EP2914903B1 - Gasvormischbrenner - Google Patents
Gasvormischbrenner Download PDFInfo
- Publication number
- EP2914903B1 EP2914903B1 EP13773719.3A EP13773719A EP2914903B1 EP 2914903 B1 EP2914903 B1 EP 2914903B1 EP 13773719 A EP13773719 A EP 13773719A EP 2914903 B1 EP2914903 B1 EP 2914903B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fiber based
- based cloth
- perforated plate
- zones
- combustion surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 200
- 239000004744 fabric Substances 0.000 claims description 173
- 238000002485 combustion reaction Methods 0.000 claims description 114
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 239000002184 metal Substances 0.000 claims description 68
- 230000035699 permeability Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 239000004745 nonwoven fabric Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 86
- 238000005259 measurement Methods 0.000 description 16
- 239000010935 stainless steel Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/12—Radiant burners
- F23D14/14—Radiant burners using screens or perforated plates
- F23D14/145—Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/101—Flame diffusing means characterised by surface shape
- F23D2203/1017—Flame diffusing means characterised by surface shape curved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/103—Flame diffusing means using screens
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/105—Porous plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/106—Assemblies of different layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2212/00—Burner material specifications
- F23D2212/20—Burner material specifications metallic
- F23D2212/201—Fibres
Definitions
- the invention relates to a gas premix burner with a fiber based cloth.
- An ionization pen measuring the flame current can be used to determine the air to gas ratio.
- the air to gas ratio of the gas premix burner according to the invention can be controlled over a broader burner load range by means of a control system using an ionization pen as sensor.
- Such gas premix burner can e.g. be used in boilers or in instantaneous water heaters.
- Detection of the ionization current in the flame of a gas premix burner by means of an ionization pen is known as a way to detect whether or not ignition has occurred.
- the ionization current is not only used to detect burner ignition, but its value is also used as a means for flame control, and more specifically for the control of the air to gas premix ratio.
- DE19632983 discloses an ionization pen to measure the flame current and an associated regulating device in a gas burner, wherein an air to gas ratio reference value for low emissions is set.
- Gas premix burners with a fiber based cloth as combustion surface are known.
- Such burners can have a metal fiber based knitted or woven fabric as combustion surface positioned on a perforated plate or woven screen which is acting as gas distribution plate and as support for the metal fiber based knitted or woven fabric.
- Such burners are e.g. known from US4657506 and WO2004/092647 .
- the document JP 61 110941 U shows a gas premix burner according to the preamble of claim 1.
- the document DE 198 47 042 A1 discloses a highly porous mat for a gas premix burner made of ceramic and or metal fibres and or fibre pieces permanently joined together. Distributed over the plane of the mat are places possessing varying gas-permeability in the form of openings, respectively perforations.
- US 6 410 878 B1 concerns a method for producing a flame support for a gas burner with metal fibres in an alloy comprising iron, chromium and aluminium; assembling the fibres together under pressure.
- the finished flame support has at least one zone with a different porosity than the remaining surrounding material.
- the ionization current of gas premix burners should be readily and reliably measurable over the load range of the burner. It is a problem, also with gas premix burners with a fiber based cloth as combustion surface, that in the low power range of the burner the ionization current drops drastically. This is rendering flame control by means of ionization current measurement unreliable in the low power range of gas premix burners. For a number of applications it is desirable that burners can operate in a broad load range, and that air to gas ratio control by means of measurement of ionization current with an ionization pen can be performed over the broad load range.
- a first aspect of the invention is a gas premix burner according to claim 1.
- one or more zones of the porous combustion surface is not formed by the fiber based cloth, but by another porous substrate.
- a porous substrate is meant a substrate has through perforations or open cell pores allowing the premix gas to flow through the porous substrate and to be combusted on its surface.
- ionization current measurement by means of an ionization pen that is positioned covering at least part, and preferably the full length in the direction of the ionization pen, of the one or more zones of the porous combustion surface that are not formed by the fiber based cloth, can be used in a broader load range of the burner than prior art burners as a reliable indication of the air to gas ratio of the gas premix burner and therefore as input for the modulation of the air to gas ratio supplied to the gas premix burner.
- control of air to gas ratio over a broader load range by means of the use of the ionization current as measured by an ionization pen is allowed.
- a further and synergetic benefit is that a same broad range can be obtained for all burners of a same production batch and even between production batches.
- the one or more zones where the porous combustion surface is not formed by the fiber based cloth are along their full circumference surrounded by the fiber based cloth.
- the technical benefit of the feature is that flame lift off is prevented from the one or more zones of the porous combustion surface that is or are not formed by the fiber based cloth but by another porous substrate.
- the gas premix burner according to the invention can be provided in a wide range of different shapes. Examples are flat burners, cylindrical burners and burners that have a conical or frustoconical shape. As known by the person skilled in the art a flat burner can have and mostly has a curved shape or can even have an undulated shape.
- the class of flat burners is distinguished from the other main class of gas premix burners comprising burners that have a conical, cylindrical or frusto-conical shape.
- the percentage of the surface of the combustion surface formed by fiber based cloth is at least 70%, more preferably at least 80%, for better overall performance of the burner.
- a zone where the combustion surface is not formed by the fiber based cloth is defined as a surface area of the combustion surface where each two points on that surface area can be connected with a continuous line (straight or curved or multiple curved) that is not passing an area where fiber based cloth is acting as combustion surface.
- a zone itself can comprise subzones that each have higher gas permeability (and preferably at least double gas permeability) than neighbouring or surrounding subzones within the zone. For instance it is beneficial when two or more subzones within the zone have higher gas permeability with in between a subzone with lower gas permeability.
- ionization current is measured with an ionization pen spanning the subzones with higher gas permeability and the subzone in between with lower gas permeability, a better result is obtained in terms of use of the ionization signal for gas modulation over a broad load range.
- the surface area of a zone - and preferably of each of the one or more zones - of the one or more zones of the porous combustion surface that are not formed by the fiber based cloth but by another porous substrate is between 150 and 500 square millimeter, more preferably between 300 and 450 square millimeter, as such ranges give best results.
- Preferred zones have a convex shape. Preferred zones are square or rectangular. Such zones are providing excellent results.
- the burner comprises a gas premix chamber.
- the premix gas flows from the gas premix chamber partly through the combination of the fiber based cloth and the perforated plate, woven wire mesh or expanded metal sheet supporting the fiber based cloth; and partly through the one or more zones of the porous combustion surface that is or are not formed by the fiber based cloth but by another porous substrate.
- a specific gas permeability can be defined for the premix gas flow as the gas flow per unit of the surface area; or for part of surface area; of the porous combustion surface.
- the ratio of the specific gas permeability where - in use of the burner - the premix gas flow from the gas premix chamber will occur through the one or more zones of the porous combustion surface that is or are not formed by the fiber based cloth but by another porous substrate; to the specific gas permeability where - in use of the burner -; the premix gals flow will occur through the combination of the fiber based cloth and the perforated plate, woven wire mesh or expanded metal sheet supporting the fiber based cloth is higher than 3; more preferably higher than 4; and preferably lower than 8; more preferably lower than 7.
- At least two zones of the porous combustion surface are not formed by the fiber based cloth.
- Burners according to this embodiment provide a better ionization signal over a broad load range when using an ionization pen spanning each of the at least two zones.
- the ionization signal is even significantly better compared to using a burner with one zone of the porous combustion surface that is not formed by the fiber based cloth and which one zone is having a same surface area as all the at least two zones of this embodiment.
- the ionization signal is even significantly better compared to using a burner with one zone of the porous combustion surface that is not formed by the fiber based cloth and which one zone has a same length under an ionization pen as the combined length of the ionization pens under all the at least two zones of this embodiment.
- the closest distance between two zones of the porous combustion surface that are not formed by the fiber based cloth is at least 5 mm and preferably the fiber based cloth covers at least 5 mm of the closest distance between two zones; preferably the closest distance is smaller than 15 mm. Burners according to such more preferred embodiment even provide better results in terms of ionization signal over a broad load range, probably because of synergetic effects of recirculation flow in the combustion.
- the projection line (perpendicular projection of the ionization pen onto the combustion surface) of the ionization pen onto the combustion surface preferably has between two zones of the porous combustion surface that are not formed by the fiber based cloth a distance of at least 5 mm length (and preferably less than 15 mm) and preferably the fiber based cloth is covering at least 5 mm of that distance; preferably less than 15 mm.
- the porous combustion surface in the one or more zones of the porous combustion surface that are not formed by the fiber based cloth, is formed by the perforated plate, woven wire mesh or expanded metal sheet, preferably with higher porosity than outside the one or more zones.
- a better functionality is obtained in terms of a higher load range over which the ionization current can be measured by means of an ionization probe.
- the porosity of the perforated plate, woven wire mesh or expanded metal sheet in the one or more zones of the porous combustion surface that are not formed by the fiber based cloth and where the perforated plate, woven wire mesh or expanded metal sheet acts as combustion surface is two to five times higher than where the perforated plate, woven wire mesh or expanded metal sheet is covered by the fiber based cloth.
- the perforations in the perforated plate can be circular and preferably with a diameter between 0.5 and 1.5 mm, preferably between 0.6 and 0.9 mm.
- through slits e.g. between 0.4 and 0.6 mm width and between 2 to 6 mm length; or a combination of such circular perforations and such through slits in the perforated plate can locally form the combustion surface.
- the fiber based cloth is supported by a perforated plate.
- the porous combustion surface is formed by the perforated plate, preferably with higher porosity in the one or more zones than outside the one or more zones (and more preferably the porosity is 2 to 5 times higher).
- the fiber based cloth is welded or otherwise fixed to the perforated plate around the edges of the of the one or more zones, and preferably around the edges of each of the one more zones.
- the fiber based cloth covers through slits that are present in the perforated plate under at least part of the edges of where the fiber based cloth is welded or otherwise fixed to the perforated plate around the one or more zones, and preferably around each of the one or more zones.
- the through slits have at least 90% of the length of the side of the zone (zone where not the fiber based cloth but the perforated plate forms the combustion surface - such zone can e.g. be square or rectangular) where the through slit is positioned.
- the distance between such through slit and the edge of the fiber based cloth around the zone where the perforated cloth forms the combustion surface is less than or equal to 5 mm, preferably less than or equal to 3 mm.
- these slits have a width of between 0.35 and 1 mm, more preferably between 0.4 and 0.6 mm.
- the slits provide burners with higher lifetime, in that such burners have a higher resistance to differential thermal stresses in the combustion surface parts formed by and not formed by the fiber based cloth.
- the perforated plate, woven wire mesh or expanded metal sheet is dome shaped in the zone or zones where the combustion surface is formed by the perforated plate, woven wire mesh or expanded metal sheet, thereby extending from the surface shape formed by the perforated plate, woven wire mesh or expanded metal sheet outside the one or more zones of the porous combustion surface that are not covered by the fiber based cloth. It is a benefit of this embodiment that a burner with longer lifetime can be obtained, as the dome shape allows the perforated plate, woven wire mesh or expanded metal sheet to better absorb and withstand the different thermal stresses when using the burner.
- an additional woven wire mesh (e.g. made out of a Fe Cr and Al containing alloy, such as e.g. Kanthal AP) forms the porous combustion surface in the one or more zones of the porous combustion surface that are not formed by the fiber based cloth.
- the additional woven wire mesh can be connected or fixed to the supporting plate, woven wire mesh or expanded metal sheet (e.g. by welding or by mechanical means).
- the fiber based cloth can be connected or fixed at the edges of the zones to the additional woven wire mesh, preferably without connection to the supporting plate, woven wire mesh or expanded metal sheet.
- a woven wire mesh provides more constant porosity between products compared to the use of fiber based cloth.
- Connection of the fiber based cloth (e.g. by means of welding) at the edges of the zones to the additional woven wire mesh can be with the fiber based cloth located between the additional woven wire mesh on the one hand and on the other hand the perforated plate, the woven wire mesh or the expanded metal sheet that is fully or partly covered by the fiber based cloth.
- connection of the fiber based cloth (e.g. by means of welding) at the edges of the zones to the additional woven wire mesh can be with the additional woven wire mesh between the fiber based cloth on the one hand and on the other hand the perforated plate, the woven wire mesh or the expanded metal sheet that is fully or partly covered by the fiber based cloth.
- an additional porous object is positioned to form the porous combustion surface in the one or more zones of the porous combustion surface that are not formed by the fiber based cloth. It is meant that in such zone the combustion surface is not formed by the fiber based cloth nor by the perforated plate, woven wire mesh or expanded metal sheet that supports the fiber based cloth.
- such additional porous object is an object made from perforated plate, but it can also be made from or with woven wire mesh or from a fiber based cloth with different permeability or from expanded metal sheet.
- the additional porous object can have through perforations and/or can have an open cell porous structure.
- the additional porous object has a higher air permeability than the perforated plate, woven wire mesh or expanded metal sheet; and a higher air permeability than the fiber based cloth.
- the additional porous object can be placed in the burner in different ways. It can e.g. be placed over the perforated plate, woven wire mesh or expanded metal sheet such that the premix gas is first flowing through the perforated plate, woven wire mesh or expanded metal sheet and then through the porous object after which the premix gas is combusted on the surface of the additional porous object.
- one or more openings can be present in the perforated plate, woven wire mesh or expanded metal sheet and the additional porous object covers such opening such that at least part of the premix gas does not flow through the pores or perforations of the perforated plate, woven wire mesh or expanded metal sheet but through the one or more openings and then through the additional porous object before being combusted on the surface of the additional porous object.
- the additional porous object is connected or held in the burner in such a way to allow thermal expansion of the additional porous object independently of the thermal expansion of the perforated plate, woven wire mesh or expanded metal sheet.
- a burner with long lifetime is obtained. Different thermal expansions that exist due to different temperatures in the different zones of the combustion surface can be absorbed more easily.
- a first example of connection to allow thermal expansion of the additional porous object independently of the thermal expansion of the perforated plate, woven wire mesh or expanded metal sheet is where the porous object is connected to the perforated plate, woven wire mesh or expanded metal sheet by clamping the porous object to the perforated plate, woven wire mesh or expanded metal sheet, e.g. according to leaf spring action, e.g. in openings in the perforated plate, woven wire mesh or expanded metal sheet at the one or more zones of the porous combustion surface that are not formed by the fiber based cloth.
- a second example of connection to allow thermal expansion of the additional porous object independently of the thermal expansion of the perforated plate, woven wire mesh or expanded metal sheet is where the additional porous object is held in the perforated plate, woven wire mesh or expanded metal sheet via geometrical constraint, e.g. as a rivet, e.g. in openings in the perforated plate, woven wire mesh or expanded metal sheet at the one or more zones of the porous combustion surface that are not formed by the fiber based cloth.
- the perforated plate, woven wire mesh or expanded metal sheet is held between parts of the additional porous object without connection, but merely by geometrical obstruction for the additional porous object to be removed out of the perforated plate, woven wire mesh or expanded metal sheet.
- a way to accomplish such an embodiment is as a rivet, by placing an additional porous object with rivet shape inside the appropriate opening in the perforated plate, woven wire mesh or expanded metal sheet and folding over or buckling the tail of the rivet in order to create the geometrical obstruction for the additional porous object so that it cannot be removed out of the burner.
- a third example of connection to allow thermal expansion of the additional porous object independently of the thermal expansion of the perforated plate, woven wire mesh or expanded metal sheet is where the additional porous object is connected (e.g. via welding, via riveting...) to the fiber based cloth at the edges of the fiber based cloth around the one or more zones of the porous combustion surface that are not formed by the fiber based cloth.
- connection can be made with the additional porous object between the perforated plate, woven wire mesh or expanded metal sheet on the one hand and the fiber based cloth on the other hand.
- connection can be made with the fiber based cloth between the of the perforated plate, woven wire mesh or expanded metal sheet on the one hand and the additional porous object on the other hand.
- the gas premix burner comprises an ionization pen to measure the ionization current of the gas premix burner.
- the ionization pen is positioned covering the one or more zones of the porous combustion surface that are not formed by the fiber based cloth. This way the ionization pen is where the flames are generated in the porous combustion surface and effectively affected by the part of the combustion surface that is not formed by fiber based cloth.
- the gas premix burner further comprises a control system using the ionization current measured by the ionization pen as input value and wherein the control system is adapted to modulate the air to gas ratio in the premix supply to the burner.
- the ionization current depends on the burner load (as determined by the amount of gas supply) and the air to gas ratio in the gas premix supply.
- the air to gas ratio of the premix can be derived from the ionization current as measured by the ionization pen.
- a correct air to gas ratio of the burner is required to obtain clean combustion.
- the modulation of the premix supply can e.g. be performed by means of volume control of the supply of combustible gas (e.g. natural gas) or air to the premix in order to obtain for each burner load (determined by the amount of gas supply) the correct air to gas ratio leading to clean and optimum combustion.
- the fiber based cloth can comprise metal fibers.
- metal fibers are stainless steel fibers.
- a specifically preferred range of stainless steel fibers are chromium and aluminium comprising stainless steel fibers as in DIN 1.4767, e.g. as are known under the trademark FeCrAlloy.
- Preferred are fibers with equivalent diameter less than 40 ⁇ m. With equivalent diameter of a fiber is meant the diameter of a circle with the same surface area as the cross sectional area of that fiber.
- Metal fibers for the fiber based cloth e.g. stainless steel fibers, with an equivalent diameter less than 40 micrometers, e.g. less than 25 micrometers, can be obtained by a bundle drawing technique.
- This technique is disclosed e.g. in US-A-2050298 , US-A-3277564 and in US-A-3394213 .
- Metal wires are forming the starting material and are covered with a coating such as iron or copper.
- a bundle of these covered wires is subsequently enveloped in a metal pipe. Thereafter the thus enveloped pipe is reduced in diameter via subsequent wire drawing steps to come to a composite bundle with a smaller diameter.
- the subsequent wire drawing steps may or may not be alternated with an appropriate heat treatment to allow further drawing.
- the initial wires have been transformed into thin fibers which are embedded separately in the matrix of the covering material.
- a bundle preferably comprises no more than 2000 fibers, e.g. between 500 and 1500 fibers.
- the covering material can be removed e.g. by solution in an adequate pickling agent or solvent. The final result is the naked fiber bundle.
- metal fibers for the fiber based cloth such as stainless steel fibers can be manufactured in a cost effective way by machining a thin plate material.
- a strip of a thin metal plate is the starting material. This strip is wound around the cylindrical outer surface of a rotatably supported main shaft a number of times and is fixed thereto. The main shaft is rotated at constant speed in a direction opposite to that in which the plate material is wound.
- a cutter having an edge line expending perpendicularly to the axis of the main shaft is fed at constant speed. The cutter has a specific face angle parallel to the axis of the main shaft. The end surface of the plate material is cut by means of the cutter.
- Yet an alternative way of producing metal fibers for the fiber based cloth is via extracting or extrusion from a melt.
- Another alternative way of producing metal fibers is machining fibers from a solid block of metal.
- ceramic fibers can be used in the fiber based cloth Metal fibers are preferred however because of the good electrical conductivity beneficial when measuring the ionization current of the flame on the combustion surface of the burner.
- the fiber based cloth can e.g. comprise or be a woven fabric, or a knitted fabric, or a braided fabric comprising yarns with e.g. metal fibers, preferably stainless steel fibers.
- the yarns can be spun from stretch broken fibers (such as bundle drawn stretch broken fibers) or yarns made from shaved or machined fibers.
- the yarns can be plied yarns, e.g. two ply, three ply...
- Preferred fabrics made from metal fibers have a weight of between 0.6 and 3 kg/m 2 ; preferably between 0.7 and 3 kg/m 2 , even more preferred between 1.2 and 2.5 kg/m 2 .
- Alternative fiber based cloths that can be used in the invention can comprise or can be nonwovens, e.g. comprising metal fibers (preferably stainless steel fibers).
- the nonwovens can be consolidated by different techniques (e.g. needle punching) and can be sintered or unsintered; unsintered fabrics are preferred however.
- a second aspect of the invention is a method to control the air to gas ratio of a gas premix burner, wherein a gas premix burner is used as in the first aspect of the invention and wherein the ionization current measured by means of the ionization pen is used in a control system to modulate the air to gas ratio.
- the ionization pen is preferably installed in such a way that it covers, e.g. at least partly, the one or more zones where the combustion surface is not formed by the fiber based cloth. Specific examples allow e.g. a modulation range from 1:3 to 1:15 of the burner.
- the ratio of the ionization current at maximum load of the gas premix burner installed in the boiler is less than 50% higher than the ionization current at minimum load of the gas premix burner installed in the boiler. It is a further benefit of this embodiment that even better control possibility exist, as the ionization signal is less dependent from the burner load and more constant at a high level over a broad range of the burner load.
- a third aspect of the invention relates to the use of the burner of the first aspect of the invention.
- boilers e.g. central heating boilers
- water heaters e.g. instantaneous water heaters or direct fired water heaters
- the hot flue gas generated by the gas premix is transferring its heat to a fluid (mostly water) in a heat exchanger.
- a fluid mostly water
- Specific examples of use are such boilers or water heaters with a capacity between 8 and 1000 kW, preferably between 8 and 60 kW. Specific examples allow e.g. a modulation range from 1:3 to 1:15.
- FIG 1 shows an example of a burner 100 according to the invention.
- the burner 100 (here a flat burner, but the invention can be performed on a cylindrical or frusto-conical burner as well in similar way as on a flat burner) has a perforated plate 110 (in the same way a woven wire mesh or expanded metal sheet can be used) and supports a fiber based cloth 120 over the largest part of its surface, wherein the fiber based cloth 120 forms part of the combustion surface.
- the combustion surface has two zones (140, 142) that are not formed by the fiber based cloth 120, but by another porous substrate.
- Such porous substrate that acts as combustion surface in these zones can be the perforated plate 110 (preferably with in such zone or zones higher porosity than outside those zones) or an additional porous object, e.g. a woven wire mesh.
- Figure 1 shows two of such zones, but it is possible to use one zone, or three zones, or four zones as well.
- Figure 1 further shows the position of an ionization pen 130 which is preferably positioned in the burner such that it is positioned over the zones 140, 142 where the porous combustion surface is not formed by the fiber based cloth 120. Preferred is when the zones 140, 142 are lengthwise oriented so that a long length of the zone is covered by the ionization pen 130.
- the ionization pen 130 is positioned substantially centrally compared to the zones 140, 142, as is indicated in figure 1 .
- the length L1 of a flat burner of the invention is preferably between 80 and 700 mm; and the width L2 preferably between 80 and 700 mm.
- the sides L3 and L4 of rectangular zones where the fiber based cloth 120 does not form the combustion surface are preferably between 12 and 30 mm.
- the zones have a square shape, but they can be rectangular or circular or of another shape, preferably a convex shape. Square and rectangular shapes are preferred however.
- Figure 2 shows a cross section 200 along lines II-II of figure 1 of an embodiment of the invention.
- the cross section 200 shows the perforated plate 210 and the fiber based cloth 220.
- an opening is present in the perforated plate 210 and another porous object 260 is present (alternatively another porous object can be placed on top of the perforated plate 210).
- the additional porous object 260 can be a perforated plate object, possibly shaped to fit the location.
- the fiber based cloth 220 can be welded onto the additional porous with the arrows 281 and 282, this way the additional porous object 260 is held in place.
- Figure 2 also indicates the ideal position of an ionization pen 230 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 3 shows a cross section 300 along lines II-II of figure 1 of an embodiment of the invention.
- the cross section 300 shows the perforated plate 310 and the fiber based cloth 320.
- an opening is present in the perforated plate 310 and another porous object 360 is placed.
- the additional porous object 360 can be a perforated plate object, possibly shaped to fit the location.
- the fiber based cloth 320 can be welded onto the additional porous object 360, preferably at the edges of the additional porous object 360 via welds indicated with the arrows 381 and 382.
- Figure 4 shows a cross section 400 along lines II-II of figure 1 of an embodiment of the invention according to figure 1 .
- the cross section 400 shows the perforated plate 410 and the fiber based cloth 420.
- an opening is present in the perforated plate 410 and another porous object 460 is placed (alternatively another porous object can be placed on top of the perforated plate 410).
- the additional porous object 460 can be a perforated plate object.
- the additional porous object 460 is supported by the perforated plate 410.
- the fiber based cloth 420 can be welded onto the additional porous object 460, preferably at the edges of the additional porous object 460 via welds indicated with the arrows 481 and 482, at the other side of the additional porous object 460 than where the perforated plate 460 is located. It is also possible to weld the fiber based cloth 420 to the perforated plate 410 around where the additional porous object 460 is located, by means of welds indicated at arrows 485 and 486.
- Figure 4 also indicates the ideal position of an ionization pen 430 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 5 shows an alternative possible cross section 500 along lines II-II of figure 1 of an embodiment of the invention according to figure 1 .
- the cross section 500 shows the perforated plate 510 and the fiber based cloth 520.
- an opening is present in the perforated plate 510 and another porous object 560 forms in that zone the combustion surface.
- the additional porous object 560 can be a perforated plate object, but can also be another object with through perforations or open cell porosity, e.g. a piece of woven wire mesh.
- the additional porous object 560 is supported by fiber based cloth 520 onto which it is welded e.g.
- FIG. 5 also indicates the ideal position of an ionization pen 530 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 6 shows a cross section 600 of another embodiment of the invention.
- a porous object 662 is via geometrical constraint held in an opening in the perforated plate 610 (or in the woven wire mesh or expanded metal sheet).
- the porous object 662 forms locally the combustion surface of the burner.
- the fiber based cloth 620 is positioned and fixed e.g. via welding to the perforated plate 610 around the opening in the perforated plate where the porous object 662 is positioned. It is also possible that the fiber based cloth 620 is additionally welded onto the additional porous object 662 (not shown in figure 6).
- Figure 6 also indicates the ideal position of an ionization pen 630 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- a way of accomplishing such an embodiment is by placing a porous object with rivet shape inside the appropriate opening in the perforated plate, woven wire mesh or expanded metal sheet and folding over or buckling the tail of the rivet shape in order to create the geometrical obstruction for the additional porous object so that it cannot be removed out of the burner.
- FIG. 7 shows an alternative cross section 700 of a burner according to the invention.
- a porous object 764 is clamped into an opening in the perforated plate 710 and forms there the combustion surface.
- the clamping can be achieved by having a porous object 764 with legs which have a certain elastic flexibility. By compressing the legs the porous object 764 can be positioned into the opening in the perforated plate 710 and when releasing the legs, they return by elasticity to their original shape thereby clamping the porous object 764 in the opening in the perforated plate 710.
- the fiber based cloth 720 is present around the opening in the perforated plate 710.
- the fiber based cloth 720 can be fixed onto the perforated plate 710 around the opening, e.g. by welding (e.g.
- Figure 7 also indicates the ideal position of an ionization pen 730 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 8 shows an alternative cross section 800 of a burner according to the invention.
- a zone is present where the fiber based cloth 820 is not the combustion surface.
- the combustion surface is formed by a dome 895 in the perforated plate 810.
- the fiber based cloth 820 can be fixed onto the perforated plate 810 around the dome 895 or at the start of the dome 895, e.g. by welding (e.g. welds at locations 885 and 886).
- Figure 8 also indicates the ideal position of an ionization pen 830 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- FIG. 9 shows an example of a burner 900 according to the invention.
- the burner 900 (here a flat burner, but the invention can be performed on a cylindrical or frusto-conical burner as well in similar way as on a flat burner) has a perforated plate 910 and supports a fiber based cloth 920 over the largest part of its surface, wherein the fiber based cloth 920 forms part of the combustion surface.
- the combustion surface has two zones that are not formed by the fiber based cloth 920, but formed by woven wire meshes (992, 994).
- Such woven wire meshes preferably have a higher gas permeability than the fiber based cloth 920.
- Figure 9 shows two zones with woven wire meshes forming the combustion surface, but it is possible to use one zone, or three zones, or four zones as well. Preferably between the two zones with wire meshes 992, 994 fiber based cloth is present (see 914) and acting there as combustion surface. Figure 9 further shows the position of an ionization pen 930 which is preferably positioned in the burner such that it is positioned over the zones where the porous combustion surface is not formed by the fiber based cloth 920. The woven wire meshes 992, 994 can be placed onto the perforated plate 910 or in or on openings in the perforated plate 910.
- the length L1 of a flat burner of the invention is preferably between 80 and 700 mm; and the width L2 preferably between 80 and 700 mm.
- the sides L3 and L4 of rectangular zones where the fiber based cloth 120 is not forming the combustion surface are preferably between 12 and 30 mm.
- the zones have a square shape, but they can be rectangular or circular or of another shape. Square and rectangular shapes are preferred however.
- Figure 10 shows a cross section 1000 along lines X-X of figure 9 of an embodiment of the invention.
- the cross section 1000 shows the perforated plate 1010 and the fiber based cloth 1020.
- a woven wire mesh 1092 is positioned onto the perforated plate 1010 (and preferably the porosity of the perforated plate is higher in that zone).
- the fiber based cloth 1020 can be welded or otherwise fixed onto the woven wire mesh 1092, preferably at the edges of woven wire mesh 1092 via welds indicated with the arrows 1081 and 1082. It is also possible to weld the fiber based cloth 1020 to the perforated plate around where the woven wire mesh is positioned (1085, 1086).
- Figure 10 also indicates the ideal position of an ionization pen 1030 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 11 shows a cross section 1100 along lines X-X of figure 9 of an embodiment of the invention.
- the cross section 1100 shows the perforated plate 1110 and the fiber based cloth 1120.
- a woven wire mesh 1192 is positioned onto the perforated plate 1110 (and preferably the porosity of the perforated plate is higher in that zone), with the woven wire mesh 1192 resting onto the edges of the fiber based cloth 1120 around where the woven wire mesh 1192 forms the combustion surface.
- the fiber based cloth 1120 can be welded or otherwise fixed onto the woven wire mesh 1192, preferably at the edges of woven wire mesh 1192 via welds indicated with the arrows 1181 and 1182.
- Figure 11 also indicates the ideal position of an ionization pen 1130 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- Figure 12 shows a cross section 1200 along lines X-X of figure 9 of an alternative embodiment of the invention.
- the cross section 1200 shows the perforated plate 1210 and the fiber based cloth 1220.
- a woven wire mesh 1192 is positioned over an opening in the perforated plate 1210.
- the fiber based cloth 1120 can be welded or otherwise fixed onto the woven wire mesh 1292, preferably at the edges of woven wire mesh 1292 via welds indicated with the arrows 1281 and 1282. It is also possible to weld the fiber based cloth 1220 to the perforated plate around where the woven wire mesh is positioned (1285, 1286).
- Figure 12 also indicates the ideal position of an ionization pen 1230 when such burner is in use with ionization current measurement for air to gas ratio modulation.
- FIG. 13 shows an example of a burner 1300 according to the invention.
- the burner 1300 (here a flat burner, but the invention can be performed on a cylindrical or frusto-conical burner as well in similar way as on a flat burner) has a perforated plate 1310 and supports a fiber based cloth 1320 over the largest part of its surface, wherein the fiber based cloth 1320 forms part of the combustion surface.
- the combustion surface has one zone that is not formed by the fiber based cloth 1320, but formed by a woven wire mesh 1392.
- the woven wire mesh 1392 preferably has a higher gas permeability than the fiber based cloth 1320.
- Figure 13 further shows the position of an ionization pen 1330 which is preferably positioned in the burner such that it is positioned over the zones where the porous combustion surface is not formed by the fiber based cloth 1320.
- the woven wire mesh 1392 can be placed onto the perforated plate 1310 or in or on openings in the perforated plate 1310.
- the length L1 of a flat burner of the invention is preferably between 80 and 700 mm; and the width L2 preferably between 80 and 700 mm.
- the sides L3 and L4 of rectangular zones where the fiber based cloth 120 does not form the combustion surface are preferably between 12 and 30 mm.
- the zone has a square shape, but it can be rectangular or circular or of another shape.
- a square or a rectangular shape is preferred however.
- Figure 14 shows part 1410 of a perforated plate that can be used in a burner according to the invention.
- the perforated plate 1410 has a perforation pattern with perforations 1413 where it will support the fiber based cloth (the fiber based cloth is not shown on the figure). It has one or more zones (two zones shown in figure 14 , but a perforated plate according to the invention can e.g. have one, two, three or four such zones) with perforations 1417 that create a higher porosity of the perforated plates in such zones.
- zones will fully or partly not be covered by fiber based cloth and such zones will form part of the combustion surface of the burner.
- the perforated plate 1410 has through slits 1415 along sides of the one or more zones, and preferably around each of the one or more zones.
- the through slits have a width of between 0.35 and 1 mm, more preferably between 0.4 and 0.6 mm.
- such through slits have a length of at least 90% of the length of the side of the zone where the perforated plate is forming the combustion surface along which the through slits are positioned.
- FIG. 15 shows an alternative perforated plate 1510 that can be used in a burner according to the invention.
- the perforated plate 1510 has a perforation pattern with perforations 1513 where it will support the fiber based cloth (the fiber based cloth is not shown on the figure). It has one or more zones (two zones shown in figure 15 , but a perforated plate according to the invention can e.g. have one, two, three or four such zones) with perforations 1517 that create a higher porosity of the perforated plates in such zones.
- Such zones will fully or partly not be covered by fiber based cloth and such zones will form part of the combustion surface of the burner.
- the perforated plate 1510 has through slits 1515 along each of the sides of the one or more zones, and preferably around each of the one or more zones.
- the through slits have a width of between 0.35 and 1 mm, more preferably between 0.4 and 0.6 mm.
- Figure 16 shows a burner 1600 according to the invention.
- a perforated plate 1610 is used as is shown in figures 14 or 15 .
- a fiber based cloth 1620 forms the major part of the combustion surface of the burner 1600.
- the fiber based cloth 1620 is supported by the perforated plate 1610.
- the fiber based cloth 1620 is fixed onto the perforated plate 1610, preferably by means of welding, around the zones where the perforated plate 1610 forms the combustion surface, the fiber based cloth 1620 thereby covers the through slits 1415 of the perforated plate of figure 14 , or of the perforated plate of figure 15 .
- the through slits have a least 90% of the length of the side of the zone where the through slit is positioned.
- the distance between such through slit and the edge of the fiber based cloth around the zone where the perforated cloth forms the combustion surface is less than or equal to 5 mm, preferably less than or equal to 3 mm.
- the zones where the perforated plate 1610 forms the combustion surface has perforations 1617.
- the porosity of the perforated plate 1610 where it forms the combustion surface is preferably two to five times higher than the porosity outside that zone.
- Figure 16 further shows the possible position of an ionization pen 1630 which is preferably positioned in the burner such that it is positioned over the zones where the porous combustion surface is not formed by the fiber based cloth 1620.
- Fabrics knitted from yarns made out of stainless steel fibers according to DIN 1.4767 can be used as fiber based cloth in each of the examples that have been shown.
- the knitted fabric has e.g. a surface weight of 1.4 kg/m 2 .
- a woven fabric made out of the same or similar yarns can be used.
- Figure 17 shows comparative ionization current measurements (Y, in relative units) as a function of the relative burner load (X, in per cent of the full burner load) for:
- Figure 17 shows that the ionization current of the burner according to the invention can be used into a lower range of burner load for modulation of the burner. Even at 10% of the burner load the ionization current can still be used for the modulation of the burner. Furthermore, when testing different same burners, the ionization curves of the burners of the invention do not vary much in the lower load range compared to prior art burners, also making the burner of the invention more suited for use with modulation of the burner in the low load ranges.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Claims (15)
- Gasvormischbrenner (100), umfassend
eine poröse Verbrennungsfläche (120, 140, 142), auf der, wenn der Brenner in Gebrauch ist, Verbrennung stattfindet, nachdem das Vormischgas hindurch geflossen ist,
ein Tuch (120) auf Faserbasis, das mindestens einen Teil der porösen Verbrennungsfläche bildet;
eine perforierte Platte (110), ein gewebtes Drahtmaschenmaterial oder expandiertes Metallblech; wobei das Tuch (120) auf Faserbasis durch die perforierte Platte, das gewebte Drahtmaschenmaterial oder expandierte Metallblech getragen wird;
wobei
eine oder mehrere Zonen (140, 142) der porösen Verbrennungsfläche nicht durch das Tuch (120) auf Faserbasis, sondern durch ein anderes poröses Substrat (260) gebildet werden;
dadurch gekennzeichnet, dass die eine oder mehreren Zonen (140, 142) entlang ihres vollständigen Umkreises von dem Tuch (120) auf Faserbasis umgeben sind. - Gasvormischbrenner (100) nach Anspruch 1, wobei mindestens zwei Zonen (140, 142) der porösen Verbrennungsfläche nicht durch das Tuch (120) auf Faserbasis gebildet sind.
- Gasvormischbrenner (100) nach Anspruch 2, wobei der kleinste Abstand zwischen zwei Zonen (140, 142) der porösen Verbrennungsfläche, die nicht durch das Tuch (120) auf Faserbasis gebildet sind, mindestens 5 mm beträgt.
- Gasvormischbrenner nach einem der vorhergehenden Ansprüche, wobei eine Zone Unterzonen umfasst, die jeweils eine höhere Gaspermeabilität als benachbarte oder umgebende Unterzonen innerhalb der Zone aufweisen.
- Gasvormischbrenner (100) nach den Ansprüchen 1 bis 4, wobei in der einen oder den mehreren Zonen (140, 142) der porösen Verbrennungsfläche, die nicht durch das Tuch (120) auf Faserbasis gebildet sind, ein zusätzliches poröses Objekt (260, 360, 460, 560, 662, 764, 1092, 1192, 1292) positioniert ist, um lokal die poröse Verbrennungsfläche zu bilden.
- Gasvormischbrenner nach Anspruch 5, wobei das poröse Objekt (560, 1192) mit dem Tuch (520, 1120) auf Faserbasis an den Rändern des Tuches (520, 1120) auf Faserbasis um die eine oder mehreren Zonen der porösen Verbrennungsfläche herum verbunden ist, die nicht durch das Tuch (520, 1120) auf Faserbasis gebildet sind.
- Gasvormischbrenner nach Anspruch 5, wobei das poröse Objekt (662) in der perforierten Platte (610), dem gewebten Drahtmaschenmaterial oder dem expandierten Metallblech mittels geometrischer Zwänge gehalten wird; oder wobei das poröse Objekt durch Klemmen des porösen Objekts (764) an die perforierte Platte (710), das gewebte Drahtmaschenmaterial oder expandierte Metallblech mit der perforierten Platte (710), dem gewebten Drahtmaschenmaterial oder expandierten Metallblech verbunden ist.
- Gasvormischbrenner nach den Ansprüchen 1 bis 5, wobei in der einen oder den mehreren Zonen der porösen Verbrennungsfläche, die nicht durch das Tuch auf Faserbasis gebildet sind, ein zusätzliches gewebtes Drahtmaschenmaterial (560, 992, 994, 1092, 1192, 1292, 1392) die poröse Verbrennungsfläche bildet.
- Gasvormischbrenner nach Anspruch 8, wobei das zusätzliche gewebte Drahtmaschenmaterial (560, 1092, 1192, 1292) auf das Tuch (520, 1020, 1120, 1220) auf Faserbasis geschweißt ist;
wobei keine Schweißung zwischen dem zusätzlichen gewebten Drahtmaschenmaterial (560, 1092, 1192, 1292) und der perforierten Platte (510, 1020, 1120, 1220), dem gewebten Drahtmaschenmaterial oder expandierten Metallblech vorhanden ist;
wobei das Tuch (520, 1020, 1120, 1220) auf Faserbasis dort an die perforierte Platte (510, 1010, 1110, 1210), das gewebte Drahtmaschenmaterial oder expandierte Metallblech geschweißt ist, wo das zusätzliche gewebte Drahtmaschenmaterial (560, 1092, 1192, 1292) sich befindet. - Gasvormischbrenner nach den Ansprüchen 1 bis 4, wobei in der einen oder den mehreren Zonen der porösen Verbrennungsfläche, die nicht durch das Tuch auf Faserbasis gebildet sind, die poröse Verbrennungsfläche durch die perforierte Platte, das gewebte Drahtmaschenmaterial oder expandierte Metallblech gebildet ist.
- Gasvormischbrenner nach Anspruch 10, wobei das Tuch auf Faserbasis durch eine perforierte Platte (1410) getragen wird, und wobei in der einen oder den mehreren Zonen der porösen Verbrennungsfläche, die nicht durch das Tuch auf Faserbasis gebildet sind, die poröse Verbrennungsfläche durch die perforierte Platte (1410) gebildet ist;
und wobei das Tuch auf Faserbasis um die Ränder der einen oder mehreren Zonen herum an die perforierte Platte geschweißt oder anderweitig daran fixiert ist, und das Tuch auf Faserbasis durchgehende Schlitze (1415) bedeckt, die in der perforierten Platte unter mindestens einem Teil der Ränder vorhanden sind, wo das Tuch auf Faserbasis um die eine oder mehreren Zonen herum an die perforierte Platte geschweißt oder anderweitig daran fixiert ist. - Gasvormischbrenner nach Anspruch 10, wobei in der einen oder den mehreren Zonen der porösen Verbrennungsfläche, die nicht durch das Tuch (820) auf Faserbasis bedeckt sind, die perforierte Platte (810), das gewebte Drahtmaschenmaterial oder expandierte Metallblech kuppelförmig (895) ist, wodurch es sich von der Flächenform, die durch die perforierte Platte, das gewebte Drahtmaschenmaterial oder Metallblech gebildet wird, außerhalb der einen oder mehreren Zonen der porösen Verbrennungsfläche erstreckt, die nicht durch das Tuch auf Faserbasis bedeckt sind.
- Gasvormischbrenner nach einem der vorhergehenden Ansprüche, wobei das Tuch auf Faserbasis ein gewebtes, gestricktes, geflochtenes oder Vliestextil umfasst.
- Gasvormischbrenner (100, 900, 1300) nach einem der vorhergehenden Ansprüche,- wobei der Gasvormischbrenner einen Ionisierungsstift (130, 930, 1330) umfasst, um den Ionisierungsstrom der Flamme des Gasvormischbrenners zu messen,- und wobei der Ionisierungsstift (130, 930, 1330) so positioniert ist, dass er die eine oder mehreren Zonen (140, 142; 992, 994) der porösen Verbrennungsfläche bedeckt, die nicht durch das Tuch (120, 930, 1320) auf Faserbasis gebildet sind.
- Verfahren zur Steuerung des Luft-zu-Gas-Verhältnisses eines Gasvormischbrenners, wobei ein Gasvormischbrenner (100) gemäß einem der Ansprüche 1 bis 14 verwendet wird, und wobei der Ionisierungsstrom, der durch einen Ionisierungsstift (1630) gemessen wird, in einem Steuerungssystem verwendet wird, um das Luft-zu-Gas-Verhältnis in der Vormischung zu modulieren, die dem Gasvormischbrenner (100) zugeführt wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13773719.3A EP2914903B1 (de) | 2012-10-31 | 2013-10-04 | Gasvormischbrenner |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12190735 | 2012-10-31 | ||
PCT/EP2013/070658 WO2014067744A1 (en) | 2012-10-31 | 2013-10-04 | Gas premix burner |
EP13773719.3A EP2914903B1 (de) | 2012-10-31 | 2013-10-04 | Gasvormischbrenner |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2914903A1 EP2914903A1 (de) | 2015-09-09 |
EP2914903B1 true EP2914903B1 (de) | 2018-03-21 |
Family
ID=47216083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13773719.3A Active EP2914903B1 (de) | 2012-10-31 | 2013-10-04 | Gasvormischbrenner |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2914903B1 (de) |
CN (1) | CN104769360B (de) |
WO (1) | WO2014067744A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016105039U1 (de) * | 2016-09-12 | 2017-09-14 | Viessmann Werke Gmbh & Co Kg | Gasbrenner |
DE102017204013A1 (de) * | 2017-03-10 | 2018-09-13 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Flächenbrenners sowie ein Flächenbrenner |
WO2019011737A1 (en) * | 2017-07-13 | 2019-01-17 | Bekaert Combustion Technology B.V. | GAS PREMIX BURNER |
DE102017213767A1 (de) * | 2017-08-08 | 2019-02-14 | Robert Bosch Gmbh | Brennerabdeckung, Verfahren zur Herstellung einer Brennerabdeckung sowie ein Flächenbrenner |
EP3572728B1 (de) * | 2018-05-22 | 2022-04-06 | Bekaert Combustion Technology B.V. | Vorgemischgasbrenner |
CN112879959A (zh) * | 2021-02-19 | 2021-06-01 | 珠海格力电器股份有限公司 | 燃气灶的控制方法、控制装置、控制器及燃气灶系统 |
IT202100026453A1 (it) * | 2021-10-15 | 2023-04-15 | Beckett Thermal Solutions S R L | Membrana di combustione per un bruciatore a gas |
IT202100026447A1 (it) * | 2021-10-15 | 2023-04-15 | Beckett Thermal Solutions S R L | Membrana di combustione per un bruciatore a gas |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2050298A (en) | 1934-04-25 | 1936-08-11 | Thos Firth & John Brown Ltd | Metal reducing method |
US3394213A (en) | 1964-03-02 | 1968-07-23 | Roehr Prod Co Inc | Method of forming filaments |
US3277564A (en) | 1965-06-14 | 1966-10-11 | Roehr Prod Co Inc | Method of simultaneously forming a plurality of filaments |
US4657506A (en) | 1984-12-10 | 1987-04-14 | Glowcore Corporation | Gas burner |
JPS61110941U (de) * | 1984-12-20 | 1986-07-14 | ||
CA1320616C (en) | 1987-12-09 | 1993-07-27 | Akira Yanagisawa | Fiber manufacturing method and apparatus therefor |
BR9306001A (pt) * | 1992-03-03 | 1997-10-21 | Bekaert Sa Nv | Placa de fibra metálica porosa |
DE19632983C2 (de) | 1996-08-16 | 1999-11-04 | Stiebel Eltron Gmbh & Co Kg | Regeleinrichtung für einen Gasbrenner |
DE19847042B4 (de) * | 1998-10-13 | 2008-05-29 | Ceramat, S. Coop., Asteasu | Hochporöse Brennermatte für Gas- und/oder Ölbrenner |
FR2792394B1 (fr) * | 1999-04-16 | 2001-07-27 | Gaz De France | Procede pour realiser une surface d'accrochage de flammes |
EP1616128B1 (de) | 2003-04-18 | 2016-05-04 | N.V. Bekaert S.A. | Brenner mit einer metallmembran |
CN100554779C (zh) * | 2008-01-16 | 2009-10-28 | 罗添翼 | 用在燃气用具和燃气设备燃烧器上的高效红外发热体 |
CN101225958B (zh) * | 2008-01-16 | 2011-05-04 | 罗添翼 | 用在燃气用具和燃气设备燃烧器上的高效发热体 |
-
2013
- 2013-10-04 EP EP13773719.3A patent/EP2914903B1/de active Active
- 2013-10-04 CN CN201380057025.9A patent/CN104769360B/zh not_active Expired - Fee Related
- 2013-10-04 WO PCT/EP2013/070658 patent/WO2014067744A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014067744A9 (en) | 2017-12-07 |
CN104769360A (zh) | 2015-07-08 |
WO2014067744A1 (en) | 2014-05-08 |
CN104769360B (zh) | 2017-12-01 |
EP2914903A1 (de) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2914903B1 (de) | Gasvormischbrenner | |
EP3017098B1 (de) | Gasvormischbrenner | |
US6065963A (en) | Conical surface burner | |
EP3064831A1 (de) | Gasbrenner für ein heizgerät | |
US9885476B2 (en) | Surface combustion gas burner | |
EP2705301B1 (de) | Vormischgasbrenner mit temperaturmessung | |
WO2012095799A2 (en) | High perimeter stability burner | |
EP2156096A1 (de) | Brennervorrichtung | |
EP2876369A1 (de) | Gasbrenner | |
EP3017099B1 (de) | Gasvormischbrenner | |
EP3631295B1 (de) | Vormischgasbrenner mit einwärtsbefeuerung, vormischgasverbrennungssystem mit dem brenner, und verfahren zum betrieb des brenners oder des systems | |
EP2789911A1 (de) | Gasvormischbrenner | |
EP2805111B1 (de) | Zylinderförmiger gasvormischungsbrenner | |
EP2844920B1 (de) | Gasvormischungsbrenner | |
EP2649372B1 (de) | Brenner mit lokal fixiertem brennerdeck | |
WO2019193025A1 (en) | Conical premix gas burner | |
KR20130067238A (ko) | 이중직 금속 섬유 직물 및 이를 이용한 표면 연소 매트 | |
ITMI20121643A1 (it) | Bruciatore con diffusore in tessuto |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171103 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 981503 Country of ref document: AT Kind code of ref document: T Effective date: 20180415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013034736 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180621 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 981503 Country of ref document: AT Kind code of ref document: T Effective date: 20180321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180621 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180622 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180723 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013034736 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
26N | No opposition filed |
Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181004 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180321 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180721 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220930 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221019 Year of fee payment: 10 Ref country code: FR Payment date: 20221031 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221026 Year of fee payment: 10 Ref country code: GB Payment date: 20221020 Year of fee payment: 10 Ref country code: DE Payment date: 20220620 Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230619 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013034736 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20231101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231004 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240501 |