EP2922196B1 - Electronic control equipment of a permanent magnet motor - Google Patents

Electronic control equipment of a permanent magnet motor Download PDF

Info

Publication number
EP2922196B1
EP2922196B1 EP15159348.0A EP15159348A EP2922196B1 EP 2922196 B1 EP2922196 B1 EP 2922196B1 EP 15159348 A EP15159348 A EP 15159348A EP 2922196 B1 EP2922196 B1 EP 2922196B1
Authority
EP
European Patent Office
Prior art keywords
signal
modulation
block
electronic control
control equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15159348.0A
Other languages
German (de)
French (fr)
Other versions
EP2922196A2 (en
EP2922196A3 (en
Inventor
Giordan Tomeo
Mauro Mencaglia
Fortunato Grippo
Fabrizio Viconi
Emidio Macera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emc Fime SRL
Original Assignee
Emc Fime SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emc Fime SRL filed Critical Emc Fime SRL
Publication of EP2922196A2 publication Critical patent/EP2922196A2/en
Publication of EP2922196A3 publication Critical patent/EP2922196A3/en
Application granted granted Critical
Publication of EP2922196B1 publication Critical patent/EP2922196B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to an electronic control equipment of an electric motor, in particular, a single-phase permanent-magnet (brushless) motor.
  • an electric permanent-magnet motor or brushless motor for example, in direct current (DC)
  • DC direct current
  • the rotor acts as an inductor member and rotates, while the induced member, i.e., the stator, is supplied by the alternating current voltages generated by an inverter device starting from the direct current supplying voltage.
  • Such inverter 500 comprises, an adjustment block 501 adapted to generate pulse-width modulated signals PWM 502, to drive the turning on/off of power transistors comprised in a power drive block 503.
  • signals PWM 502 are signals having a fixed frequency and a variable duty cycle.
  • the power drive block 503 generally comprises a bridge circuit structure, for example, a single-phase structure, including electronic power transistors, for example, IGBT transistors, of a type known to those skilled in the art and configured to supply an alternating current voltage 504 to the motor M1.
  • a bridge circuit structure for example, a single-phase structure, including electronic power transistors, for example, IGBT transistors, of a type known to those skilled in the art and configured to supply an alternating current voltage 504 to the motor M1.
  • the adjustment block 501 includes a programmable digital device, for example, a microprocessor, adapted to generate a suitable sequence of signals PWM 502 for driving the transistors of the power drive stage 503 which ensures the desired speed (or torque) to the permanent-magnet.motor M1.
  • a programmable digital device for example, a microprocessor, adapted to generate a suitable sequence of signals PWM 502 for driving the transistors of the power drive stage 503 which ensures the desired speed (or torque) to the permanent-magnet.motor M1.
  • the current flowing in the coils i.e., the phase current
  • the phase current in the coil reaches a peak value after a rising time interval depending on the impedance of the coil itself and the speed reached by the rotor: for low speeds of the rotor, the phase current may quickly reach such peak value without an appropriate control. This may lead to several drawbacks, among which mechanical stresses on the electric motor, also referred to as torque peaks from those skilled in the art, or undesired effects of demagnetization of the permanent magnet.
  • US 6 452 349 B1 discloses an analogue circuit in an electronically commuted motor, said circuit including two current limiting members so that a driving current and a braking current are both monitored.
  • US 2001/009360 discloses another current limit circuit of an inverter.
  • FIG. 1 a block diagram of an electronic equipment used in the industrial field for supplying power to control the movement of an electric motor M in accordance with the invention on the whole is indicated with 100.
  • such electric motor M is preferably a single-phase electric motor of the permanent-magnet or brushless motor type, which can be used, for example, to move a fan heater of a gas boiler and the like.
  • brushless motor comprises a rotor, composed of a permanent magnet, and a stator provided with conductive windings supplied by alternating current voltages AC.
  • control equipment 100 will be referred to as control equipment or simply equipment.
  • control equipment 100 comprises a stage for generating reference voltages 101 configured to generate a pulse-width modulated digital voltage signal PWM generally indicated by the reference 102.
  • signal PWM 102 is preferably a fixed frequency signal, for example, 1kHz, and with a duty cycle which is variable.
  • the control equipment 100 further comprises a power stage including a power drive block 103.
  • Such power drive block 103 comprises a bridge circuit structure (not shown), in particular, a single-phase structure, including electronic power transistors, for example, IGBT transistors (Insulated Gate Bipolar Transistors), of a type known to those skilled in the art.
  • IGBT power transistors are controllable, based on the PWM signals 102 generated by the voltage generator block, to supply an alternating-current voltage AC 104 to the electric motor M to ensure the desired speed (or torque) to the motor M, i.e., to move it.
  • control equipment 100 advantageously comprises a control and adjustment stage generally indicated with the reference number 105 and enclosed by a dotted line.
  • control and adjustment stage 105 is interposed between the stage for generating reference voltages 101 and the power stage 103 to receive the above-mentioned pulse-width modulated digital signal PWM 102.
  • Such control and adjustment stage 105 comprises a filtering block 106, for example a low-pass filter RC, adapted to receive at a respective input the digital voltage signal PWM 102 to generate in output an analogic voltage signal or first voltage signal S1 with a fixed frequency indicative of a reference current Iref.
  • a filtering block 106 for example a low-pass filter RC, adapted to receive at a respective input the digital voltage signal PWM 102 to generate in output an analogic voltage signal or first voltage signal S1 with a fixed frequency indicative of a reference current Iref.
  • Such first voltage signal S1 is a signal having an amplitude substantially constant upon time, and it is suitable to take an amplitude value ranging, e.g., between 0 and 5 V.
  • Such first voltage signal S1 is provided on a first input terminal, in particular, on an inverting input (-), of a comparator block or comparator 107.
  • the control and adjustment stage 105 further comprises a current sensor block 108 configured to detect a current of the electric motor I M to generate a second voltage signal S2 to be sent on a second input terminal, in particular, a non-inverting input (+) of the comparator 107.
  • such current sensor block 108 comprises a resistor, and the above-mentioned second voltage signal S2 is proportional to the current I M flowing in the coil of the electric motor M.
  • the above-mentioned first voltage signal S1 is a signal with a constant amplitude over time and it is representative of the reference current Iref to be flown in the coil of the motor M.
  • the second voltage signal S2 is, for example, a saw tooth signal.
  • the comparator block 107 is adapted to generate a control voltage signal SC to enable/disable the electric power transfer to the electric motor M by the power stage 103 based on the comparison of the first voltage signal S1 with the second voltage signal S2.
  • control signal SC is configured to enable the electric power transfer to the electric motor M in a first operative condition, in which an amplitude of the first voltage signal S1 is greater than an amplitude of the second voltage signal S2, and to disable such electric power transfer to the motor M in a second operative condition, in which the amplitude of the second voltage signal S2 is equal or greater than the amplitude of the first voltage signal S1.
  • control signal SC is a periodic signal having a first amplitude substantially constant in a first time interval T1 to enable the electric power transfer to the electric motor M, and a second amplitude variable substantially linearly in a second time interval T2 to disable the electric power transfer to the motor M.
  • control signal SC has such second amplitude increasing substantially linearly in the second time interval T2. In particular, referring to Fig. 2B , this occurs if a time duration associated with a falling edge of the above-mentioned control signal SC at a switching between the first operative condition and the second operative condition is taken as negligible.
  • the first amplitude of the control signal SC during the first time interval T1 has an amplitude equal to that of a respective constant threshold signal S T .
  • threshold signal S T is defined by a suitable circuitry inside the comparator block 107, i.e., it is preset in such block.
  • control equipment 100 of the motor M is included in a complex control system which includes, among the other circuits, also a microprocessor 200 configured to manage such electronic equipment 100.
  • control equipment is adapted to generate the. alternating current voltages supplying the stator of the motor M.
  • the control and adjustment stage 105 of the electronic equipment 100 comprises an electronic modulation block 109 of the control signal SC interposed between the comparator block 107 and the power stage 103.
  • Such modulation block 109 is configured to receive the control signal SC at a first input 1' and a modulation activating digital signal T OC at a second input 2' to generate a modulated control signal SC1 at a respective output 3'.
  • Such modulation digital signal T OC is adapted, to take a high logic level (1 logic) to activate the modulation block 109 and a low logic level (0 logic) to deactivate it.
  • Such modulation digital signal T OC comprises a plurality of rectangular voltage pulses, as shown in Fig. 4 . It shall be noted that such modulation digital signal T OC has a duty cycle indicated with the reference d. Such duty cycle, d of the modulation digital signal T OC may be varied between 0 and 1.
  • such modulated control signal SC1 has a respective first amplitude substantially constant in the first time interval T1 to enable the electric power transfer to the electric motor M. Furthermore, an average value of a respective second amplitude of the modulated control signal SC1 is variable substantially linearly in a third time interval T3 that is greater than the above-mentioned second time interval T2 to disable the electric power transfer to the motor M.
  • the average value of such second amplitude of the modulated control signal SC1 is increasing substantially linearly in the third time interval T3.
  • the electronic modulation block 109 of the control signal SC comprises an electric network R13, R14, R17, R25, R22, C14, C15, DZ3, Q5, R1 activated at the high logic level (1 logic) of the modulation digital signal T OC .
  • the electronic modulation block 109 of the control signal SC is implemented only in a portion R13, R14, C15 of such electric network R13, R14, R17, R25, R22, C14, C15, DZ3, Q5, R1 at the low logic level (0 logic) of the modulation digital signal T OC
  • the comparator block 107 of the electronic control equipment 100 comprises an integrated electronic device having a plurality of input/output terminals connected to respective input/output pins 1-14.
  • a first 8 and a second 9 pins are adapted to receive the first voltage signal S1 and the second voltage signal S2, respectively.
  • a third pin 6 is adapted to provide the above-mentioned control signal SC or the modulated control signal SC1.
  • a fourth 4 and a fifth 7 pins are connected to a power-supply potential Vcc and a ground potential GND, respectively.
  • a sixth pin 3 is electrically connected to the third pin 6 to define the threshold voltage signal S T to be compared with the control signal SC or the modulated control signal SC1 to transfer power to the motor M.
  • the power-supply potential Vcc is of about 15V.
  • microprocessor 200 is also configured to provide the modulation digital signal T OC to be provided on the input terminal 40 of the electronic modulation block 109.
  • the electric network of the modulation block 109 comprises a first R13 and a second R14 resistors connected between the first supply terminal 20 and the output terminal 50 of the network.
  • a third resistor R17 is connected between the first supply terminal 20 and a first node 60 of the network.
  • a fourth resistor R25 is connected between the above-mentioned first node 60 and a second node 70.
  • a fifth resistor R22 is connected between the second node 70 and the output terminal 50 of the network.
  • a transistor Q5 in a configuration with a common emitter, comprises the collector terminal connected to the first node 60 of the network and an emitter terminal connected to the ground potential GND.
  • the base terminal of such transistor Q5 is controlled by the modulation digital signal T OC through a respective resistor R1.
  • Such transistor Q5 is configured to act as a switch.
  • the transistor Q5 is active (hence, in a short circuit) at the high logic level (1 logic) of the modulation digital signal T OC .
  • the transistor Q5 is deactivated (hence, with an open circuit) at the low logic level (0 logic) of the modulation digital signal T OC .
  • the electric network 109 further comprises a first capacitor C14 connected between the second node 70 and the ground potential GND, and a second capacitor C15 connected between the output terminal 50 of the network and the ground potential GND.
  • a protection Zener diode DZ3 is connected with inverted polarity to the above-mentioned second capacitor C15 to limit the voltage on such capacitor.
  • the amplitude of the control signal SC is set by the sub-network comprising the first resistor R13, the second resistor R14, and the second capacitor C15.
  • the electric network 109 comprising only the first resistor R13, the second resistor R14 and the second capacitor C15, is configured to set over time the trend of the value of the amplitude of the modulated control signal SC1 present on the third pin 6 of the comparator block 107.
  • the current in the motor M is adjusted based on the signal PWM 102.
  • the first time interval T1 depends only by the operative conditions of the motor M. For example, the higher the value of the amplitude of the first voltage signal S1 is, the higher the duration of such first time interval will be (see Figs. 2A, 2B ).
  • the second time interval T2 excluding the effect of the modulation introduced with the modulation block 109, depends on the charge of the second capacitor C15 of Fig. 3 .
  • the voltage across such second capacitor C15 represents the above-mentioned control signal SC.
  • Such control signal SC goes to zero at a change in the power status of the equipment 100 between the first and the second operative conditions, i.e., between a status ON (active) and a status OFF (deactivated) (see Fig. 2A ).
  • the equation (3) is valid for time instants t in the power status OFF (non-active) and the transition between the status ON and the status OFF is substantially instantaneous, i.e., the transition time is equal to zero, as stated above.
  • the equipment 100 of the invention allows adjusting the duration of the status OFF, in particular making such deactivated status to last more than the second time interval T2.
  • such third time interval T3, besides being greater than the second time interval T2, is inversely proportional to the complement to 1 of the duty cycle d of the modulation digital signal T OC i.e., it is inversely proportional to the time fraction during which the modulation digital signal T OC is low (0 logic).
  • the function carried out by the modulation block 109 may be implemented by a software executed by the microprocessor 200 itself.
  • the electronic control equipment 100 of a permanent-magnet motor M of the invention has a number of advantages.
  • the proposed equipment 100 allows an efficient control of the current of the motor M, by virtue of the inclusion of a current limiter, which avoids the undesired effects of the current peaks. This ensures a reduction of the noise and the vibrations of the motor in addition to a direct control of the motor itself to which the phase current is imposed.
  • the extension of the second time interval T2 up to the value of the third time interval T3, i.e., the extension of the period of status OFF (deactivated) of the motor allows driving the motor M itself to lower speeds than those currently achievable.
  • the current permanent-magnet motors are characterized by a rotation speeds, (round per minute, or rpm) ranging between 700 rpm and 7000 rpm.
  • the control drives of a known type may modulate the rotation speed of the motor by a factor 10, i.e., they control the minimum speed of the motor up to speed values of 1/10 of the maximum speed.
  • the second time interval T2 may take, for example, values of about 30-40 ⁇ s, while in the presence of a modulation, the third time interval T3 may take a value of about 100 ⁇ s to reduce the minimum rotation speed controllable at about 350 rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

    Technical field
  • The present invention relates to an electronic control equipment of an electric motor, in particular, a single-phase permanent-magnet (brushless) motor.
  • Background art
  • As it is known, an electric permanent-magnet motor or brushless motor, for example, in direct current (DC), comprises a rotor, composed of a permanent magnet, and a stator provided with conductive windings supplied by alternating current voltages AC. In such motors, the rotor acts as an inductor member and rotates, while the induced member, i.e., the stator, is supplied by the alternating current voltages generated by an inverter device starting from the direct current supplying voltage.
  • An example of an inverter device or drive 500 of a known type for the control of a permanent-magnet electric motor M1 is shown by way of example in Fig. 5 by a block diagram. Such inverter 500 comprises, an adjustment block 501 adapted to generate pulse-width modulated signals PWM 502, to drive the turning on/off of power transistors comprised in a power drive block 503. In particular, such signals PWM 502 are signals having a fixed frequency and a variable duty cycle.
  • The power drive block 503 generally comprises a bridge circuit structure, for example, a single-phase structure, including electronic power transistors, for example, IGBT transistors, of a type known to those skilled in the art and configured to supply an alternating current voltage 504 to the motor M1.
  • Generally, the adjustment block 501 includes a programmable digital device, for example, a microprocessor, adapted to generate a suitable sequence of signals PWM 502 for driving the transistors of the power drive stage 503 which ensures the desired speed (or torque) to the permanent-magnet.motor M1.
  • In an brushless single-phase electric motor M1, e.g., a motor configured to move a fan heater of a gas boiler, the current flowing in the coils, i.e., the phase current, is strictly related to the torque required by the load: the more such torque required by the load is, the more the power input is. In general, the phase current in the coil reaches a peak value after a rising time interval depending on the impedance of the coil itself and the speed reached by the rotor: for low speeds of the rotor, the phase current may quickly reach such peak value without an appropriate control. This may lead to several drawbacks, among which mechanical stresses on the electric motor, also referred to as torque peaks from those skilled in the art, or undesired effects of demagnetization of the permanent magnet.
  • In order to obviate the above-mentioned drawbacks and prevent the phase current in the coils from reaching undesired peak values, it is known to limit the maximum phase current by increasing the impedance of the coil itself. However, such measure reduces the performance of the brushless single-phase motor M1.
  • Furthermore, with the known inverters or drive devices, it is not possible to efficiently control the current in the coils of the brushless motor M1 as the rotation speed of the rotor varies, i.e., both for high and low rotation speeds of the rotor. This causes undesired effects of noise and vibration of the motor.
  • The document US 6 452 349 B1 discloses an analogue circuit in an electronically commuted motor, said circuit including two current limiting members so that a driving current and a braking current are both monitored. US 2001/009360 discloses another current limit circuit of an inverter.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to devise and provide an electronic control equipment of an electric motor, in particular a single-phase permanent-magnet (brushless) motor, having features that allow at least partially overcoming the above-indicated limitations of the known drive devices.
  • Such an object is achieved by an electronic control equipment of an electric permanent-magnet motor in accordance with claim 1. Alternative embodiments of the above-mentioned equipment are defined in the dependent claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further characteristics and advantages of the above-mentioned electronic control equipment will be apparent from the description set forth below of a preferred embodiment, given by way of illustrative, non-limiting example, with reference to the appended figures, in which:
    • Fig. 1 shows a block diagram of an electronic control equipment of an electric motor in accordance with the invention;
    • Figs. 2A-2B show, as a function of time, trends of electric signals managed by the electronic control equipment of Fig. 1;
    • Fig. 3 shows a circuit scheme of a comparator block and a modulation block comprised in the electronic control equipment Fig. 1 and a microprocessor external to the equipment;
    • Fig. 4 shows, as a function of time, trends of further electric signals managed by the electronic control equipment of Fig. 1;
    • Fig. 5 shows a block diagram of a known inverter which is used in the industrial field to control the movement of an electric motor.
    DETAILED DESCRIPTION
  • In the above-mentioned figures, similar or analogous elements are indicated by the same reference numerals.
  • With reference to Fig. 1, a block diagram of an electronic equipment used in the industrial field for supplying power to control the movement of an electric motor M in accordance with the invention on the whole is indicated with 100.
  • It shall be noted that such electric motor M is preferably a single-phase electric motor of the permanent-magnet or brushless motor type, which can be used, for example, to move a fan heater of a gas boiler and the like. In general, such brushless motor comprises a rotor, composed of a permanent magnet, and a stator provided with conductive windings supplied by alternating current voltages AC.
  • For the sake of brevity, herein below, the electronic control equipment 100 will be referred to as control equipment or simply equipment.
  • In particular, the control equipment 100 comprises a stage for generating reference voltages 101 configured to generate a pulse-width modulated digital voltage signal PWM generally indicated by the reference 102. Such signal PWM 102 is preferably a fixed frequency signal, for example, 1kHz, and with a duty cycle which is variable.
  • The control equipment 100 further comprises a power stage including a power drive block 103. Such power drive block 103 comprises a bridge circuit structure (not shown), in particular, a single-phase structure, including electronic power transistors, for example, IGBT transistors (Insulated Gate Bipolar Transistors), of a type known to those skilled in the art. Such IGBT power transistors are controllable, based on the PWM signals 102 generated by the voltage generator block, to supply an alternating-current voltage AC 104 to the electric motor M to ensure the desired speed (or torque) to the motor M, i.e., to move it.
  • Furthermore, the control equipment 100 advantageously comprises a control and adjustment stage generally indicated with the reference number 105 and enclosed by a dotted line. In particular, such control and adjustment stage 105 is interposed between the stage for generating reference voltages 101 and the power stage 103 to receive the above-mentioned pulse-width modulated digital signal PWM 102.
  • Such control and adjustment stage 105 comprises a filtering block 106, for example a low-pass filter RC, adapted to receive at a respective input the digital voltage signal PWM 102 to generate in output an analogic voltage signal or first voltage signal S1 with a fixed frequency indicative of a reference current Iref. Such first voltage signal S1 is a signal having an amplitude substantially constant upon time, and it is suitable to take an amplitude value ranging, e.g., between 0 and 5 V.
  • Such first voltage signal S1 is provided on a first input terminal, in particular, on an inverting input (-), of a comparator block or comparator 107.
  • The control and adjustment stage 105 further comprises a current sensor block 108 configured to detect a current of the electric motor IM to generate a second voltage signal S2 to be sent on a second input terminal, in particular, a non-inverting input (+) of the comparator 107.
  • In an embodiment, such current sensor block 108 comprises a resistor, and the above-mentioned second voltage signal S2 is proportional to the current IM flowing in the coil of the electric motor M.
  • In accordance with an embodiment, the above-mentioned first voltage signal S1 is a signal with a constant amplitude over time and it is representative of the reference current Iref to be flown in the coil of the motor M. The second voltage signal S2 is, for example, a saw tooth signal.
  • Advantageously, the comparator block 107 is adapted to generate a control voltage signal SC to enable/disable the electric power transfer to the electric motor M by the power stage 103 based on the comparison of the first voltage signal S1 with the second voltage signal S2.
  • In particular, such control signal SC is configured to enable the electric power transfer to the electric motor M in a first operative condition, in which an amplitude of the first voltage signal S1 is greater than an amplitude of the second voltage signal S2, and to disable such electric power transfer to the motor M in a second operative condition, in which the amplitude of the second voltage signal S2 is equal or greater than the amplitude of the first voltage signal S1.
  • In an embodiment, referring to Fig. 2B, such control signal SC is a periodic signal having a first amplitude substantially constant in a first time interval T1 to enable the electric power transfer to the electric motor M, and a second amplitude variable substantially linearly in a second time interval T2 to disable the electric power transfer to the motor M.
  • In a particular embodiment, the control signal SC has such second amplitude increasing substantially linearly in the second time interval T2. In particular, referring to Fig. 2B, this occurs if a time duration associated with a falling edge of the above-mentioned control signal SC at a switching between the first operative condition and the second operative condition is taken as negligible.
  • With reference to the Figs. 2B and 4, in the electronic equipment 100, the first amplitude of the control signal SC during the first time interval T1 has an amplitude equal to that of a respective constant threshold signal ST. In particular, such threshold signal ST is defined by a suitable circuitry inside the comparator block 107, i.e., it is preset in such block.
  • Furthermore, it shall be noted that the control equipment 100 of the motor M is included in a complex control system which includes, among the other circuits, also a microprocessor 200 configured to manage such electronic equipment 100. In particular, the control equipment is adapted to generate the. alternating current voltages supplying the stator of the motor M.
  • The control and adjustment stage 105 of the electronic equipment 100 comprises an electronic modulation block 109 of the control signal SC interposed between the comparator block 107 and the power stage 103.
  • Such modulation block 109 is configured to receive the control signal SC at a first input 1' and a modulation activating digital signal TOC at a second input 2' to generate a modulated control signal SC1 at a respective output 3'.
  • Such modulation digital signal TOC is adapted, to take a high logic level (1 logic) to activate the modulation block 109 and a low logic level (0 logic) to deactivate it.
  • Such modulation digital signal TOC comprises a plurality of rectangular voltage pulses, as shown in Fig. 4. It shall be noted that such modulation digital signal TOC has a duty cycle indicated with the reference d. Such duty cycle, d of the modulation digital signal TOC may be varied between 0 and 1.
  • In particular, referring to Fig. 4 showing an enlargement of the period T1+T2 of the control signal SC of Fig. 2B, such modulated control signal SC1 has a respective first amplitude substantially constant in the first time interval T1 to enable the electric power transfer to the electric motor M. Furthermore, an average value of a respective second amplitude of the modulated control signal SC1 is variable substantially linearly in a third time interval T3 that is greater than the above-mentioned second time interval T2 to disable the electric power transfer to the motor M.
  • In an embodiment of the invention, the average value of such second amplitude of the modulated control signal SC1 is increasing substantially linearly in the third time interval T3.
  • Referring to Fig. 3, the electronic modulation block 109 of the control signal SC comprises an electric network R13, R14, R17, R25, R22, C14, C15, DZ3, Q5, R1 activated at the high logic level (1 logic) of the modulation digital signal TOC.
  • The electronic modulation block 109 of the control signal SC is implemented only in a portion R13, R14, C15 of such electric network R13, R14, R17, R25, R22, C14, C15, DZ3, Q5, R1 at the low logic level (0 logic) of the modulation digital signal TOC
  • The comparator block 107 of the electronic control equipment 100 comprises an integrated electronic device having a plurality of input/output terminals connected to respective input/output pins 1-14.
  • In particular, a first 8 and a second 9 pins are adapted to receive the first voltage signal S1 and the second voltage signal S2, respectively. A third pin 6 is adapted to provide the above-mentioned control signal SC or the modulated control signal SC1. A fourth 4 and a fifth 7 pins are connected to a power-supply potential Vcc and a ground potential GND, respectively. A sixth pin 3 is electrically connected to the third pin 6 to define the threshold voltage signal ST to be compared with the control signal SC or the modulated control signal SC1 to transfer power to the motor M.
  • For example,. the power-supply potential Vcc is of about 15V.
  • Referring to Fig. 3, in more detail, the electronic modulation block 109 of the control signal SCcomprises a first 20 and a second 30 supply terminals connected to the power-supply potential Vcc and the ground potential GND, respectively. Furthermore, the electronic modulation block 109 comprises an input terminal 40 to receive the modulation digital signal TOC and an output terminal 50 connected to the third pin 6 of the comparator block 107.
  • It shall be noted that the microprocessor 200 is also configured to provide the modulation digital signal TOC to be provided on the input terminal 40 of the electronic modulation block 109.
  • The electric network of the modulation block 109 comprises a first R13 and a second R14 resistors connected between the first supply terminal 20 and the output terminal 50 of the network. A third resistor R17 is connected between the first supply terminal 20 and a first node 60 of the network. A fourth resistor R25 is connected between the above-mentioned first node 60 and a second node 70. A fifth resistor R22 is connected between the second node 70 and the output terminal 50 of the network.
  • A transistor Q5, in a configuration with a common emitter, comprises the collector terminal connected to the first node 60 of the network and an emitter terminal connected to the ground potential GND. The base terminal of such transistor Q5 is controlled by the modulation digital signal TOC through a respective resistor R1.
  • Such transistor Q5 is configured to act as a switch. In particular, the transistor Q5 is active (hence, in a short circuit) at the high logic level (1 logic) of the modulation digital signal TOC. Vice versa, the transistor Q5 is deactivated (hence, with an open circuit) at the low logic level (0 logic) of the modulation digital signal TOC.
  • The electric network 109 further comprises a first capacitor C14 connected between the second node 70 and the ground potential GND, and a second capacitor C15 connected between the output terminal 50 of the network and the ground potential GND. A protection Zener diode DZ3 is connected with inverted polarity to the above-mentioned second capacitor C15 to limit the voltage on such capacitor.
  • It shall be noted that, in the case that the electronic equipment 100 does not provide for any modulations on the control signal SC, i.e., the input terminal 40 of the network 109 is always at a low logic value, the amplitude of the control signal SC is set by the sub-network comprising the first resistor R13, the second resistor R14, and the second capacitor C15.
  • In case of a modulation on the control signal SC, at the low logic level (0 logic) of the modulation digital signal TOC, the electric network 109, comprising only the first resistor R13, the second resistor R14 and the second capacitor C15, is configured to set over time the trend of the value of the amplitude of the modulated control signal SC1 present on the third pin 6 of the comparator block 107.
  • In more detail, with reference again to the Figs. 2B, 3, and 4, with the equipment 100 of the invention the current in the motor M is adjusted based on the signal PWM 102. Referring to Fig. 2B, the control signal SC, generated starting from the first S1 and second S2 voltage signals, where the first signal S1 is generated starting from the signal PWM 102, has a frequency that may be expressed by the equation: f SC = 1 T 2 + T 1
    Figure imgb0001
  • The first time interval T1 depends only by the operative conditions of the motor M. For example, the higher the value of the amplitude of the first voltage signal S1 is, the higher the duration of such first time interval will be (see Figs. 2A, 2B).
  • The second time interval T2, excluding the effect of the modulation introduced with the modulation block 109, depends on the charge of the second capacitor C15 of Fig. 3. In particular, the voltage across such second capacitor C15 represents the above-mentioned control signal SC. Such control signal SC goes to zero at a change in the power status of the equipment 100 between the first and the second operative conditions, i.e., between a status ON (active) and a status OFF (deactivated) (see Fig. 2A).
  • In particular, during the status OFF, the control voltage signal SC increases upon a loading of the second capacitor C15 starting from the power-supply potential Vcc through an equivalent resistance Req, which can be expressed as: R eq = R 13 + R 14 / / R 17 + R 25 + R 22
    Figure imgb0002
  • When the control signal SC, during the rising, is equal to the threshold signal ST, the change in the power status between the status OFF (non-active) to the status ON (active) occurs.
  • Although the control signal SC has actually a trend over time of the exponential type, such exponential trend can be approximated to a linear trend, which can be expressed as: SC t = V CC 1 e t τ V CC t τ
    Figure imgb0003
    wherein Vcc is the power-supply potential, for example, 15 V, and τ = R eq c 15
    Figure imgb0004
  • It shall be noted that the equation (3) is valid for time instants t in the power status OFF (non-active) and the transition between the status ON and the status OFF is substantially instantaneous, i.e., the transition time is equal to zero, as stated above. In particular, t=0 is assumed at the transition between the status ON and the status OFF and it is assumed that, at such instant, SC(t) of the equation (3) is equal to zero.
  • In such a case, where t* is the transition instant between the status OFF to the status ON, when the control signal SC is equal to the threshold signal ST, such instant can be expressed as: t* = S T V CC τ
    Figure imgb0005
    and assuming that Vcc=15 V and ST =2.5 V, t* 0,167 τ = T 2
    Figure imgb0006
  • In the case where the modulation circuit block 109 and the modulation digital signal TOC are activated, the equipment 100 of the invention allows adjusting the duration of the status OFF, in particular making such deactivated status to last more than the second time interval T2.
  • In particular, with reference to Figs. 3 and 4, when the modulation signal TOC takes a low logic value (0 logic), the trend of the control signal SC can be expressed as in the equation (3).
  • When the modulation signal TOC takes a high logic value (1 logic), the control signal SC decreases in response to the discharge of the second capacitor C15 through a discharge resistance RDIS, which can be expressed as: R DIS = R 25 + R 22
    Figure imgb0007
  • In such a manner, by using a modulation digital signal TOC having a frequency that is at least one order of magnitude greater than the frequency of the control signal SC of the equation (1), i.e., a frequency at least ten times greater than fSC, and assuming that the discharge resistance RDIS of the equation (6) is much greater than the equivalent resistance Req of the equation (2), it is possible to obtain that the above-mentioned third time interval T3 can be expressed as: T 3 = t* 1 d = T 2 1 d
    Figure imgb0008
    where d is the duty cycle of the modulation signal TOC variable between 0 and 1. In other terms, such third time interval T3, besides being greater than the second time interval T2, is inversely proportional to the complement to 1 of the duty cycle d of the modulation digital signal TOC i.e., it is inversely proportional to the time fraction during which the modulation digital signal TOC is low (0 logic).
  • In another embodiment of the present invention, the function carried out by the modulation block 109 may be implemented by a software executed by the microprocessor 200 itself.
  • The electronic control equipment 100 of a permanent-magnet motor M of the invention has a number of advantages.
  • First, the proposed equipment 100 allows an efficient control of the current of the motor M, by virtue of the inclusion of a current limiter, which avoids the undesired effects of the current peaks. This ensures a reduction of the noise and the vibrations of the motor in addition to a direct control of the motor itself to which the phase current is imposed.
  • Furthermore, unlike the known inverter or drive devices, with the equipment 100 it is possible to efficiently control the current, in the coils of the brushless motor M as the rotation speed of the rotor varies, i.e., both for high and low rotation speeds of the rotor.
  • In particular, the extension of the second time interval T2 up to the value of the third time interval T3, i.e., the extension of the period of status OFF (deactivated) of the motor, allows driving the motor M itself to lower speeds than those currently achievable.
  • For example, the current permanent-magnet motors are characterized by a rotation speeds, (round per minute, or rpm) ranging between 700 rpm and 7000 rpm. In other terms, the control drives of a known type may modulate the rotation speed of the motor by a factor 10, i.e., they control the minimum speed of the motor up to speed values of 1/10 of the maximum speed.
  • With the electronic equipment 100 of the invention, once the maximum speed has been set, by adjusting the duty cycle d of the modulation digital signal TOC, it is possible to efficiently control the motor also for speeds lower than 700 rpm, for example to speeds of 300-400 rpm.
  • In such a case, in the absence of a modulation, the second time interval T2 may take, for example, values of about 30-40 µs, while in the presence of a modulation, the third time interval T3 may take a value of about 100 µs to reduce the minimum rotation speed controllable at about 350 rpm.
  • In other terms, it is possible with the present invention to extend the range of speed control values applicable to the permanent-magnet motor.

Claims (12)

  1. An electronic equipment (100) for the control of the movement of a single-phase permanent-magnet electric motor (M), comprising:
    - a stage (101) for generating reference voltages adapted to generate a pulse-width modulated digital signal PWM (102) ;
    - a power stage (103) adapted to transfer electric power to the electric motor (M) to move it;
    - a control and adjustment stage (105) interposed between said stage for generating reference voltages (101) and said power stage (103) to receive said pulse-width modulated digital signal PWM (102), the control and adjustment stage (105) comprising a comparator block (107) adapted to generate a control signal (SC) to enable/disable the electric power transfer to the electric motor (M) by the power stage (103) based on the comparison of a first voltage signal (S1) and a second voltage signal (S2), said first voltage signal (S1) being representative of a reference current (Iref) and generated based on the pulse-width modulated digital signal PWM (102), said second voltage signal (S2) being representative of a current (IM) flowing in a coil of the electric motor (M),
    wherein said control signal (SC) is a periodic signal having a first amplitude which is a constant value in a first time interval (T1) to enable the electric power transfer to the electric motor (M), and a second amplitude which is variable linearly in a second time interval (T2) to disable the electric power transfer to the motor (M), and wherein said control and adjustment stage (105) further comprises an electronic modulation block (109) of the control signal (SC) interposed between the comparator block (107) and the power stage (103), said modulation block (109) being adapted to receive the control signal (SC) at a first input (1') and a modulation digital signal (TOC) at a second input (2') to generate a modulated control signal (SC1) at an output (3'), said modulated control signal (SC1) having a further first amplitude which is a constant value in said first time interval (T1) to enable the electric power transfer to the electric motor (M), and having a further second amplitude the average value of which is variable linearly in a third time interval (T3) that is greater than said second time interval (T2) to disable the electric power transfer to the motor (M),
    characterized in that
    said electronic modulation block (109) includes an electric network comprising:
    - first (20) and second (30) supply terminals connected to a power-supply potential (Vcc) and to a ground potential (GND), respectively;
    - an input terminal (40) to receive the modulation digital signal (TOC) and an output terminal (50) connected to a pin (6) of the comparator block (107) ;
    - a first (R13) and a second (R14) resistor connected between the first supply terminal (20) and the output terminal (50) of the network;
    - a third resistor (R17) connected between the first supply terminal (20) and a first node (60) of the network;
    - a fourth resistor (R25) connected between said first node (60) and a second node (70) of the network;
    - a fifth resistor (R22) connected between the second node (70) and the output terminal (50);
    - a NPN bipolar transistor (Q5), having a collector terminal connected to the first node (60) of the network and an emitter terminal connected to the second supply terminal (30), a base terminal of the transistor (Q5) being connected to the input terminal (40) through a further resistor (R1), to be controlled by the modulation digital signal (TOC)
    - a first capacitor (C14) connected between the second node (70) and the second (30) supply terminal, and a second capacitor (C15) connected between the output terminal (50) and the second (30) supply terminal;
    - a protection Zener diode (DZ3) connected between the output terminal (50) and the second (30) supply terminal with inverted polarity to said second capacitor (C15) to limit the voltage on such second capacitor.
  2. The electronic control equipment (100) according to claim 1, wherein the second amplitude of said control signal (SC) increases linearly in said second time interval (T2).
  3. The electronic control equipment (100) according to claim 1, wherein the average value of the further second amplitude of said modulated control signal (SC1) increases linearly in said third time interval (T3).
  4. The electronic control equipment (100) according to claim 1, wherein said modulation digital signal (TOC) is adapted to assume a high logic level (1 logic) to activate said modulation block (109) and a low logic level (0 logic) to deactivate it.
  5. The electronic control equipment (100) according to claim 1, wherein said modulation digital signal (TOC) comprises a plurality of rectangular voltage pulses with a variable duty cycle (d).
  6. The electronic control equipment (100) according to claim 1, wherein said comparator block (107) comprises an integrated electronic device having a plurality of input/output terminals connected to respective input/output pins (1-14), wherein a first (8) and a second (9) pins are adapted to receive the first voltage signal (S1) and the second voltage signal (S2), respectively, a third pin (6) is adapted to provide said control signal (SC) and said modulated control signal (SC1), a fourth (4) and a fifth (7) pins are connected to the power-supply potential (Vcc) and to the ground potential (GND), respectively, a fifth pin (3) is electrically connected to the third pin (6) to define a threshold voltage signal (ST) to be compared to the control signal (SC) or to the modulated control signal (SC1) in order to transfer power to the motor M.
  7. The electronic control equipment (100) according to claim 5, wherein said third time interval (T3) is inversely proportional to the complement to 1 of the duty cycle (d) of said modulation digital signal (TOC).
  8. The electronic control equipment (100) according to claim 1, wherein said control and adjustment stage (105) comprises a current sensor block (108) configured to detect said current (IM) flowing in the coil of the electric motor (M) to generate said second voltage signal (S2) .
  9. The electronic control equipment (100) according to claim 8, wherein said current sensor block (108) comprises a resistor and said second voltage signal (S2) is proportional to said current (IM) flowing in the coil of the electric motor (M).
  10. The electronic control equipment (100) according to claim 1, wherein said control and adjustment stage (105) comprises a filtering block (106) adapted to receive in input said pulse-width modulated digital signal PWM (102) to generate in output said first voltage signal (S1).
  11. The electronic control equipment (100) according to claim 10, wherein said filtering block (106) comprises a low-pass R-C filter.
  12. A single-phase permanent-magnet electric motor (M), comprising:
    - a rotor, composed of a permanent magnet, acting as a rotating member of the motor;
    - a stator provided with conductive windings supplied by alternating current voltages,
    - an electronic control system comprising:
    a microprocessor (200), and
    an electronic control equipment (100) in accordance with any of the claims 1-11, which is adapted to generate said alternating-current voltages to supply the stator.
EP15159348.0A 2014-03-17 2015-03-17 Electronic control equipment of a permanent magnet motor Active EP2922196B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITMI20140431 2014-03-17

Publications (3)

Publication Number Publication Date
EP2922196A2 EP2922196A2 (en) 2015-09-23
EP2922196A3 EP2922196A3 (en) 2016-05-25
EP2922196B1 true EP2922196B1 (en) 2022-04-06

Family

ID=50819819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15159348.0A Active EP2922196B1 (en) 2014-03-17 2015-03-17 Electronic control equipment of a permanent magnet motor

Country Status (2)

Country Link
EP (1) EP2922196B1 (en)
PL (1) PL2922196T3 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949804A1 (en) * 1998-11-09 2000-05-11 Papst Motoren Gmbh & Co Kg Electronically commutated motor has arrangement that alters duty ratio of bridge control PWM signal depending on motor parameters to reduce current generated by motor if braking current exceeds threshold
KR20010075919A (en) * 2000-01-21 2001-08-11 구자홍 Current limit circuit of inverter refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERTAN H B ET AL: "A pulse frequency modulated drive for a wide speed range application", POWER ELECTRONIC DRIVES AND ENERGY SYSTEMS FOR INDUSTRIAL GROWTH, 1998 . PROCEEDINGS. 1998 INTERNATIONAL CONFERENCE ON PERTH, WESTERN AUSTRALIA 1-3 DEC. 1998, PISCATAWAY, NJ, USA,IEEE, vol. 2, 1 December 1998 (1998-12-01), pages 546 - 551, XP010720755, ISBN: 978-0-7803-4879-0 *

Also Published As

Publication number Publication date
PL2922196T3 (en) 2022-08-08
EP2922196A2 (en) 2015-09-23
EP2922196A3 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP2818450B2 (en) Electronic control circuit for brushless DC motor
US7402975B2 (en) Motor drive device and drive method
US4376261A (en) Two-pulse brushless d.c. motor
US4734627A (en) Brushless D.C. motor having two conductors per phase energized alternately by complementary-conductivity-type semiconductors controlled by the same rotor-position signal, at times modified by a compensating technique
TWI544737B (en) Motor drive circuit, method and the use of its cooling device, electronic equipment
JP5668949B2 (en) Back electromotive force detection circuit, motor drive control device and motor using the same
CA2333290C (en) Electronically commutated motor
US7030584B1 (en) Controller arrangement
US5220258A (en) Drive circuit for a brushless direct-current motor
JP2871653B2 (en) Inverter drive circuit for motor
US5589745A (en) Drive circuit for a brushless direct-current motor
US20060208821A1 (en) Controller arrangement
EP2922196B1 (en) Electronic control equipment of a permanent magnet motor
EP0769843A1 (en) A method and apparatus for controlling static electronic components for phase switching in a three-phase brushless electric motor
US3668489A (en) Frequency doubler motor drive and motor
EP3282575B1 (en) A single phase motor drive circuit and a method of driving a single phase motor
JPH11316249A (en) Current detecting circuit and excess current protecting circuit
JP2000032773A (en) Inverter device
KR101680030B1 (en) Control method and control system of sensorless brushless DC motor for small pan
CN107769671B (en) Method for operating an electric machine and electric machine
JP2001345682A (en) Triangular wave generating circuit, pwm controller, and electric power steering system
KR101186160B1 (en) Universal motor control apparatus
JP2014121259A (en) Motor drive controller, motor drive control method, and motor using the motor drive controller
RU2773335C1 (en) Asynchronous motor with a phase rotor
US9325261B2 (en) Motor driving method and operating method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 29/02 20060101AFI20160420BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015077990

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02P0029020000

Ipc: H02P0029032000

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 29/032 20160101AFI20210923BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMC FIME S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1482330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015077990

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1482330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015077990

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 10

Ref country code: GB

Payment date: 20240320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240311

Year of fee payment: 10

Ref country code: PL

Payment date: 20240229

Year of fee payment: 10

Ref country code: IT

Payment date: 20240124

Year of fee payment: 10

Ref country code: FR

Payment date: 20240229

Year of fee payment: 10