EP2920076B1 - Air conditioning method and system for aircraft - Google Patents

Air conditioning method and system for aircraft Download PDF

Info

Publication number
EP2920076B1
EP2920076B1 EP13795843.5A EP13795843A EP2920076B1 EP 2920076 B1 EP2920076 B1 EP 2920076B1 EP 13795843 A EP13795843 A EP 13795843A EP 2920076 B1 EP2920076 B1 EP 2920076B1
Authority
EP
European Patent Office
Prior art keywords
air
module
flow
cooling
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13795843.5A
Other languages
German (de)
French (fr)
Other versions
EP2920076A1 (en
Inventor
Laurent HOUSSAYE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS filed Critical Safran Helicopter Engines SAS
Priority to PL13795843T priority Critical patent/PL2920076T3/en
Publication of EP2920076A1 publication Critical patent/EP2920076A1/en
Application granted granted Critical
Publication of EP2920076B1 publication Critical patent/EP2920076B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/02Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0644Environmental Control Systems including electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0648Environmental Control Systems with energy recovery means, e.g. using turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0688Environmental Control Systems with means for recirculating cabin air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the invention relates to the field of air conditioning in aircraft and more particularly to the conditioning of air intended for feeding the pressurized cabin of an aircraft.
  • the invention more particularly relates to an air conditioning system and method for an aircraft and an aircraft comprising such a system. Examples of the prior art are provided by the documents EP2165931 and US2012 / 0240599 .
  • the pressure of the ambient ambient air is, in general, approximately 0.2 to 0.3 bar and its temperature between - 20 and -60 ° C while the pressure in the pressurized cabin of the aircraft is about 0.8 bar and the input temperature of the air conditioning module of the cabin of about -15 ° C.
  • a flow of compressed air, at high pressure and temperature, is thus taken from the compressor stages of the main engines and is then cooled through a pre-cooler (pre-cooler in English) at the outlet of which its pressure is about 2 bar and its temperature of about 200 ° C.
  • This air is then cooled again and both dried and expanded in a cooling module at the outlet of which its pressure is close to that of the cabin, about 0.8 bar, and its temperature is about -15 ° C. .
  • the air thus conditioned is then conveyed to the air conditioning module of the cabin of the aircraft to ensure the thermal regulation and the supply of fresh air.
  • the pressure of the air taken is high, the air must be depressed so as to reach the required pressure level at the entrance of the air conditioning module of the cabin of the aircraft.
  • Such relaxation requires the use of a cooling module comprising a turbocharger and a plurality of heat exchangers who consume energy and complexify the structure of the system, which presents a first disadvantage.
  • the pre-cooler of such a system requires additional air withdrawal, at low temperature, to cool the hot air taken from the compressor stages of the main engines of the aircraft.
  • Such a multiplicity of air samples at different locations of the aircraft complicates the air conditioning system and therefore the internal structure of the aircraft, which increases the drag and the fuel consumption and has a second disadvantage.
  • Such a system also makes the installation and operability of the main engines more complex and can reduce their performance, which presents a third disadvantage.
  • the invention aims to improve the existing air conditioning systems for aircraft so as to save the energy of the aircraft and simplify the air conditioning and more generally the aircraft structure.
  • the invention relates to an air conditioning system for a pressurized cabin of an aircraft according to claim 1.
  • outside ambient air free air outside the aircraft, as opposed to air circulating in the engines of the aircraft.
  • the air thus cooled can then be conveyed to an air conditioning module of the cabin of the aircraft which will then adjust the temperature of the air flow according to the cabin settings to supply it with air fresh.
  • the compression module compresses the ambient air taken from the outside of the aircraft, the pressure and temperature of which are generally below the pressure and temperature levels required at the entry of the air-conditioning module of the cabin.
  • Such compression makes it possible to increase the pressure of the air up to the required pressure level in the cabin, for example 0.8 bar. Since the pressure of the outside ambient air taken is of the order of 0.2 or 0.3 bar, the compression ratio associated with such compression to obtain a pressure close to the level required in the cabin, for example 0.8 bar is low, for example of the order of 3 or 4, and therefore requires little energy.
  • the compression can be performed up to a value slightly greater than the pressure required in the cabin, for example 0.9 bar, so as to provide for the decrease in air pressure due to the pressure drops between the compression module of the cabin. air and the air conditioning module of the aircraft.
  • the cooling module receives and then cools the flow of compressed air to the required input temperature level.
  • the air conditioning module of the cabin for example -15 ° C.
  • the cooled air is then supplied to the air conditioning module of the aircraft to provide thermal regulation and the supply of fresh air to the pressurized cabin of the aircraft .
  • the air sampling module of the system according to the invention can thus comprise a single air sampling means which can consist, for example, of a dynamic air inlet or good of a controllable valve.
  • the structure of such a system is simple and allows in particular to avoid the use of a turbocharger and a plurality of heat exchangers for cooling the air.
  • the installation, operability and maintenance of the engines are furthermore made easier.
  • the cooling fluid storage means are thus easily refillable, for example, during the maintenance of the aircraft.
  • a cold accumulator makes it possible to reduce the temperature of a first flow of air without the need to take a second flow of ambient ambient air.
  • the air is compressed to the required value in the cabin or slightly above it to compensate for pressure losses in the system, significantly limiting the energy required for this compression, the cooling is obtained without relaxation. of air, which simplifies the structure of the system by avoiding the use of a relaxation module.
  • the cooling module is autonomous.
  • autonomous means that the cooling of the air is carried out solely by means of the cooling fluid stored in the storage means, that is to say without using fluid from another source.
  • the cooling fluid storage means are configured to store a low temperature fluid, for example less than -180 ° C, for cooling the flow of compressed air.
  • the cooling fluid is a cryogenic fluid, preferably a cryogenic liquid.
  • the cooling fluid storage means are in the form of a cryogenic fluid reservoir.
  • a cryogenic fluid may, for example, be liquid nitrogen, liquid air, liquid helium, etc.
  • the cooling module is configured to deliver a gaseous fluid, for example nitrogen gas under pressure, preferably the temperature is lower than that of the flow of compressed air, can feed a turbine and thus provide mechanical energy.
  • a gaseous fluid for example nitrogen gas under pressure
  • the system comprises a heat exchange module, for example a heat exchanger, arranged between the air compression module and the cooling module, configured to cool the flow of compressed air, received from the air compression module, from the flow of gaseous fluid delivered by the cooling module, and convey, on the one hand, the flow of compressed air thus cooled to the cooling module and on the other hand , the flow of gaseous fluid to a heating module.
  • a heat exchange module for example a heat exchanger, arranged between the air compression module and the cooling module, configured to cool the flow of compressed air, received from the air compression module, from the flow of gaseous fluid delivered by the cooling module, and convey, on the one hand, the flow of compressed air thus cooled to the cooling module and on the other hand , the flow of gaseous fluid to a heating module.
  • the system comprises an air flow orientation module disposed between the compression module and the cooling module and configured to guide the flow of air, compressed by the compression module. to the air cooling module, when the temperature of the compressed air is higher than the required temperature at the inlet of the air conditioning module of the cabin, or to a heating module, when the temperature of the air Compressed air is below the required input temperature of the cab air conditioning module.
  • the orientation module of an air flow is in the form of a two-way valve.
  • the system comprises a heating module configured to receive a flow of gaseous fluid to be heated, for example, from the heat exchange module or a flow of air from the orientation module of a flow of heat. 'air.
  • the heating module is configured to route the heated air to the air conditioning module of the cabin or to a turbine.
  • the system comprises a turbine configured to receive, from the heating module, the flow of gaseous fluid and to supply, for example, a generator to produce electric current, for example, to supply Aircraft equipment.
  • a turbine configured to receive, from the heating module, the flow of gaseous fluid and to supply, for example, a generator to produce electric current, for example, to supply Aircraft equipment.
  • the outgoing flow of such a turbine may also make it possible to cool the engine bay or bays of the aircraft (an engine bay being the enclosure in which an engine is installed), and / or to render the atmosphere inert, thus greatly reducing the risk of fire.
  • the recovery of the gaseous fluid delivered by the cooling module thus makes it possible to produce additional energy at low cost.
  • the compression module is a charge compressor, for example an auxiliary power unit (APU, Auxiliary Power Unit in English).
  • APU auxiliary power unit
  • Auxiliary Power Unit in English
  • the cooling module comprises a condenser configured to condense the water of the air flow, a water extractor configured to extract said water, a cooler configured to cool the flow of dry air and a reservoir of a cooling fluid, for example a cryogenic liquid such as liquid nitrogen, liquid air, liquid helium, etc., configured to allow condensation of the flow water by the condenser and the cooling of the dried flow by the cooler, for example to negative temperatures without risk of clogging by frost.
  • a condenser configured to condense the water of the air flow
  • a water extractor configured to extract said water
  • a cooler configured to cool the flow of dry air
  • a reservoir of a cooling fluid for example a cryogenic liquid such as liquid nitrogen, liquid air, liquid helium, etc.
  • the cooling module is configured to dehumidify the flow of compressed air received.
  • the heating module is a heat recovery unit, for example a heat exchanger.
  • the invention also relates to an aircraft comprising an air conditioning system as defined above.
  • the method comprises, between the compression and cooling steps, a step of directing the air flow, compressed by the air compression module, towards the air cooling module, when the temperature of the air the compressed air is higher than the required input temperature of the cabin air conditioning module, or to a heating module, when the temperature of the compressed air is below the required temperature at the inlet of the cabin air conditioning module .
  • the method further comprises a step of sending, by the heating module, a flow of gaseous cooling fluid to a recovery turbine.
  • the air conditioning system is used to supply air to the pressurized cabin from outside air.
  • the embodiment of the air conditioning system 1 according to the invention illustrated in FIG. figure 1 comprises an air sampling module 3, an air compression module 5, an air orientation module 7, a heat exchange module 9, a cooling module 10, a thermal recovery module 20, a turbine 30 and an air conditioning module 40 of the pressurized cabin of the aircraft.
  • the air sampling module is configured to collect ambient air outside the aircraft.
  • the air sampling module 3 comprises one or more external ambient air inlets, preferably a single air inlet, for example of the dynamic air inlet type.
  • An air inlet is said to be dynamic (as opposed to a static air inlet) when it is capable of transforming the kinetic energy of the captured air into pressure (stop pressure or dynamic pressure).
  • Such a dynamic air intake may be that of an auxiliary power unit of the aircraft (Auxiliary Power Unit or APU in English).
  • the air sampling module may consist of one or more controllable air bleed valves.
  • the air compression module 5 comprises at least one compressor, which may for example be the charge compressor of an auxiliary power unit of the aircraft.
  • a unit usually comprises a charge compressor 5, and a turbomachine comprising a motor or a generator 35 and a turbine 30.
  • the charge compressor 5 is configured to receive the flow of air F1 taken by the sampling module 3, the compressing and conveying the flow of compressed air F2 to the air guidance module 7.
  • the air orientation module 7 for example a two-way valve, is configured to guide the flow of compressed air F2 to the heat exchange module 9 or to the thermal recovery module 20.
  • air orientation 7 comprises means for measuring the temperature of the compressed air flow F2 coming from the air compression module 5 and means for comparing the measured value with a reference value corresponding to the level required at the input of the cabin air conditioning module 40.
  • the air orientation module 7 is then configured to direct the flow of compressed air F2 to the heat exchange module 9 and then to cool it when the measured temperature of the compressed air is greater than that required level input air conditioning module 40.
  • the air orientation module 7 is also configured to direct the flow of compressed air to the heat recovery module 20 to warm it r when the measured temperature of the compressed air is lower than the required level at the input of the air conditioning module 40.
  • the heat exchange module 9 comprises at least one heat exchanger configured to allow a heat exchange between the compressed air stream F2 received from the air orientation module 7 and a flow of gaseous fluid F5 from the module of cooling 10.
  • the cooling module 10 is configured to receive the air flow F3 from the air orientation module 7 and having passed through the heat exchange module 9 and to cool said received stream F3.
  • the cooling module comprises a condenser 12, a water extractor 13, a cooler 14, a cryogenic fluid reservoir 15, for example liquid nitrogen pressurized to 10 bar, a first control valve 16 disposed between the reservoir of cryogenic fluid 15 and the condenser 12 and a second control valve 17 disposed between the cryogenic fluid reservoir 15 and the cooler 14.
  • the condenser 12 is configured to receive a flow of air to be cooled, for example a compressed air flow. potentially humid at a temperature up to 100 ° C at the cabin pressure, for example about 0.8 bar.
  • the condenser 12 is also configured to condense the water vapor contained in the received compressed air flow while avoiding its icing by maintaining a positive temperature at its output.
  • the water extractor 13 is configured to extract the water from the air stream, condensed by the condenser 12, whose water flow F8 can then be, for example, removed or injected into a water circuit. of the aircraft.
  • the cooler 14 is configured to cool the flow of dry air received from the water extractor 13 from cryogenic fluid received from the tank 15 through the second control valve 17 and to convey the flow of cold and dry air. F4 obtained to the air conditioning module 40 of the cabin.
  • the liquid cryogenic fluid stored in the tank is thus used both by the condenser 12 and both by the cooler 14.
  • the cooling fluid passed in gaseous form after the heat exchanges made at the condenser 12 and the cooler 14 is recycled by being conveyed to the heat exchange module 9 to cool the flow of compressed air F2 passing through the heat exchange module 9 and coming from the air orientation module 7.
  • the heating module 20 may be in the form of a thermal recuperator, for example disposed in the exhaust of the auxiliary power unit (APU).
  • the heating module 20 is configured for, in a first mode of operating, heat the airflow F2 received from the air orientation module 7 and then route it to the air conditioning module 40 of the cabin and, in a second operating mode, heat the flow of cooling fluid gas F5 received from the heat exchange module 9 and send it to the turbine 30.
  • a bypass path of this heating module may be provided to regulate the heating thermal energy of the air flow F2.
  • the turbine 30 is configured to receive a flow of gaseous fluid from the heating module 20.
  • the mechanical energy produced by the turbine 30 from the stream of gaseous fluid received can be, for example, injected into the transmission box of the auxiliary power unit (APU), or used to drive an alternator, or for any other possibly more appropriate use.
  • the gas stream at the outlet F7 can still be used to cool the engine bay of the aircraft and / or render inert the atmosphere, if the fluid is nitrogen gas for example.
  • the air conditioning module 40 comprises a mixer (not shown) configured to receive the cooled air flow F4 of the cooling module 10 and mix it with air from the cabin so as to provide the cabin with a flow of air at the desired setting temperature.
  • the system according to the invention may also comprise means for regulating the cabin pressure (not shown) and control means configured to control one or all of the modules of the system (air sampling module, air compression, air orientation, cooling, air conditioning heating turbine ).
  • a first step E1 the air sampling module 3 withdraws ambient ambient air and conveys the ambient air stream taken F1 to the air compression module 5.
  • the air compression module 5 compresses the withdrawn air F1 and sends the flow of compressed air F2 to the air orientation module 7.
  • the air orientation module 7 determines whether the temperature of the compressed air flow F2 is greater or less than a reference value associated with the level required at the input of the air conditioning module 40.
  • the air orientation module 7 conveys, in a step E4, the flow of compressed air F2 to be cooled to the heat exchange module 9
  • the flow of compressed air F2 then passes through the heat exchange module 9, in which it undergoes a first cooling, during a step E5, with a gaseous fluid F5 from the cooling module 10.
  • the air flow compressed F3 is then conveyed to the cooling module 10 in which it undergoes a second cooling during a step E6.
  • the flow of compressed air F3 passes through the condenser 12, in a step E61, during which the water vapor possibly present in the air stream is condensed.
  • the condenser 12 uses the cryogenic fluid received, through the first valve 16, the cryogenic fluid reservoir 15 to reduce the temperature of the air flow to a slightly positive temperature, for example 2 ° C so as to allow the condensation water vapor without icing.
  • the gaseous fluid F5 produced by the heat exchange between the air flow and the cryogenic fluid is then conveyed to the heat exchange module 9.
  • the water is then extracted from the air stream, in a step E62, by the water extractor 13 and then the air flow is conveyed to the cooler 14 which then uses, in a step E63, the cryogenic fluid received, through the second valve 17, to decrease the temperature of the dry air flow to the required temperature level at the input of the air conditioning module 40, for example -15 ° C.
  • the gaseous fluid produced by the heat exchange between the air flow and the cryogenic fluid is also conveyed to the heat exchange module 9.
  • the cold and dry air flow F4 is then conveyed, in a step E7 to the air conditioning module of the cabin 40.
  • the desired cabin temperature can then be obtained by means of the mixer of the air conditioning module 40.
  • the means for regulating the pressure in the cabin make it possible to maintain the cabin under pressure, for example at 0.8 bar.
  • the gaseous fluid F5 resulting from the heat exchanges in the condenser 12 and in the cooler 14 is conveyed via a feedback loop, during a step E8, to the heat exchange module 9 where it serves to perform a first cooling compressed air flow F2 from the air orientation module 7.
  • the flow of gaseous fluid is conveyed to the heating module 20 which increases its temperature, in a step E9, before sending it to the turbine 30 of the APU during a step E10.
  • the turbine 30 can then use the flow of gaseous fluid F6 to, for example, power a generator and produce electricity.
  • the flow can serve to cool the engine bay of the aircraft and / or to render the atmosphere inert in a step E11.
  • the air orientation module 7 conveys, in a step E12, the flow of compressed air F2 to be heated to the heating module 20.
  • the heating module 20 then increases the temperature of the air flow during a step E13 and then conveys it to the air conditioning module 40 of the cabin during a step E14.
  • the desired temperature in the cabin can then be obtained through the mixer of the air conditioning module 40.
  • the heat exchange module 9 could be absent and the compressed air flow F 2 could then be conveyed directly from the air orientation module 7 to the module cooling 10.
  • the system according to the invention therefore makes it possible to compress a flow of air taken from the ambient air outside the aircraft to a value close to that of the pressure required in the cabin, for example with a compression ratio of 3 or 4, which does not require a lot of energy.
  • the cooling module then allows the flow to be cooled to lower the temperature to the level required at the input of the air conditioning module of the cabin.

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention se rapporte au domaine du conditionnement d'air dans les aéronefs et plus particulièrement au conditionnement de l'air destiné à l'alimentation de la cabine pressurisée d'un aéronef. L'invention concerne plus particulièrement un système et un procédé de conditionnement d'air pour un aéronef ainsi qu'un aéronef comprenant un tel système. Des exemples de l'art antérieur sont fournis par les documents EP2165931 et US2012/0240599 .The invention relates to the field of air conditioning in aircraft and more particularly to the conditioning of air intended for feeding the pressurized cabin of an aircraft. The invention more particularly relates to an air conditioning system and method for an aircraft and an aircraft comprising such a system. Examples of the prior art are provided by the documents EP2165931 and US2012 / 0240599 .

ÉTAT DE LA TECHNIQUESTATE OF THE ART

En altitude de croisière d'un l'aéronef, par exemple à 10000 mètres d'altitude, la pression de l'air ambiant extérieur est, en général, d'environ 0,2 à 0,3 bar et sa température comprise entre -20 et -60°C alors que la pression dans la cabine pressurisée de l'aéronef est d'environ 0,8 bar et la température en entrée du module de climatisation de la cabine d'environ -15°C.At cruising altitude of an aircraft, for example at an altitude of 10,000 meters, the pressure of the ambient ambient air is, in general, approximately 0.2 to 0.3 bar and its temperature between - 20 and -60 ° C while the pressure in the pressurized cabin of the aircraft is about 0.8 bar and the input temperature of the air conditioning module of the cabin of about -15 ° C.

Afin d'approvisionner la cabine pressurisée en air, il est connu de prélever de l'air au niveau des moteurs principaux afin de le conditionner puis de l'acheminer jusqu'à un module de climatisation de la cabine.In order to supply the pressurized cabin with air, it is known to draw air from the main engines in order to condition it and then convey it to an air conditioning module of the cabin.

Un flux d'air comprimé, à pression et température élevées, est ainsi prélevé sur les étages de compresseurs des moteurs principaux puis est ensuite refroidi à travers un pré-refroidisseur (pre-cooler en langue anglaise) à la sortie duquel sa pression est d'environ 2 bars et sa température d'environ 200°C. Cet air est alors à nouveau refroidi et à la fois asséché et détendu dans un module de refroidissement à la sortie duquel sa pression est proche de celle de la cabine, environ 0,8 bar, et sa température est d'environ -15°C. L'air ainsi conditionné est ensuite acheminé jusqu'au module de climatisation de la cabine de l'aéronef pour en assurer la régulation thermique et l'alimentation en air frais. Un tel système présente cependant plusieurs inconvénients.A flow of compressed air, at high pressure and temperature, is thus taken from the compressor stages of the main engines and is then cooled through a pre-cooler (pre-cooler in English) at the outlet of which its pressure is about 2 bar and its temperature of about 200 ° C. This air is then cooled again and both dried and expanded in a cooling module at the outlet of which its pressure is close to that of the cabin, about 0.8 bar, and its temperature is about -15 ° C. . The air thus conditioned is then conveyed to the air conditioning module of the cabin of the aircraft to ensure the thermal regulation and the supply of fresh air. Such a system, however, has several disadvantages.

Tout d'abord, la pression de l'air prélevé étant élevée, l'air doit subir une détente de sorte à atteindre le niveau de pression requis en entrée du module de climatisation de la cabine de l'aéronef. Une telle détente nécessite d'utiliser un module de refroidissement comprenant un turbocompresseur et une pluralité d'échangeurs de chaleur qui sont consommateurs d'énergie et qui complexifient la structure du système, ce qui présente un premier inconvénient.Firstly, the pressure of the air taken is high, the air must be depressed so as to reach the required pressure level at the entrance of the air conditioning module of the cabin of the aircraft. Such relaxation requires the use of a cooling module comprising a turbocharger and a plurality of heat exchangers who consume energy and complexify the structure of the system, which presents a first disadvantage.

De plus, le pré-refroidisseur d'un tel système nécessite un prélèvement d'air supplémentaire, à faible température, pour refroidir l'air chaud prélevé au niveau des étages des compresseurs des moteurs principaux de l'aéronef. Une telle multiplicité des prélèvements d'air à différents endroits de l'aéronef complexifie le système de conditionnement d'air et donc la structure interne de l'aéronef, ce qui en augmente la trainée et la consommation en carburant et présente un deuxième inconvénient.In addition, the pre-cooler of such a system requires additional air withdrawal, at low temperature, to cool the hot air taken from the compressor stages of the main engines of the aircraft. Such a multiplicity of air samples at different locations of the aircraft complicates the air conditioning system and therefore the internal structure of the aircraft, which increases the drag and the fuel consumption and has a second disadvantage.

Un tel système rend en outre complexe l'installation et l'opérabilité des moteurs principaux et peut en diminuer les performances, ce qui présente un troisième inconvénient.Such a system also makes the installation and operability of the main engines more complex and can reduce their performance, which presents a third disadvantage.

Par ailleurs, le prélèvement d'air au niveau des étages de compresseurs des moteurs principaux diminue d'autant la quantité d'air utilisable pour la propulsion de l'aéronef, ce qui augmente la consommation de carburant et présente donc un quatrième inconvénient.Furthermore, the intake of air at the compressor stages of the main engines decreases the amount of usable air for the propulsion of the aircraft, which increases the fuel consumption and therefore has a fourth disadvantage.

Enfin, la variabilité du régime moteur impose un système complexe pour assurer un niveau minimum invariable de prélèvement d'air, ce qui présente un cinquième inconvénient.Finally, the variability of the engine speed imposes a complex system to ensure an invariable minimum level of air sampling, which presents a fifth drawback.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention vise à améliorer les systèmes existants de conditionnement d'air pour aéronef de sorte à économiser l'énergie de l'aéronef et simplifier le conditionnement d'air et plus généralement la structure de l'aéronef.The invention aims to improve the existing air conditioning systems for aircraft so as to save the energy of the aircraft and simplify the air conditioning and more generally the aircraft structure.

Ainsi, l'invention a pour objet un système de conditionnement d'air pour une cabine pressurisée d'un aéronef selon la revendication 1.Thus, the invention relates to an air conditioning system for a pressurized cabin of an aircraft according to claim 1.

Par les termes « air ambiant extérieur », on entend de l'air libre extérieur à l'aéronef, par opposition à de l'air circulant dans les moteurs de l'aéronef.By the term "outside ambient air" is meant free air outside the aircraft, as opposed to air circulating in the engines of the aircraft.

L'air ainsi refroidi peut ensuite être acheminé jusqu'à un module de climatisation de la cabine de l'aéronef qui va ensuite ajuster la température du flux d'air en fonction des réglages de la cabine afin d'alimenter celle-ci en air frais.The air thus cooled can then be conveyed to an air conditioning module of the cabin of the aircraft which will then adjust the temperature of the air flow according to the cabin settings to supply it with air fresh.

Le module de compression permet de comprimer l'air ambiant prélevé à l'extérieur de l'aéronef, dont la pression et la température sont généralement inférieures aux niveaux de pression et de température requis en entrée du module de climatisation de la cabine. Une telle compression permet d'augmenter la pression de l'air jusqu'au niveau de pression requis dans la cabine, par exemple 0,8 bar. La pression de l'air ambiant extérieur prélevé étant de l'ordre de 0,2 ou 0,3 bar, le taux de compression associé à une telle compression pour obtenir une pression proche du niveau requis en cabine, par exemple 0,8 bar, est faible, par exemple de l'ordre de 3 ou 4, et nécessite donc peu d'énergie. La compression peut être réalisée jusqu'à une valeur légèrement supérieure à la pression requise en cabine, par exemple 0,9 bar, de sorte à prévoir la diminution de pression de l'air liée aux pertes de charge entre le module de compression d'air et le module de climatisation de l'aéronef.The compression module compresses the ambient air taken from the outside of the aircraft, the pressure and temperature of which are generally below the pressure and temperature levels required at the entry of the air-conditioning module of the cabin. Such compression makes it possible to increase the pressure of the air up to the required pressure level in the cabin, for example 0.8 bar. Since the pressure of the outside ambient air taken is of the order of 0.2 or 0.3 bar, the compression ratio associated with such compression to obtain a pressure close to the level required in the cabin, for example 0.8 bar is low, for example of the order of 3 or 4, and therefore requires little energy. The compression can be performed up to a value slightly greater than the pressure required in the cabin, for example 0.9 bar, so as to provide for the decrease in air pressure due to the pressure drops between the compression module of the cabin. air and the air conditioning module of the aircraft.

Lorsque la compression augmente la température de l'air prélevé au-delà du niveau requis en entrée du module de climatisation de la cabine, le module de refroidissement reçoit et refroidit alors le flux d'air comprimé jusqu'au niveau de température requis en entrée du module de climatisation de la cabine, par exemple -15° C. L'air refroidi est ensuite fourni au module de climatisation de l'aéronef pour assurer la régulation thermique et l'alimentation en air frais de la cabine pressurisée de l'aéronef.When the compression increases the temperature of the air drawn beyond the input level of the cabin air conditioning module, the cooling module receives and then cools the flow of compressed air to the required input temperature level. the air conditioning module of the cabin, for example -15 ° C. The cooled air is then supplied to the air conditioning module of the aircraft to provide thermal regulation and the supply of fresh air to the pressurized cabin of the aircraft .

Le système selon l'invention prélève uniquement de l'air ambiant extérieur. Il n'est donc plus nécessaire de prélever de l'air au niveau des étages de compresseurs des moteurs principaux, ce qui permet d'en améliorer l'efficacité et de rendre le système de conditionnement d'air indépendant des variations du régime moteur de l'aéronef. En particulier, et contrairement aux solutions existantes, le module de prélèvement d'air du système selon l'invention peut ainsi comprendre un unique moyen de prélèvement d'air qui peut être constitué, par exemple, d'une entrée d'air dynamique ou bien d'une vanne commandable.The system according to the invention takes only ambient ambient air. It is therefore no longer necessary to draw air at the compressor stages of the main engines, which makes it possible to improve its efficiency and to make the air conditioning system independent of variations in the engine speed of the engine. the aircraft. In particular, and contrary to existing solutions, the air sampling module of the system according to the invention can thus comprise a single air sampling means which can consist, for example, of a dynamic air inlet or good of a controllable valve.

En outre, il n'est plus nécessaire de multiplier les prélèvements d'air à différentes températures et à différents endroits de l'aéronef, ce qui en simplifie l'architecture et permet d'en réduire la trainée et donc la consommation en carburant.In addition, it is no longer necessary to multiply the air samples at different temperatures and at different locations on the aircraft, which simplifies the architecture and reduces the drag and therefore the fuel consumption.

La structure d'un tel système est simple et permet notamment d'éviter l'utilisation d'un turbocompresseur et d'une pluralité d'échangeurs de chaleur pour refroidir l'air. L'installation, l'opérabilité et la maintenance des moteurs sont en outre rendues plus aisées.The structure of such a system is simple and allows in particular to avoid the use of a turbocharger and a plurality of heat exchangers for cooling the air. The installation, operability and maintenance of the engines are furthermore made easier.

Les moyens de stockage de fluide de refroidissement sont ainsi rechargeables aisément, par exemple, lors de la maintenance de l'aéronef. Un tel accumulateur de froid permet de réduire la température d'un premier flux d'air sans nécessité de prélever un second flux d'air ambiant extérieur. De plus, l'air est comprimé jusqu'à la valeur requise en cabine ou légèrement au-dessus pour compenser les pertes de charge dans le système, limitant de manière importante l'énergie nécessaire pour cette compression, le refroidissement est donc obtenu sans détente de l'air, ce qui simplifie la structure du système en évitant l'utilisation d'un module de détente.The cooling fluid storage means are thus easily refillable, for example, during the maintenance of the aircraft. Such a cold accumulator makes it possible to reduce the temperature of a first flow of air without the need to take a second flow of ambient ambient air. In addition, the air is compressed to the required value in the cabin or slightly above it to compensate for pressure losses in the system, significantly limiting the energy required for this compression, the cooling is obtained without relaxation. of air, which simplifies the structure of the system by avoiding the use of a relaxation module.

De préférence, le module de refroidissement est autonome. Par le terme « autonome », on entend que le refroidissement de l'air est réalisé uniquement au moyen du fluide de refroidissement stocké dans les moyens de stockage, c'est-à-dire sans utiliser de fluide provenant d'une autre source.Preferably, the cooling module is autonomous. The term "autonomous" means that the cooling of the air is carried out solely by means of the cooling fluid stored in the storage means, that is to say without using fluid from another source.

Selon une caractéristique de l'invention, les moyens de stockage de fluide de refroidissement sont configurés pour stocker un fluide à basse température, par exemple inférieure à -180°C, permettant de refroidir le flux d'air comprimé.According to one characteristic of the invention, the cooling fluid storage means are configured to store a low temperature fluid, for example less than -180 ° C, for cooling the flow of compressed air.

Selon une caractéristique de l'invention, le fluide de refroidissement est un fluide cryogénique, de préférence un liquide cryogénique.According to one characteristic of the invention, the cooling fluid is a cryogenic fluid, preferably a cryogenic liquid.

Selon une caractéristique de l'invention, les moyens de stockage de fluide de refroidissement se présentent sous la forme d'un réservoir de fluide cryogénique. Un tel fluide cryogénique peut, par exemple, être de l'azote liquide, de l'air liquide, de l'hélium liquide etc.According to one characteristic of the invention, the cooling fluid storage means are in the form of a cryogenic fluid reservoir. Such a cryogenic fluid may, for example, be liquid nitrogen, liquid air, liquid helium, etc.

Avantageusement, le module de refroidissement est configuré pour délivrer un fluide gazeux, par exemple de l'azote gazeux sous pression, de préférence dont la température est inférieure à celle du flux d'air comprimé, pouvant alimenter une turbine et fournir ainsi une énergie mécanique.Advantageously, the cooling module is configured to deliver a gaseous fluid, for example nitrogen gas under pressure, preferably the temperature is lower than that of the flow of compressed air, can feed a turbine and thus provide mechanical energy.

Selon un aspect de l'invention, le système comprend un module d'échange calorifique, par exemple un échangeur de chaleur, disposé entre le module de compression d'air et le module de refroidissement, configuré pour refroidir le flux d'air comprimé, reçu du module de compression d'air, à partir du flux de fluide gazeux délivré par le module de refroidissement, et acheminer, d'une part, le flux d'air comprimé ainsi refroidi vers le module de refroidissement et, d'autre part, le flux de fluide gazeux vers un module de chauffage. Une telle boucle permet d'utiliser l'énergie calorique du fluide gazeux délivré par le module de refroidissement afin d'effectuer, à travers l'échangeur de chaleur, un pré-refroidissement du flux d'air comprimé.According to one aspect of the invention, the system comprises a heat exchange module, for example a heat exchanger, arranged between the air compression module and the cooling module, configured to cool the flow of compressed air, received from the air compression module, from the flow of gaseous fluid delivered by the cooling module, and convey, on the one hand, the flow of compressed air thus cooled to the cooling module and on the other hand , the flow of gaseous fluid to a heating module. Such a loop makes it possible to use the caloric energy of the gaseous fluid delivered by the cooling module in order to carry out, through the heat exchanger, a pre-cooling of the flow of compressed air.

Selon un aspect de l'invention, le système comprend un module d'orientation d'un flux d'air disposé entre le module de compression et le module de refroidissement et configuré pour orienter le flux d'air, comprimé par le module de compression d'air, vers le module de refroidissement d'air, lorsque la température de l'air comprimé est supérieure à la température requise en entrée du module de climatisation de la cabine, ou vers un module de chauffage, lorsque la température de l'air comprimé est inférieure à la température requise en entrée du module de climatisation de la cabine.According to one aspect of the invention, the system comprises an air flow orientation module disposed between the compression module and the cooling module and configured to guide the flow of air, compressed by the compression module. to the air cooling module, when the temperature of the compressed air is higher than the required temperature at the inlet of the air conditioning module of the cabin, or to a heating module, when the temperature of the air Compressed air is below the required input temperature of the cab air conditioning module.

De préférence, le module d'orientation d'un flux d'air se présente sous la forme d'une vanne deux voies.Preferably, the orientation module of an air flow is in the form of a two-way valve.

De préférence encore, le système comprend un module de chauffage configuré pour recevoir un flux de fluide gazeux à réchauffer, par exemple, provenant du module d'échange calorifique ou bien un flux d'air provenant du module d'orientation d'un flux d'air.More preferably, the system comprises a heating module configured to receive a flow of gaseous fluid to be heated, for example, from the heat exchange module or a flow of air from the orientation module of a flow of heat. 'air.

Selon une caractéristique de l'invention, le module de chauffage est configuré pour acheminer l'air réchauffé vers le module de climatisation de la cabine ou vers une turbine.According to a characteristic of the invention, the heating module is configured to route the heated air to the air conditioning module of the cabin or to a turbine.

Avantageusement, le système comprend une turbine configurée pour recevoir, du module de chauffage, le flux de fluide gazeux et pour alimenter, par exemple, un générateur pour produire du courant électrique, par exemple, pour alimenter des appareils de l'aéronef. Le flux sortant d'une telle turbine peut aussi permettre de refroidir la ou les baies moteur de l'aéronef (une baie moteur étant l'enceinte dans laquelle est installée un moteur), et/ou d'en rendre l'atmosphère inerte, diminuant ainsi fortement le risque d'incendie. La récupération du fluide gazeux délivré par le module de refroidissement permet donc de produire de l'énergie supplémentaire à faible coût.Advantageously, the system comprises a turbine configured to receive, from the heating module, the flow of gaseous fluid and to supply, for example, a generator to produce electric current, for example, to supply Aircraft equipment. The outgoing flow of such a turbine may also make it possible to cool the engine bay or bays of the aircraft (an engine bay being the enclosure in which an engine is installed), and / or to render the atmosphere inert, thus greatly reducing the risk of fire. The recovery of the gaseous fluid delivered by the cooling module thus makes it possible to produce additional energy at low cost.

De préférence, le module de compression est un compresseur de charge, par exemple d'une unité auxiliaire de puissance (APU, Auxiliary Power Unit en langue anglaise).Preferably, the compression module is a charge compressor, for example an auxiliary power unit (APU, Auxiliary Power Unit in English).

Selon une caractéristique de l'invention, le module de refroidissement comprend un condenseur configuré pour condenser l'eau du flux d'air, un extracteur d'eau configuré pour extraire ladite eau, un refroidisseur configuré pour refroidir le flux d'air sec et un réservoir d'un fluide de refroidissement, par exemple un liquide cryogénique tel que de l'azote liquide, de l'air liquide, de l'hélium liquide etc, configuré pour autoriser la condensation de l'eau du flux par le condenseur et le refroidissement du flux asséché par le refroidisseur, par exemple jusqu'à des températures négatives sans risque de colmatage par du givre.According to one characteristic of the invention, the cooling module comprises a condenser configured to condense the water of the air flow, a water extractor configured to extract said water, a cooler configured to cool the flow of dry air and a reservoir of a cooling fluid, for example a cryogenic liquid such as liquid nitrogen, liquid air, liquid helium, etc., configured to allow condensation of the flow water by the condenser and the cooling of the dried flow by the cooler, for example to negative temperatures without risk of clogging by frost.

Avantageusement, le module de refroidissement est configuré pour déshumidifier le flux d'air comprimé reçu.Advantageously, the cooling module is configured to dehumidify the flow of compressed air received.

Selon une caractéristique de l'invention, le module de chauffage est un récupérateur thermique, par exemple un échangeur de chaleur.According to one characteristic of the invention, the heating module is a heat recovery unit, for example a heat exchanger.

L'invention concerne aussi un aéronef comprenant un système de conditionnement d'air tel que défini ci-dessus.The invention also relates to an aircraft comprising an air conditioning system as defined above.

L'invention concerne aussi un procédé de conditionnement d'air dans un aéronef tel que défini ci-dessus comprenant une cabine pressurisée et un module de climatisation de ladite cabine, ledit procédé étant remarquable en ce qu'il comprend :

  • une étape de prélèvement d'air ambiant extérieur à l'aéronef,
  • une étape de compression du flux d'air prélevé,
  • une étape de refroidissement du flux d'air comprimé par un fluide cryogénique,
  • une étape d'acheminement du flux d'air ainsi refroidi vers le module de climatisation de la cabine de l'aéronef.
The invention also relates to a method of air conditioning in an aircraft as defined above comprising a pressurized cabin and an air conditioning module of said cabin, said method being remarkable in that it comprises:
  • a step of taking ambient air outside the aircraft,
  • a step of compressing the air flow taken,
  • a step of cooling the flow of compressed air by a cryogenic fluid,
  • a step of conveying the air flow thus cooled to the air conditioning module of the cabin of the aircraft.

De préférence, le procédé comprend, entre les étapes de compression et de refroidissement, une étape d'orientation du flux d'air, comprimé par le module de compression d'air, vers le module de refroidissement d'air, lorsque la température de l'air comprimé est supérieure à la température requise en entrée du module de climatisation de la cabine, ou vers un module de chauffage, lorsque la température de l'air comprimé est inférieure à la température requise en entrée du module de climatisation de la cabine.Preferably, the method comprises, between the compression and cooling steps, a step of directing the air flow, compressed by the air compression module, towards the air cooling module, when the temperature of the air the compressed air is higher than the required input temperature of the cabin air conditioning module, or to a heating module, when the temperature of the compressed air is below the required temperature at the inlet of the cabin air conditioning module .

Selon un aspect de l'invention, le procédé comprend en outre une étape d'envoi, par le module de chauffage, d'un flux de fluide de refroidissement gazeux vers une turbine de récupération.According to one aspect of the invention, the method further comprises a step of sending, by the heating module, a flow of gaseous cooling fluid to a recovery turbine.

D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description qui suit faite en regard des figures annexées données à titre d'exemples non limitatifs et dans lesquelles des références identiques sont données à des objets semblables :

  • la figure 1 représente schématiquement le système de conditionnement d'air selon l'invention ;
  • la figure 2 représente schématiquement le module de refroidissement du système de la figure 1 ;
  • la figure 3 illustre le procédé de conditionnement d'air selon l'invention.
Other features and advantages of the invention will become apparent from the following description made with reference to the appended figures given by way of non-limiting examples and in which identical references are given to similar objects:
  • the figure 1 schematically represents the air conditioning system according to the invention;
  • the figure 2 schematically represents the cooling module of the system of the figure 1 ;
  • the figure 3 illustrates the air conditioning method according to the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Dans un aéronef, le système de conditionnement d'air permet d'alimenter en air la cabine pressurisée à partir d'air extérieur.In an aircraft, the air conditioning system is used to supply air to the pressurized cabin from outside air.

DESCRIPTION DU SYSTEME SELON L'INVENTIONDESCRIPTION OF THE SYSTEM ACCORDING TO THE INVENTION

La forme de réalisation du système de conditionnement d'air 1 selon l'invention illustrée à la figure 1 comprend un module de prélèvement d'air 3, un module de compression d'air 5, un module d'orientation d'air 7, un module d'échange calorifique 9, un module de refroidissement 10, un module de récupération thermique 20, une turbine 30 et un module de climatisation 40 de la cabine pressurisée de l'aéronef.The embodiment of the air conditioning system 1 according to the invention illustrated in FIG. figure 1 comprises an air sampling module 3, an air compression module 5, an air orientation module 7, a heat exchange module 9, a cooling module 10, a thermal recovery module 20, a turbine 30 and an air conditioning module 40 of the pressurized cabin of the aircraft.

Module de prélèvement d'air 3Air sampling module 3

Le module de prélèvement d'air est configuré pour prélever de l'air ambiant à l'extérieur de l'aéronef. Le module de prélèvement d'air 3 comprend une ou plusieurs entrées d'air ambiant extérieur, de préférence une unique entrée d'air, par exemple du type entrée d'air dynamique. Une entrée d'air est dite dynamique (en opposition à une entrée d'air statique) lorsqu'elle est apte à transformer l'énergie cinétique de l'air capté en pression (pression d'arrêt ou pression dynamique). Une telle entrée d'air dynamique peut être celle d'une unité auxiliaire de puissance de l'aéronef (Auxiliary Power Unit ou APU en langue anglaise). Dans une forme de réalisation alternative, le module de prélèvement d'air peut être constitué d'une ou plusieurs vannes commandables de prélèvement d'air.The air sampling module is configured to collect ambient air outside the aircraft. The air sampling module 3 comprises one or more external ambient air inlets, preferably a single air inlet, for example of the dynamic air inlet type. An air inlet is said to be dynamic (as opposed to a static air inlet) when it is capable of transforming the kinetic energy of the captured air into pressure (stop pressure or dynamic pressure). Such a dynamic air intake may be that of an auxiliary power unit of the aircraft (Auxiliary Power Unit or APU in English). In an alternative embodiment, the air sampling module may consist of one or more controllable air bleed valves.

Module de compression d'air 5Air compression module 5

Le module de compression d'air 5 comprend au moins un compresseur, qui peut être par exemple le compresseur de charge d'une unité auxiliaire de puissance de l'aéronef. Une telle unité comprend usuellement un compresseur de charge 5, et une turbomachine comprenant un moteur ou un générateur 35 et une turbine 30. Le compresseur de charge 5 est configuré pour recevoir le flux d'air F1 prélevé par le module de prélèvement 3, le comprimer et acheminer le flux d'air comprimé F2 jusqu'au module d'orientation d'air 7.The air compression module 5 comprises at least one compressor, which may for example be the charge compressor of an auxiliary power unit of the aircraft. Such a unit usually comprises a charge compressor 5, and a turbomachine comprising a motor or a generator 35 and a turbine 30. The charge compressor 5 is configured to receive the flow of air F1 taken by the sampling module 3, the compressing and conveying the flow of compressed air F2 to the air guidance module 7.

Module d'orientation de l'air 7Air orientation module 7

Le module d'orientation d'air 7, par exemple une vanne deux voies, est configuré pour orienter le flux d'air comprimé F2 vers le module d'échange calorifique 9 ou bien vers le module de récupération thermique 20. Le module d'orientation d'air 7 comprend des moyens de mesure de la température du flux d'air comprimé F2 provenant du module de compression d'air 5 et des moyens de comparaison de la valeur mesurée avec une valeur de référence correspondant au niveau requis en entrée du module de climatisation de la cabine 40. Le module d'orientation de l'air 7 est alors configuré pour orienter le flux d'air comprimé F2 vers le module d'échange calorifique 9 afin ensuite de le refroidir lorsque la température mesurée de l'air comprimé est supérieure à celle du niveau requis en entrée du module de climatisation 40. Le module d'orientation de l'air 7 est aussi configuré pour orienter le flux d'air comprimé vers le module de récupération thermique 20 afin de le réchauffer lorsque la température mesurée de l'air comprimé est inférieure à celle du niveau requis en entrée du module de climatisation 40.The air orientation module 7, for example a two-way valve, is configured to guide the flow of compressed air F2 to the heat exchange module 9 or to the thermal recovery module 20. air orientation 7 comprises means for measuring the temperature of the compressed air flow F2 coming from the air compression module 5 and means for comparing the measured value with a reference value corresponding to the level required at the input of the cabin air conditioning module 40. The air orientation module 7 is then configured to direct the flow of compressed air F2 to the heat exchange module 9 and then to cool it when the measured temperature of the compressed air is greater than that required level input air conditioning module 40. The air orientation module 7 is also configured to direct the flow of compressed air to the heat recovery module 20 to warm it r when the measured temperature of the compressed air is lower than the required level at the input of the air conditioning module 40.

Module d'échange calorifique 9Heat exchange module 9

Le module d'échange calorifique 9 comprend au moins un échangeur de chaleur configuré pour autoriser un échange de chaleur entre le flux d'air comprimé F2 reçu du module d'orientation d'air 7 et un flux de fluide gazeux F5 provenant du module de refroidissement 10.The heat exchange module 9 comprises at least one heat exchanger configured to allow a heat exchange between the compressed air stream F2 received from the air orientation module 7 and a flow of gaseous fluid F5 from the module of cooling 10.

Module de refroidissement 10Cooling module 10

Le module de refroidissement 10 est configuré pour recevoir le flux d'air F3 provenant du module d'orientation d'air 7 et ayant traversé le module d'échange calorifique 9 et pour refroidir ledit flux reçu F3. Comme illustré par la figure 2, le module de refroidissement comprend un condenseur 12, un extracteur d'eau 13, un refroidisseur 14, un réservoir de fluide cryogénique 15, par exemple d'azote liquide pressurisé à 10 bars, une première vanne de régulation 16 disposée entre le réservoir de fluide cryogénique 15 et le condenseur 12 et une seconde vanne de régulation 17 disposée entre le réservoir de fluide cryogénique 15 et le refroidisseur 14. Le condenseur 12 est configuré pour recevoir un flux d'air à refroidir, par exemple un flux d'air comprimé potentiellement humide à une température allant jusqu'à 100°C à la pression de la cabine, par exemple environ 0,8 bar. Le condenseur 12 est aussi configuré pour condenser la vapeur d'eau contenue dans le flux d'air comprimé reçu tout en évitant son givrage en maintenant une température positive à sa sortie. L'extracteur d'eau 13 est configuré pour extraire l'eau du flux d'air, condensée par le condenseur 12, dont le flux d'eau F8 peut ensuite être, par exemple, éliminé ou bien injecté dans un circuit d'eau de l'aéronef. Le refroidisseur 14 est configuré pour refroidir le flux d'air sec reçu de l'extracteur d'eau 13 à partir de fluide cryogénique reçu du réservoir 15 à travers la seconde vanne de régulation 17 et pour acheminer le flux d'air froid et sec F4 obtenu vers le module de climatisation 40 de la cabine. Le fluide cryogénique liquide stocké dans le réservoir est ainsi utilisé à la fois par le condenseur 12 et à la fois par le refroidisseur 14. Le fluide de refroidissement passé sous forme gazeuse après les échanges de chaleur réalisés au niveau du condenseur 12 et du refroidisseur 14 est recyclé en étant acheminé vers le module d'échange calorifique 9 pour refroidir le flux d'air comprimé F2 traversant le module d'échange calorifique 9 et venant du module d'orientation d'air 7.The cooling module 10 is configured to receive the air flow F3 from the air orientation module 7 and having passed through the heat exchange module 9 and to cool said received stream F3. As illustrated by figure 2 , the cooling module comprises a condenser 12, a water extractor 13, a cooler 14, a cryogenic fluid reservoir 15, for example liquid nitrogen pressurized to 10 bar, a first control valve 16 disposed between the reservoir of cryogenic fluid 15 and the condenser 12 and a second control valve 17 disposed between the cryogenic fluid reservoir 15 and the cooler 14. The condenser 12 is configured to receive a flow of air to be cooled, for example a compressed air flow. potentially humid at a temperature up to 100 ° C at the cabin pressure, for example about 0.8 bar. The condenser 12 is also configured to condense the water vapor contained in the received compressed air flow while avoiding its icing by maintaining a positive temperature at its output. The water extractor 13 is configured to extract the water from the air stream, condensed by the condenser 12, whose water flow F8 can then be, for example, removed or injected into a water circuit. of the aircraft. The cooler 14 is configured to cool the flow of dry air received from the water extractor 13 from cryogenic fluid received from the tank 15 through the second control valve 17 and to convey the flow of cold and dry air. F4 obtained to the air conditioning module 40 of the cabin. The liquid cryogenic fluid stored in the tank is thus used both by the condenser 12 and both by the cooler 14. The cooling fluid passed in gaseous form after the heat exchanges made at the condenser 12 and the cooler 14 is recycled by being conveyed to the heat exchange module 9 to cool the flow of compressed air F2 passing through the heat exchange module 9 and coming from the air orientation module 7.

Module de chauffage 20Heating module 20

Le module de chauffage 20 peut se présenter sous la forme d'un récupérateur thermique, par exemple disposé dans l'échappement de l'unité auxiliaire de puissance (APU). Le module de chauffage 20 est configuré pour, dans un premier mode de fonctionnement, chauffer le flux d'air F2 reçu du module d'orientation d'air 7 et l'acheminer ensuite vers le module de climatisation 40 de la cabine et pour, dans un second mode de fonctionnement, chauffer le flux de fluide de refroidissement gazeux F5 reçu du module d'échange calorifique 9 et l'envoyer vers la turbine 30. Une voie de by-pass de ce module de chauffage peut être prévue pour réguler l'énergie thermique de chauffage du flux d'air F2.The heating module 20 may be in the form of a thermal recuperator, for example disposed in the exhaust of the auxiliary power unit (APU). The heating module 20 is configured for, in a first mode of operating, heat the airflow F2 received from the air orientation module 7 and then route it to the air conditioning module 40 of the cabin and, in a second operating mode, heat the flow of cooling fluid gas F5 received from the heat exchange module 9 and send it to the turbine 30. A bypass path of this heating module may be provided to regulate the heating thermal energy of the air flow F2.

Turbine 30Turbine 30

La turbine 30 est configurée pour recevoir un flux de fluide gazeux du module de chauffage 20. L'énergie mécanique produite par la turbine 30 à partir du flux de fluide gazeux reçu peut être, par exemple, injectée dans la boite de transmission de l'unité auxiliaire de puissance (APU), ou utilisée pour entrainer un alternateur, ou pour tout autre usage éventuellement plus approprié. Le flux gazeux en sortie F7 peut encore être utilisé pour refroidir la baie moteur de l'aéronef et/ou en rendre inerte l'atmosphère, si ce fluide est de l'azote gazeux par exemple.The turbine 30 is configured to receive a flow of gaseous fluid from the heating module 20. The mechanical energy produced by the turbine 30 from the stream of gaseous fluid received can be, for example, injected into the transmission box of the auxiliary power unit (APU), or used to drive an alternator, or for any other possibly more appropriate use. The gas stream at the outlet F7 can still be used to cool the engine bay of the aircraft and / or render inert the atmosphere, if the fluid is nitrogen gas for example.

Module de climatisation de la cabine pressurisée de l'aéronefAir conditioning module of the pressurized cabin of the aircraft

Le module de climatisation 40 comprend un mélangeur (non représenté) configuré pour recevoir le flux d'air refroidi F4 du module de refroidissement 10 et le mélanger à de l'air de la cabine de sorte à fournir à la cabine un flux d'air à la température de réglage souhaitée.The air conditioning module 40 comprises a mixer (not shown) configured to receive the cooled air flow F4 of the cooling module 10 and mix it with air from the cabin so as to provide the cabin with a flow of air at the desired setting temperature.

Le système selon l'invention peut aussi comprendre des moyens de régulation de la pression de la cabine (non représentés) et des moyens de commande configurés pour commander l'un ou l'ensemble des modules du système (module de prélèvement d'air, de compression d'air, d'orientation d'air, de refroidissement, turbine de chauffage de climatisation...).The system according to the invention may also comprise means for regulating the cabin pressure (not shown) and control means configured to control one or all of the modules of the system (air sampling module, air compression, air orientation, cooling, air conditioning heating turbine ...).

MISE EN OEUVRE DU SYSTEME SELON L'INVENTIONIMPLEMENTATION OF THE SYSTEM ACCORDING TO THE INVENTION

Dans une première étape E1, le module de prélèvement d'air 3 prélève de l'air ambiant extérieur et achemine le flux d'air ambiant prélevé F1 vers le module de compression d'air 5.In a first step E1, the air sampling module 3 withdraws ambient ambient air and conveys the ambient air stream taken F1 to the air compression module 5.

Dans une étape E2, le module de compression d'air 5 comprime l'air prélevé F1 et envoie le flux d'air comprimé F2 vers le module d'orientation d'air 7.In a step E2, the air compression module 5 compresses the withdrawn air F1 and sends the flow of compressed air F2 to the air orientation module 7.

Dans une étape E3, le module d'orientation d'air 7 détermine si la température du flux d'air comprimé F2 est supérieure ou inférieure à une valeur de référence associée au niveau requis en entrée du module de climatisation 40.In a step E3, the air orientation module 7 determines whether the temperature of the compressed air flow F2 is greater or less than a reference value associated with the level required at the input of the air conditioning module 40.

Lorsque la température du flux d'air comprimé est supérieure à la valeur de référence, le module d'orientation d'air 7 achemine, dans une étape E4, le flux d'air comprimé F2 à refroidir vers le module d'échange calorifique 9. Le flux d'air comprimé F2 traverse alors le module d'échange calorifique 9, dans lequel il subit un premier refroidissement, lors d'une étape E5, par un fluide gazeux F5 provenant du module de refroidissement 10. Le flux d'air comprimé F3 est ensuite acheminé jusqu'au module de refroidissement 10 dans lequel il subit un second refroidissement lors d'une étape E6.When the temperature of the compressed air flow is greater than the reference value, the air orientation module 7 conveys, in a step E4, the flow of compressed air F2 to be cooled to the heat exchange module 9 The flow of compressed air F2 then passes through the heat exchange module 9, in which it undergoes a first cooling, during a step E5, with a gaseous fluid F5 from the cooling module 10. The air flow compressed F3 is then conveyed to the cooling module 10 in which it undergoes a second cooling during a step E6.

Plus précisément, le flux d'air comprimé F3 traverse le condenseur 12, dans une étape E61, au cours de laquelle la vapeur d'eau éventuellement présente dans le flux d'air est condensée. Le condenseur 12 utilise le fluide cryogénique reçu, à travers la première vanne 16, du réservoir 15 de fluide cryogénique pour diminuer la température du flux d'air jusqu'à une température légèrement positive, par exemple 2°C de sorte à permettre la condensation de la vapeur d'eau sans givrage. Le fluide gazeux F5 produit par l'échange de chaleur entre le flux d'air et le fluide cryogénique est alors acheminé vers le module d'échange calorifique 9.More precisely, the flow of compressed air F3 passes through the condenser 12, in a step E61, during which the water vapor possibly present in the air stream is condensed. The condenser 12 uses the cryogenic fluid received, through the first valve 16, the cryogenic fluid reservoir 15 to reduce the temperature of the air flow to a slightly positive temperature, for example 2 ° C so as to allow the condensation water vapor without icing. The gaseous fluid F5 produced by the heat exchange between the air flow and the cryogenic fluid is then conveyed to the heat exchange module 9.

L'eau est ensuite extraite du flux d'air, dans une étape E62, par l'extracteur d'eau 13 puis le flux d'air est acheminé jusqu'au refroidisseur 14 qui alors utilise, dans une étape E63, le fluide cryogénique reçu, à travers la seconde vanne 17, pour diminuer la température du flux d'air sec jusqu'au niveau de température requis en entrée du module de climatisation 40, par exemple -15°C. Le fluide gazeux produit par l'échange de chaleur entre le flux d'air et le fluide cryogénique est aussi acheminé vers le module d'échange calorifique 9.The water is then extracted from the air stream, in a step E62, by the water extractor 13 and then the air flow is conveyed to the cooler 14 which then uses, in a step E63, the cryogenic fluid received, through the second valve 17, to decrease the temperature of the dry air flow to the required temperature level at the input of the air conditioning module 40, for example -15 ° C. The gaseous fluid produced by the heat exchange between the air flow and the cryogenic fluid is also conveyed to the heat exchange module 9.

Le flux d'air froid et sec F4 est alors acheminé, dans une étape E7 jusqu'au module de climatisation de la cabine 40. La température souhaitée en cabine peut alors être obtenue grâce au mélangeur du module de climatisation 40. Par ailleurs, les moyens de régulation de la pression en cabine permettent de maintenir la cabine sous pression, par exemple à 0,8 bar.The cold and dry air flow F4 is then conveyed, in a step E7 to the air conditioning module of the cabin 40. The desired cabin temperature can then be obtained by means of the mixer of the air conditioning module 40. Moreover, the means for regulating the pressure in the cabin make it possible to maintain the cabin under pressure, for example at 0.8 bar.

Le fluide gazeux F5 issu des échanges de chaleur dans le condenseur 12 et dans le refroidisseur 14 est acheminé via une boucle de rétroaction, lors d'une étape E8, jusqu'au module d'échange calorifique 9 où il sert à effectuer un premier refroidissement du flux d'air comprimé F2 provenant du module d'orientation d'air 7.The gaseous fluid F5 resulting from the heat exchanges in the condenser 12 and in the cooler 14 is conveyed via a feedback loop, during a step E8, to the heat exchange module 9 where it serves to perform a first cooling compressed air flow F2 from the air orientation module 7.

Une fois l'échange de chaleur réalisé dans le module d'échange calorifique 9, le flux de fluide gazeux est acheminé jusqu'au module de chauffage 20 qui en augmente la température, dans une étape E9, avant de l'envoyer vers la turbine 30 de l'APU lors d'une étape E10. La turbine 30 peut alors utiliser le flux de fluide gazeux F6 pour, par exemple, alimenter un générateur et produire de l'électricité.Once the heat exchange has been carried out in the heat exchange module 9, the flow of gaseous fluid is conveyed to the heating module 20 which increases its temperature, in a step E9, before sending it to the turbine 30 of the APU during a step E10. The turbine 30 can then use the flow of gaseous fluid F6 to, for example, power a generator and produce electricity.

Lorsque la température du flux de fluide gazeux F7 est inférieure à une valeur de référence, par exemple une trentaine de degrés Celsius, le flux peut servir à refroidir la baie moteur de l'aéronef et/ou à en rendre l'atmosphère inerte dans une étape E11.When the temperature of the flow of gaseous fluid F7 is less than a reference value, for example about thirty degrees Celsius, the flow can serve to cool the engine bay of the aircraft and / or to render the atmosphere inert in a step E11.

Lorsque la température du flux d'air comprimé F2 est inférieure à la valeur de référence, le module d'orientation d'air 7 achemine, dans une étape E12, le flux d'air comprimé F2 à réchauffer vers le module de chauffage 20.When the temperature of the compressed air flow F2 is lower than the reference value, the air orientation module 7 conveys, in a step E12, the flow of compressed air F2 to be heated to the heating module 20.

Le module de chauffage 20 augmente alors la température du flux d'air lors d'une étape E13 puis l'achemine vers le module de climatisation 40 de la cabine lors d'une étape E14. La température souhaitée en cabine peut alors être obtenue grâce au mélangeur du module de climatisation 40.The heating module 20 then increases the temperature of the air flow during a step E13 and then conveys it to the air conditioning module 40 of the cabin during a step E14. The desired temperature in the cabin can then be obtained through the mixer of the air conditioning module 40.

Bien entendu, dans une forme simplifiée de réalisation du système selon l'invention, le module d'échange calorifique 9 pourrait être absent et le flux d'air comprimé F2 pourrait alors être acheminé directement du module d'orientation d'air 7 au module de refroidissement 10.Of course, in a simplified embodiment of the system according to the invention, the heat exchange module 9 could be absent and the compressed air flow F 2 could then be conveyed directly from the air orientation module 7 to the module cooling 10.

Le système selon l'invention permet donc de comprimer un flux d'air prélevé dans l'air ambiant extérieur à l'aéronef jusqu'à une valeur proche de la celle de la pression requise en cabine, par exemple avec un taux de compression de 3 ou 4, qui ne nécessite donc pas beaucoup d'énergie. Le module de refroidissement permet ensuite de refroidir le flux pour en abaisser la température au niveau requis en entrée du module de climatisation de la cabine.The system according to the invention therefore makes it possible to compress a flow of air taken from the ambient air outside the aircraft to a value close to that of the pressure required in the cabin, for example with a compression ratio of 3 or 4, which does not require a lot of energy. The cooling module then allows the flow to be cooled to lower the temperature to the level required at the input of the air conditioning module of the cabin.

Claims (7)

  1. Air conditioning system for a pressurised cabin of an aircraft, said system (1) comprising an air withdrawal module (3) configured for withdrawing ambient air from outside the aircraft, an air compression module (5) configured for compressing the withdrawn air flow (F1) and an air cooling module (10), characterized in that the air cooling module (10) is configured for cooling the compressed air flow (F2, F3) by means of a cryogenic fluid, the cooling module (10) comprising a condenser (12) for condensing water from the air flow, a water extractor (13) for extracting said water, a cooler (14) for cooling the dry air flow emitted by the water extractor (13) and a tank (15) for a cryogenic fluid, by means of which fluid the water from the air flow is condensed in the condenser (12) and the dry air emitted by the extractor is cooled in the cooler (14).
  2. System according to claim 1, wherein the cooling module (10) is self-contained.
  3. System according to either of the preceding claims, wherein the cooling module (10) is configured for delivering a gaseous fluid for supply to a turbine (30) by means of the cryogenic fluid.
  4. System according to any of the preceding claims, said system (1) comprising a heating module (20) configured for receiving, from a thermal exchange module (9), a flow of gaseous fluid (F5) and for routing said flow towards a turbine (30), or for receiving, from the air orientation module (7), a compressed air flow (F2) to be reheated and for routing said flow towards an air conditioning module (40) of the cabin of the aircraft.
  5. System according to any of the preceding claims, said system (1) comprising a thermal exchange module (9) arranged between the air compression module (5) and the cooling module (10) and configured for cooling the compressed air flow (F2) received from the air compression module (5) by means of the flow of gaseous fluid (F5) delivered by the cooling module (10), and for routing, on the one hand, the compressed air flow thus cooled (F3) towards the cooling module (10) and, on the other hand, the flow of gaseous fluid (F5) towards the heating module (20).
  6. System according to any of the preceding claims, said system (1) comprising an air flow orientation module (7) arranged between the compression module (5) and the cooling module (10) and configured for orienting the air flow (F2) compressed by the air compression module (5) towards the air cooling module (10) when the temperature of the compressed air is greater than the temperature required at the inlet of an air conditioning module (40) of the cabin, or towards the heating module (20) when the temperature of the compressed air is lower than the temperature required at the inlet of an air conditioning module (40) of the cabin.
  7. Aircraft characterised in that it comprises a system according to any of claims 1 to 6.
EP13795843.5A 2012-11-19 2013-11-07 Air conditioning method and system for aircraft Active EP2920076B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13795843T PL2920076T3 (en) 2012-11-19 2013-11-07 Air conditioning method and system for aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260988A FR2998265B1 (en) 2012-11-19 2012-11-19 AIR CONDITIONING METHOD AND SYSTEM FOR AN AIRCRAFT
PCT/FR2013/052661 WO2014076391A1 (en) 2012-11-19 2013-11-07 Air conditioning method and system for aircraft

Publications (2)

Publication Number Publication Date
EP2920076A1 EP2920076A1 (en) 2015-09-23
EP2920076B1 true EP2920076B1 (en) 2018-09-05

Family

ID=47833173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13795843.5A Active EP2920076B1 (en) 2012-11-19 2013-11-07 Air conditioning method and system for aircraft

Country Status (11)

Country Link
US (1) US10029799B2 (en)
EP (1) EP2920076B1 (en)
JP (1) JP6412010B2 (en)
KR (1) KR102129153B1 (en)
CN (1) CN104903193B (en)
CA (1) CA2888717C (en)
ES (1) ES2689271T3 (en)
FR (1) FR2998265B1 (en)
PL (1) PL2920076T3 (en)
RU (1) RU2640670C2 (en)
WO (1) WO2014076391A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106718985A (en) * 2015-11-24 2017-05-31 姚子凌 A kind of aviation constant pressure case
CN105953309A (en) * 2016-05-30 2016-09-21 重庆大学 Special fan-coil unit for plateau
US11542016B2 (en) * 2018-03-23 2023-01-03 Raytheon Technologies Corporation Cryogenic cooling system for an aircraft
CN109373626B (en) * 2018-09-04 2021-01-08 北京航空航天大学 Air expansion refrigerating system with high adaptability based on compressed air energy storage
RU186889U1 (en) * 2018-10-10 2019-02-07 Акционерное общество Производственно-конструкторское объединение "Теплообменник" (АО ПКО "Теплообменник") AIRCRAFT AIR CONDITIONING SUPPRESSOR
US11703890B2 (en) * 2018-10-30 2023-07-18 Hamilton Sundstrand Corporation Determining and controlling a weight flow in an environmental control system
FR3089204B1 (en) * 2018-11-29 2022-04-01 Safran Air management system in particular for air conditioning and defrosting pack
FR3103712B1 (en) * 2019-11-28 2022-03-25 Addup Filtration device for an additive manufacturing device
KR20220089163A (en) 2020-12-21 2022-06-28 현대자동차주식회사 Intergrated thermal manegement system for mobility

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750693A (en) * 1971-10-13 1973-08-07 Xar Ind Inc Solenoid operated valve
FR2377583A1 (en) * 1977-01-12 1978-08-11 Cem Comp Electro Mec ROOM AIR CONDITIONING INSTALLATION
US5730216A (en) * 1995-07-12 1998-03-24 Thermo King Corporation Air conditioning and refrigeration units utilizing a cryogen
JPH1089823A (en) * 1996-09-18 1998-04-10 Kobe Steel Ltd Air conditioner using cold of low-temperature liquefied gas
US5960635A (en) * 1998-03-03 1999-10-05 Dakhil; Farouk Air conditioning apparatus using liquid nitrogen
US20020166923A1 (en) * 2001-05-08 2002-11-14 Munoz Jules Ricardo Reduced bleed vapor compression cycle environmental control system for aircraft
JP3850737B2 (en) * 2001-08-27 2006-11-29 大阪瓦斯株式会社 Air heat source liquefied natural gas vaporizer
JP2003279215A (en) * 2002-03-22 2003-10-02 Hitachi Ltd Air cooling system and gas turbine power generation system
US6684660B1 (en) * 2002-08-08 2004-02-03 Hamilton Sundstrand Pneumatic cabin super charger
DE102006032979A1 (en) * 2006-07-17 2008-01-24 Liebherr-Aerospace Lindenberg Gmbh An aircraft air conditioning system and method for operating an aircraft air conditioning system
CA2686134A1 (en) * 2007-05-24 2008-12-18 Fluor Technologies Corporation Configurations and methods for ambient air vaporizers
DE102008004695B4 (en) * 2008-01-16 2012-10-25 Airbus Operations Gmbh Individual tempering of aircraft cabin areas by heating and evaporative cooling
US8915095B2 (en) * 2008-09-12 2014-12-23 Hamilton Sundstrand Corporation Hybrid environmental conditioning system
DE102011014565B4 (en) * 2011-03-21 2016-11-24 Airbus Operations Gmbh Air conditioning system for an aircraft
US8935928B2 (en) * 2011-10-10 2015-01-20 Lockheed Martin Corporation Integrated air-cycle refrigeration and power generation system

Also Published As

Publication number Publication date
CN104903193A (en) 2015-09-09
CN104903193B (en) 2017-03-01
ES2689271T3 (en) 2018-11-13
FR2998265A1 (en) 2014-05-23
EP2920076A1 (en) 2015-09-23
JP2016506328A (en) 2016-03-03
CA2888717C (en) 2020-10-27
US10029799B2 (en) 2018-07-24
RU2015118005A (en) 2017-01-10
FR2998265B1 (en) 2016-02-05
US20160272331A1 (en) 2016-09-22
RU2640670C2 (en) 2018-01-11
CA2888717A1 (en) 2014-05-22
KR20150100627A (en) 2015-09-02
KR102129153B1 (en) 2020-07-01
PL2920076T3 (en) 2018-11-30
WO2014076391A1 (en) 2014-05-22
JP6412010B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
EP2920076B1 (en) Air conditioning method and system for aircraft
EP3194270B1 (en) Air conditioning system for a "more electric" airplane
CA2843802C (en) Aircraft propulsion architecture integrating an energy recovery system
EP2157015B1 (en) Cooling system for aircraft electric or electronic devices
US20100192890A1 (en) Cold fuel cooling of intercooler and aftercooler
EP3063066B1 (en) Method and device for inerting a fuel tank
FR2899936A1 (en) METHOD FOR SELECTIVE AIR HEATING AT THE INPUT OF COMPRESSOR ASSOCIATED WITH GAS TURBINE AND SYSTEM FOR GENERATING ELECTRICITY.
FR3114837A1 (en) AIRCRAFT WITH THERMAL ENERGY STORAGE SYSTEM
FR2955897A1 (en) Method for ventilating equipment e.g. accessory gearbox, of engine of double body and double flow aircraft, involves maintaining forced air circulating in ventilation circuit until temperature of equipment lowers to predetermined value
FR2980836A1 (en) HEAT EXCHANGER FORMING AIRCRAFTS PRE-COOLANT
WO2016132057A1 (en) System for recovering exhaust gas energy
WO2014118384A1 (en) Facility with a gas turbine and method for regulating said facility
EP3521590B1 (en) System for cooling engine air with two cooling stages and comprising at least one cylindrical heat exchanger
EP3074308B1 (en) Method and system for optimized production of non-propulsive energy
EP3388347A1 (en) Inerting system and method for generating an inerting gas in an aircraft, operating without external air collection
FR3077603A1 (en) TWO STAGE COOLING AIR ENGINE COOLING SYSTEM AND CORRESPONDING METHOD
WO2023072614A1 (en) System for conditioning fuel for supplying an aircraft turbomachine, aircraft and method of use
WO2023152232A1 (en) Heating turbomachine for a fuel-conditioning system configured to supply an aircraft turboshaft engine with fuel from a cryogenic tank
FR2698433A1 (en) Air cycle air conditioning systems.
GB2620439A (en) Apparatus
WO2023239965A2 (en) Turbo-evaporative cooled ht-pem fuel-cell system
FR2964693A1 (en) INSTALLATION OF ENERGY RESTITUTION
FR3017491A1 (en) ELECTRIC GENERATION GROUP AND STARTING METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN HELICOPTER ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180531

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOUSSAYE, LAURENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1037495

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013043239

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2689271

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1037495

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013043239

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180905

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131107

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211201

Year of fee payment: 9

Ref country code: SE

Payment date: 20211020

Year of fee payment: 9

Ref country code: CZ

Payment date: 20211026

Year of fee payment: 9

Ref country code: GB

Payment date: 20211020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211021

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220616

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221107

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 11