EP2914606A1 - Complexes of phosphine ligands comprising a carba-closo-dodecaborate substituent - Google Patents
Complexes of phosphine ligands comprising a carba-closo-dodecaborate substituentInfo
- Publication number
- EP2914606A1 EP2914606A1 EP13850907.0A EP13850907A EP2914606A1 EP 2914606 A1 EP2914606 A1 EP 2914606A1 EP 13850907 A EP13850907 A EP 13850907A EP 2914606 A1 EP2914606 A1 EP 2914606A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- alkyl
- complex
- aryl
- alkoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003446 ligand Substances 0.000 title claims abstract description 86
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910000073 phosphorus hydride Inorganic materials 0.000 title claims abstract description 33
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 36
- 150000003624 transition metals Chemical class 0.000 claims abstract description 35
- 125000000217 alkyl group Chemical group 0.000 claims description 111
- 125000003118 aryl group Chemical group 0.000 claims description 103
- 125000003545 alkoxy group Chemical group 0.000 claims description 85
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 39
- 229910052736 halogen Inorganic materials 0.000 claims description 30
- 150000002367 halogens Chemical class 0.000 claims description 30
- 229910052759 nickel Inorganic materials 0.000 claims description 30
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 26
- 229910052763 palladium Inorganic materials 0.000 claims description 26
- 229910052707 ruthenium Inorganic materials 0.000 claims description 26
- 150000001768 cations Chemical class 0.000 claims description 24
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 23
- 229910052741 iridium Inorganic materials 0.000 claims description 20
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 125000000129 anionic group Chemical group 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- 229910052703 rhodium Inorganic materials 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 17
- 150000001336 alkenes Chemical class 0.000 claims description 16
- 150000001450 anions Chemical group 0.000 claims description 15
- 229910052762 osmium Inorganic materials 0.000 claims description 15
- 238000006116 polymerization reaction Methods 0.000 claims description 15
- 150000004820 halides Chemical class 0.000 claims description 14
- 239000003153 chemical reaction reagent Substances 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 13
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 7
- 229910052794 bromium Inorganic materials 0.000 claims description 7
- 229910052792 caesium Inorganic materials 0.000 claims description 7
- 238000006880 cross-coupling reaction Methods 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 claims description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims 9
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 238000006555 catalytic reaction Methods 0.000 abstract description 10
- -1 iridium Chemical class 0.000 description 42
- 239000003054 catalyst Substances 0.000 description 40
- 238000005481 NMR spectroscopy Methods 0.000 description 32
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000010931 gold Substances 0.000 description 26
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 23
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 21
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 21
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 19
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 19
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 19
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 238000005913 hydroamination reaction Methods 0.000 description 16
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 15
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 15
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 15
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 15
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 15
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 14
- 238000005984 hydrogenation reaction Methods 0.000 description 12
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 11
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 11
- 150000001345 alkine derivatives Chemical class 0.000 description 10
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 10
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 10
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 9
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 9
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 9
- 150000002466 imines Chemical class 0.000 description 9
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 9
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- 238000004679 31P NMR spectroscopy Methods 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 6
- 239000004913 cyclooctene Substances 0.000 description 6
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 6
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 125000001624 naphthyl group Chemical group 0.000 description 6
- 150000003003 phosphines Chemical class 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 125000003944 tolyl group Chemical group 0.000 description 6
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- DNZZPKYSGRTNGK-PQZOIKATSA-N (1z,4z)-cycloocta-1,4-diene Chemical compound C1C\C=C/C\C=C/C1 DNZZPKYSGRTNGK-PQZOIKATSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005865 alkene metathesis reaction Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 3
- 239000004914 cyclooctane Substances 0.000 description 3
- 238000005930 hydroaminomethylation reaction Methods 0.000 description 3
- 238000007037 hydroformylation reaction Methods 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 125000002306 tributylsilyl group Chemical group C(CCC)[Si](CCCC)(CCCC)* 0.000 description 3
- 230000007306 turnover Effects 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 2
- 229910020315 ClAu Inorganic materials 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005649 metathesis reaction Methods 0.000 description 2
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 125000004089 sulfido group Chemical group [S-]* 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- QXSWHQGIEKUBAS-UHFFFAOYSA-N 1-ethynyl-4-fluorobenzene Chemical group FC1=CC=C(C#C)C=C1 QXSWHQGIEKUBAS-UHFFFAOYSA-N 0.000 description 1
- KBIAVTUACPKPFJ-UHFFFAOYSA-N 1-ethynyl-4-methoxybenzene Chemical group COC1=CC=C(C#C)C=C1 KBIAVTUACPKPFJ-UHFFFAOYSA-N 0.000 description 1
- KWVPRPSXBZNOHS-UHFFFAOYSA-N 2,4,6-Trimethylaniline Chemical compound CC1=CC(C)=C(N)C(C)=C1 KWVPRPSXBZNOHS-UHFFFAOYSA-N 0.000 description 1
- WKBALTUBRZPIPZ-UHFFFAOYSA-N 2,6-di(propan-2-yl)aniline Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N WKBALTUBRZPIPZ-UHFFFAOYSA-N 0.000 description 1
- DQQNMIPXXNPGCV-UHFFFAOYSA-N 3-hexyne Chemical compound CCC#CCC DQQNMIPXXNPGCV-UHFFFAOYSA-N 0.000 description 1
- ADLVDYMTBOSDFE-UHFFFAOYSA-N 5-chloro-6-nitroisoindole-1,3-dione Chemical compound C1=C(Cl)C([N+](=O)[O-])=CC2=C1C(=O)NC2=O ADLVDYMTBOSDFE-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- ZZWABYQKBLDNHJ-UHFFFAOYSA-N [C]=Cc1ccccc1 Chemical class [C]=Cc1ccccc1 ZZWABYQKBLDNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 238000006254 arylation reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010657 cyclometalation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- COCAUCFPFHUGAA-MGNBDDOMSA-N n-[3-[(1s,7s)-5-amino-4-thia-6-azabicyclo[5.1.0]oct-5-en-7-yl]-4-fluorophenyl]-5-chloropyridine-2-carboxamide Chemical compound C=1C=C(F)C([C@@]23N=C(SCC[C@@H]2C3)N)=CC=1NC(=O)C1=CC=C(Cl)C=N1 COCAUCFPFHUGAA-MGNBDDOMSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 238000000836 variable-temperature nuclear magnetic resonance spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/5004—Acyclic saturated phosphines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/24—Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/03—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/5045—Complexes or chelates of phosphines with metallic compounds or metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F132/00—Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
- C08F132/08—Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/645—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/827—Iridium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2531/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- C07C2531/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- C07C2531/24—Phosphines
Definitions
- This invention relates to transition metal catalysts and their use in catalytic reactions such as, but not limited to, olefin polymerization.
- This weak coordinative ability can be enhanced by substitution of some or all of the B-H vertices by alkyl or halo-groups.
- the cluster becomes more reactive towards substitution and oxidation chemistry.
- exhaustive halogenation of the cluster's boron vertices introduces electron withdrawing substituents that enhance the anion's inherent weak coordinative ability and also confers these molecules with inertness to certain chemicals and reactions.
- some perhalogenated carborane counteranions are observed to form isolable salts with potent oxidants such as C 6 o + and CH 3 + .
- the instant application sets forth a composition comprising a transition metal and at least one ligand comprising a carba-closo-dodecaborate substituent.
- the instant application sets forth a ligand having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- A is a cation.
- A may include Li, Na, K, Cs, HN(alkyl)3, or N(alkyl).
- the instant application sets forth a zwitterionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- X 1 is selected from H, alkyl, or aryl.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- the instant application sets forth a zwitterionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected alkyl, aryl, or alkoxy.
- X 1 is of H, alkyl, or aryl.
- Q is a chelating ligand.
- M is a transition metal
- R 1 is H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- X 1 is H, alkyl, or aryl.
- X 2 is an anion selected from H, halide, alkyl, or aryl.
- A is a cation.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- X 1 is selected from H, alkyl, or aryl.
- X 2 is an anion selected from H, halide, alkyl, or aryl.
- Q is a chelating ligand.
- A is a cation.
- M is a transition metal.
- the instant application provides a zwitterionic complex having the following structure:
- R 1 is H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- R 1 is H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- M is a transition metal.
- R 1 is H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- A is a monopositively charged cation or a dipositively charged cation.
- Subscript y is either 1 or 2.
- M is a transition metal.
- the instant application provides a methods of catalyzing chemical reactions, wherein the chemical reactions include, but are not limited to, olefin polymerization, hydroaddition, hydroamination, cross coupling, olefin metathesis hydroformylation, hydrogenation, hydroaminomethylation.
- Figure 1 shows a synthetic procedure for preparing a phosphine ligand containing a carba-closo-dodecaborate ligand substituent in accordance with the present invention.
- Figure 2 shows a solid state structure of an phosphine ligand containing a carba- closo-dodecaborate ligand substituent 2, wherein the hydrogen atoms are omitted for clarity.
- Thermal ellipsoids drawn at the 50% probability level.
- Figure 4 shows non-limiting examples of the types of reactions which the compounds of the instant invention are suitable for catalyzing.
- Figure 5 shows an example of Boron NMR.
- Figure 6 shows a synthetic procedure for preparing a ligand suitable for use in a complex with a transition metal.
- Figure 7 shows X H NMR data for the complex illustrated therein.
- Figure 8 shows 31 P NMR data for the complex illustrated therein.
- Figure 9 shows 13 C NMR data for the complex illustrated therein.
- Figure 10 shows n B NMR data for the complex illustrated therein.
- Figure 1 1 shows a solid state structure of a phosphine complex.
- Figure 12 shows a solid state structure of a phosphine Au complex.
- Figure 13 shows a synthetic procedure for preparing a Au complex.
- Figure 14 shows X H NMR data for the complex illustrated therein.
- Figure 15 shows 31 P NMR data for the complex illustrated therein.
- Figure 16 shows 13 C NMR data for the complex illustrated therein.
- Figure 17 shows n B NMR data for the complex illustrated therein.
- Figure 18 shows example reactions suitable for catalysis by Au complexes.
- Figure 19 shows hydroamination of alkynes results observed using catalysts of the present invention.
- Figure 20 shows hydroamination of alkynes results observed using catalysts of the present invention.
- Figure 21 shows an example of olefin polymerization.
- Figure 22 shows an example of olefin polymerization.
- Figure 23 shows an example of olefin polymerization.
- the present invention provides complexes, such as zwitterionic iridium complex of a phosphine bearing carba-c/osododecaborate anion ligand substituents.
- the present invention also provides methods of making these complexes as well as methods of using these complexes as catalysts.
- the instant compounds and complexes advantageously include ligands with very stable and unreactive 3- dimensionally anionic carborane clusters.
- the instant compounds and complexes are less likely to be made inactive during catalysis compared to standard catalysts that feature ligands with only hydrocarbon substituents.
- zwitterionic or “zwitterion” refers to a neutrally charged compound having both positive and negative charged groups therein.
- halide refers to an anion of F, CI, Br, or I.
- Halogen as used herein includes F, CI, Br, or I.
- alkyl refers to a hydrocarbon group derived from an alkane by removing one hydrogen atom.
- alkyl include, but are not limited to, methyl, ethyl, isopropyl, n-propyl, n-butyl, t-butyl, isopentyl, and n-pentyl.
- Alkyl can include any alkyl group having from about 1 to about 16 carbon atoms.
- alkoxy refers to a group having the formula -O-R, wherein R is alkyl or aryl.
- aryl refers to a substituent derived from an aromatic compound by removing one hydrogen atom. Examples of aryl include, but are not limited to, phenyl, mesityl, 2,6,-diisopropylphenyl, napthyl, and benzyl.
- leaving group refers to group that is displaced by a nucleophile. Examples include, but are not limited to, halides and sulfonate esters, e.g., tosylate.
- chelating refers to a ligand that bonds to a metal center through more than one bond.
- examples include bidentate and tridentate chelating ligands such as, but not limited to, EDTA and citric acid.
- phosphine ligand refers to a ligand that includes a phosphine bond.
- phosphines are derivatives of P3 ⁇ 4 in which one, two or three hydrogens are replaced by, for example, alkyl or aryl substituents. Examples of phosphines include, but are not limited to,
- sil refers to a group having the formula -S1-R3, wherein R is alkyl or aryl.
- carboxystyrene substituent refers to a compound having the following formula -CBUR "1 where the carbon atom is attached to a phosphine ligand as depicted below:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently alkyl, aryl, or alkoxy.
- A is a cation [e.g., Li, Na, K, Cs, HN(alkyl) 3 , or N(alkyl)].
- the present invention further provides compounds and complex, e.g., zwitterionic iridium complex of a phosphine comprising the caxba-closo- dodecaborate anion as a ligand substituent.
- the transition metal e.g., iridium
- the CBnHn " R " group engages in agostic-like bonding, utilizing the B-H bonds adjacent to the carbon atom in the cluster.
- Evidence for the interactions is observed in solution by variable temperature NMR and also in the solid state by a single crystal X-ray diffraction study.
- the instant application provides a composition including a transition metal and at least one ligand that includes at least 1 carba-closo-dodecaborate substituent.
- the instant application provides a ligand having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- A is a cation. In certain embodiments, A is selected from Li, Na, K, Cs, HN(alkyl) 3 , or (alkyl) 4 .
- R 1 is H. In other embodiments R 1 is F. In some other embodiments, R 1 is CI. In other embodiments, R 1 is Br. In certain embodiments,
- R 1 is methyl. In other embodiments, R 1 is ethyl. In some embodiments, R 1 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 1 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 1 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other embodiments, R 1 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 1 is octyl. In other embodiments, R 1 is nonyl. In yet others, R 1 is dodecyl.
- R 1 is phenyl, benzyl, or napthyl. In other embodiments R 1 is phenyl. In some other embodiments, R 1 is benzyl. In other embodiments, R 1 is napthyl. In certain embodiments, R 1 is tolulyl. In other embodiments, R 1 is methoxy. In some embodiments, R 1 is ethoxy. In other embodiments R 1 is propoxy. In some other embodiments, R 1 is butoxy. In other embodiments, R 1 is trimethylsilyl. In certain embodiments, R 1 is triethylsilyl.
- R 2 is methyl. In other embodiments, R 2 is ethyl. In some embodiments, R 2 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 2 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 2 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other embodiments, R 2 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 2 is octyl. In other embodiments, R 2 is nonyl. In yet others, R 2 is dodecyl.
- R 2 is phenyl, benzyl, or napthyl. In other embodiments R 2 is phenyl. In some other embodiments, R 2 is benzyl. In other embodiments, R 2 is napthyl. In certain embodiments, R 2 is tolulyl. In other embodiments, R 2 is methoxy. In some embodiments, R 2 is ethoxy. In other embodiments R 2 is propoxy. In some other embodiments, R 2 is butoxy.
- R 2 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 2 is dimethylamino or diethylamino.
- R 3 is methyl. In other embodiments, R 3 is ethyl. In some embodiments, R 3 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 3 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 3 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other embodiments, R 3 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 3 is octyl. In other embodiments, R 3 is nonyl. In yet others, R 3 is dodecyl.
- R 3 is phenyl, benzyl, or napthyl. In other embodiments R 3 is phenyl. In some other embodiments, R 3 is benzyl. In other embodiments, R 3 is napthyl. In certain embodiments, R 3 is tolulyl. In other embodiments, R 3 is methoxy. In some embodiments, R 3 is ethoxy. In other embodiments R 3 is propoxy. In some other embodiments, R 3 is butoxy.
- R 3 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 3 is dimethylamino or diethylamino.
- the halogen is selected from F, CI, Br, or I.
- the ligand has the following structure:
- the present application provides a zwitterionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- X 1 is selected from H, alkyl, or aryl.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- n is 1. In certain other embodiment set forth herein, n is 2. In some embodiment set forth herein, n is 3. In certain embodiment set forth herein, n is 4. In certain embodiment set forth herein, n is 5. In certain embodiment set forth herein, n is 6.
- M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au. In other embodiments, M is selected from Fe, Ru, Co, Ni, or Pd. [0065] In some embodiments of the above formula, R 1 is H. In other embodiments R 1 is F. In some other embodiments, R 1 is CI. In other embodiments, R 1 is Br. In certain embodiments,
- R 1 is methyl. In other embodiments, R 1 is ethyl. In some embodiments, R 1 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 1 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 1 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other
- R 1 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 1 is octyl. In other embodiments, R 1 is nonyl. In yet others, R 1 is dodecyl.
- R 1 is phenyl, benzyl, or napthyl. In other embodiments R 1 is phenyl. In some other embodiments, R 1 is benzyl. In other embodiments, R 1 is napthyl. In certain embodiments, R 1 is tolulyl. In other embodiments, R 1 is methoxy. In some embodiments, R 1 is ethoxy. In other embodiments R 1 is propoxy. In some other embodiments, R 1 is butoxy. In other embodiments, R 1 is trimethylsilyl. In certain embodiments, R 1 is triethylsilyl.
- R 2 is methyl. In other embodiments, R 2 is ethyl. In some embodiments, R 2 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 2 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 2 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other embodiments, R 2 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 2 is octyl. In other embodiments, R 2 is nonyl. In yet others, R 2 is dodecyl.
- R 2 is phenyl, benzyl, or napthyl. In other embodiments R 2 is phenyl. In some other embodiments, R 2 is benzyl. In other embodiments, R 2 is napthyl. In certain embodiments, R 2 is tolulyl. In other embodiments, R 2 is methoxy. In some embodiments, R 2 is ethoxy. In other embodiments R 2 is propoxy. In some other embodiments, R 2 is butoxy.
- R 2 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 2 is dimethylamino or diethylamino.
- R 3 is methyl. In other embodiments, R 3 is ethyl. In some embodiments, R 3 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 3 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 3 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other embodiments, R 3 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 3 is octyl. In other embodiments, R 3 is nonyl. In yet others, R 3 is dodecyl.
- R 3 is phenyl, benzyl, or napthyl. In other embodiments R 3 is phenyl. In some other embodiments, R 3 is benzyl. In other embodiments, R 3 is napthyl. In certain embodiments, R 3 is tolulyl. In other embodiments, R 3 is methoxy. In some embodiments, R 3 is ethoxy. In other embodiments R 3 is propoxy. In some other embodiments, R 3 is butoxy.
- R 3 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 3 is dimethylamino or diethylamino.
- the present application provides a zwitterionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- X 1 is selected from the group consisting of H, alkyl, or aryl.
- Q is a chelating ligand; and M is a transition metal.
- the complex may further comprising 1 to 2 additional Q chelating ligands bonded to M.
- M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- M is selected from Fe, Ru, Co, Ni, or Pd.
- the present application provides an anionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- X 1 is selected from H, alkyl, or aryl.
- X 2 is an anion selected from H, halide, alkyl, or aryl.
- A is a cation.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- M is selected from the group consisting of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au. In other embodiments, M is selected from the group consisting of Fe, Ru, Co, Ni, or Pd.
- the present application provides an anionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- X 1 is selected from H, alkyl, or aryl.
- X 2 is an anion selected from H, halide, alkyl, or aryl.
- Q is a chelating ligand.
- A is a cation.
- M is a transition metal.
- the complex may further comprise 1 to 2 additional Q ligands bonded to M.
- A is cation.
- A may be selected from Li, Na, K, Cs, FTN(alkyl)3, or N(alkyl) 4 .
- M is selected from the group consisting of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- M is selected from the group consisting of Fe, Ru, Co, Ni, or Pd.
- the present application provides a zwitterionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- L is neutral ligand.
- Subscript n is an integer selected from 1, 2, 3, 4, 5, or 6.
- M is a transition metal.
- M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- M is selected from Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- L is CI. In other embodiments, L is
- the present application provides a zwitterionic complex having the following structure:
- R is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R and R are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- M is a transition metal.
- M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- M is selected from Ni, Pd, or Cu. In some of these embodiments, M is in either a +2 or +4 oxidation state.
- the present application provides an anionic complex having the following structure:
- R 1 is selected from H, halogen, alkyl, aryl, silyl, or alkoxy.
- R 2 and R 3 are each independently selected from alkyl, aryl, alkoxy, or NR 4 R 5 .
- R 4 and R 5 are each independently selected from alkyl, aryl, or alkoxy.
- A is a monopositively charged cation or a dipositively charged cation.
- Y is 1 or 2.
- M is a transition metal.
- M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au.
- M is selected from Ni, Pd, or Cu.
- M is in either a +2 or +4 oxidation state.
- the present application provides a complex having the following structure:
- R 1 is H. In other embodiments R 1 is F. In some other embodiments, R 1 is CI. In other embodiments, R 1 is Br. In certain embodiments,
- R 1 is methyl. In other embodiments, R 1 is ethyl. In some embodiments, R 1 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 1 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 1 is pentyl (n-pentyl, i-pentyl , cyclopentyl). In other
- R 1 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 1 is octyl. In other embodiments, R 1 is nonyl. In yet others, R 1 is dodecyl.
- R 1 is phenyl, benzyl, or napthyl. In other embodiments R 1 is phenyl. In some other embodiments, R 1 is benzyl. In other embodiments, R 1 is napthyl. In certain embodiments, R 1 is tolulyl. In other embodiments, R 1 is methoxy. In some embodiments, R 1 is ethoxy. In other embodiments R 1 is propoxy. In some other embodiments, R 1 is butoxy. In other embodiments, R 1 is trimethylsilyl. In certain embodiments, R 1 is triethylsilyl.
- R 2 is methyl. In other embodiments, R 2 is ethyl. In some embodiments, R 2 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 2 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 2 is pentyl (n-pentyl, i- pentyl , cyclopentyl). In other embodiments, R 2 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 2 is octyl. In other embodiments, R 2 is nonyl. In yet others, R 2 is dodecyl.
- R 2 is phenyl, benzyl, or napthyl. In other embodiments R 2 is phenyl. In some other embodiments, R 2 is benzyl. In other embodiments, R 2 is napthyl. In certain embodiments, R 2 is tolulyl. In other embodiments, R 2 is methoxy. In some embodiments, R 2 is ethoxy. In other embodiments R 2 is propoxy. In some other embodiments, R 2 is butoxy.
- R 2 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 2 is dimethylamino or
- R 3 is methyl. In other embodiments, R 3 is ethyl. In some embodiments, R 3 is propyl (e.g., n-propyl, i-propyl). In other embodiments R 3 is butyl (e.g., n-butyl, i-butyl). In some other embodiments, R 3 is pentyl (n-pentyl, i- pentyl , cyclopentyl). In other embodiments, R 3 is hexyl (n-hexyl, cyclohexyl). In certain embodiments, R 3 is octyl. In other embodiments, R 3 is nonyl. In yet others, R 3 is dodecyl.
- R 3 is phenyl, benzyl, or napthyl. In other embodiments R 3 is phenyl. In some other embodiments, R 3 is benzyl. In other embodiments, R 3 is napthyl. In certain embodiments, R 3 is tolulyl. In other embodiments, R 3 is methoxy. In some embodiments, R 3 is ethoxy. In other embodiments R 3 is propoxy. In some other embodiments, R 3 is butoxy.
- R 3 is NR 4 R 5 , wherein R 4 and R 5 are independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and nonyl. In certain embodiments, R 3 is dimethylamino or
- L is a neutral ligand selected from
- R 2 and R 3 are isopropyl.
- Certain Preferred Substituents include the following.
- preferred R 1 groups include, but are not limited to carborane H, F, CI, Br, I, benzene, methyl, ethyl, n-propyl, n-butyl, methoxy,eEthoxy, n- propoxy , n-butyloxy, or trimethylsiloxy.
- preferred R 2 groups include benzene, naphthyl, Mesityl, 2,6-diisopropylphenyl, Tolyl, or -C 6 F5.
- preferred R 2 groups include methyl, ethyl, propyl, butyl, isopropyl, t-butyl, adamantly, cyclohexyl, or cyclopentyl.
- preferred R 2 groups include methoxy, ethoxy, propoxy , butyloxy, isopropoxy, t-butoxy, phenoxy, or mesityloxy.
- preferred R 2 groups include Trimethylsiloxy, triethyl siloxy, or tripropyl siloxy.
- preferred R 4 and R 5 include H.
- R 4 and R 5 independently, include benzene, naphthyl, Mesityl, 2,6- diisopropylphenyl, Tolyl, or -C 6 F5.
- R 4 and R 5 include, independently, methyl, ethyl, propyl, butyl, isopropyl, t-butyl, adamantly, cyclohexyl, or cyclopentyl.
- R 4 and R 5 include trimethylsilyl, triethylsilyl, or tributylsilyl.
- R 2 or R 3 are independently selected from NR 4 R 5 , wherein R 4 and R 5 are H, benzene, naphthyl, Mesityl, 2,6-diisopropylphenyl, Tolyl, -C 6 F5, methyl, ethyl, propyl, butyl, isopropyl, t-Butyl, adamantly, cyclohexyl, cyclopentyl, trimethylsilyl, triethylsilyl, or tributylsilyl.
- X 1 and X 2 are independently selected from NR 4 R 5 , wherein NR 4 R 5 is imido.
- R 4 and R 5 are N-Alkyl, NAryl, Sulfido S-R, or Phosphido P-R.
- preferred R 3 groups include benzene, naphthyl, Mesityl, 2,6-diisopropylphenyl, Tolyl, or -C 6 F5.
- preferred R 3 groups include methyl, ethyl, propyl, butyl, isopropyl, t-butyl, adamantly, cyclohexyl, or cyclopentyl.
- preferred R 3 groups include methoxy, ethoxy, propoxy , butyloxy, isopropoxy, t-butoxy, phenoxy, or mesityloxy.
- preferred R 3 groups include Trimethylsiloxy, triethyl siloxy, or tripropyl siloxy.
- L is a neutral ligand.
- L is a solvent molecule selected from dimethoxy ethane, dioxane, pyridine, tetrahydrofuran, diethyl ether, benzene, toluene, acetonitrile, methylene chloride, chloroform, dimethyl formamide, or acetone.
- L is a phosphine (PR 3 ) containing three alkyl or aryl groups, A phosphite (P(OR) 3 ), P( R 2 ) 3 , a carbene, N-heterocyclic carbene, an alkylidene carbene, a benzylidene carbene, an olefin, an alkyne, a diene, an enone, a polyene, a sulfide (SR 2 ), an alcohol, a ketone, or an ester.
- PR 3 phosphine
- PR 3 phosphine containing three alkyl or aryl groups
- A is selected firm Li , Na , K , Cs , Mg , Ca , Zn 2+ , NH 4 + , HN(Alkyl) 3 + , HN(Me) 3 + , HN(Ethyl) 3 + ,HN(Butyl) 4 + , HN(Aryl) 3 + , H 2 N(Alkyl) 2 + , H 3 NAlkyl + , H 3 NAryl + , a transition metal cation, a main group cation, an alkaline earth cation, or a polyatomic cation.
- X 1 and X 2 are independently selected from H, F, CI, Br, I. In some preferred embodiments, X 1 and X 2 are independently selected from methyl, ethyl, propyl, butyl, isopropyl, t-Butyl, adamantly, cyclohexyl, cyclopentyl, neopentyl,-CH 2 SiMe 3 , benzyl.
- X 1 and X 2 are independently selected from -C 6 H5, naphthyl, Mesityl, or Tolyl.
- X 1 and X 2 are independently selected from methoxy, ethoxy, propoxy , butyloxy, isopropoxy, t-butoxy, phenoxy, or mesityloxy.
- X 1 and X 2 are independently selected from
- Trimethylsiloxy Triethyl siloxy, or tripropyl siloxy.
- X 1 and X 2 are independently selected from NR 4 R 5 , wherein R 4 and R 5 are H, benzene, naphthyl, Mesityl, 2,6-diisopropylphenyl, Tolyl, -C 6 F5, methyl, ethyl, propyl, butyl, isopropyl, t-Butyl, adamantly, cyclohexyl, cyclopentyl, trimethylsilyl, triethylsilyl, or tributylsilyl.
- X 1 and X 2 are independently selected from NR 4 R 5 , wherein NR 4 R 5 is imido.
- R 4 and R 5 are N-Alkyl, NAryl, Sulfido S-R, or Phosphido P-R.
- the present invention provides methods of making ligands having the following general formula:
- R 1 is selected from the group consisting of H, halide, alkyl, aryl, silyl, and alkoxy.
- R 2 and R 3 are each independently selected from the group consisting of alkyl, aryl, alkoxy, and NR 4 R 5 .
- R 4 and R 5 are each independently selected from the group consisting of alkyl, aryl, and alkoxy.
- halide includes a member selected from the group consisting of fluoride, chloride, bromide, and iodide.
- a + represents a counter-cation.
- A is selected from the group consisting of Li + , Na + , K + , Cs + , HN(alkyl) 3 + , and N(alkyl) 4 + .
- Other suitable cations may include, but are not limited to a member selected from the group consisting of Be 2+ , Mg 2+ , Ca 2+ , Sr ⁇ , and Ba 2+ .
- the methods of making the ligands used herein include providing a solution of a C-H carba-c/oso-dodecaborate anion, having the following formula, in THF:
- the methods further include treating the anion with 1-3 equivalents of a base, wherein the base is w-BuLi (i.e., n-butyl lithium).
- the base is w-BuLi (i.e., n-butyl lithium).
- the methods then include stirring for about three hours. In some embodiments, the methods further include concentrating the reaction under high vacuum. In some of these embodiments, the methods include washing the resulting residue with dry hexane to prepare a solid. In some embodiments, the methods include dissolving the solid in THF or F-C 6 H 5 and treating it with 1.1 equivalents of the X-P(R 2 )(R 3 ) reagent. In some embodiments, the methods include stirring the reaction until completion. In certain embodiments, completion is determined by P NMR analysis. In some embodiments, the methods include concentrating the mixture to dryness, washing the concentrate with hexane.
- the methods include including the solid residue (i.e., the phosphine ligand) extracted in a solvent, wherein the solvent includes, but is not limited to CHCI 3 , CH2CI2, F-C 6 H5).
- the salt byproducts do not dissolve in the solvent.
- the methods include filtering the mixture and drying the solution to afford the desired phosphine in about 95-100% yield.
- the present invention provides methods illustrated by the following reaction scheme:
- X refers to a leaving group.
- the leaving group is selected from the group consisting of CI, Br, and I.
- the present inventions provides methods of making ligands that include, but are not limited to the following synthesis.
- a solution of the C-H carba- c/oso-dodecaborate anion in THF is treated with 1 -3 equivalents of a base (preferably n- BuLi) and stirred for 3 hours and subsequently concentrated under high vacuum.
- the residue is thoroughly washed with dry hexane and the solid is subsequently dissolved in THF or F- C 6 H5 and treated with 1.1 equivalents of the desired X-P(R 2 )(R 3 ) reagent and the reaction is stirred until completion is determined by 31 P NMR analysis.
- the mixture is subsequently concentrated to dryness, washed with hexane, and the solid residue containing the phosphine ligand extracted with a solvent (e.g. CHC13, CH2CI2, F-C 6 H5) where the salt byproducts do not dissolve.
- a solvent e.g. CHC13, CH2CI2, F-C 6 H5
- the mixture is filtered and the solution is concentrated to dryness to afford the desired phosphine in 95-100% yield.
- the instant application sets forth methods of catalyzing chemical reactions, wherein the methods include contacting a complex, set forth herein, with suitable reagents for the chemical reaction to occur.
- the chemical reaction catalyzed is olefin polymerization. In some other embodiments, the chemical reaction catalyzed is
- the chemical reaction catalyzed is cross coupling. In some other embodiments, the chemical reaction catalyzed is hydrogenation.
- the literature describing Au-based catalysts includes a) H. Schmidbaur, et al, B: J. Chem. Sci. 2011, 66, 329-350; Synthesis (Eds.: A.S.K. Hashmi, F. D. Toste), Wiley-VCH, Weinheim, 2012; A. Gomez-Suarez, et al, Angew. Chem. 2012, 124, 8278-8281; Angew. Chem. Int. Ed. 2012, 51, 8156-8159; C. C. J. Loh, et al, Chem. Eur. J. 2012, 18, 10212- 10225; D. Garayalde, et al, ACS Catal.
- the instant application provides methods of catalyzing olefin polymerization reactions comprising contacting a complex described herein with suitable olefin polymerization reagents.
- the instant application provides methods of catalyzing hydroaddition reactions comprising contacting a complex described herein with suitable hydroaddition reagents.
- the instant application provides methods of catalyzing hydroamination reactions comprising contacting a complex described herein with suitable hydroamination reagents.
- the instant application provides methods of catalyzing cross coupling reactions contacting a complex described herein with suitable cross coupling reagents.
- the instant application provides methods of catalyzing olefin metathesis reactions comprising contacting a complex described herein with suitable olefin metathesis reagents.
- the instant application provides methods of catalyzing hydroformylation reactions comprising contacting a complex described herein with suitable hydroformylation reagents.
- the instant application provides methods of catalyzing hydrogenation reactions comprising contacting a complex described herein with suitable hydrogenation reagents.
- the instant application provides methods of catalyzing hydroaminomethylation reactions comprising contacting a complex described herein with suitable hydroaminomethylation reagents.
- Ligands synthesized by this method include the following examples:
- This catalyst is suitable for use in, for example, olefin polymerization
- This catalyst is suitable for use in, for example, olefin hydrogenation
- This catalyst is suitable for use in, for example, olefin polymerization.
- This catalyst is suitable for use in, for example, olefin polymerization
- This catalyst is suitable for use in, for example, Pd-catalyzed cross-coupling.
- This catalyst is suitable for use in, for example, olefin hydrogenation
- This Example shows a synthesis of a phosphine bearing the CBnClif moiety, (iPr) 2 P(CBiiClii) " Li + .
- This group is advantageous because it is very large and the intermediate steric bulk of the isopropyl groups allow the phosphorus lone pair to be accessible for coordination.
- the trimethyl ammonium salt of anion 1 with 2 (in Figure 1) was treated with equivalents of w-BuLi and subsequent quenched with the dianionic intermediate with ClP(iPr) 2 afforded 2 in 98% yield ( Figure 1).
- Anionic phosphine 2 is very soluble in common polar solvents (CH2CI2, CHCI3, THF), and is not sensitive to oxygen in solution or the solid state.
- the X H NMR of 2 displays two distinct doublets of doublets for the CH 3 isopropyl groups, indicating hindered rotation about the P-iPr bonds.
- the driving force for the anion metathesis is the insolubility of LiCl in F-benzene.
- a single crystal X-ray diffraction study confirms the structure of 3 ( THT If the reaction is performed in THF, a solvent where LiCl is soluble, THT is liberated and an unusual anionic ClAu-Li+ complex 3 (LiCl) is isolated.
- Complex 3 (LiCl) can also be prepared by the treatment of isolated 3(THT) with LiCl in THF. In contrast to 3(THT) it was possible to grow single crystals of 3 (LiCl) without significant disorder and thus examined the solid state structural aspects of this molecule.
- the P-Au bond length is 2.2477(12) A, which is close to a neutral ortho-dicarbaclosodecaborane substituted phosphine AuCl complex (2.232(3) A).
- the chloride ligand (trans from the phosphine) is at a distance of 2.2883(12) A from the metal center.
- the carborane substituent retains a significant amount of weakly coordinating character, even though it is forced into a position close to the metal center.
- This Example demonstrates the catalytic properties of complexes 3 in the hydroamination of primary amines with alkynes.
- This example observed the addition of aniline to phenyl acetylene.
- a 1 : 1 neat mixture of amine and alkyne was added to 0.1 mol% of complex 3 ( ⁇ >, where upon an exothermic reaction occurred.
- Monitoring the reaction by l H NMR revealed the hydroamination was >95% complete in 1 hour (entry 1, Table 1).
- Identical results were obtained with 3(LiCl), (entry 2, Table 1), hence further catalytic tests were carried out using exclusively 3(THT).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261722740P | 2012-11-05 | 2012-11-05 | |
PCT/US2013/068581 WO2014071401A1 (en) | 2012-11-05 | 2013-11-05 | Complexes of phosphine ligands comprising a carba-closo-dodecaborate substituent |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2914606A1 true EP2914606A1 (en) | 2015-09-09 |
EP2914606A4 EP2914606A4 (en) | 2016-05-25 |
EP2914606B1 EP2914606B1 (en) | 2019-07-03 |
Family
ID=50628172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13850907.0A Active EP2914606B1 (en) | 2012-11-05 | 2013-11-05 | Complexes of phosphine ligands comprising a carba-closo-dodecaborate substituent |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150299234A1 (en) |
EP (1) | EP2914606B1 (en) |
WO (1) | WO2014071401A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019089715A1 (en) | 2017-10-31 | 2019-05-09 | Dow Global Technologies, Llc | Catalyst systems comprising carborane cocatalysts |
CN111450886A (en) * | 2019-01-22 | 2020-07-28 | 中国科学院上海高等研究院 | Catalyst for catalyzing alkyne to generate trans-olefin and preparation method and application thereof |
-
2013
- 2013-11-05 WO PCT/US2013/068581 patent/WO2014071401A1/en active Application Filing
- 2013-11-05 US US14/440,566 patent/US20150299234A1/en not_active Abandoned
- 2013-11-05 EP EP13850907.0A patent/EP2914606B1/en active Active
Non-Patent Citations (8)
Title |
---|
ALEXANDER HIMMELSPACH ET AL: "Microwave-Assisted Kumada-Type Cross-Coupling Reactions of Iodinated Carba- closo -dodecaborate Anions", INORGANIC CHEMISTRY, vol. 51, no. 4, 20 February 2012 (2012-02-20), EASTON, US, pages 2679 - 2688, XP055254476, ISSN: 0020-1669, DOI: 10.1021/ic202638k * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1993, JELINEK, TOMAS ET AL: "New weakly coordinating anions. 2. Derivatization of the carborane anion CB11H12-", XP002756108, retrieved from STN Database accession no. 1993:408855 * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 22 May 2013 (2013-05-22), DRISCH, MICHAEL ET AL: "Carba-closo-dodecaborate Anions with Cluster Carbon-Phosphorous Bonds", XP002756109, retrieved from STN Database accession no. 2013:791357 * |
JELINEK T ET AL: "NEW WEAKLY COORDINATING ANIONS. 2. DERIVATIZATION OF THE CARBORANE ANION CB11H12-", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON, US, vol. 32, no. 10, 1 May 1993 (1993-05-01), pages 1982 - 1990, XP002914226, ISSN: 0020-1669, DOI: 10.1021/IC00062A018 * |
MICHAEL DRISCH ET AL: "Carba- closo -dodecaborate Anions with Cluster Carbon-Phosphorous Bonds", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE., vol. 639, no. 7, 22 May 2013 (2013-05-22), DE, pages 1134 - 1139, XP055261670, ISSN: 0044-2313, DOI: 10.1002/zaac.201300130 * |
None * |
See also references of WO2014071401A1 * |
VINCENT LAVALLO ET AL: "Perhalogenated Carba- closo -dodecaborate Anions as Ligand Substituents: Applications in Gold Catalysis", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 52, no. 11, 13 February 2013 (2013-02-13), DE, pages 3172 - 3176, XP055261667, ISSN: 1433-7851, DOI: 10.1002/anie.201209107 * |
Also Published As
Publication number | Publication date |
---|---|
EP2914606A4 (en) | 2016-05-25 |
EP2914606B1 (en) | 2019-07-03 |
US20150299234A1 (en) | 2015-10-22 |
WO2014071401A1 (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steiner et al. | Substituent‐Controlled Reactions of Iminophosphoranes with Methyllithium | |
EP2297173B1 (en) | Process for preparing dienyl-ruthenium complexes | |
Hameury et al. | Synthesis and characterization of oxygen-functionalised-NHC silver (I) complexes and NHC transmetallation to nickel (II) | |
Reitsamer et al. | Novel access to carbodiphosphoranes in the coordination sphere of group 10 metals: template synthesis and protonation of PCP pincer carbodiphosphorane complexes of C (dppm) 2 | |
Kireenko et al. | Palladium complexes with stabilized germylene and stannylene ligands | |
Liu et al. | N-Heterocyclic carbene copper (I), mercury (II) and silver (I) complexes containing durene linker: synthesis and structural studies | |
Forosenko et al. | Amido Ca (II) complexes supported by Schiff base ligands for catalytic cross-dehydrogenative coupling of amines with silanes | |
Liu et al. | Mercury (II), copper (II) and silver (I) complexes with ether or diether functionalized bis-NHC ligands: synthesis and structural studies | |
Benaissa et al. | A convenient access to N-phosphonio-substituted NHC metal complexes [M= Ag (I), Rh (I), Pd (II)] | |
Ona-Burgos et al. | An unprecedented phosphinamidic gold (III) metallocycle: synthesis via tin (IV) precursors, structure, and multicomponent catalysis | |
Amenuvor et al. | Novel pyrazolylphosphite–and pyrazolylphosphinite–ruthenium (ii) complexes as catalysts for hydrogenation of acetophenone | |
Someşan et al. | Novel mono-and bimetallic organotin (iv) compounds as potential linkers for coordination polymers | |
Durran et al. | The synthesis and co-ordination chemistry of new functionalised pyridylphosphines derived from Ph 2 PCH 2 OH | |
US20030032808A1 (en) | Tri-and bidentate amido ligands prepared by palladium0 coupling and metallation threreof to form metal-amido catalysts | |
Sousa-Pedrares et al. | Synthesis and characterization of copper (I) and silver (I) complexes with heterocyclic bidentate ligands (N, X), X= S, Se | |
Khairul et al. | Transition metal alkynyl complexes by transmetallation from Au (C [triple bond, length as m-dash] CAr)(PPh 3)(Ar= C 6 H 5 or C 6 H 4 Me-4) | |
EP2914606B1 (en) | Complexes of phosphine ligands comprising a carba-closo-dodecaborate substituent | |
Guo et al. | Potassium complexes containing bidentate pyrrole ligands: synthesis, structures, and catalytic activity for the cyclotrimerization of isocyanates | |
Back et al. | Mixed Metal Acetylides: The PtII Aryl Acetylide “[PtC6H2 (CH2NMe2) 22, 6‐(C≡ C)‐4]” as a Connective Fragment | |
Ciriano et al. | Synthesis of trans-di-µ-hydridobis (silyl) bis (trialkylphosphine) di-platinum complexes: crystal and molecular structure of di-µ-hydrido-bis (tricyclohexylphosphine) bis (triethylsilyl) diplatinum | |
Pertici et al. | Synthesis, chirooptical properties and catalytic activity of diene-rhodium (I) and-iridium (I) cationic complexes containing binaphthyl, C2-symmetric diamine ligands | |
Popovici et al. | Phosphonium Ylides vs Iminophosphoranes: The Role of the Coordinating Ylidic Atom in cis-[Phosphine-Ylide Rh (CO) 2] Complexes | |
Dey et al. | Tailoring the Fe→ Pd interaction in cationic Pd (II) complexes via structural variation of the ligand scaffold of sterically demanding dppf-analogs and their P, N-counterparts | |
Slawin et al. | New platinum (II) complexes of Ph 2 PNHP (O) Ph 2 and [Ph 2 PNP (O) Ph 2]– | |
Martins et al. | Another side of the oxazaphospholidine oxide chiral ortho-directing group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150520 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAVALLO, VINCENT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07F 5/02 20060101AFI20160414BHEP Ipc: C07B 61/00 20060101ALI20160414BHEP |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160421 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013057499 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C07F0005020000 Ipc: C07F0009500000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07F 9/50 20060101AFI20181126BHEP Ipc: C07B 61/00 20060101ALI20181126BHEP Ipc: C07F 15/00 20060101ALI20181126BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190114 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1150865 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013057499 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1150865 Country of ref document: AT Kind code of ref document: T Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191127 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191103 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191004 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191125 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191127 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013057499 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191105 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013057499 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201105 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |