EP2909440B1 - Strömungsgeschwindigkeits- und schallgeschwindigkeitsmessung mit verteilter schallmessung - Google Patents

Strömungsgeschwindigkeits- und schallgeschwindigkeitsmessung mit verteilter schallmessung Download PDF

Info

Publication number
EP2909440B1
EP2909440B1 EP14743240.5A EP14743240A EP2909440B1 EP 2909440 B1 EP2909440 B1 EP 2909440B1 EP 14743240 A EP14743240 A EP 14743240A EP 2909440 B1 EP2909440 B1 EP 2909440B1
Authority
EP
European Patent Office
Prior art keywords
velocity
pressure pulse
acoustic
well
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14743240.5A
Other languages
English (en)
French (fr)
Other versions
EP2909440A4 (de
EP2909440A1 (de
Inventor
Neal G. Skinner
Etienne M. Samson
Christopher L. Stokely
John L. Maida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP2909440A1 publication Critical patent/EP2909440A1/de
Publication of EP2909440A4 publication Critical patent/EP2909440A4/de
Application granted granted Critical
Publication of EP2909440B1 publication Critical patent/EP2909440B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves

Definitions

  • a well flow velocity measurement system comprising: a pressure pulse generator configured to propagate at least one pressure pulse through multiple fluid compositions in a well; and a distributed acoustic sensing system configured to detect coherent Rayleigh backscattering along an optical waveguide in the well, whereby a velocity of the pressure pulse in the well is determined.
  • the pressure pulses 18 could be generated by detonating a series of explosive or other exothermic devices in the well.
  • the scope of this disclosure is not limited to any particular manner of generating the pressure pulses 18.
  • DAS distributed acoustic sensing
  • the DAS system 20 of FIG. 1 comprises surface optics, electronics and software, commonly known to those skilled in the art as an interrogator 24, and the optical waveguide 22.
  • the optical waveguide 22 may be installed in the wellbore 12, inside or outside of the casing 14 or other tubulars, optionally in the cement 16 surrounding the casing, etc.
  • the interrogator 24 launches light into the optical waveguide 22 (e.g., from an infrared laser or other light source 26).
  • a detector 28 detects the light returned via the same optical waveguide 22.
  • the DAS system 20 uses measurement of backscattered light (e.g., coherent Rayleigh backscattering) to detect the acoustic energy along the waveguide 22.
  • an array of weak fiber Bragg gratings or other artificially introduced reflectors can be used with the optical waveguide 38 to detect acoustic signals along the waveguide.
  • the interrogator 24 and/or the pressure pulse generator 30 may be controlled via a control system 32, for example, including at least a processor 34 and memory 36.
  • Signal processing is used to segregate the waveguide 22 into an array of individual "microphones" or acoustic sensors, typically corresponding to 1-10 meter segments of the waveguide.
  • the waveguide 22 may be housed in a metal tubing or control line and positioned in the wellbore 12. In some examples, the waveguide 22 may be in cement surrounding the casing 14, in a wall of the casing or other tubular, suspended in the wellbore 12, in or attached to a tubular, etc. The scope of this disclosure is not limited to any particular placement of the waveguide 22.
  • the pressure pulse 18 is reflected back through the wellbore 12, and the reflected pressure pulse 38 is also detected by the DAS system 20.
  • the DAS system 20 detects the propagation of the pressure pulse 18 and the reflected pressure pulse 38 as they displace through the wellbore 12.
  • the pressure pulse 18 may be reflected off of a bottom of the well, off of a plug or other obstruction in the wellbore 12, or at a fluid/air or fluid/metal interface at or near the surface.
  • other changes in acoustic impedance can cause the pressure pulse 18 to be reflected.
  • Such changes in acoustic impedance can include changes in acoustic velocity due to changes in fluid composition in the wellbore 12, changes in casing 14 diameter, etc.
  • the scope of this disclosure is not limited to any particular manner of producing the reflected pressure pulse 38.
  • flow velocity, V f and acoustic velocity, V a of fluid compositions in the wellbore 12 can be readily determined. If flow velocity is known, a volumetric flow rate can be readily calculated by multiplying the flow velocity by flow area.
  • the acoustic velocity V a in a fluid composition depends on the fluids in the composition and a compliance of a pipe or conduit containing the fluid composition. If one knows the acoustic velocity of the fluid composition, the fluids in the composition (for example, an oil/water ratio) can be readily estimated.
  • FIG. 1 example two sets of perforations 42a,b are depicted in the casing 14, so that respective fluid compositions 40a,b are produced into the wellbore 12. Below the bottom perforations 42a, no flow enters the well. Between the perforations 42a,b, only the fluid composition 40a is present in the wellbore 12. Above the upper perforations 42b, the fluid compositions 40a,b are commingled.
  • the pressure pulse 18 is generated at the surface, which causes an acoustic wave or signal to travel from the surface through the wellbore 12 with velocity V o (in this case, opposing the direction of flow of the fluids 40a,b).
  • V o in this case, opposing the direction of flow of the fluids 40a,b.
  • the reflected pulse 38 may return to the surface and be reflected again through the wellbore 12.
  • the optical waveguide 22 installed in the well and connected to the DAS interrogator 24, it is possible to observe the propagation of the pulses 18, 38, and it may be possible to observe multiple round trips of a pressure pulse.
  • V a V w + V o / 2 and, thus, the acoustic velocity V a is simply the average of the velocities of the generated signal 36a and the reflected signal 36b in the FIG. 1 example.
  • Pipe compliance of a steel pipe is caused by not having infinitely stiff walls. It causes the acoustic wave traveling down the pipe to move slower than it would in a pipe with infinitely stiff walls.
  • the method can comprise: transmitting an acoustic signal (such as the pressure pulse 18) through at least one fluid composition 40a,b in a well; detecting velocities V u , V d of the acoustic signal in both opposite directions along an optical waveguide 22 in the well, the optical waveguide 22 being included in a distributed acoustic sensing system 20; and determining an acoustic velocity V a in the fluid composition based on the velocities of the acoustic signal.
  • an acoustic signal such as the pressure pulse 18
  • the transmitting step can include propagating at least one pressure pulse 18 through the fluid composition 40a,b.
  • the detecting step can include detecting at least one reflection of the pressure pulse 18.
  • Determining the acoustic velocity V a in the fluid composition 40a,b can include compensating for pipe compliance.
  • the distributed acoustic sensing system 20 may include an interrogator 24 which detects coherent Rayleigh backscattering in the optical waveguide 22.
  • Another well flow velocity measurement method described above can comprise: propagating at least one pressure pulse 18 through at least one fluid composition 40 a,b in a well; detecting a velocity of the pressure pulse 18 along an optical waveguide 22 in the well, the optical waveguide being included in a distributed acoustic sensing system 20; and determining an acoustic velocity V a in the fluid composition based on the velocity of the pressure pulse.
  • the detecting step can include detecting the velocity of the pressure pulse 18 in both opposite directions along the optical waveguide 22.
  • the propagating step includes propagating the pressure pulse 18 through multiple fluid compositions 40 a,b in the well.
  • the system 10 may include a processor 34 which determines an acoustic velocity V a in the fluid composition 40 a,b based on the velocity of the pressure pulse 18.

Claims (15)

  1. Bohrlochströmungsgeschwindigkeitsmessverfahren, umfassend:
    Übertragen mindestens eines Druckimpulses (18) durch mehrere Fluidzusammensetzungen (40a, 40b) in einem Bohrloch (12) ;
    Erfassen einer Geschwindigkeit des Druckimpulses entlang eines Lichtwellenleiters (22) in dem Bohrloch, wobei der Lichtwellenleiter in einem verteilten Schallmesssystem (20) beinhaltet ist; und
    Bestimmen einer Schallgeschwindigkeit in der Fluidzusammensetzung auf Grundlage der Geschwindigkeit des Druckimpulses.
  2. Verfahren nach Anspruch 1, wobei das Erfassen ferner das Erfassen der Geschwindigkeit des Druckimpulses in beide entgegengesetzten Richtungen entlang des Lichtwellenleiters umfasst.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das verteile Schallmesssystem eine kohärente Rayleigh-Rückstreuung entlang des Lichtwellenleiters umfasst.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Erfassen ferner das Erfassen mindestens einer Spiegelung des Druckimpulses umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bestimmen ferner das Bestimmen der Schallgeschwindigkeit in jeder der mehreren Fluidzusammensetzungen umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das verteilte Schallmesssystem eine Schallenergie entlang des Lichtwellenleiters anzeigt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das verteile Schallmesssystem eine Abfragevorrichtung beinhaltet, die eine kohärente Rayleigh-Rückstreuung in dem Lichtwellenleiter erfasst.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Übertragen ferner das Erzeugen des akustischen Signals an einer Position zwischen der Erdoberfläche und einem Boden des Bohrlochs umfasst, wobei das akustische Signal in eine entgegengesetzte Richtung von der Position übertragen wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Übertragen ferner das Aufbringen einer Stoßwirkung auf einen Rohrstrang umfasst.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bestimmen der Schallgeschwindigkeit in der Fluidzusammensetzung ferner das Ausgleichen einer Rohrkonformität umfasst.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei:
    sich der Druckimpuls als ein akustisches Signal bewegt; und
    das Erfassen von Geschwindigkeiten des akustischen Signals in beide entgegengesetzte Richtungen entlang des Lichtwellenleiters (22) stattfindet.
  12. Bohrlochströmungsgeschwindigkeitsmesssystem, umfassend:
    einen Druckimpulsgenerator (30), der dazu konfiguriert ist, mindestens einen Druckimpuls (18) durch mehrere Fluidzusammensetzungen (40a, 40b) in einem Bohrloch (12) zu übertragen; und
    ein verteiltes Schallmesssystem (20), das dazu konfiguriert ist, eine kohärente Rayleigh-Rückstreuung entlang eines Lichtwellenleiters (22) in dem Bohrloch zu erfassen, wobei eine Geschwindigkeit des Druckimpulses in dem Bohrloch bestimmt wird.
  13. System nach Anspruch 12, wobei:
    ein Computer dazu konfiguriert ist, eine Schallgeschwindigkeit in der Fluidzusammensetzung auf Grundlage der Geschwindigkeit des Druckimpulses zu bestimmen; und/oder
    bei Verwendung des Systems eine Schallgeschwindigkeit in jeder der mehreren Fluidzusammensetzungen bestimmt wird.
  14. System nach Anspruch 12 oder 13, wobei:
    bei Verwendung des Systems die Geschwindigkeit des Druckimpulses in beide entgegengesetzten Richtung entlang des Lichtwellenleiters bestimmt wird; und/oder
    das verteilte Schallmesssystem dazu konfiguriert ist, mindestens eine Spiegelung des Druckimpulses zu erfassen.
  15. System nach einem der Ansprüche 12 bis 14, wobei:
    das verteilte Schallmesssystem dazu konfiguriert ist, eine Schallenergie entlang des Lichtwellenleiters anzugzeigen; und/oder
    der Druckimpulsgenerator dazu konfiguriert ist, eine Stoßwirkung auf einen Rohrstrang (14) aufzubringen; und/oder
    der Druckimpulsgenerator dazu konfiguriert ist, den Druckimpuls in entgegengesetzte Richtungen von einer Position des Bohrlochs zu übertragen.
EP14743240.5A 2013-01-24 2014-01-08 Strömungsgeschwindigkeits- und schallgeschwindigkeitsmessung mit verteilter schallmessung Active EP2909440B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/748,720 US20140202240A1 (en) 2013-01-24 2013-01-24 Flow velocity and acoustic velocity measurement with distributed acoustic sensing
PCT/US2014/010682 WO2014116424A1 (en) 2013-01-24 2014-01-08 Flow velocity and acoustic velocity measurement with distributed acoustic sensing

Publications (3)

Publication Number Publication Date
EP2909440A1 EP2909440A1 (de) 2015-08-26
EP2909440A4 EP2909440A4 (de) 2016-07-20
EP2909440B1 true EP2909440B1 (de) 2019-06-26

Family

ID=51206669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14743240.5A Active EP2909440B1 (de) 2013-01-24 2014-01-08 Strömungsgeschwindigkeits- und schallgeschwindigkeitsmessung mit verteilter schallmessung

Country Status (4)

Country Link
US (1) US20140202240A1 (de)
EP (1) EP2909440B1 (de)
CA (1) CA2891596A1 (de)
WO (1) WO2014116424A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247840B2 (en) * 2013-01-24 2019-04-02 Halliburton Energy Services, Inc. Optical well logging
US20140219056A1 (en) * 2013-02-04 2014-08-07 Halliburton Energy Services, Inc. ("HESI") Fiberoptic systems and methods for acoustic telemetry
US10808521B2 (en) 2013-05-31 2020-10-20 Conocophillips Company Hydraulic fracture analysis
US9880048B2 (en) 2013-06-13 2018-01-30 Schlumberger Technology Corporation Fiber optic distributed vibration sensing with wavenumber sensitivity correction
US20160230541A1 (en) * 2013-09-05 2016-08-11 Shell Oil Company Method and system for monitoring fluid flux in a well
GB201513867D0 (en) 2015-08-05 2015-09-16 Silixa Ltd Multi-phase flow-monitoring with an optical fiber distributed acoustic sensor
CA2987721C (en) * 2015-08-31 2022-02-08 Halliburton Energy Services, Inc. Methods and systems employing a flow prediction model that is a function of perforation cluster geometry, fluid characteristics, and acoustic activity
US20170260839A1 (en) * 2016-03-09 2017-09-14 Conocophillips Company Das for well ranging
US10095828B2 (en) 2016-03-09 2018-10-09 Conocophillips Company Production logs from distributed acoustic sensors
US10890058B2 (en) 2016-03-09 2021-01-12 Conocophillips Company Low-frequency DAS SNR improvement
US10920581B2 (en) 2016-06-30 2021-02-16 Shell Oil Company Flow velocity meter and method of measuring flow velocity of a fluid
US10295385B2 (en) 2016-06-30 2019-05-21 Hach Company Flow meter with adaptable beam characteristics
US10161770B2 (en) 2016-06-30 2018-12-25 Ott Hydromet Gmbh Flow meter with adaptable beam characteristics
CA3027267A1 (en) * 2016-06-30 2018-01-04 Shell Internationale Research Maatschappij B.V. Flow velocity meter and method of measuring flow velocity of a fluid
US10408648B2 (en) 2016-06-30 2019-09-10 Hach Company Flow meter with adaptable beam characteristics
EP3619560B1 (de) 2017-05-05 2022-06-29 ConocoPhillips Company Stimulierte gesteinsvolumenanalyse
US11255997B2 (en) 2017-06-14 2022-02-22 Conocophillips Company Stimulated rock volume analysis
US11352878B2 (en) 2017-10-17 2022-06-07 Conocophillips Company Low frequency distributed acoustic sensing hydraulic fracture geometry
WO2019191106A1 (en) 2018-03-28 2019-10-03 Conocophillips Company Low frequency das well interference evaluation
AU2019262121B2 (en) 2018-05-02 2023-10-12 Conocophillips Company Production logging inversion based on DAS/DTS
WO2019224567A1 (en) * 2018-05-22 2019-11-28 Total Sa Apparatus for measuring fluid flow in a well, related installation and process
US11480029B2 (en) * 2019-09-23 2022-10-25 Baker Hughes Oilfield Operations Llc Autonomous inflow control device for live flow monitoring
US11802783B2 (en) 2021-07-16 2023-10-31 Conocophillips Company Passive production logging instrument using heat and distributed acoustic sensing

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362462B (en) * 1997-05-02 2002-01-23 Baker Hughes Inc A method of monitoring chemical injection into a surface treatment system
US7328624B2 (en) * 2002-01-23 2008-02-12 Cidra Corporation Probe for measuring parameters of a flowing fluid and/or multiphase mixture
US7134320B2 (en) * 2003-07-15 2006-11-14 Cidra Corporation Apparatus and method for providing a density measurement augmented for entrained gas
US6874361B1 (en) * 2004-01-08 2005-04-05 Halliburton Energy Services, Inc. Distributed flow properties wellbore measurement system
US7819188B2 (en) * 2007-12-21 2010-10-26 Schlumberger Technology Corporation Monitoring, controlling and enhancing processes while stimulating a fluid-filled borehole
EP2361393B1 (de) * 2008-11-06 2020-12-23 Services Petroliers Schlumberger Erkennung verteilter schallwellen
US9546548B2 (en) * 2008-11-06 2017-01-17 Schlumberger Technology Corporation Methods for locating a cement sheath in a cased wellbore
US20100207019A1 (en) * 2009-02-17 2010-08-19 Schlumberger Technology Corporation Optical monitoring of fluid flow
US20120063267A1 (en) * 2009-05-27 2012-03-15 Qinetiq Limited Well Monitoring by Means of Distributed Sensing Means
GB2482642B (en) * 2009-05-27 2015-05-27 Silixa Ltd Apparatus for optical sensing
US20110090496A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
US20110088462A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed acoustic/vibration, strain and/or density sensing
US9109944B2 (en) * 2009-12-23 2015-08-18 Shell Oil Company Method and system for enhancing the spatial resolution of a fiber optical distributed acoustic sensing assembly
GB201008823D0 (en) * 2010-05-26 2010-07-14 Fotech Solutions Ltd Fluid flow monitor
US8505625B2 (en) * 2010-06-16 2013-08-13 Halliburton Energy Services, Inc. Controlling well operations based on monitored parameters of cement health
NO2418466T3 (de) * 2010-06-17 2018-06-23
US8930143B2 (en) * 2010-07-14 2015-01-06 Halliburton Energy Services, Inc. Resolution enhancement for subterranean well distributed optical measurements
US20120014211A1 (en) * 2010-07-19 2012-01-19 Halliburton Energy Services, Inc. Monitoring of objects in conjunction with a subterranean well
EP2630519A2 (de) * 2010-10-19 2013-08-28 Weatherford/Lamb, Inc. Überwachung mittels verteilter akustikmessungstechnologie
US20120152024A1 (en) 2010-12-17 2012-06-21 Johansen Espen S Distributed acoustic sensing (das)-based flowmeter
GB201102930D0 (en) * 2011-02-21 2011-04-06 Qinetiq Ltd Techniques for distributed acoustic sensing
GB201103479D0 (en) * 2011-03-01 2011-04-13 Qinetiq Ltd Conduit monitoring
WO2013019529A2 (en) * 2011-07-29 2013-02-07 Shell Oil Company Method for increasing broadside sensitivity in seismic sensing system
GB201116816D0 (en) * 2011-09-29 2011-11-09 Qintetiq Ltd Flow monitoring
US10247840B2 (en) * 2013-01-24 2019-04-02 Halliburton Energy Services, Inc. Optical well logging
US20140204712A1 (en) * 2013-01-24 2014-07-24 Halliburton Energy Services, Inc. Downhole optical acoustic transducers
US9222828B2 (en) * 2013-05-17 2015-12-29 Halliburton Energy Services, Inc. Downhole flow measurements with optical distributed vibration/acoustic sensing systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2909440A4 (de) 2016-07-20
CA2891596A1 (en) 2014-07-31
US20140202240A1 (en) 2014-07-24
EP2909440A1 (de) 2015-08-26
WO2014116424A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
EP2909440B1 (de) Strömungsgeschwindigkeits- und schallgeschwindigkeitsmessung mit verteilter schallmessung
EP3111038B1 (de) Tauchpumpenüberwachung
EP2205999B1 (de) System und verfahren zur interferometrischen akustischen beobachtung von leitungen, bohrlöchern oder reservoirs
CA2681622C (en) Wireless logging of fluid filled boreholes
US8770283B2 (en) Systems and methods for distributed interferometric acoustic monitoring
EP2761129B1 (de) Strömungsüberwachung
US20180087372A1 (en) Methods and systems employing a controlled acoustic source and distributed acoustic sensors to identify acoustic impedance boundary anomalies along a conduit
CA2890074C (en) Optical well logging
WO2019209270A1 (en) Depth and distance profiling with fiber optic cables and fluid hammer
US11448582B2 (en) Method and system for non-intrusively determining properties of deposit in a fluidic channel
US11603733B2 (en) Wellbore flow monitoring using a partially dissolvable plug
US20210277771A1 (en) Distributed acoustic sensing for coiled tubing characteristics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160620

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 47/10 20120101AFI20160614BHEP

Ipc: E21B 47/107 20120101ALI20160614BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190226

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAIDA, JOHN L.

Inventor name: SAMSON, ETIENNE M.

Inventor name: STOKELY, CHRISTOPHER L.

Inventor name: SKINNER, NEAL G.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1148506

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014049085

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190626

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190927

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1148506

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191028

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191026

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20191230

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014049085

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014049085

Country of ref document: DE

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200108

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200108

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626