EP2927928A1 - Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe, et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire - Google Patents

Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe, et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire Download PDF

Info

Publication number
EP2927928A1
EP2927928A1 EP15161678.6A EP15161678A EP2927928A1 EP 2927928 A1 EP2927928 A1 EP 2927928A1 EP 15161678 A EP15161678 A EP 15161678A EP 2927928 A1 EP2927928 A1 EP 2927928A1
Authority
EP
European Patent Office
Prior art keywords
temperature
value
temperature threshold
electrical
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15161678.6A
Other languages
German (de)
English (en)
Other versions
EP2927928B1 (fr
Inventor
Simon Tian
François Vincent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2927928A1 publication Critical patent/EP2927928A1/fr
Application granted granted Critical
Publication of EP2927928B1 publication Critical patent/EP2927928B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/08Terminals; Connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • H01H2011/0068Testing or measuring non-electrical properties of switches, e.g. contact velocity measuring the temperature of the switch or parts thereof

Definitions

  • the present invention relates to a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, such an auxiliary apparatus and an electrical system comprising such an electrical device. and such an auxiliary apparatus.
  • a persistent problem in the field of electrical connection terminals is the safety of such terminals, by monitoring their temperature. Indeed, a too high temperature of the connection terminals is able to lead to their destruction, and the decommissioning of an electrical device comprising these connection terminals. More particularly, a too high temperature of the connection terminals is apt to cause a fire.
  • the object of the invention is therefore to propose a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, making it possible to determine the overheating in a manner more precise.
  • the value of the temperature threshold for detecting overheating of the connection terminal or terminals is variable between the previous instant and the given instant, which makes it possible to determine more precisely the superheat.
  • the fact that the value of the temperature threshold is variable makes it possible, for example, to better take into account the environment in which the connection terminal or terminals are located.
  • the invention also relates to an electrical system comprising an electrical device and an auxiliary device associated with the electrical device, the electrical device comprising at least one connection terminal having a connection range capable of being connected to an electrical conductor.
  • the auxiliary apparatus is as shown above.
  • the electrical device is a switching device comprising for each electrical conductor a current input terminal and a current output terminal, and, in an open position, to let current through the corresponding electrical conductor or conductors, and in a closed position to interrupt the flow of current through the corresponding electrical conductor (s), the auxiliary device being connected via the electrical connection member (s) to the or each terminal of current output.
  • an electrical system 10 is connected, on the one hand, to a first 12 and a second 14 electrical input conductors and, secondly, to a first 12 'and a second 14' electrical conductors output.
  • the electrical input conductors 12, 14 belonging to an electrical distribution network 16 and being intended to supply via the electrical system 10 and the electrical output conductors 12 ', 14' an electric charge 18.
  • the electrical system 10 is able to communicate via a wireless link with electronic equipment 20, such as a computer server, for centralizing data.
  • electronic equipment 20 such as a computer server
  • the equipment 20 is also called data concentrator.
  • the electrical system 10 comprises an electric circuit breaker 22, such as an electromechanical circuit breaker, and an auxiliary device 24 electrically coupled to the circuit breaker 22.
  • the auxiliary device 24 is, for example, fixed under the circuit breaker 22.
  • the electrical system 10 comprises a rail 25, such as a DIN rail, on which is mechanically fixed the circuit breaker 22.
  • the first input 12 and output 12 'conductors are, for example, phase conductors or positive positive potential conductors.
  • the second input 14 and output 14 'conductors are, for example, neutral conductors or reference potential conductors.
  • the first and second input electrical conductors 12, 14 and output 12 ', 14' form an electrical connection 26.
  • the data concentrator 20 is connected, via a data link, such as a radio link, to a display device 27, in order notably to display information relating to the operation of the circuit breaker 22 and transmitted by the auxiliary device 24.
  • the concentrator 20 comprises a first communication element 28 and a first radio antenna 30.
  • the electric circuit breaker 22 is known per se, and is capable of interrupting the flow of an electric current passing through the first electrical input and output conductors 12 'and / or the second electrical input leads 14 and output 14 ', in particular in the presence of an electrical fault on the first input conductor 12 and / or on the second input conductor 14.
  • the circuit breaker 22 comprises a first 34 and a second 36 current input terminals, also called first and second upstream connection terminals, to which are connected the first 12 and second 14 electrical input conductors.
  • the circuit breaker 22 also comprises a first 38 and a second 40 current output terminals, also called first and second downstream connection terminals, respectively connected to the first 12 'and second 14' electrical output conductors.
  • the electric circuit breaker 22 makes the connection between the first 12 and second 14 electrical input conductors and respectively the first 12 'and second 14' electrical output conductors, via the upstream connection terminals 34, 36 and the terminals of FIG. downstream connection 38, 40.
  • the circuit breaker 22 is in the open position capable of interrupting the flow of an electric current through the electrical connection 26.
  • the circuit breaker 22 is in the closed position capable of allowing the current to flow through the electrical connection 26, in order to supply the load 18.
  • the auxiliary apparatus 24 comprises for each downstream connection terminal 38, 40, a connecting member 42, 44 to the corresponding downstream connection terminal 38, 40, as shown in FIG. figure 2 .
  • the auxiliary apparatus 24 comprises, for each downstream connection terminal 38, 40, a first temperature sensor 46 and a current sensor 50, 51.
  • the auxiliary device 24 also comprises a processing unit 52, a power supply unit electrical 54 and a voltage regulator 56.
  • the auxiliary device 24 comprises a member 58 for storing electrical energy and a second communication member 60, and a second radio antenna 62 able to communicate by radio waves with the first antenna 30.
  • the auxiliary device 24 comprises a voltage sensor 64.
  • the display device 27, visible on the figure 1 in particular comprises a display screen, not shown, and means, not shown, of display on the screen of data received from the data concentrator 20.
  • the first communication device 28 is able to transmit data to the auxiliary device 24 via the first antenna 30 and to establish a radio link with the auxiliary device 24.
  • Each downstream connection terminal 38, 40 comprises a connection pad 66 capable of being connected respectively to the first 12 'and second 14' conductors respectively. electrical output, as shown on the figure 2 .
  • Each downstream connection terminal 38, 40 also comprises a clamping element 68 able to maintain the connection between the corresponding output electrical conductor 12 ', 14' and the corresponding connection pad 66, by applying a clamping force F on the corresponding output electrical conductor 12 ', 14'.
  • each downstream connection terminal 38, 40 comprises a movable member 70 adapted to be displaced via the clamping element 68 in order to clamp together, between the connection pad 66 and the movable member 70, the electrical output conductor 12 ' , 14 'corresponding, and the connecting member 42, 44 corresponding.
  • the clamping force F is induced by a tightening torque C applied to the clamping element 68.
  • the clamping member 68 is a screw.
  • the output terminals differ from the downstream connection terminals 38, 40 presented in the first embodiment, while still including a clamping element adapted to maintain the connection between the corresponding output electrical conductor 12 ', 14' and the corresponding connection pad 66.
  • the connecting member 42 is in contact with the first electrical output conductor 12 'and the connection pad 66 of the first output terminal 38.
  • the connecting member 42 comprises a thermally and electrically conductive material, such as copper .
  • the temperature difference between the connection pad 66 and the connecting member 42 is preferably less than 10 ° C for temperatures of the connection pad 66 of between 100 ° C and 400 ° C.
  • connection member 44 is in contact with the second electrical output conductor 14 'and the connection pad 66 of the second output terminal 40.
  • the connecting member 44 comprises a thermally and electrically conductive material, such as only copper.
  • the temperature difference between the connection pad 66 and the connecting member 44 is preferably less than 10 ° C for temperatures of the connection pad 66 of between 100 ° C and 400 ° C.
  • Each first temperature sensor 46 is able to measure, at a given time instant t n , a first temperature corresponding to the temperature of the corresponding connection pad 66, that is to say at the temperature of the downstream connection terminal. 38, 40 corresponding. More specifically, the first temperature sensor 46 is, for example, positioned on the connecting member 42, 44 corresponding and is adapted to measure the temperature of the connecting member 42, 44. Each first temperature sensor is for example , thermocouple or resistance thermometer etc. Each first sensor is suitable for temperature measurement between 25 ° C and 400 ° C.
  • the current sensors 50, 51 are able to measure the intensity of the current flowing respectively in the first 12 'and second 14' electrical output conductors, that is to say also the intensity of the current flowing through the range of connection 66 and the corresponding downstream connection terminal 38, 40.
  • the current sensors 50, 51 comprise, for example, a Rogowski toroid, a current transformer, a shunt or a Hall effect sensor.
  • the auxiliary device 24 comprises a current sensor 50 only for one of the downstream connection terminals 38, which is capable of measuring the current flowing in a single of the electrical output conductors, for example the first electrical conductor of the exit 12 '.
  • the current flowing in the second output electrical conductor 14 ' is then calculated from the value of the current flowing in the first output electrical conductor 12'. More precisely, the current flowing in the second electrical output conductor 14 'is equal to the opposite of the current flowing in the first electrical conductor 12'.
  • the processing unit 52 includes a second temperature sensor 71, a processor 72, and a memory 76 associated with the processor 72, as shown in FIG. figure 2 .
  • the processing unit 52 is able to generate a message M1 comprising data calculated via the processor 72 and the memory 76.
  • the power supply member 54 is clean, via the connecting members 42, 44, to recover a part of the electrical energy transmitted on the electrical output conductors 12 ', 14' and to supply electrical energy to the apparatus auxiliary 24.
  • the voltage regulator 56 makes it possible to adapt the voltage delivered by the power supply 54 to a voltage value acceptable by the processing unit 52 and by the second communication element 60.
  • the voltage regulator 56 is for example a converter DC / DC, which delivers a DC voltage of 3.3 volts.
  • the storage member 58 of electrical energy is able to store a portion of the electrical energy delivered by the power supply 54 when the circuit breaker 22 is closed, and to restore the stored electrical energy during a loss of voltage downstream of the circuit breaker 22.
  • the storage member 58 is a capacitor whose capacity value is a function, among other things, of the average power consumption of the auxiliary device 24 of the supply voltage delivered to the second communication element 60 and to the processing unit 52.
  • the second communication element 60 is able to receive data coming from the data concentrator 20, and more precisely from the first communication element 28 and the first antenna 30, and to establish a radio link with the concentrator 20.
  • second communication member 60 is able to transmit, via the second antenna 62, the message M1 to the data concentrator 20.
  • the communication members 28, 60 and the antennas 30, 62 are in accordance with the communication protocols ZIGBEE or ZIGBEE GREEN POWER, based on the IEE-802.15.4 standard.
  • the communication member 60 is able to communicate with the data concentrator 20 via a wire link, not shown.
  • the voltage sensor 64 is known per se, and is capable of measuring a first voltage V1 delivered between the first downstream connection terminal 38 and the second downstream connection terminal 40.
  • the voltage sensor 64 makes it possible, more precisely, to measure the first voltage V1 at the output of the circuit breaker 22, at the first electrical output conductor 12 '.
  • the second temperature sensor 71 is able to measure a second temperature, corresponding to an ambient temperature in the vicinity of the circuit breaker 22.
  • the second temperature sensor 71 is disposed at a distance of less than 3 m, preferably less than 1 m from the circuit breaker 22.
  • the second temperature sensor 71 is integrated in the processing unit 52.
  • the figure 4 represents a thermal model of the connection between the auxiliary device 24 and one of the corresponding downstream connection terminals 38, 40. More specifically, the figure 4 corresponds to the thermal model of the connection between one of the connection pads 66 and the second temperature sensor 71.
  • the model corresponds to an electrical circuit 77 comprising a current generator G, a thermal resistor R and a thermal capacitor C connected in parallel. parallel to each other.
  • the thermal resistance R and the thermal capacitor C represent the thermal relation between the corresponding connection pad 66 and the second temperature sensor 71.
  • the memory 76 is able to store a first software 78 for calculating a thermal value of each connection pad 66, a second software 80 for calculating, for each connection pad 66, a temperature threshold S1, a software 82 for comparing the thermal value of each connection pad 66 with the temperature threshold S1, a software 83 for detecting an overheating of the downstream connection terminals 38, 40.
  • the memory 76 is able to store a third software 84 of calculating a power and an electrical energy passing through each output electrical conductor 12 ', 14' as a function of the intensity and voltage values measured by the current sensors 50, 51 and the voltage sensors 64.
  • the memory 76 is able to store a software 88 for sampling the intensity of the current and the voltage measured by the current sensors 50, 51 and the voltage sensors 64.
  • the first calculation means 78, the second means 80, the comparison means 82, the detection means 83, the third calculation means 84 and the sampling means 88 are made in the form of programmable logic components or in the form of dedicated integrated circuits.
  • the first calculation software 78 is able to calculate the thermal value of each connection pad 66, as a function of the corresponding first measured temperature. More precisely, the first calculation software 78 is able to calculate the difference between the first temperature and the second temperature for each downstream connection terminal 38, 40. Thus, the thermal value corresponds, for example, to a temperature variation, such as the difference between the first temperature and the second temperature, and in particular to a heating of the connection pad 66.
  • the second temperature is considered equal to a predetermined constant value and the first calculation software 78 sets the thermal value equal to the difference between the first temperature and the predetermined constant value.
  • the second calculation software 80 is able to calculate the temperature threshold S1 at the given instant t n as a function of the value of the temperature threshold calculated at a previous instant t n-1 and the value of the temperature threshold S 1 is variable. between the given instant t n and the previous instant t n-1 .
  • the second calculation software 80 is more precisely able to calculate the value of the next temperature threshold S1, a sampling period dt, also called the calculation period dt.
  • the preceding instant t n-1 corresponds, for example, to an instant preceding the given instant t n of a duration equal to the calculation period dt.
  • the previous instant t0 corresponds to an initial reference time t0.
  • the initial reference time t0 corresponds, for example, to the instant of a first measurement made by the auxiliary device chosen from the measurement of the first temperature, the measurement of the second temperature and the measurement of the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14', that is to say for example at the moment of powering on the circuit breaker 22.
  • the second calculation software 80 is also preferably able to calculate the temperature threshold S1 as a function of the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14'.
  • the temperature threshold S1 corresponds, by for example, at a limit temperature rise of the corresponding connection pad 66, that is to say at a temperature variation.
  • the electrical circuit 77 presented above makes it possible to obtain an equation giving the value of the first temperature threshold S1.
  • the value of the temperature threshold S1 (0) at the initial reference time t0 is a predetermined value.
  • the first temperature threshold S1 is calculated with an equation similar to equation (1) presented above, but the values of the parameters R and C of the equation would be different and correspond for example respectively to the thermal resistance and to the thermal capacitance between the connection pad 66 and a predetermined reference point.
  • the comparison software 82 is able to compare the thermal value of each connection pad 66, calculated by the first calculation software 78, with the corresponding temperature threshold S1.
  • the comparison between the thermal value and the temperature threshold is performed at each multiple of the sampling period dt after the initial reference time t0.
  • the temperature threshold S1 is calculated from the recursive equation (1) making it possible to calculate the value of the first threshold S1 at the given instant t n , from the knowledge of the value of the first threshold S1 at the instant preceding t n-1 and in particular from the knowledge of the value of the temperature threshold S1 (0) at the initial reference time t0.
  • the comparison software 82 is able to compare the thermal value calculated from the first temperature measured at the given instant t n with the value of the temperature threshold S1 (n) at the given instant t n .
  • the comparison is effective if one compares the value of the temperature threshold S1 and the thermal value at the same instant, that is to say at the time of measurement of the first temperature corresponding to the calculated thermal value.
  • the given instant t n corresponds to the measurement instant of the first temperature.
  • the detection software 83 is, more specifically, able to detect the loosening of at least one corresponding downstream connection terminal 38, 40, that is to say the loosening of at least one electrical output conductor 12 ', 14 'with respect to the corresponding downstream connection terminal 38, 40, when the thermal value of the connection pad 66 is greater than the temperature threshold S1.
  • the loosening corresponds to a value of the tightening torque C less than a first predetermined reference value, that is to say to a value of the clamping force F less than a second predetermined reference value and therefore to a the value of the impedance Z greater than a predetermined value, that is to say, for example, greater than 0.004 ⁇ , preferably greater than 0.005 ⁇ .
  • the method is presented below in the case of a single downstream connection terminal 38, 40, that is to say for the connection between only one of the downstream connection terminals 38, 40 and the auxiliary device 24.
  • the method generally applies to each downstream connection terminal 38, 40.
  • the first temperature sensor 46 measures, at the instant given t n , the first temperature.
  • the first measured temperature is saved and the temperature threshold S1 (0) at the initial reference time t0, that is to say the value of the initial sample of the temperature threshold S1, is calculated and then saved.
  • the second temperature sensor 71 measures the second temperature.
  • the thermal value of the corresponding connection range 66 is calculated, for example with the difference between the first temperature and the second temperature, that is to say that the value of the second temperature at the first temperature.
  • step 104 the thermal value is set equal to the first temperature and step 102 is not performed.
  • the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14' is measured.
  • the value of the temperature threshold S1 at the given instant t n is calculated as a function of the value of the temperature threshold S1 (n-1) at the previous instant t n-1 and preferably also as a function of the intensity of the current measured in step 106.
  • the temperature threshold S1 is thus calculated, for example, from equation (1) presented above.
  • the value of the temperature threshold at the initial reference time t0 is used.
  • the values chosen for the thermal resistance R, the thermal capacitor C and the impedance Z between the connection pad 66 and the corresponding output electrical conductor 12 ', 14' are values corresponding to a maximum temperature rise of the corresponding connection pad 66 and therefore to a maximum temperature threshold S1.
  • the value chosen for the impedance Z corresponds to the minimum permissible impedance to prevent a fire.
  • the thermal value of the corresponding connection area 66 is compared with the value of the calculated temperature threshold S1, at the given instant t n , during step 108.
  • the process returns to step 100 for measuring the first temperature after a predetermined duration, corresponding, for example , at the sampling period dt.
  • step 112 If, during the comparison step 110, the thermal value is strictly greater than the temperature threshold S1, then, during a step 112, an overheating of the connection pad 66 and the corresponding downstream connection terminal 38, 40 is detected. In step 112, the loosening of the electrical output conductor 12 ', 14' corresponding, with respect to the corresponding downstream connection terminal 38, 40, is then for example detected.
  • the first message M1 is generated and includes a data item specifying the looseness detection or, more generally, the overheating of the corresponding downstream connection terminal 38, 40.
  • the first message M1 is transmitted to the concentrator 20.
  • the concentrator 20 is then able to indicate to an operator, via the display device 27, an overheating or loosening of the connection terminal downstream 38, 40 corresponding.
  • the electrical power and electrical energy values calculated by the third calculation software 84 are included in the first message M1.
  • first, second, and third 204 204 curves corresponding to the thermal values, and more precisely to the heating values of one of the connection pads 66, calculated by the first calculation software 78.
  • the first 200, second 202 and third 204 curves are plotted as a function of time T, and more precisely according to the time elapsed since the initial reference time t0.
  • the initial reference moment corresponds to the abscissa 0 to the figure 6 .
  • the first 200, second 202 and third 204 curves each correspond to a respective tightening torque C, applied to the clamping element 68 in order to maintain the electrical connection between the electrical conductor and the connection pad 66, respectively equal to 2 Nm , 0.2 Nm and 0.1 Nm, for a current measured by the current sensor 50, 51 corresponding to 20 A.
  • figure 6 also shows a fourth curve 206 corresponding to the value of the temperature threshold S1 calculated by the second calculation software 80, as a function of time, and more precisely according to the time elapsed since the initial reference time t0.
  • the thermal value calculated for the first 200, second 202 and third 204 curves is always lower than the value of the temperature threshold S1, presented on the fourth curve 206.
  • the value of the tightening torque C and therefore the clamping force F is such that the corresponding downstream connection terminal 38, 40 is not considered loosened, the value of the temperature threshold is never reached.
  • the thermal value corresponding here to a heating value of the connection pad 66 increases.
  • the fourth curve 206 the value of the temperature threshold S1 varies according to the time elapsed with respect to the initial reference time t0, and more generally with respect to the previous instant.
  • the shape of the fourth curve 206 is globally similar to that of the other three curves 200, 202, 204.
  • the evolution of the temperature threshold therefore follows that of the thermal value, which makes it possible to determine the overheating of the downstream connection terminal. 38, 40 more precisely, without risk of error.
  • reference t0 and more generally since the previous instant t n-1
  • a sixth curve 210 corresponding to the value of the temperature threshold S1 calculated by the second calculation software 80, as a function of time.
  • the initial reference time corresponds to the abscissa 0.
  • the fifth 208 and sixth 210 curves are obtained for a value of the current flowing through the connection pad 66 and the corresponding output electrical conductor 12 ', 14', which varies with course of time.
  • the current flowing through the corresponding connection pad 66 is equal to 10 A between 0 seconds (s) and 600 s, then 40 A between 600 s and 1500 s and at 20 A between 1500 s and 2800 s.
  • the thermal value is below the temperature threshold S1 and the evolution of the sixth curve 210 follows that of the fifth curve 208. Then, after loosening of the connection terminal corresponding downstream 38, 40, the thermal value increases sharply and becomes greater than the value of the temperature threshold S1. The overheating of the corresponding downstream connection terminal 38, 40 is then detected.
  • the value of the temperature threshold S1 varies as a function of time and more precisely between the given instant t n and the previous instant t n-1 makes it possible to determine the superheating more precisely. Indeed, this makes it possible to consider, for example, different operating phases of the circuit breaker 22, and more specifically the downstream connection terminals 38, 40.
  • the method of calculating the temperature threshold S1 as a function of time makes it possible, for example, to take better account is taken of the environment in which the downstream connection terminal (s) 38, 40 are located.
  • the thermal value and the value of the temperature threshold S1 respectively increase or decrease.
  • the evolution of the temperature threshold S1 follows that of the thermal value, which makes it possible to more precisely determine the overheating of the corresponding downstream connection terminal 38, 40.
  • the overheating here due to loosening is detected after 80 s, which makes it possible to quickly detect an anomaly and, for example, to quickly control the power down of the circuit breaker 22 or the intervention of an operator .
  • the fact that the temperature threshold S1 is calculated as a function of the intensity of the current makes it possible, in addition, to improve the detection of the superheating since the evolution of the temperature threshold S1 follows that of the thermal value with precision.
  • the auxiliary device 24 makes it possible to detect overheating, ie a terminal loosening even for an intensity of the current flowing through the corresponding output electrical conductor 12 ', 14' of less than 10 A and even when the value overheating is low, for example, of the order of 25 ° C, since the value of the temperature threshold generally changes in a similar way to that of the thermal value when it is preferably further calculated as a function of the measured current through the corresponding output electrical conductor 12 ', 14'.
  • the connecting members 42, 44 allow improved heat conduction between the corresponding connection pad 66 and each temperature sensor 46.
  • the auxiliary device 24 comprises means for detecting a loss of voltage downstream of the circuit breaker and is able to determine a cause of loss of voltage downstream of the circuit breaker 22, said cause being preferably chosen from the group consisting of : an electrical overload, a short circuit, and a voltage drop. More specifically, the auxiliary device 24 is in accordance with the auxiliary device described in the patent application filed under the number FR 13 58776 on pages 9 to 11.
  • FIG 8 illustrates a second embodiment of the invention for which the elements similar to the first embodiment, described above, are identified by identical references, and are not described again.
  • the current flowing in the electrical conductors 12, 12 ', 14, 14' is a three-phase current
  • the electrical connection 26 comprises three first electrical output conductors 12 'and three first electrical input conductors 12, corresponding to phase conductors and a second output electrical conductor 14 'and a second input electrical conductor 14, corresponding to neutral conductors.
  • the electrical system 10 then comprises four circuit breakers 22 each provided with a single downstream connection terminal 38, 40 and a single upstream connection terminal 34, 36 and forming a four-pole circuit breaker, coupled to the auxiliary device 24.
  • the auxiliary apparatus 24 then comprises four connecting members and four current sensors.
  • the second calculation software 80 of the temperature threshold S1 is then adapted to calculate the temperature threshold S1 (n) at the given instant t n , for each connection terminal, as a function of the value of the temperature threshold S1 (n -1) at the previous instant t n-1 and the current flowing through the corresponding downstream connection terminal 38, 40.
  • each first electrical output conductor 12 'and the second output electrical conductor 14' is similar to that of the first embodiment, described for a first output conductor 12 'and a second output conductor. output 14 ', and is not described again.
  • the auxiliary device 24 comprises three current sensors each associated with a respective first output electrical conductor 12 '. The current flowing in the second electrical output conductor 14 'is then calculated from the currents measured in the first electrical output conductors 12'.
  • the invention applies equally well to a single-phase circuit breaker adapted to be connected to a phase conductor and a neutral conductor, as shown in the first embodiment, to a three-phase circuit breaker suitable for connection. with three phase conductors, or a four-pole circuit breaker connected to three phase conductors and a neutral conductor, as shown in the second embodiment.
  • a single-phase and four-pole circuit-breakers when opening the circuit-breaker, depending on the application in question, the neutral conductor is cut and the current flowing through it is interrupted, or the neutral conductor is not cut and the current crossing is not interrupted.
  • auxiliary device 24 is adapted to be associated with any type of electrical device comprising a connection terminal.
  • the communication elements 28, 60 and the antennas 30, 62 conform to any type of wireless communication protocol, such as the WIFI protocol or the BLUETOOTH protocol.

Abstract

Dans ce procédé de détermination, à l'aide d'un appareil auxiliaire (24), d'une surchauffe d'au moins une borne de connexion (38, 40) d'un dispositif électrique (22), la ou les bornes de connexion (38, 40) comprenant chacune au moins une plage de connexion propre à être connectée à un conducteur électrique (12', 14') correspondant. Ce procédé comprend pour chaque borne de connexion (38, 40) des étapes de mesure d'une première température, à un instant donné, de calcul d'une valeur thermique de la plage de connexion, de comparaison de la valeur thermique de la plage de connexion avec un seuil de température, et de détection d'une surchauffe de la borne de connexion (38, 40) correspondante lorsque la valeur thermique est supérieure au seuil de température. Le procédé comprend précédemment à l'étape de comparaison et pour chaque borne de connexion (38, 40), une étape de calcul du seuil de température à l'instant donné, en fonction de la valeur du seuil à un instant précédent, la valeur du seuil de température étant variable entre l'instant précédent et l'instant donné.

Description

  • La présente invention concerne un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, un tel appareil auxiliaire et un système électrique comportant un tel dispositif électrique et un tel appareil auxiliaire.
  • Un enjeu persistant dans le domaine des bornes de connexion électrique est la mise en sécurité de telles bornes, par surveillance de leur température. En effet, une température trop élevée des bornes de connexion est propre à conduire à leur destruction, ainsi qu'à la mise hors service d'un dispositif électrique comprenant ces bornes de connexion. Plus particulièrement, une température trop élevée des bornes de connexion est apte à provoquer un incendie.
  • Il est ainsi connu des documents US-A-7501926 et respectivement US-A-5188542 de vérifier la température d'une borne de connexion à l'aide d'un bilame et respectivement d'une thermistance. Dans de tels modes de réalisation, la température de la borne de connexion est comparée avec un seuil prédéterminé de température, au-delà duquel une surchauffe de la borne est détectée. Cependant, de telles détections ne sont pas très précises.
  • Il est également connu du document US-A-2009/0167537 de mesurer la température d'une borne de connexion et de comparer cette température avec des premier et deuxième seuils prédéterminés de température. Un tel système permet de mettre hors-tension un dispositif électrique comprenant la borne de connexion, lorsque la température est supérieure au deuxième seuil de température. Cependant, les valeurs choisies pour les premier et deuxième seuils de température ne permettent pas toujours de prendre en compte les différentes conditions possibles de l'environnement de la borne de connexion, ce qui implique des erreurs dans la détermination de la surchauffe de la borne de connexion.
  • Le but de l'invention est donc de proposer un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, permettant de déterminer la surchauffe de manière plus précise.
  • A cet effet, l'invention concerne un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, la ou les bornes de connexion comprenant chacune au moins une plage de connexion propre à être connectée à un conducteur électrique correspondant,
    le procédé comprenant pour chaque borne de connexion les étapes suivantes :
    • a) la mesure, à un instant temporel donné (tn), d'une première température correspondant à la température de la plage de connexion correspondante, via un premier capteur de température,
    • b) le calcul d'une valeur thermique de la plage de connexion en fonction de la première température mesurée,
    • c) la comparaison de la valeur thermique de la plage de connexion avec un seuil de température, et
    • d) la détection d'une surchauffe de la borne de connexion correspondante lorsque la valeur thermique de la plage de connexion est supérieure au seuil de température,
    le procédé étant caractérisé en ce qu'il comprend précédemment à l'étape de comparaison c) et pour chaque borne de connexion, l'étape suivante :
    • b') le calcul du seuil de température à l'instant donné en fonction de la valeur du seuil de température à un instant précédent, la valeur du seuil de température étant variable entre l'instant précédent et l'instant donné, et
    lors de l'étape c) de comparaison, la valeur thermique est comparée avec la valeur du seuil de température à l'instant donné.
  • Grâce à l'invention, la valeur du seuil de température permettant de détecter une surchauffe de la ou des bornes de connexion est variable entre l'instant précédent et l'instant donné, ce qui permet de déterminer de manière plus précise la surchauffe. Le fait que la valeur du seuil de température soit variable permet par exemple de mieux prendre en compte l'environnement dans lequel se trouvent la ou les bornes de connexion.
  • Selon différents aspects de l'invention, le procédé comprend une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement admissibles :
    • Le procédé comprend précédemment à l'étape b') de calcul du seuil de température, une étape b") de mesure de l'intensité du courant circulant dans le conducteur électrique correspondant, et lors de l'étape de calcul b'), le seuil de température est calculée en outre en fonction de l'intensité du courant circulant dans le conducteur électrique correspondant.
    • La ou les bornes de connexion comprennent chacune un élément de serrage propre à maintenir la connexion entre le conducteur électrique et la plage de connexion correspondants, via l'application d'une force de serrage sur le conducteur électrique, et lors de l'étape de détection d), un desserrage d'au moins un conducteur électrique par rapport à la borne de connexion correspondante est détecté, lorsque la valeur thermique de la plage de connexion est supérieure au seuil de température, le desserrage correspondant à une valeur d'impédance entre la plage de connexion 66 et le conducteur électrique de sortie correspondant supérieure à une valeur prédéterminée.
    • Lors de l'étape b) de calcul de la valeur thermique de la plage de connexion, la valeur thermique est fixée égale à la première température.
    • Le procédé comprend précédemment à l'étape b) de calcul de la valeur thermique, une étape a') de mesure d'une deuxième température ambiante au voisinage du dispositif électrique, via un deuxième capteur de température disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique, et lors de l'étape b) de calcul de la valeur thermique, la valeur thermique est égale à la différence entre la première température et la deuxième température.
    • Lors de l'étape b') de calcul du seuil de température, le seuil de température est calculé avec la formule suivante : S 1 n = dt * R * Z * Irms n 2 - S 1 n - 1 RC + S 1 n - 1 ,
      Figure imgb0001

      avec S1(0) correspondant à la valeur du seuil de température à l'instant initial de référence, S1(0) dépendant de la valeur de la première température mesurée à l'instant initial de référence, S1(n) et S1(n-1) correspondant respectivement à la valeur du seuil de température à l'instant donné et à l'instant précédent, avec n supérieur ou égal à 1, dt correspondant à une période de calcul du seuil de température, suivant laquelle le seuil de température est calculé, Irms(n) correspondant à la valeur efficace du courant traversant le conducteur électrique de sortie correspondant à l'instant donné, Z correspondant à l'impédance entre la plage de connexion et le conducteur électrique correspondant, R et C correspondant respectivement à la résistance thermique et à la capacité thermique entre le premier et le deuxième capteurs de température.
  • L'invention a également pour objet un appareil auxiliaire pour un dispositif électrique, le dispositif électrique comprenant au moins une borne de connexion comportant une plage de connexion propre à être connectée à un conducteur électrique correspondant, l'appareil auxiliaire comprenant, pour chaque borne de connexion :
    • un premier capteur de température propre à mesurer, à un instant temporel donné, une première température correspondant à la température de la plage de connexion correspondante,
    • des premiers moyens de calcul d'une valeur thermique de la plage de connexion en fonction de la première température mesurée,
    • des moyens de comparaison propres à comparer la valeur thermique de la plage de connexion avec un seuil de température, et
    • des moyens de détection d'une surchauffe de la borne de connexion correspondante lorsque la valeur thermique de la plage de connexion correspondante est supérieure au seuil de température.
    Conformément à l'invention, l'appareil auxiliaire comprend pour chaque borne de connexion des deuxièmes moyens de calcul du seuil de température à l'instant donné en fonction de la valeur du seuil de température à un instant précédent, la valeur du seuil de température étant variable entre l'instant précédent et l'instant donné, et les moyens de comparaison sont propres à comparer la valeur thermique avec la valeur du seuil de température à l'instant donné.
  • Suivant d'autres aspects avantageux de l'invention, l'appareil auxiliaire comprend en outre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement admissibles :
    • L'appareil auxiliaire comprend, pour chaque borne de connexion, un capteur de courant propre à mesurer l'intensité du courant circulant dans le conducteur électrique correspondant, les deuxièmes moyens de calcul étant propres, pour chaque borne de connexion, à calculer le seuil de température en fonction en outre de l'intensité du courant circulant dans le conducteur électrique correspondant.
    • L'appareil auxiliaire comprend pour chaque borne de connexion, un organe de liaison électrique à la plage de connexion correspondante, l'organe de liaison comportant un matériau thermiquement conducteur, la différence de température entre la plage de connexion correspondante et l'organe de liaison étant de préférence inférieure à 10°C, pour des températures de la plage de connexion comprises entre 100°C et 400°C, le premier capteur de température étant propre à mesurer la température de l'organe de liaison,
    • L'appareil auxiliaire comprend un deuxième capteur de température, disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique et propre à mesurer une deuxième température ambiante au voisinage du dispositif électrique, et les premiers moyens de calcul sont propres à fixer la valeur thermique à une valeur égale à la différence entre la première température et la deuxième température.
  • L'invention a également pour objet un système électrique comprenant un dispositif électrique et un appareil auxiliaire associé au dispositif électrique, le dispositif électrique comprenant au moins une borne de connexion comportant une plage de connexion propre à être connectée à un conducteur électrique. Conformément à l'invention, l'appareil auxiliaire est tel que présenté ci-dessus.
  • Selon un autre aspect avantageux de l'invention, le dispositif électrique est un dispositif de commutation comprenant pour chaque conducteur électrique une borne d'entrée du courant et une borne de sortie du courant, et propre, dans une position ouverte, à laisser circuler du courant à travers le ou les conducteurs électriques correspondants, et dans une position fermée à interrompre la circulation du courant à travers le ou les conducteurs électriques correspondants, l'appareil auxiliaire étant connecté via le ou les organes de liaison électrique à la ou chaque borne de sortie du courant.
  • L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 est une représentation schématique d'un système électrique selon un premier mode de réalisation de l'invention, comprenant un disjoncteur électrique et un appareil auxiliaire couplé électriquement au disjoncteur électrique ;
    • la figure 2 est une représentation schématique de l'appareil auxiliaire de la figure 1 et de sa connexion à des bornes de connexion aval du disjoncteur de la figure 1 ;
    • la figure 3 est une coupe schématique et partielle d'une borne de connexion aval du disjoncteur, suivant le plan III de la figure 1 ;
    • la figure 4 est une représentation schématique d'un modèle thermique simplifié de la liaison entre l'une des bornes de connexion aval et l'appareil auxiliaire de la figure 2;
    • la figure 5 est un organigramme d'un procédé de détermination d'une surchauffe des bornes de connexion, conforme à l'invention ;
    • la figure 6 est une ensemble de quatre courbes, parmi lesquelles des première, deuxième et troisième courbes représentent l'échauffement, en fonction du temps, d'une borne de connexion du disjoncteur de la figure 1 pour différentes valeurs d'un couple de serrage appliquée à un élément de serrage de la borne et une quatrième courbe représente la valeur d'un seuil de température en fonction du temps ;
    • la figure 7 est un ensemble de deux courbes représentant, pour différentes valeurs de courant traversant l'une des bornes de connexion aval du disjoncteur de la figure 1, respectivement, la valeur d'un seuil de température, en fonction du temps, et une valeur thermique de la borne de connexion aval, en fonction du temps ; et
    • la figure 8 est une vue analogue à celle de la figure 1 selon un deuxième mode de réalisation de l'invention.
  • Sur la figure 1, un système électrique 10 est connecté, d'une part, à un premier 12 et à un deuxième 14 conducteurs électriques d'entrée et, d'autre part, à un premier 12' et à un deuxième 14' conducteurs électriques de sortie. Les conducteurs électriques d'entrée 12, 14 appartenant à un réseau de distribution électrique 16 et étant destinés à alimenter via le système électrique 10 et les conducteurs électriques de sortie 12', 14' une charge électrique 18.
  • Le système électrique 10 est propre à communiquer via une liaison sans fil avec un équipement électronique 20, tel qu'un serveur informatique, servant à centraliser des données. L'équipement 20 est également appelé concentrateur de données.
  • Le système électrique 10 comprend un disjoncteur électrique 22, tel qu'un disjoncteur électromécanique, et un appareil auxiliaire 24 couplé électriquement au disjoncteur 22. L'appareil auxiliaire 24 est, par exemple, fixé sous le disjoncteur 22.
  • Le système électrique 10 comprend un rail 25, tel qu'un rail DIN, sur lequel est fixé mécaniquement le disjoncteur 22.
  • Les premiers conducteurs d'entrée 12 et de sortie 12' sont, par exemple, des conducteurs de phase ou encore des conducteurs de potentiel continu positif. Les deuxièmes conducteurs d'entrée 14 et de sortie 14' sont, par exemple, des conducteurs de neutre ou encore des conducteurs de potentiel de référence. Les premiers et deuxièmes conducteurs électriques d'entrée 12, 14 et de sortie 12', 14' forment une liaison électrique 26.
  • Le concentrateur de données 20 est relié, via une liaison de données, telle qu'une liaison radioélectrique, à un dispositif de visualisation 27, afin d'afficher notamment des informations relatives au fonctionnement du disjoncteur 22 et transmises par l'appareil auxiliaire 24. Le concentrateur 20 comprend un premier organe de communication 28 et une première antenne radioélectrique 30.
  • Le disjoncteur électrique 22 est connu en soi, et est propre à interrompre la circulation d'un courant électrique traversant les premiers conducteurs électriques d'entrée 12 et de sortie 12' et/ou les deuxièmes conducteurs électriques d'entrée 14 et de sortie 14', notamment en présence d'un défaut électrique sur le premier conducteur d'entrée 12 et/ou sur le deuxième conducteur d'entrée 14.
  • Le disjoncteur 22 comporte une première 34 et une deuxième 36 bornes d'entrée du courant, également appelées première et deuxième bornes de connexion amont, auxquelles sont connectés les premier 12 et deuxième 14 conducteurs électriques d'entrée. Le disjoncteur 22 comporte également une première 38 et une deuxième 40 bornes de sortie du courant, également appelées première et deuxième bornes de connexion aval, connectées respectivement aux premier 12' et deuxième 14' conducteurs électriques de sortie.
  • Plus précisément, le disjoncteur électrique 22 fait le lien entre les premier 12 et deuxième 14 conducteurs électriques d'entrée et respectivement les premier 12' et deuxième 14' conducteurs électriques de sortie, via les bornes de connexion amont 34, 36 et les bornes de connexion aval 38, 40.
  • Le disjoncteur 22 est en position ouverte propre à interrompre la circulation d'un courant électrique à travers la liaison électrique 26. Le disjoncteur 22 est en position fermée propre à laisser circuler le courant à travers la liaison électrique 26, afin d'alimenter la charge 18.
  • L'appareil auxiliaire 24 comprend pour chaque borne de connexion aval 38, 40, un organe de liaison 42, 44 à la borne de connexion aval 38, 40 correspondante, comme représenté sur la figure 2. L'appareil auxiliaire 24 comprend, pour chaque borne de connexion aval 38, 40, un premier capteur de température 46 et un capteur de courant 50, 51. L'appareil auxiliaire 24 comprend également une unité de traitement 52, un organe d'alimentation électrique 54 et un régulateur de tension 56. L'appareil auxiliaire 24 comprend un organe 58 de stockage d'énergie électrique et un deuxième organe de communication 60, ainsi qu'une deuxième antenne radioélectrique 62 apte à communiquer par ondes radioélectriques avec la première antenne 30. Avantageusement, l'appareil auxiliaire 24 comprend un capteur de tension 64.
  • Le dispositif de visualisation 27, visible sur la figure 1, comporte notamment un écran d'affichage, non représenté, et des moyens, non représentés, d'affichage à l'écran de données reçues du concentrateur de données 20.
  • Le premier organe de communication 28 est apte à transmettre des données vers l'appareil auxiliaire 24, via la première antenne 30 et à établir une liaison radioélectrique avec l'appareil auxiliaire 24.
  • Chaque borne de connexion aval 38, 40 comprend une plage de connexion 66 propre à être connectée respectivement au premier 12' et deuxième 14' conducteurs électriques de sortie, comme représenté sur la figure 2. Chaque borne de connexion aval 38, 40 comprend également un élément de serrage 68 propre à maintenir la connexion entre le conducteur électrique de sortie 12', 14' correspondant et la plage de connexion 66 correspondante, via l'application d'une force de serrage F sur le conducteur électrique de sortie 12', 14' correspondant.
  • Dans l'exemple de réalisation de la figure 3, chaque borne de connexion aval 38, 40 comprend un organe mobile 70 propre à être déplacé via l'élément de serrage 68 afin de serrer conjointement, entre la plage de connexion 66 et l'organe mobile 70, le conducteur électrique de sortie 12', 14' correspondant, ainsi que l'organe de liaison 42, 44 correspondant.
  • La force de serrage F est par exemple induite par un couple de serrage C appliqué à l'élément de serrage 68. Sur la figure 3, l'élément de serrage 68 est une vis.
  • En variante, les bornes de sortie diffèrent des bornes de connexion aval 38, 40 présentées dans le premier mode de réalisation, tout en comprenant toujours un élément de serrage propre à maintenir la connexion entre le conducteur électrique de sortie 12', 14' correspondant et la plage de connexion 66 correspondante.
  • L'organe de liaison 42 est en contact avec le premier conducteur électrique de sortie 12' et la plage de connexion 66 de la première borne de sortie 38. L'organe de liaison 42 comporte un matériau thermiquement et électriquement conducteur, tel que du cuivre. La différence de température entre la plage de connexion 66 et l'organe de liaison 42 est de préférence inférieure à 10°C pour des températures de la plage de connexion 66 comprises entre 100°C et 400°C.
  • De même, l'organe de liaison 44 est en contact avec le deuxième conducteur électrique de sortie 14' et la plage de connexion 66 de la deuxième borne de sortie 40. L'organe de liaison 44 comporte un matériau thermiquement et électriquement conducteur, tel que du cuivre. La différence de température entre la plage de connexion 66 et l'organe de liaison 44 est de préférence inférieure à 10°C pour des températures de la plage de connexion 66 comprises entre 100°C et 400°C.
  • Chaque premier capteur de température 46 est propre à mesurer, à un instant temporel donné tn, une première température correspondant à la température de la plage de connexion 66 correspondante, c'est-à-dire à la température de la borne de connexion aval 38, 40 correspondante. Plus précisément, le premier capteur de température 46 est, par exemple, positionné sur l'organe de liaison 42, 44 correspondant et est propre à mesurer la température de l'organe de liaison 42, 44. Chaque premier capteur de température est par exemple, un thermocouple ou une sonde à résistance etc. Chaque premier capteur est adapté pour une mesure de températures comprise entre 25°C et 400°C.
  • Les capteurs de courant 50, 51 sont propres à mesurer l'intensité du courant circulant respectivement dans le premier 12' et le deuxième 14' conducteurs électriques de sortie, c'est-à-dire aussi l'intensité du courant traversant la plage de connexion 66 et la borne de connexion aval 38, 40 correspondante.
  • Les capteurs de courant 50, 51 comportent, par exemple, un tore de Rogowski, un transformateur de courant, un shunt ou encore un capteur à effet Hall.
  • En variante, l'appareil auxiliaire 24 comprend un capteur de courant 50 seulement pour l'une des bornes de connexion aval 38, qui est propre à mesurer le courant circulant dans un seul des conducteurs électriques de sortie, par exemple le premier conducteur électrique de sortie 12'. Le courant circulant dans le deuxième conducteur électrique de sortie 14', est alors calculé à partir de la valeur du courant circulant dans le premier conducteur électrique de sortie 12'. Plus précisément le courant circulant dans le deuxième conducteur électrique de sortie 14' est égal à l'opposé du courant circulant dans le premier conducteur électrique 12'.
  • L'unité de traitement 52 comporte un deuxième capteur de température 71, un processeur 72, et une mémoire 76 associée au processeur 72, comme représenté sur la figure 2. L'unité de traitement 52 est propre à générer un message M1 comprenant des données calculées via le processeur 72 et la mémoire 76.
  • L'organe d'alimentation électrique 54 est propre, via les organes de liaison 42, 44, à récupérer une partie de l'énergie électrique transmise sur les conducteurs électriques de sortie 12', 14' et à alimenter en énergie électrique l'appareil auxiliaire 24.
  • Le régulateur de tension 56 permet d'adapter la tension délivrée par l'alimentation électrique 54 à une valeur de tension acceptable par l'unité de traitement 52 et par le deuxième organe de communication 60. Le régulateur de tension 56 est par exemple un convertisseur continu/continu, qui délivre une tension continue de 3,3 volts.
  • L'organe de stockage 58 d'énergie électrique est propre à emmagasiner une partie de l'énergie électrique délivrée par l'alimentation électrique 54 lorsque le disjoncteur 22 est fermé, et à restituer l'énergie électrique stockée lors d'une perte de tension en aval du disjoncteur 22.
  • Sur la figure 2, l'organe de stockage 58 est un condensateur dont la valeur de la capacité est fonction, entre autre, de la consommation électrique moyenne de l'appareil auxiliaire 24 de la tension d'alimentation délivrée au deuxième organe de communication 60 et à l'unité de traitement 52.
  • Le deuxième organe de communication 60 est apte à recevoir des données en provenance du concentrateur de données 20, et plus précisément en provenance du premier organe de communication 28 et de la première antenne 30, et à établir une liaison radioélectrique avec le concentrateur 20. Le deuxième organe de communication 60 est propre à émettre, via la deuxième antenne 62, le message M1 à destination du concentrateur de données 20. Avantageusement, les organes de communication 28, 60 et les antennes 30, 62 sont conformes aux protocoles de communication ZIGBEE ou ZIGBEE GREEN POWER, basés sur la norme IEE-802.15.4.
  • En variante, l'organe de communication 60 est propre à communiquer avec le concentrateur de données 20 via une liaison filaire, non représentée.
  • Le capteur de tension 64 est connu en soi, et est propre à mesurer une première tension V1 délivrée entre la première borne de connexion aval 38 et la deuxième borne de connexion aval 40. Le capteur de tension 64 permet, plus précisément, de mesurer la première tension V1 en sortie du disjoncteur 22, au niveau du premier conducteur électrique de sortie 12'.
  • Le deuxième capteur de température 71 est propre à mesurer une deuxième température, correspondant à une température ambiante au voisinage du disjoncteur 22. Le deuxième capteur de température 71 est disposé à une distance inférieure à 3 m, de préférence inférieure à 1 m du disjoncteur 22. Le deuxième capteur de température 71 est intégré à l'unité de traitement 52.
  • La figure 4 représente un modèle thermique de la connexion entre l'appareil auxiliaire 24 et l'une des bornes de connexion aval 38, 40 correspondante. Plus précisément, la figure 4 correspond au modèle thermique de la connexion entre l'une des plages de connexion 66 et le deuxième capteur de température 71. Le modèle correspond à un circuit électrique 77 comprenant un générateur de courant G, une résistance thermique R et un condensateur thermique C connectés en parallèle l'un de l'autre. Ainsi, la résistance thermique R et le condensateur thermique C représentent la relation thermique entre la plage de connexion 66 correspondante et le deuxième capteur de température 71.
  • La mémoire 76 est apte à stocker un premier logiciel 78 de calcul d'une valeur thermique de chaque plage de connexion 66, un deuxième logiciel 80 de calcul, pour chaque plage de connexion 66, d'un seuil de température S1, un logiciel 82 de comparaison de la valeur thermique de chaque plage de connexion 66 avec le seuil de température S1, un logiciel 83 de détection d'une surchauffe des bornes de connexion aval 38, 40. En complément, la mémoire 76 est apte à stocker un troisième logiciel 84 de calcul d'une puissance et d'une énergie électrique traversant chaque conducteur électrique de sortie 12', 14' en fonction des valeurs d'intensité et de tension mesurées par les capteurs de courant 50, 51 et de tension 64.
  • La mémoire 76 est apte à stocker un logiciel 88 d'échantillonnage de l'intensité du courant et de la tension mesurées par les capteurs de courant 50, 51 et de tension 64. En variante, les premiers moyens de calcul 78, les deuxièmes moyens de calcul 80, les moyens de comparaison 82, les moyens de détection 83, les troisièmes moyens de calcul 84 et les moyens d'échantillonnage 88 sont réalisés sous forme de composants logiques programmables ou encore sous forme de circuits intégrés dédiés.
  • Le premier logiciel de calcul 78 est propre à calculer la valeur thermique de chaque plage de connexion 66, en fonction de la première température mesurée correspondante. Plus précisément, le premier logiciel de calcul 78 est propre à calculer la différence entre la première température et la deuxième température pour chaque borne de connexion aval 38, 40. Ainsi, la valeur thermique correspond, par exemple, à une variation de température, telle que la différence entre la première température et la deuxième température, et notamment à un échauffement de la plage de connexion 66.
  • En variante, la deuxième température est considérée comme égale à une valeur constante prédéterminée et le premier logiciel de calcul 78 fixe la valeur thermique égale à la différence entre la première température et la valeur constante prédéterminée.
  • Le deuxième logiciel de calcul 80 est propre à calculer le seuil de température S1 à l'instant donné tn en fonction de la valeur du seuil de température calculée à un instant précédent tn-1 et la valeur du seuil de température S1 est variable entre l'instant donné tn et l'instant précédent tn-1. Le deuxième logiciel de calcul 80 est plus précisément apte à calculer la valeur du seuil de température S1 suivant, une période d'échantillonnage dt, également appelée période de calcul dt. L'instant précédent tn-1 correspond par exemple à un instant qui précède l'instant donné tn d'une durée égal à la période de calcul dt.
  • En variante, l'instant précédent t0 correspond à un instant initial de référence t0. L'instant initial de référence t0 correspond, par exemple, à l'instant d'une première mesure effectuée par l'appareil auxiliaire choisie parmi la mesure de la première température, la mesure de la deuxième température et la mesure de l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant, c'est-à-dire par exemple à l'instant de la mise sous tension du disjoncteur 22.
  • Le deuxième logiciel de calcul 80 est de préférence également apte à calculer le seuil de température S1 en fonction de l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant. Le seuil de température S1 correspond, par exemple, à un échauffement limite de la plage de connexion 66 correspondante, c'est-à-dire à une variation de température. Le circuit électrique 77 présenté précédemment permet d'obtenir une équation donnant la valeur du premier seuil de température S1.
  • Plus précisément, le seuil de température S1 est calculé suivant la période d'échantillonnage dt avec l'équation suivante : S 1 n = dt * R * Z * Irms n 2 - S 1 n - 1 RC + S 1 n - 1 ,
    Figure imgb0002

    avec S1(0) correspondant à la valeur du seuil de température à l'instant initial de référence t0, c'est-à-dire à un échantillon initial, appelé échantillon 0, de la valeur du seuil de température S1, S1(0) dépendant de la valeur de la première et de la deuxième température mesurées à l'instant initial de référence t0, c'est-à-dire par exemple égale à l'écart de la première température mesurée à l'instant initial de référence t0 par rapport à la deuxième température mesurée à l'instant initial de référence t0 et avec S1(n) et S1(n-1) correspondant respectivement à la valeur du seuil de température à l'instant donné tn=t0+n*dt et à l'instant précédent tn-1=t0+(n-1)*dt, avec n supérieur ou égal à 1 et correspondant au numéro d'échantillon de la valeur de seuil S1, dt correspondant, par exemple, également à une période suivant laquelle les premier 46 et deuxième 71 capteurs de température et le capteur de courant 50, 51 mesurent respectivement la première température, la deuxième température et le courant circulant dans le conducteur électrique de sortie 12', 14' correspondant, Irms(n) correspondant à la valeur efficace du courant traversant le conducteur électrique de sortie 12', 14' correspondant à l'instant donné tn, Z correspondant à l'impédance entre la plage de connexion 66 et le conducteur électrique de sortie 12', 14' correspondant, R et C correspondant respectivement à la résistance thermique et à la capacité thermique entre la plage de connexion 66 et le deuxième capteur de température 71, et plus précisément entre le premier capteur de température 46 et le deuxième capteur de température 71.
  • En variante, la valeur du seuil de température S1(0) à l'instant initial de référence t0 est une valeur prédéterminée.
  • Dans la variante où le premier logiciel de calcul 78 fixe la valeur thermique égale à la différence entre la première température et la valeur constante prédéterminée, le premier seuil de température S1 est calculé avec une équation similaire à équation (1) présenté ci-dessus, mais les valeurs des paramètres R et C de l'équation seraient différentes et correspondraient par exemple respectivement à la résistance thermique et à la capacité thermique entre la plage de connexion 66 et un point de référence prédéterminé.
  • Le logiciel de comparaison 82 est propre à comparer la valeur thermique de chaque plage de connexion 66, calculée par le premier logiciel de calcul 78, avec le seuil de température S1 correspondant. La comparaison entre la valeur thermique et le seuil de température est réalisée à chaque multiple de la période d'échantillonnage dt après l'instant initial de référence t0. Le seuil de température S1 est calculé à partir de l'équation (1) récursive permettant de calculer la valeur du premier seuil S1 à l'instant donné tn, à partir de la connaissance de la valeur du premier seuil S1 à l'instant précédent tn-1 et notamment à partir de la connaissance de la valeur du seuil de température S1(0) à l'instant initial de référence t0.
  • Plus précisément, le logiciel de comparaison 82 est apte à comparer la valeur thermique calculée à partir de la première température mesurée à l'instant donné tn avec la valeur du seuil de température S1(n) à l'instant donné tn. En effet, la comparaison est efficace si l'on compare la valeur du seuil de température S1 et la valeur thermique au même instant, c'est-à-dire à l'instant de mesure de la première température correspondant à la valeur thermique calculée. Ainsi, l'instant donné tn correspond à l'instant de mesure de la première température.
  • Le logiciel de détection 83 est, plus précisément, propre à détecter le desserrage d'au moins une borne de connexion aval 38, 40 correspondante, c'est-à-dire le desserrage d'au moins un conducteur électrique de sortie 12', 14' par rapport à la borne de connexion aval 38, 40 correspondante, lorsque la valeur thermique de la plage de connexion 66 est supérieure au seuil de température S1. Le desserrage correspond à une à une valeur du couple de serrage C inférieure à une première valeur de référence prédéterminée, c'est-à-dire à une valeur de la force de serrage F inférieure à une deuxième valeur de référence prédéterminée et donc à une valeur de l'impédance Z supérieure à une valeur prédéterminée, c'est-à-dire, par exemple, supérieure à 0,004 Ω de préférence supérieure à 0,005 Ω.
  • Le fonctionnement du système électrique 10 selon l'invention va désormais être expliqué à l'aide de la figure 5.
  • Le procédé est présenté ci-dessous dans le cas d'une seule borne de connexion aval 38, 40, c'est-à-dire pour la connexion entre une seule des bornes de connexion aval 38, 40 et l'appareil auxiliaire 24. Le procédé s'applique généralement à chaque borne de connexion aval 38, 40.
  • Lors d'une étape initiale 100, le premier capteur de température 46 mesure, à l'instant donné tn, la première température. En outre, lors de la première mesure de la première température, c'est-à-dire à l'instant initial de référence t0, la première température mesurée est sauvegardé et le seuil de température S1(0) à l'instant initial de référence t0, c'est-à-dire la valeur de l'échantillon initial du seuil de température S1, est calculé, puis sauvegardé. Puis, lors d'une suivante 102, le deuxième capteur de température 71 mesure la deuxième température.
  • Ensuite, lors d'une étape 104, la valeur thermique de la plage de connexion 66 correspondante est calculée, par exemple avec la différence entre la première température et la deuxième température, c'est-à-dire qu'on soustrait la valeur de la deuxième température à la première température.
  • En variante, lors de l'étape 104, la valeur thermique est fixée égale à la première température et l'étape 102 n'est pas réalisée.
  • Au cours d'une étape 106, l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant est mesurée. Puis, lors d'une étape 108, la valeur du seuil de température S1 à l'instant donné tn, est calculée en fonction de la valeur du seuil de température S1(n-1) à l'instant précédent tn-1 et de préférence également en fonction de l'intensité du courant mesurée lors de l'étape 106. Le seuil de température S1 est ainsi calculé, par exemple, à partir de l'équation (1) présentée ci-dessus. Lors d'un premier calcul du seuil de température S1, après l'instant initial de référence t0, la valeur du seuil de température à l'instant initial de référence t0 est utilisée. En outre, lors du calcul du seuil de température S1, les valeurs choisies pour la résistance thermique R, le condensateur thermique C et l'impédance Z entre la plage de connexion 66 et le conducteur électrique de sortie 12', 14' correspondant, sont des valeurs correspondant à un échauffement maximal de la plage de connexion 66 correspondante et donc à un seuil de température maximum S1. Ainsi, la valeur choisie pour l'impédance Z correspond à l'impédance minimale admissible pour éviter un incendie.
  • Ensuite, lors d'une étape 110, la valeur thermique de la plage de connexion 66 correspondante est comparée avec la valeur du seuil de température S1 calculée, à l'instant donné tn, lors de l'étape 108.
  • Si lors de l'étape 110 de comparaison, la valeur thermique est inférieure ou égale au seuil de température S1, alors le procédé retourne à l'étape 100 de mesure de la première température au bout d'une durée prédéterminée, correspondant, par exemple, à la période d'échantillonnage dt.
  • Si lors de l'étape 110 de comparaison, la valeur thermique est strictement supérieure au seuil de température S1 alors, lors d'une étape 112, une surchauffe de la plage de connexion 66 et de la borne de connexion aval 38, 40 correspondante est détectée. Lors de l'étape 112, le desserrage du conducteur électrique de sortie 12', 14' correspondant, par rapport à la borne de connexion aval 38, 40 correspondante, est alors par exemple détecté.
  • Lors d'une étape 114 suivante, le premier message M1 est généré et comprend une donnée spécifiant la détection du desserrage ou, plus généralement de la surchauffe de la borne de connexion aval 38, 40 correspondante. Enfin, au cours d'une étape 116 suivante, le premier message M1 est transmis au concentrateur 20. Le concentrateur 20 est alors propre à indiquer à un opérateur, via le dispositif de visualisation 27, une surchauffe ou un desserrage de la borne de connexion aval 38, 40 correspondante.
  • Avantageusement, lors de la génération du premier message M1 des valeurs de puissance électrique et d'énergie électrique calculées par le troisième logiciel de calcul 84 sont incluses dans le premier message M1.
  • A la figure 6, on observe des première 200, deuxième 202 et troisième 204 courbes correspondant aux valeurs thermiques, et plus précisément à des valeurs d'échauffement de l'une des plages de connexion 66, calculées par le premier logiciel de calcul 78. Les première 200, deuxième 202 et troisième 204 courbes sont tracées en fonction du temps T, et plus précisément en fonction de la durée écoulée depuis l'instant initial de référence t0. L'instant initial de référence correspond à l'abscisse 0 à la figure 6. Les première 200, deuxième 202 et troisième 204 courbes correspondent chacune à un couple de serrage C respectif, appliqué à l'élément de serrage 68 afin de maintenir la connexion électrique entre le conducteur électrique et la plage de connexion 66, respectivement égal à 2 Nm, 0,2 Nm et 0,1 Nm, pour un courant mesuré par le capteur de courant 50, 51 correspondant égal à 20 A. La figure 6 montre également une quatrième courbe 206 correspondant à la valeur du seuil de température S1 calculée par le deuxième logiciel de calcul 80, en fonction du temps, et plus précisément en fonction de la durée écoulée depuis l'instant initial de référence t0.
  • Sur la figure 6, on observe que la valeur thermique calculée pour les première 200, deuxième 202 et troisième 204 courbes est toujours inférieure à la valeur du seuil de température S1, présentée sur la quatrième courbe 206. En effet, pour les première 200, deuxième 202 et troisième 204 courbes, la valeur du couple de serrage C et donc de la force de serrage F est telle que la borne de connexion aval 38, 40 correspondante n'est pas considérée comme desserrée, la valeur du seuil de température n'est donc jamais atteinte. On remarque néanmoins que lorsque la valeur du couple serrage C, et donc de force de serrage F, diminue, la valeur thermique correspondant ici à une valeur d'échauffement de la plage de connexion 66 augmente. En outre, il apparait clairement sur la quatrième courbe 206, que la valeur du seuil de température S1 varie en fonction de la durée écoulée par rapport à l'instant initial de référence t0, et plus généralement par rapport à l'instant précédent. La forme de la quatrième courbe 206 est globalement similaire à celle des trois autres courbes 200, 202, 204. L'évolution du seuil de température suit donc celle de la valeur thermique, ce qui permet de déterminer la surchauffe de la borne de connexion aval 38, 40 correspondante de manière plus précise, sans risque d'erreur.
  • A la figure 7, on observe une cinquième courbe 208 correspondant à la valeur thermique de l'une des plages de connexion 66, calculée par le premier logiciel de calcul 78, en fonction du temps, et plus précisément en fonction de la durée écoulée depuis l'instant initial de référence t0, et plus généralement depuis l'instant précédent tn-1, et une sixième courbes 210 correspondant à la valeur du seuil de température S1 calculé par le deuxième logiciel de calcul 80, en fonction du temps. Sur la figure 7, l'instant initial de référence correspond à l'abscisse 0. Les cinquième 208 et sixième 210 courbes sont obtenues pour une valeur du courant traversant la plage de connexion 66 et le conducteur électrique de sortie 12', 14' correspondant, qui varie au cours du temps. Le courant traversant la plage de connexion 66 correspondante est égal à 10 A entre 0 secondes (s) et 600 s, puis à 40 A entre 600 s et 1500s et à 20 A entre 1500 s et 2800 s.
  • Concernant la cinquième courbe 208, un desserrage de l'élément de serrage 68, c'est-à-dire de la borne de connexion aval 38, 40 correspondante, a été effectué pour un temps égal à 2400 s. Ainsi, entre 0 s et 2400 s le couple de serrage est égal à 0,2 Nm et après 2400 s le couple de serrage est égal à 0 Nm ce qui correspond à un desserrage complet de l'élément de serrage 68.
  • On observe alors, qu'avant un temps égal à 2400s, la valeur thermique est inférieure au seuil de température S1 et l'évolution de la sixième courbe 210 suit celle de la cinquième courbe 208. Puis, après le desserrage de la borne de connexion aval 38, 40 correspondante, la valeur thermique augmente fortement et devient supérieure à la valeur du seuil de température S1. La surchauffe de la borne de connexion aval 38, 40 correspondante est alors détectée.
  • Le fait que la valeur du seuil de température S1 varie en fonction du temps et plus précisément entre l'instant donné tn et l'instant précédent tn-1 permet de déterminer de manière plus précise la surchauffe. En effet, ceci permet de considérer, par exemple, différentes phases de fonctionnement du disjoncteur 22, et plus précisément des bornes de connexion aval 38, 40. La méthode de calcul du seuil de température S1 en fonction du temps permet par exemple de mieux prendre en compte l'environnement dans lequel se trouvent la ou les bornes de connexion aval 38, 40.
  • On observe sur les cinquième 208 et sixième 210 courbes, que lorsque le courant augmente ou diminue, la valeur thermique et la valeur du seuil de température S1 respectivement augmentent ou diminuent. L'évolution du seuil de température S1 suit celle de la valeur thermique, ce qui permet de déterminer de manière plus précise la surchauffe de la borne de connexion aval 38, 40 correspondante. Sur la figure 7, on observe que la surchauffe due ici au desserrage, est détectée au bout de 80 s, ce qui permet de détecter rapidement une anomalie et, par exemple, de commander rapidement la mise hors tension du disjoncteur 22 ou l'intervention d'un opérateur. Le fait que le seuil de température S1 soit calculé en fonction de l'intensité du courant permet, en outre, d'améliorer la détection de la surchauffe puisque l'évolution du seuil de température S1 suit celle de la valeur thermique avec précision.
  • De plus, l'appareil auxiliaire 24 permet de détecter la surchauffe, c'est à dire un desserrage de borne même pour une intensité du courant traversant le conducteur électrique de sortie 12', 14' correspondant inférieure à 10 A et même lorsque la valeur de la surchauffe est faible, par exemple, de l'ordre de 25 °C, puisque la valeur du seuil de température évolue globalement de manière analogue à celle de la valeur thermique lorsqu'elle est de préférence calculée en outre en fonction du courant mesuré traversant le conducteur électrique de sortie 12', 14' correspondant.
  • Les organes de liaison 42, 44 permettent une conduction de chaleur améliorée entre la plage de connexion 66 correspondante et chaque capteur de température 46.
  • Avantageusement, l'appareil auxiliaire 24 comprend un moyen de détection d'une perte de tension en aval du disjoncteur et est propre à déterminer une cause de perte de tension en aval du disjoncteur 22, ladite cause étant de préférence choisie parmi le groupe consistant en : une surcharge électrique, un court-circuit, et une chute de tension. Plus précisément, l'appareil auxiliaire 24 est conforme à l'appareil auxiliaire décrit dans la demande de brevet déposé sous le numéro FR 13 58776 , aux pages 9 à 11.
  • La figure 8 illustre un deuxième mode de réalisation de l'invention pour lequel les éléments analogues au premier mode de réalisation, décrit précédemment, sont repérés par des références identiques, et ne sont pas décrits à nouveau.
  • Selon le deuxième mode de réalisation, le courant circulant dans les conducteurs électriques 12, 12', 14, 14' est un courant triphasé, et la liaison électrique 26 comporte trois premiers conducteurs électriques de sortie 12' et trois premiers conducteurs électriques d'entrée 12, correspondant à des conducteurs de phase et un deuxième conducteur électrique de sortie 14' et un deuxième conducteur électrique d'entrée 14, correspondant à des conducteurs de neutre.
  • Le système électrique 10 comporte alors quatre disjoncteurs 22 munis chacun d'une seule borne de connexion aval 38, 40 et d'une seule borne de connexion amont 34, 36 et formant un disjoncteur tétrapolaire, couplé à l'appareil auxiliaire 24.
  • L'appareil auxiliaire 24 comporte alors quatre organes de liaison et quatre capteurs de courant.
  • Le deuxième logiciel de calcul 80 du seuil de température S1 est alors propre à calculer le seuil de température S1(n) à l'instant donné tn, pour chaque borne de connexion, en fonction de la valeur du seuil de température S1(n-1) à l'instant précédent tn-1 et du courant traversant la borne de connexion aval 38, 40 correspondante.
  • Le fonctionnement de ce deuxième mode de réalisation pour chaque premier conducteur électrique de sortie 12' et le deuxième conducteur électrique de sortie 14' est analogue à celui du premier mode de réalisation, décrit pour un premier conducteur de sortie 12' et un deuxième conducteur de sortie 14', et n'est pas décrit à nouveau.
  • Les avantages de ce deuxième mode de réalisation sont identiques à ceux du premier mode de réalisation.
  • En variante, dans ce deuxième mode de réalisation, l'appareil auxiliaire 24 comprend trois capteurs de courant chacun associé à un premier conducteur électrique de sortie 12' respectif. Le courant circulant dans le deuxième conducteur électrique de sortie 14' est alors calculé à partir des courants mesurés dans les premiers conducteurs électriques de sortie 12'.
  • Plus généralement, l'invention s'applique aussi bien à un disjoncteur monophasé propre à être connecté à un conducteur de phase et à un conducteur de neutre, comme présenté dans le premier mode de réalisation, qu'à un disjoncteur triphasé propre à être connecté à trois conducteurs de phases, ou encore qu'à un disjoncteur tétrapolaire connecté à trois conducteurs de phase et à un conducteur de neutre, comme présenté dans le deuxième mode de réalisation. Pour les disjoncteurs monophasé et tétrapolaire, lors de l'ouverture du disjoncteur, suivant l'application considérée, le conducteur de neutre est coupé et le courant le traversant est interrompu, ou bien le conducteur de neutre n'est pas coupé et le courant le traversant n'est pas interrompu.
  • Plus généralement, l'appareil auxiliaire 24 est apte à être associé à tout type de dispositif électrique comprenant une borne de connexion.
  • Selon une autre variante, les organes de communication 28, 60 et les antennes 30, 62 sont conformes à tout type de protocole de communication sans fil, tels que le protocole WIFI ou le protocole BLUETOOTH.

Claims (12)

  1. Procédé de détermination, à l'aide d'un appareil auxiliaire (24), d'une surchauffe d'au moins une borne de connexion (38, 40) d'un dispositif électrique (22), la ou les bornes de connexion (38, 40) comprenant chacune au moins une plage de connexion (66) propre à être connectée à un conducteur électrique (12', 14') correspondant,
    le procédé comprenant pour chaque borne de connexion (38, 40) les étapes suivantes :
    - a) la mesure (100), à un instant temporel donné (tn), d'une première température correspondant à la température de la plage de connexion (66) correspondante, via un premier capteur (46) de température,
    - b) le calcul (104) d'une valeur thermique de la plage de connexion (66) en fonction de la première température mesurée,
    - c) la comparaison (110) de la valeur thermique de la plage de connexion (66) avec un seuil de température (S1), et
    - d) la détection (112) d'une surchauffe de la borne de connexion (38, 40) correspondante lorsque la valeur thermique de la plage de connexion (66) est supérieure au seuil de température (S1),
    le procédé étant caractérisé en ce qu'il comprend précédemment à l'étape de comparaison c) et pour chaque borne de connexion (38, 40), l'étape suivante :
    - b') le calcul (108) du seuil de température (S1(n)) à l'instant donné (tn) en fonction de la valeur du seuil de température (S1(n-1)) à un instant précédent (tn-1, t0), la valeur du seuil de température (S1) étant variable entre l'instant précédent (tn-1, t0) et l'instant donné (tn), et
    lors de l'étape c) de comparaison, la valeur thermique est comparée avec la valeur du seuil de température (S1(n)) à l'instant donné (tn).
  2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend précédemment à l'étape b') de calcul du seuil de température (S1), l'étape suivante :
    - b") la mesure (106) de l'intensité du courant circulant dans le conducteur électrique (12', 14') correspondant,
    et en ce que lors de l'étape de calcul b'), le seuil de température (S1) est calculée en outre en fonction de l'intensité du courant circulant dans le conducteur électrique (12', 14') correspondant,
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que la ou les bornes de connexion (38, 40) comprennent chacune un élément de serrage (68) propre à maintenir la connexion entre le conducteur électrique (12', 14') et la plage de connexion (38, 40) correspondants, via l'application d'une force de serrage (C) sur le conducteur électrique (12', 14'), et en ce que lors de l'étape de détection d), un desserrage d'au moins un conducteur électrique (12', 14') par rapport à la borne de connexion (38, 40) correspondante est détecté, lorsque la valeur thermique de la plage de connexion est supérieure au seuil de température (S1), le desserrage correspondant à une valeur d'impédance (Z) entre la plage de connexion 66 et le conducteur électrique de sortie correspondant (12', 14') supérieure à une valeur prédéterminée.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que lors de l'étape b) de calcul de la valeur thermique de la plage de connexion (66), la valeur thermique est fixée égale à la première température.
  5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend précédemment à l'étape b) de calcul de la valeur thermique, l'étape suivante :
    - a') la mesure (102) d'une deuxième température ambiante au voisinage du dispositif électrique (22), via un deuxième capteur de température (71) disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique (22),
    en ce que, lors de l'étape b) de calcul de la valeur thermique, la valeur thermique est égale à la différence entre la première température et la deuxième température.
  6. Procédé selon la revendication 5, caractérisé en ce que lors de l'étape b') de calcul du seuil de température (S1), le seuil de température (S1) est calculé avec la formule suivante : S 1 n = dt * R * Z * Irms n 2 - S 1 n - 1 RC + S 1 n - 1 ,
    Figure imgb0003

    avec S1(0) correspondant à la valeur du seuil de température à l'instant initial de référence (t0), S1(0) dépendant de la valeur de la première température mesurée à l'instant initial de référence,
    S1(n) et S1(n-1) correspondant respectivement à la valeur du seuil de température à l'instant donné (tn) et à l'instant précédent (tn-1), avec n supérieur ou égal à 1, dt correspondant à une période de calcul du seuil de température, suivant laquelle le seuil de température (S1) est calculé, Irms(n) correspondant à la valeur efficace du courant traversant le conducteur électrique de sortie (12', 14') correspondant à l'instant donné (tn), Z correspondant à l'impédance entre la plage de connexion (66) et le conducteur électrique (12', 14') correspondant, R et C correspondant respectivement à la résistance thermique et à la capacité thermique entre le premier (46) et le deuxième (71) capteurs de température.
  7. Appareil auxiliaire (24) pour un dispositif électrique (22), le dispositif électrique (22) comprenant au moins une borne de connexion (38, 40) comportant une plage de connexion (66) propre à être connectée à un conducteur électrique (12', 14') correspondant, l'appareil auxiliaire (24) comprenant, pour chaque borne de connexion (38, 40) :
    - un premier capteur de température (46) propre à mesurer, à un instant temporel donné (tn), une première température correspondant à la température de la plage de connexion (66) correspondante,
    - des premiers moyens de calcul (78) d'une valeur thermique de la plage de connexion (66) en fonction de la première température mesurée,
    - des moyens de comparaison (82) propres à comparer la valeur thermique de la plage de connexion (66) avec un seuil de température (S1), et
    - des moyens (83) de détection d'une surchauffe de la borne de connexion correspondante (38, 40) lorsque la valeur thermique de la plage de connexion (66) correspondante est supérieure au seuil de température (S1),
    caractérisé en ce que l'appareil auxiliaire (24) comprend pour chaque borne de connexion (38, 40) :
    - des deuxièmes moyens de calcul (80) du seuil de température (S1) à l'instant donné (tn) en fonction de la valeur du seuil de température (S1(n-1)) à un instant précédent (tn-1, t0), la valeur du seuil de température (S1) étant variable entre l'instant précédent (tn-1) et l'instant donné (tn), et les moyens de comparaison (82) sont propres à comparer la valeur thermique avec la valeur du seuil de température (S1(n)) à l'instant donné (tn).
  8. Appareil selon la revendication 7, caractérisé en ce qu'il comprend, pour chaque borne de connexion (38, 40), un capteur de courant (50, 51) propre à mesurer l'intensité du courant circulant dans le conducteur électrique (12', 14') correspondant, les deuxièmes moyens de calcul (80) étant propres, pour chaque borne de connexion (38, 40), à calculer le seuil de température (S1) en fonction en outre de l'intensité du courant circulant dans le conducteur électrique (12', 14') correspondant.
  9. Appareil selon la revendication 7 ou 8, caractérisé en ce qu' il comprend pour chaque borne de connexion (38, 40), un organe de liaison électrique (42, 44) à la plage de connexion (66) correspondante, l'organe de liaison (42, 44) comportant un matériau thermiquement conducteur, la différence de température entre la plage de connexion (66) corespondante et l'organe de liaison (42, 44) étant de préférence inférieure à 10°C, pour des températures de la plage de connexion (66) comprises entre 100°C et 400°C, le premier capteur de température (46) étant propre à mesurer la température de l'organe de liaison (42, 44).
  10. Appareil selon l'une des revendications 7 à 9, caractérisé en ce qu'il comprend un deuxième capteur de température (71), disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique (22) et propre à mesurer une deuxième température ambiante au voisinage du dispositif électrique (22), et en ce que les premiers moyens de calcul (78) sont propre à fixer la valeur thermique à une valeur égale à la différence entre la première température et la deuxième température.
  11. Système électrique (10) comprenant un dispositif électrique (22) et un appareil auxiliaire (24) associé au dispositif électrique, le dispositif électrique (22) comprenant au moins une borne de connexion (38, 40) comportant une plage de connexion (66) propre à être connectée à un conducteur électrique (12', 14'), caractérisé en ce que l'appareil auxiliaire (24) est conforme à l'une des revendications 7 à 10.
  12. Système selon la revendication 11, caractérisé en ce que le dispositif électrique (22) est un dispositif de commutation comprenant pour chaque conducteur électrique (12, 12', 14, 14') une borne d'entrée du courant (34, 36) et une borne de sortie du courant (38, 40), et propre, dans une position ouverte, à laisser circuler du courant à travers le ou les conducteurs électriques (12', 14') correspondants, et dans une position fermée à interrompre la circulation du courant à travers le ou les conducteurs électriques (12', 14') correspondants, l'appareil auxiliaire étant connecté via le ou les organes de liaison électrique (42, 44) à la ou chaque borne de sortie (38, 40) du courant.
EP15161678.6A 2014-03-31 2015-03-30 Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe, et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire Active EP2927928B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1452785A FR3019302B1 (fr) 2014-03-31 2014-03-31 Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire

Publications (2)

Publication Number Publication Date
EP2927928A1 true EP2927928A1 (fr) 2015-10-07
EP2927928B1 EP2927928B1 (fr) 2016-11-16

Family

ID=51063611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15161678.6A Active EP2927928B1 (fr) 2014-03-31 2015-03-30 Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe, et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire

Country Status (3)

Country Link
EP (1) EP2927928B1 (fr)
ES (1) ES2615638T3 (fr)
FR (1) FR3019302B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375044A (zh) * 2018-12-12 2019-02-22 上海奥波电子有限公司 一种检测导体间电气连接质量的方法及系统
FR3076669A1 (fr) * 2018-01-11 2019-07-12 Schneider Electric Industries Sas Appareil electrique communiquant sans fil et armoire electrique comprenant cet appareil electrique
EP4296696A1 (fr) * 2022-06-22 2023-12-27 K & N Schalterentwicklungsgesellschaft m.b.H. Module de mesure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130965A1 (fr) * 2021-12-16 2023-06-23 Schneider Electric Industries Sas Dispositif pour mesurer une température et une tension électrique entre deux bornes de raccordement électrique d’un appareil de protection électrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1358776A (fr) 1963-05-28 1964-04-17 Thomson Houston Comp Francaise Corps composites titane-céramique
US5188542A (en) 1991-12-05 1993-02-23 Gray Ballman Electrical connector with integral strain relief and mount, and overtemperature indicator
US7501926B2 (en) 2004-03-25 2009-03-10 B Safe Electrix, Inc. Heat sensing electrical receptacle
US20090167537A1 (en) 2007-12-28 2009-07-02 Feliss Norbert A Minimizing electrical outlet safety failures due to over temperature condition
WO2014006356A2 (fr) * 2012-07-02 2014-01-09 Indumission Limited Protection d'équipement de distribution d'électricité contre la surchauffe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1358776A (fr) 1963-05-28 1964-04-17 Thomson Houston Comp Francaise Corps composites titane-céramique
US5188542A (en) 1991-12-05 1993-02-23 Gray Ballman Electrical connector with integral strain relief and mount, and overtemperature indicator
US7501926B2 (en) 2004-03-25 2009-03-10 B Safe Electrix, Inc. Heat sensing electrical receptacle
US20090167537A1 (en) 2007-12-28 2009-07-02 Feliss Norbert A Minimizing electrical outlet safety failures due to over temperature condition
WO2014006356A2 (fr) * 2012-07-02 2014-01-09 Indumission Limited Protection d'équipement de distribution d'électricité contre la surchauffe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076669A1 (fr) * 2018-01-11 2019-07-12 Schneider Electric Industries Sas Appareil electrique communiquant sans fil et armoire electrique comprenant cet appareil electrique
EP3512057A1 (fr) * 2018-01-11 2019-07-17 Schneider Electric Industries SAS Appareil électrique communiquant sans fil et armoire électrique comprenant cet appareil électrique
US10862194B2 (en) 2018-01-11 2020-12-08 Schneider Electric Industries Sas Wireless communicating electrical device and electrical enclosure comprising this electrical device
CN109375044A (zh) * 2018-12-12 2019-02-22 上海奥波电子有限公司 一种检测导体间电气连接质量的方法及系统
EP4296696A1 (fr) * 2022-06-22 2023-12-27 K & N Schalterentwicklungsgesellschaft m.b.H. Module de mesure

Also Published As

Publication number Publication date
FR3019302A1 (fr) 2015-10-02
FR3019302B1 (fr) 2016-04-29
EP2927928B1 (fr) 2016-11-16
ES2615638T3 (es) 2017-06-07

Similar Documents

Publication Publication Date Title
EP2849196B1 (fr) Procédé de détermination d'une cause de perte de tension en aval d'un disjoncteur, appareil auxiliaire pour disjoncteur, système électrique comportant un disjoncteur et un tel appareil auxiliaire
EP2927928B1 (fr) Procede de determination d'une surchauffe d'au moins une borne de connexion d'un dispositif electrique, appareil auxiliaire associe, et systeme electrique comprenant un tel dispositif electrique et un tel appareil auxiliaire
EP2717408B1 (fr) Compensateur d'énergie réactive
FR3019303B1 (fr) Dispositif de mesure d'au moins une grandeur physique d'une installation electrique
EP2849195B1 (fr) Appareil auxiliaire pour disjoncteur électrique, système électrique comportant un disjoncteur et un tel appareil auxiliaire et procédé de détermination d'une cause de l'ouverture du disjoncteur à l'aide d'un tel appareil auxiliaire
FR2878380A1 (fr) Procede et dispositif pour l'identification d'arcs electriques de courant de defaut dans des circuits electriques
EP2446281B1 (fr) Compteur d'energie electrique a capteur de courant non isole et contacteur de coupure
EP3707521B1 (fr) Procede de detection de l'etat d'un appareil de protection electrique dans une installation electrique et dispositif de detection mettant en oeuvre ledit procede
EP2909909B1 (fr) Système de protection d'une pluralité de sources de tension continues
EP3106887B1 (fr) Procede et dispositif de detection d'un defaut dans un reseau electrique
EP3361268B1 (fr) Circuit de surveillance d'un réseau d'alimentation électrique
EP1318586B1 (fr) Dispositif et procédé de détection de court-circuit électrique, et disjoncteur comportant un tel dispositif
EP2910958A1 (fr) Détection d'un défaut, notamment transitoire, dans un réseau électrique
EP3009851A1 (fr) Compteur permettant de détecter une fraude par by-pass
EP4134695B1 (fr) Verification de la precision metrologique d'un compteur electrique
EP2818879B1 (fr) Dispositif d'estimation de l'impédance d'une liaison électrique de terre, procédé d'estimation et système d'alimentation électrique associés
EP0591011B1 (fr) Dispositif de détection de défauts sur un réseau de distribution d'énergie électrique souterrain
EP3650875B1 (fr) Procede de test d'un appareil de protection electrique et appareil de protection mettant en oeuvre un tel procede
EP4016578A1 (fr) Dispositif de diagnostic d'une commutation, dispositif de commutation et procédé de diagnostic associés
EP4248533A1 (fr) Appareillage de protection à coupure electronique
EP1083644B1 (fr) Dispositif de protection terre sensible à des courants d'arc, declencheur et disjoncteur comportant un tel dispositif
FR2747198A1 (fr) Procede et dispositif pour la detection de defauts serie dans une installation electrique
FR2488458A1 (fr) Circuit de protection thermique d'un moteur electrique comportant deux organes a constante de temps
FR3089707A1 (fr) Système électronique de coupure de courant doté d’une solution de coupure rapide.
FR2774173A1 (fr) Procede de test d'un disjoncteur electrique differentiel et dispositif pour la mise en oeuvre d'un tel procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160310

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 71/08 20060101AFI20160530BHEP

Ipc: H01H 11/00 20060101ALN20160530BHEP

INTG Intention to grant announced

Effective date: 20160620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 846617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015000711

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 846617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2615638

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015000711

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170330

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 10

Ref country code: GB

Payment date: 20240319

Year of fee payment: 10