz dickenunabhängig, wenn ein perfekter Werkstoff vorliegt und daraus eine perfekte Keramik hergestellt wurde. Sobald die Keramik jedoch Poren o.ä. enthält, tritt ein Streu-Effekt an den Phasengrenzen der Poren auf, der mit zunehmender Dicke der Keramik stärker wird. Dieser Effekt führt zu einer abnehmenden Transparenz. Daher beziehen sich die in dieser Schrift genannten Transparenzen auf Keramiken mit Wandstärken zwischen 50 μιτι und 100 mm. Hydrotalcites according to the invention are metal hydroxides prepared by a hydrotalcite process. A transparent ceramic according to the invention is understood to mean a ceramic which has an RIT of at least 40% at 300 nm, 600 nm and / or 1500 nm wavelength of the light. Theoretically, the transparency is independent of thickness, if a perfect material is present and from it a perfect ceramic was produced. As soon as the ceramic, however, pores o.ä. contains a scattering effect at the phase boundaries of the pores, which becomes stronger with increasing thickness of the ceramic. This effect leads to a decreasing transparency. Therefore, referred to in this document transparencies refer to ceramics with wall thicknesses between 50 μιτι and 100 mm.
Besonders bevorzugt werden die Hydrotalcite, aus denen durch Kalzinierung der erfindungsgemäße Keramikwerkstoff erhalten wird, mittels eines Hydrotalcit- Verfahrens hergestellt. Particularly preferably, the hydrotalcites, from which the ceramic material according to the invention is obtained by calcining, are produced by means of a hydrotalcite process.
Hydrotalcit-Verfahren sind aus dem Stand der Technik bekannt. Ein solches Verfahren ist beispielsweise in der EP 0 807 086 B1 beschrieben. Unter einem Hydrotalcit-Verfahren im Rahmen dieser Erfindung, wird ein Verfahren verstanden, das zumindest die folgenden Schritte umfasst: Hydrotalcite processes are known in the art. Such a method is described for example in EP 0 807 086 B1. A hydrotalcite process in the context of this invention is understood as meaning a process which comprises at least the following steps:
• Bereitstellung des Metalls, beispielsweise Aluminium, und eines Alkohols, beispielsweise Ethanol • Providing the metal, such as aluminum, and an alcohol, such as ethanol
• Umsetzung von Metall und Alkohol zum Metall-AI koholat, beispielsweise Aluminium-Alkoholat, unter Freisetzung von Wasserstoff • Umsetzung des Metall-AI koholats unter Wasserzugabe zum Metallhydroxid, beispielsweise Boehmit, unter Freisetzung des Alkohols. • Implementation of metal and alcohol to the metal Al koholat, for example aluminum alkoxide, with liberation of hydrogen Implementation of the metal alcohol with addition of water to the metal hydroxide, for example boehmite, with release of the alcohol.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung können die Metalloxide, die durch Kalzinierung aus den Metallhydroxiden erhalten werden, zwischen 100 und 500 ppm, bevorzugt zwischen 100 und 200 ppm Verunreinigungen, insbesondere von Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca, Na, K, Li, Y, Ni, Co, Cu enthalten. Dies ist besonders vorteilhaft, weil geringere Anforderungen an die Reinheit der Rohstoffe als bei Werkstoffen nach dem Stand der Technik gestellt werden. Üblicherweise werden hier nur Rohstoffe mit einem Reinheitsgrad von > 99,99% bzw. Rohstoffe, die < 100 ppm Verunreinigungen aufweisen, verwendet. Der benötigte geringere Reinheitsgrad, der nicht auf Kosten der Transparenz geht, ermöglicht somit die Verwendung von erheblich kostengünstigeren Rohstoffen. According to a particularly preferred embodiment of the invention, the metal oxides which are obtained by calcination from the metal hydroxides, between 100 and 500 ppm, preferably between 100 and 200 ppm impurities, in particular of Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca, Na, K, Li, Y, Ni, Co, Cu. This is particularly advantageous because lower requirements are placed on the purity of the raw materials than in the case of materials according to the prior art. Usually only raw materials with a purity of> 99.99% or raw materials containing <100 ppm impurities are used here. The required lower degree of purity, which does not sacrifice transparency, thus allows the use of significantly less expensive raw materials.
Es wird vermutet, dass der höhere Grad an Verunreinigungen möglich ist, weil die Verunreinigungen sehr feinverteilt und sehr homogen, möglicherweise auf atomarer Ebene, im Werkstoff vorliegen. Sie bilden jedenfalls keine separate Phase, beispielsweise eine Korngrenzphase, die in der gesinterten Keramik zu einer Verringerung der Transparenz führen würde. Es wird vermutet, dass die Verunreinigungen in das Gitter der Metalloxide eingebaut sind. Dies bedeutet den Einbau der Metallkationen im Gitter des Spinells, beispielsweise Kationengitter, Zwischengitterplätze, o.ä. It is believed that the higher level of contamination is possible because the impurities are very finely divided and very homogeneous, possibly at the atomic level, present in the material. In any case, they do not form a separate phase, for example a grain boundary phase, which would lead to a reduction in transparency in the sintered ceramic. It is believed that the impurities are incorporated in the lattice of metal oxides. This means the incorporation of the metal cations in the lattice of the spinel, for example, cation lattice, interstitial sites, or the like.
Überraschend ist hierbei, dass nicht nur keine Verschlechterung der Transparenz beobachtet wird, sondern dass es darüber hinaus auch nicht zu einer wesentlichen Einfärbung der Keramik kommt. Insbesondere sind mit dem erfindungsgemäßen Rohstoff transparente Keramiken herstellbar, die zwischen 300 nm und 700 nm, insbesondere bei 300 nm und 700 nm eine Abweichung im RIT-Wert von <10% aufweisen und somit einen hohen Weißwert erlangen. It is surprising that not only no deterioration of the transparency is observed, but that it also does not come to a significant coloring of the ceramic. In particular transparent ceramics can be produced with the raw material according to the invention which have a deviation in the RIT value of <10% between 300 nm and 700 nm, in particular at 300 nm and 700 nm, and thus obtain a high white value.
Bevorzugt werden mittels des Hydrotalcit-Verfahrens Metallhydroxide hergestellt, deren Metalloxide ein kubisches Kristallsystem aufweisen. Neben Oxiden wie dem AI2O3 oder MgO werden besonders bevorzugt Spinelle, insbesondere Mg-Al-Spinelle hergestellt. Es sind aber auch transparente Keramiken aus ZrO2, Oxide aus Mischungen von Y und AI sowie Werkstoffe der Mischungen aus AI, N, O oder auch nichtkubischem Aluminiumoxid mit diesem Verfahren bevorzugt herstellbar. By means of the hydrotalcite process, preference is given to producing metal hydroxides whose metal oxides have a cubic crystal system. Besides oxides like the Al 2 O 3 or MgO particularly preferably spinels, in particular Mg-Al spinels are produced. However, transparent ceramics of ZrO 2, oxides of mixtures of Y and Al and materials of the mixtures of Al, N, O or even non-cubic aluminum oxide can preferably be produced by this process.
Im Gegensatz zum Stand der Technik, beispielsweise der DE 10 2004 004 259 B3, kann bei der Verwendung des erfindungsgemäßen Werkstoffs auf die Verwendung von Sinterhilfsmitteln ganz verzichtet werden. Sinterhilfsmittel ermöglichen die Verwendung von niedrigeren Sintertemperaturen bei geringerem Kornwachstum. Allerdings müssen die Sinterhilfsmittel mittels volatiler Verbindungen wie LiF zumindest teilweise wieder ausgetrieben werden, da sie sonst als separate Phase in der Keramik vorliegen würden, was wiederum negative Auswirkungen auf die Transparenz hätte. Diese Zusätze sind bei der Verwendung des Keramikwerkstoffs gemäß dieser Erfindung zur Herstellung von transparenten Keramiken nicht notwendig. In contrast to the prior art, for example DE 10 2004 004 259 B3, the use of the material according to the invention completely dispenses with the use of sintering aids. Sintering aids allow the use of lower sintering temperatures with less grain growth. However, the sintering aids must be at least partially expelled again by means of volatile compounds such as LiF, since they would otherwise be present as a separate phase in the ceramic, which in turn would have negative effects on the transparency. These additives are not necessary in the use of the ceramic material according to this invention for the production of transparent ceramics.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Beispiel 1 In the following the invention will be explained in more detail by means of exemplary embodiments. example 1
Verwendet wird ein MgOAI2O3-Rohstoff mit insgesamt 406 ppm Verunreinigungen, hergestellt nach dem Hydrotalcit-Verfahren, mit folgender Zusammensetzung (ICP- Analyse): A MgOAl 2 O 3 raw material with a total of 406 ppm impurities, produced by the hydrotalcite process, with the following composition (ICP analysis) is used:
MgO: 28,9 %, MgO: 28.9%,
Na: 18 ppm,  Na: 18 ppm,
Si: 196 ppm,  Si: 196 ppm,
Fe: 98 ppm,  Fe: 98 ppm,
Cr: 7 ppm,  Cr: 7 ppm,
Ti: 10 ppm,  Ti: 10 ppm,
Mn: 40 ppm,  Mn: 40 ppm,
Zn: 37 ppm,  Zn: 37 ppm,
Rest: AI2O3. Spezifische Oberfläche (BET): 18 m2/g, Rest: AI2O3. Specific surface area (BET): 18 m 2 / g,
Ausgangskorngrößenverteilung d90: 5,5 μητι, d50 2,4 μητι, d10: 0,8 μηη  Starting particle size distribution d90: 5.5 μητι, d50 2.4 μητι, d10: 0.8 μηη
1500 g des Rohstoffes werden in 1500 g deionisiertes Wasser mit 7 % 1500 g of the raw material are added to 1500 g of deionized water with 7%
Diammoniumhydrogencitrat eingerührt. Der so vorhomogenisierte Schlicker wird mit einer Rührwerkskugelmühle (500 m-AI2O3-Mahlperlen) so lange aufgemahlen, bis ein Energieeintrag von 1 ,60 kWh/kg erreicht ist. Folgende Korngrößenverteilung liegt anschließend vor: d90: 375 nm, d50: 224 nm, d10: 138 nm (gemessen mit einem Nanoflex-Messgerät von Microtrac). Die spezifische Oberfläche (BET) beträgt 25,5 m2/g. Diammonium hydrogen citrate stirred. The thus prehomogenized slip is ground with a stirred ball mill (500 m Al 2 O 3 grinding beads) until an energy input of 1.60 kWh / kg is reached. The following particle size distribution is then available: d90: 375 nm, d50: 224 nm, d10: 138 nm (measured with a Nanoflex measuring instrument from Microtrac). The specific surface area (BET) is 25.5 m 2 / g.
Der so vorbereitete Schlicker wird mit 6 % eines kurzkettigen Polyethylenglycols versetzt und mit Hilfe eines Gefriersprühverfahrens granuliert. Nach dem The thus prepared slurry is mixed with 6% of a short-chain polyethylene glycol and granulated by means of a freeze-spray process. After this
Gefriertrocknen liegt ein pressfähiges Granulat vor, aus dem Probekörper mit einer Nettogründichte von 2,17 g/cm3 geformt werden. Diese werden bei 1455 °C für 2 h auf 3,519 g/cm3 vorgesintert und anschließend bei 1650 °C, 6 h bei 200 MPa heißisostatisch nachverdichtet (HIP = Heiß-Isostatisches Pressen). Freeze-drying is a moldable granulate from which test pieces are formed having a net basis of 2.17 g / cm 3 . These are pre-sintered at 1455 ° C for 2 h at 3.519 g / cm 3 and then post-densified at 1650 ° C for 6 h at 200 MPa hot isostatic (HIP = hot isostatic pressing).
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: The samples are ground and polished to a thickness of 2 mm for a transmission measurement:
Es wurden folgende RIT-Werte in Abhängigkeit von der Wellenlänge ermittelt:  The following RIT values were determined as a function of the wavelength:
300 nm: 74 %, 600 nm: 78 %, 700 nm: 80 %, 1500 nm: 81 %. 300 nm: 74%, 600 nm: 78%, 700 nm: 80%, 1500 nm: 81%.
Beispiel 2 Example 2
Verwendet wird ein MgOAI2O3-Rohstoff mit 232 ppm Verunreinigungen, hergestellt nach dem Hydrotalcit-Verfahren, mit folgender Zusammensetzung (ICP-Analyse): A MgOAl 2 O 3 raw material with 232 ppm impurities, produced by the hydrotalcite method, with the following composition (ICP analysis) is used:
MgO: 33,9 % MgO: 33.9%
Na: 18 ppm  Na: 18 ppm
Si: 83 ppm Fe: 71 ppm Si: 83 ppm Fe: 71 ppm
Ca: 5 ppm  Ca: 5 ppm
Cr: 4 ppm  Cr: 4 ppm
Ni: 2 ppm  Ni: 2 ppm
Ti: 18 ppm  Ti: 18 ppm
Mn: 27 ppm  Mn: 27 ppm
Cu: 1 ppm  Cu: 1 ppm
Zr: 3 ppm  Zr: 3 ppm
Rest: AI2O3 Remainder: Al 2 O 3
Spezifische Oberfläche (BET): 58 m2/g Specific surface area (BET): 58 m 2 / g
Ausgangskorngrößenverteilung d90: 7,85 μιτι, d50 3,2 μιτι, d10: 0,9 μιτι  Starting particle size distribution d90: 7.85 μιτι, d50 3.2 μιτι, d10: 0.9 μιτι
Die Aufbereitung erfolgt analog Beispiel 1 bis ein Energieeintrag von 1 ,05 kWh/kg erreicht ist. Folgende Korngrößenverteilung liegt anschließend vor: d90: 345 nm, d50: 195 nm, d10: 124 nm (gemessen mit einem Nanoflex-Messgerät von Microtrac), BET 23,5 m2/g. The treatment is carried out analogously to Example 1 until an energy input of 1.05 kWh / kg is reached. The following particle size distribution is then present: d90: 345 nm, d50: 195 nm, d10: 124 nm (measured with a Nanoflex measuring instrument from Microtrac), BET 23.5 m 2 / g.
Der so vorbereitete Schlicker wird mit 6 % eines kurzkettigen Polyethylenglycols versetzt und mit Hilfe eines Gefriersprühverfahrens granuliert. Nach dem The thus prepared slurry is mixed with 6% of a short-chain polyethylene glycol and granulated by means of a freeze-spray process. After this
Gefriertrocknen liegt ein pressfähiges Granulat vor, aus dem Probekörper mit einer Nettogründichte von 2,07 g/cm3 geformt werden. Diese werden bei 1400 °C für 2 h auf 3,512 g/cm3 vorgesintert und anschließend bei 1650 °C, 6 h bei 200 MPa heißisostatisch nachverdichtet. Freeze-drying is a moldable granulate from which test pieces are formed having a net basis of 2.07 g / cm 3 . These are pre-sintered at 1400 ° C for 2 h at 3.512 g / cm 3 and then post-densified at 1650 ° C for 6 h at 200 MPa hot isostatic.
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: The samples are ground and polished to a thickness of 2 mm for a transmission measurement:
Es wurden folgende RIT-Werte in Abhängigkeit von der Wellenlänge ermittelt:  The following RIT values were determined as a function of the wavelength:
300 nm: 60 %, 600 nm: 71 %, 700 nm: 75 %, 1500 nm: 77 %. 300 nm: 60%, 600 nm: 71%, 700 nm: 75%, 1500 nm: 77%.
Beispiel 3 Verwendet wird ein MgOAI2O3-Rohstoff mit 156 ppm Verunreinigungen, der nach dem Hydrotalcit-Verfahren hergestellt wurde und folgende Zusammensetzung aufweist (ICP-Analyse): Example 3 A MgOAl 2 O 3 raw material with 156 ppm impurities, which was produced by the hydrotalcite process and has the following composition (ICP analysis), is used:
28,9 %, 28.9%,
Na: 22 ppm  Na: 22 ppm
Si 83 ppm  Si 83 ppm
Fe: 31 ppm  Fe: 31 ppm
Cr: 1 ppm,  Cr: 1 ppm,
Ca: 3 ppm,  Ca: 3 ppm,
Ti: 1 ppm,  Ti: 1 ppm,
Mn: 8 ppm,  Mn: 8 ppm,
Zn: 7 ppm,  Zn: 7 ppm,
AI2O3: Rest AI 2 O 3 : remainder
Spezifische Oberfläche (BET): 7,3 m2/g Specific surface area (BET): 7.3 m 2 / g
Ausgangskorngrößenverteilung d90: 4,7 μιτι, d50 2,1 μιτι, d10: 0,3 μιτι  Starting particle size distribution d90: 4.7 μιτι, d50 2.1 μιτι, d10: 0.3 μιτι
600 g des Rohstoffes werden in 600 g deionisiertes Wasser mit 4,7 % 600 g of the raw material are added to 600 g of deionized water at 4.7%
Diammoniumhydrogencitrat eingerührt. Der so vorhomogenisierte Schlicker wird mit einer Rührwerkskugelmühle (500 m-AI2O3-Mahlperlen) so lange aufgemahlen bis ein Energieeintrag von 1 ,5 kWh/kg erreicht ist. Die spezifische Oberfläche (BET) beträgt dann 51 ,3 m2/g. Diammonium hydrogen citrate stirred. The thus pre-homogenised slip is ground with a stirred ball mill (500 m Al 2 O 3 grinding beads) until an energy input of 1.5 kWh / kg is reached. The specific surface area (BET) is then 51.3 m 2 / g.
Der so vorbereitete Schlicker wird mit 5 % einer wässrigen Polymerdisperison und 4 % einer Fettsäurezubereitung versetzt und mit Hilfe eines Gefriersprühverfahrens granuliert. Nach dem Gefriertrocknen liegt ein pressfähiges Granulat vor, aus dem Probekörper mit einer Nettogründichte von 2,18 g/cm3 geformt werden. Diese werden bei 1550 °C für 2 h auf 3,413 g/cm3 vorgesintert und anschließend bei 1650 °C, 6 h bei 200 MPa heißisostatisch nachverdichtet. The thus prepared slip is admixed with 5% of an aqueous polymer dispersion and 4% of a fatty acid preparation and granulated by means of a freeze spray method. After freeze-drying, there is a moldable granule from which test pieces having a net basis of 2.18 g / cm 3 are formed. These are pre-sintered at 1550 ° C for 2 h to 3.413 g / cm 3 and then post-densified at 1650 ° C for 6 h at 200 MPa hot isostatic.
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: Es wurden folgende RIT-Werte in Abhängigkeit von der Wellenlänge ermittelt: 300 nm: 70 %, 600 nm: 75 %, 700 nm: 77 %, 1500 nm: 79 %. The samples are ground and polished to a transmission measurement of 2 mm thickness: The following RIT values were determined as a function of the wavelength: 300 nm: 70%, 600 nm: 75%, 700 nm: 77%, 1500 nm: 79%.
Beispiel 4 (Vergleichsbeispiel) Example 4 (Comparative Example)
Verwendet wird ein MgOAI2O3-Rohstoff mit 461 ppm Verunreinigungen, der nicht nach dem Hydrotalcit-Verfahren hergestellt wurde. Folgende Zusammensetzung wurde nach ICP-Analyse bestimmt: A MgOAl 2 O 3 raw material with 461 ppm impurities, which was not produced by the hydrotalcite process, is used. The following composition was determined by ICP analysis:
Mg: 17,1 %, Mg: 17.1%,
AI: 37,9 %,  AI: 37.9%,
Na: 69 ppm,  Na: 69 ppm,
K: 32 ppm,  K: 32 ppm,
Ca: 130 ppm  Ca: 130 ppm
Ti: 19 ppm,  Ti: 19 ppm,
V: 41 ppm,  V: 41 ppm,
Cr: 14 ppm,  Cr: 14 ppm,
Mn: 7 ppm,  Mn: 7 ppm,
Fe: 95 ppm,  Fe: 95 ppm,
Ni: 5 ppm,  Ni: 5 ppm,
Zn: 14 ppm,  Zn: 14 ppm,
Ga: 35 ppm,  Ga: 35 ppm,
Rest: O.  Rest: O.
Spezifische Oberfläche 22,2 m2/g. Specific surface 22.2 m 2 / g.
540 g Rohstoff wird in 800 g deionisiertes Wasser mit 1 , 5 % Diammoniumhydrogen- citrat eingerührt. Dieser Schlicker wird mit einer Rührwerkskugelmühle (500 μιτι- AI2O3-Mahlperlen) so lange aufgemahlen, bis ein Energieeintrag von 1 ,50 kWh/kg erreicht ist. Folgende Korngrößenverteilung liegt anschließend vor: d90: 234 nm, d50: 156 nm, d10: 84 nm (gemessen mit einem Nanoflex-Messgerät von Microtrac), BET 68,1 m2/g. Der Schlicker wird wie unter Beispiel 1 und 2 beschrieben granuliert. Die vergleichbar hergestellten Presslinge mit einer Nettogründichte von 1 ,89 g/cm3 werden bei 1430 °C für 2 h auf 3,524 g/cm3 vorgesintert und anschließend bei 1650 °C, 6 h bei 200 MPa heißisostatisch nachverdichtet. 540 g raw material is stirred into 800 g deionized water with 1, 5% diammonium hydrogen citrate. This slurry is milled with a stirred ball mill (500 μιτι AI 2 O 3 grinding beads) until an energy input of 1, 50 kWh / kg is reached. The following particle size distribution is then present: d90: 234 nm, d50: 156 nm, d10: 84 nm (measured with a Nanoflex measuring device from Microtrac), BET 68.1 m 2 / g. The slip is granulated as described in Examples 1 and 2. The compacts produced with a net comparable green density of 1 89 g / cm 3 are at 1430 ° C for 2 h to 3.524 g / cm 3 pre-sintered and then hot isostatic pressed at 1650 ° C, for 6 hours at 200 MPa.
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: Es können keine RIT-Werte gemessen werden. Die Proben sind The samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured. The samples are
undurchsichtig. opaque.
Beispiel 5 (Vergleichsbeispiel) Example 5 (Comparative Example)
Verwendet wird ein MgOAI2O3-Rohstoff mit 60 ppm Verunreinigungen, der nicht nach dem Hydrotalcit-Verfahren hergestellt wurde. Umsetzungsrate in Spinell (kristalline Phasen-Bestimmung mit Röntgendiffraktometrie) 99,5 %, freies alpha-AI2O3 0,4 %, freies MgO 0,1 %. Folgende Verunreinigungen wurden mit ICP-Analyse bestimmt: Na: 15 ppm, A MgOAl 2 O 3 raw material with 60 ppm impurities, which was not produced by the hydrotalcite process, is used. Reaction rate in spinel (crystalline phase determination by X-ray diffractometry) 99.5%, free alpha-Al 2 O 3 0.4%, free MgO 0.1%. The following impurities were determined by ICP analysis: Na: 15 ppm,
K: 32 ppm, K: 32 ppm,
Fe: 2 ppm, Fe: 2 ppm,
Si: 1 1 ppm Si: 1 1 ppm
Rest O. mittlere Korngröße d50 (Sedigraph): 0,18 μιτι. Remainder O. average particle size d50 (Sedigraph): 0.18 μιτι.
spezifische Oberfläche (BET): 28,2 m2/g. specific surface area (BET): 28.2 m 2 / g.
4000 g Rohstoff werden in 3605 g deionisiertes Wasser mit 2,3 % Diammonium- hydrogencitrat eingerührt. Dieser Schlicker wird mit einer Rührwerkskugelmühle (500 μηη-Mahlperlen) so lange aufgemahlen, bis ein Energieeintrag von 0,85 kWh/kg erreicht ist. Folgende Korngrößenverteilung liegt anschließend vor: d90: 252 nm, d50: 152 nm, d10: 101 nm (gemessen mit einem Zetasizer-Messgerät von Malvern), BET 31 ,7 m2/g. Der so vorbereitete Schlicker wird mit 6 % eines kurzkettigen Polyethylenglycols versetzt und mit Hilfe eines Gefriersprühverfahrens granuliert. Nach dem 4000 g of raw material are stirred into 3605 g of deionized water with 2.3% diammonium hydrogen citrate. This slurry is ground with a stirred ball mill (500 μηη grinding beads) until an energy input of 0.85 kWh / kg is reached. The following particle size distribution is then present: d90: 252 nm, d50: 152 nm, d10: 101 nm (measured with a Zetasizer measuring instrument from Malvern), BET 31, 7 m 2 / g. The thus prepared slurry is mixed with 6% of a short-chain polyethylene glycol and granulated by means of a freeze-spray process. After this
Gefriertrocknen liegt ein pressfähiges Granulat vor, aus dem Probekörper mit einer Nettogründichte von 1 ,91 g/cm3 geformt werden. Diese werden bei 1530 °C für 2 h auf 3,507 g/cm3 vorgesintert und anschließend bei 1650 °C, 4 h bei 200 MPa heißisostatisch nachverdichtet. Freeze-drying is a moldable granulate, are formed from the sample with a net green density of 1, 91 g / cm 3 . These are pre-sintered at 1530 ° C for 2 h at 3.057 g / cm 3 and then post-densified at 1650 ° C for 4 h at 200 MPa hot isostatic.
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: The samples are ground and polished to a thickness of 2 mm for a transmission measurement:
Es wurden folgende RIT-Werte in Abhängigkeit von der Wellenlänge ermittelt:  The following RIT values were determined as a function of the wavelength:
300 nm: 86 %, 600 nm: 85 %, 700 nm: 84 %, 1500 nm: 87 %. 300 nm: 86%, 600 nm: 85%, 700 nm: 84%, 1500 nm: 87%.
Beispiel 6 (Vergleichsbeispiel) Example 6 (comparative example)
Verwendet wird ein MgOAI2O3-Rohstoff mit 398 ppm Verunreinigungen, der nicht nach dem Hydrotalcit- Verfahren hergestellt wurde. Folgende Zusammensetzung wurde nach ICP-Analyse bestimmt: A MgOAl 2 O 3 raw material with 398 ppm impurities, which was not produced by the hydrotalcite process, is used. The following composition was determined by ICP analysis:
17,1 %, 17.1%,
37,9 %,  37.9%,
Na: 46 ppm,  Na: 46 ppm,
K: 25 ppm,  K: 25 ppm,
Ca: 145 ppm  Ca: 145 ppm
Ti: 15 ppm,  Ti: 15 ppm,
V: 27 ppm,  V: 27 ppm,
Cr: 5 ppm,  Cr: 5 ppm,
Mn:_ 5 ppm,  Mn: _ 5 ppm,
Fe: 80 ppm,  Fe: 80 ppm,
Ni: 5 ppm,  Ni: 5 ppm,
Zn: 1 1 ppm,  Zn: 1 1 ppm,
Ga: 34 ppm,  Ga: 34 ppm,
O: Rest Spezifische Oberfläche 20,1 m2/g. O: rest Specific surface area 20.1 m 2 / g.
540 g Rohstoff wird in 800 g deionisiertes Wasser mit 1 , 5 % 540 g of raw material is used in 800 g of deionized water with 1, 5%
Diammoniumhydrogencitrat eingerührt. Dieser Schlicker wird mit einer Diammonium hydrogen citrate stirred. This slip will come with a
Rührwerkskugelmühle (500 μιτι- AI2O3-Mahlperlen) so lange aufgemahlen bis ein Energieeintrag von 1 ,0 kWh/kg erreicht ist. Folgende Korngrößenverteilung liegt anschließend vor: d90: 274 nm, d50: 156 nm, d10: 101 nm (gemessen mit einem Nanoflex-Messgerät von Microtrac), BET 58,0 m2/g. Agitator ball mill (500 μιτι AI 2 O3 grinding beads) ground until an energy input of 1, 0 kWh / kg is reached. The following particle size distribution is then present: d90: 274 nm, d50: 156 nm, d10: 101 nm (measured with a Nanoflex measuring instrument from Microtrac), BET 58.0 m 2 / g.
Der Schlicker wird wie unter Beispiel 5 beschrieben granuliert. Die vergleichbar hergestellten Presslinge mit einer Nettogründichte von 1 ,87 g/cm3 werden bei 1410 °C für 2 h auf 3,452 g/cm3 vorgesintert und anschließend bei 1650 °C, 6 h bei 200 MPa heißisostatisch nachverdichtet. The slip is granulated as described in Example 5. The comparatively produced compacts having a net green density of 1.87 g / cm 3 are pre-sintered at 1410 ° C. for 2 h to 3.452 g / cm 3 and then hot isostatically compressed at 1650 ° C. for 6 h at 200 MPa.
Die Proben werden für eine Transmissionsmessung auf 2 mm Dicke geschliffen und poliert: Es können keine RIT-Werte gemessen werden. Die Proben sind The samples are ground and polished to a thickness of 2 mm for a transmission measurement: no RIT values can be measured. The samples are
undurchsichtig. opaque.

Claims

Patentansprüche claims
1 . Keramikwerkstoff, umfassend Metalloxide, die durch Kalzinierung von Hydrotalciten erhalten werden, dadurch gekennzeichnet, dass der Werkstoff zur Herstellung von transparenten Keramiken mit einem RIT-Wert > 40% bei 300 nm, 600 nm oder 1500 nm Wellenlänge des Lichts, dient. 1 . Ceramic material comprising metal oxides obtained by calcination of hydrotalcites, characterized in that the material is used to produce transparent ceramics having a RIT value> 40% at 300 nm, 600 nm or 1500 nm wavelength of the light.
2. Keramikwerkstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Werkstoff zur Herstellung von transparenten Keramiken, die zwischen 300 nm und 700 nm Wellenlänge des Lichts eine Abweichung im RIT-Wert von <10% aufweisen. 2. Ceramic material according to claim 1, characterized in that the material for the production of transparent ceramics having a deviation in the RIT value of <10% between 300 nm and 700 nm wavelength of the light.
3. Keramikwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Metalloxide zwischen 100 und 500 ppm, bevorzugt zwischen 100 und 200 ppm Verunreinigungen, insbesondere von Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca, Na, K, Li, Y, Ni, Co und/oder Cu enthalten. 3. Ceramic material according to claim 1 or 2, characterized in that the metal oxides between 100 and 500 ppm, preferably between 100 and 200 ppm of impurities, in particular of Fe, Mn, Cr, V, Zn, Sn, Ti, Si, Zr, Ca , Na, K, Li, Y, Ni, Co and / or Cu.
4. Werkstoff nach Anspruch 3, dadurch gekennzeichnet, dass die Verunreinigungen auf atomarer Ebene feinverteilt in den Metalloxiden vorliegen. 4. Material according to claim 3, characterized in that the impurities at the atomic level are finely distributed in the metal oxides.
5. Keramikwerkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metalloxide ein kubisches Kristallsystem aufweisen. 5. Ceramic material according to one of the preceding claims, characterized in that the metal oxides have a cubic crystal system.
6. Keramikwerkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metalloxide mit kubischem Kristallsystem Spinelle, insbesondere Mg-Al-Spinelle, ZrO2, Oxide der Mischungen aus Y sowie AI, Misch Werkstoffe aus AI, N, O sowie Aluminiumoxid in der kubischen und nicht kubischen Kristallstruktur, umfassen. 6. Ceramic material according to one of the preceding claims, characterized in that the metal oxides with cubic crystal system spinels, in particular Mg-Al spinels, ZrO2, oxides of the mixtures of Y and AI, mixing materials of Al, N, O and alumina in the cubic and not cubic crystal structure.
7. Verwendung eines Keramikwerkstoffs nach einem der vorstehenden Ansprüche zur Herstellung von transparenten Keramiken. 7. Use of a ceramic material according to any one of the preceding claims for the production of transparent ceramics.
EP13811508.4A 2012-12-19 2013-12-19 Ceramic material Withdrawn EP2935151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012223802 2012-12-19
PCT/EP2013/077304 WO2014096142A1 (en) 2012-12-19 2013-12-19 Ceramic material

Publications (1)

Publication Number Publication Date
EP2935151A1 true EP2935151A1 (en) 2015-10-28

Family

ID=49876628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13811508.4A Withdrawn EP2935151A1 (en) 2012-12-19 2013-12-19 Ceramic material

Country Status (10)

Country Link
US (2) US20150299044A1 (en)
EP (1) EP2935151A1 (en)
JP (1) JP2016500362A (en)
KR (1) KR20150097714A (en)
CN (1) CN105263885A (en)
AU (1) AU2013360718A1 (en)
DE (1) DE102013226579A1 (en)
IL (1) IL239343A0 (en)
RU (1) RU2015129336A (en)
WO (1) WO2014096142A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220397A (en) * 2011-11-10 2014-12-17 陶瓷技术-Etec有限责任公司 Method for producing transparent ceramic objects by means of fluidized bed granulation
WO2015144717A1 (en) 2014-03-28 2015-10-01 Ceramtec Gmbh Translucent printed circuit boards and/or heat sinks which are fitted with leds
JP6845645B2 (en) * 2016-09-26 2021-03-24 タテホ化学工業株式会社 Magnesium oxide-containing spinel powder and its manufacturing method
BR112021022652A2 (en) * 2019-05-14 2021-12-28 Calix Ltd System and method for the production of high-strength materials

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396595A (en) * 1982-02-08 1983-08-02 North American Philips Electric Corp. Method of enhancing the optical transmissivity of polycrystalline alumina bodies, and article produced by such method
JPH0672045B2 (en) * 1988-07-05 1994-09-14 住友電気工業株式会社 Translucent spinel sintered body and method for producing the same
DE19503522A1 (en) * 1995-02-03 1996-08-08 Rwe Dea Ag Production of mixed layered metal hydroxides and their metal oxides
CN1049881C (en) * 1995-12-15 2000-03-01 国家建筑材料工业局人工晶体研究所 Method for preparing transparent polycrystalline spinel
JP3783445B2 (en) * 1999-01-29 2006-06-07 住友化学株式会社 Method for producing translucent alumina sintered body and use thereof
CA2308933C (en) * 1999-05-19 2008-07-22 Ngk Spark Plug Co., Ltd. Translucent polycrystalline ceramic and method for making same
JP3440299B2 (en) * 2000-11-15 2003-08-25 独立行政法人物質・材料研究機構 Manufacturing method of transparent spinel sintered body
DE102004004259B3 (en) * 2004-01-23 2005-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparent polycrystalline sintered ceramics of cubic crystal structure
WO2006022384A1 (en) * 2004-08-27 2006-03-02 Tosoh Corporation Orthodontic bracket and process for producing the same
JP2006273679A (en) * 2005-03-30 2006-10-12 Sumitomo Electric Ind Ltd Spinel sintered compact, light transmission window, and light transmission lens
JP4830911B2 (en) * 2007-03-02 2011-12-07 住友電気工業株式会社 Spinel sintered body, manufacturing method thereof, transparent substrate and liquid crystal projector
FR2917404B1 (en) * 2007-06-15 2009-09-04 Saint Gobain Ct Recherches SINTER PRODUCT OF CUBIC STRUCTURE.
JP2009126749A (en) * 2007-11-26 2009-06-11 Sumitomo Electric Ind Ltd Transparent polycrystal spinel substrate, method for producing the same, and optical product using the substrate
US8268286B2 (en) * 2008-11-06 2012-09-18 General Electric Company High strength, fine grained spinel for window applications, methods of manufacture thereof and articles comprising the same
EP2366675B1 (en) * 2008-11-18 2015-05-27 Tosoh Corporation Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
JP5435397B2 (en) * 2009-04-02 2014-03-05 住友電気工業株式会社 Spinel light-transmitting window material and manufacturing method
DE102009046036B4 (en) * 2009-10-27 2014-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of redispersible high-purity nanospinell powders and redispersible high-purity nanospin powder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014096142A1 *

Also Published As

Publication number Publication date
KR20150097714A (en) 2015-08-26
RU2015129336A (en) 2017-01-25
IL239343A0 (en) 2015-07-30
AU2013360718A1 (en) 2015-07-09
JP2016500362A (en) 2016-01-12
US20150299044A1 (en) 2015-10-22
CN105263885A (en) 2016-01-20
WO2014096142A1 (en) 2014-06-26
DE102013226579A1 (en) 2014-06-26
US20180093923A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
DE3610041C2 (en) Zirconia based ceramic with alumina, spinel, mullite or spinel and mullite and with improved hydrothermal and thermal stability
DE3813731C2 (en) Composition with zirconia and process for its manufacture
EP0406847B1 (en) Sintered material on basis of aluminium oxide, process for its production and its utilisation
EP1904252B1 (en) Method for production of nanocrystalline sintered bodies made from alpha aluminium oxide
EP2819973B1 (en) Process for producing a shaped sintered ceramic body composed of y2o3-stabilized zirconium oxide
EP1435346B1 (en) Milling ceramic made from metaloxide powders having a bimodal particle size distribution
DE3617115A1 (en) METHOD FOR PRODUCING BETA &#34;ALUMINUM OXIDE
KR102360147B1 (en) Magnesium oxide-containing spinel powder and manufacturing method thereof
DE102009055987B4 (en) Spinel opto-ceramics
EP0524436A1 (en) Process for the preparation of alpha aluminiumoxide based sintered material specially useful for an abrasive agent
DE2450384A1 (en) ABRASIVES
EP2935151A1 (en) Ceramic material
EP0209084B2 (en) Process for preparing ceramic polycrystalline abrasives
DE102005020781A1 (en) Zirconia and alumina-containing slip and moldings obtainable therefrom
EP3248950A1 (en) Method for producing an opaque quartz glass containing pores
DE112019002838T5 (en) ZINC OXIDE VARISTOR
DE3318168A1 (en) OPTICALLY TRANSPARENT MULLIT CERAMICS
EP0543347A1 (en) Method for production of alpha aluminium oxide powder
DE3902175A1 (en) Process for preparing ss&#39;&#39;-aluminium oxide
AT394850B (en) Sintered, microcrystalline ceramic material
DE202016000055U1 (en) Composition comprising (a) calcium-magnesium compound (s) as a compact
EP2949633B1 (en) Transparent spinel ceramics and method for their preparation
DE202014102701U1 (en) Product with aligned particles
DE102009046036B4 (en) Process for the preparation of redispersible high-purity nanospinell powders and redispersible high-purity nanospin powder
EP2726437A1 (en) Mix for producing a fire-resistant material, a fire-resistant material, a method for producing a fire-resistant material and use of a material as a sintering aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180308

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180719