EP2909148A2 - Glass composition for the manufacture of fibers and process - Google Patents
Glass composition for the manufacture of fibers and processInfo
- Publication number
- EP2909148A2 EP2909148A2 EP13785738.9A EP13785738A EP2909148A2 EP 2909148 A2 EP2909148 A2 EP 2909148A2 EP 13785738 A EP13785738 A EP 13785738A EP 2909148 A2 EP2909148 A2 EP 2909148A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- glass
- fibers
- composition
- glass fiber
- hour
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000011521 glass Substances 0.000 title claims description 49
- 239000000835 fiber Substances 0.000 title abstract description 69
- 238000004519 manufacturing process Methods 0.000 title description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000006066 glass batch Substances 0.000 claims abstract description 13
- NJXPYZHXZZCTNI-UHFFFAOYSA-N 3-aminobenzonitrile Chemical compound NC1=CC=CC(C#N)=C1 NJXPYZHXZZCTNI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003365 glass fiber Substances 0.000 claims description 37
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 239000011490 mineral wool Substances 0.000 claims description 6
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 24
- 239000000395 magnesium oxide Substances 0.000 description 12
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 10
- 239000000292 calcium oxide Substances 0.000 description 10
- 235000012255 calcium oxide Nutrition 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000013060 biological fluid Substances 0.000 description 5
- 239000006060 molten glass Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 235000013766 direct food additive Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/06—Mineral fibres, e.g. slag wool, mineral wool, rock wool
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2213/00—Glass fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2213/00—Glass fibres or filaments
- C03C2213/02—Biodegradable glass fibres
Definitions
- Glass fibers for use in composite applications are manufactured from various raw materials combined in specific proportions to yield a desired chemical composition. This proportion is commonly termed a "glass batch.”
- the composition of the glass batch and the glass manufactured from it are typically expressed in terms of percentages of the components, which are expressed as oxides.
- Si0 2 , A1 2 0 3 , CaO, MgO, B 2 0 3 , Na 2 0, K 2 0, Fe 2 0 3 , and minor amounts of other oxides are common components of a glass batch.
- Numerous types of glasses may be produced from varying the amounts of these oxides, or eliminating some of the oxides, in the glass batch.
- Examples of such glasses that may be produced include E-glass, S- glass, R-glass, A-glass, C-glass, and ECR-glass.
- the glass composition determines the properties of the glass including properties such as the viscosity, the liquidus temperature, the durability, the density, the strength, and the Young's modulus of the glass.
- Non-physical considerations given to commercial glass compositions include the raw material cost and environmental impact caused by manufacturing the glass.
- E-glass compositions are the most common glass compositions for making continuous glass fiber strands used in textile and reinforcement applications.
- One advantage of E-glass is that its liquidus temperature is approximately 200 °F below its forming temperature, which is commonly defined as the temperature at which the viscosity of the glass equals 1000 poise.
- E-glass has a wide range of forming temperatures and a low devitrification rate. Historically, commercial E-glass compositions possessed forming temperatures between 2150 °F and 2350 °F and liquidus values from approximately 100 °F to 250 °F below the forming temperature.
- S-Glass The most common high strength glass compositions for making continuous glass fiber strands are "S-Glasses.”
- S-Glass is a family of glasses composed primarily of the oxides of magnesium, aluminum, and silicon with a chemical composition that produces glass fibers having a higher mechanical strength than E-Glass fibers.
- S-glasses generally have compositions that were originally designed to be used in high-strength applications such as ballistic armor.
- Some examples of S-Glasses include XStrand® S, FliteStrand® S, and ShieldStrand® S by Owens Corning, having a Young's modulus of about 88 GPa.
- S-2 Glass® by AGY which is an S-Glass that may have a Young's modulus of approximately 89.6 GPa (13 MPSI).
- high modulus glass compositions that may be formed into fibers for use in composite materials are provided.
- the composition of the present invention is based on the Eutectic composition: 48 wt% Si0 2 , 35 wt% A1 2 0 3 , and 17 wt% MgO.
- the present composition includes: about 40 - 60 wt% Si0 2 ; 15 - 50 wt% A1 2 0 3 ; 0 - 30 wt% MgO; 0 - 25 wt% CaO; 0 - 5 wt% Li 2 0; 0 - 9 wt% B 2 0 3 ; and 0 - 5 wt% Na 2 0.
- the fibers formed of the compositions have a Young's modulus greater than about 82.7 GPa (12 MPSI), or about 89.6 GPa (13 MPSI), or about 96.5 GPa (14 MPSI).
- the fibers formed of the compositions have a Young's modulus greater than 103.4 GPa (15 MPSI).
- the fibers formed of the compositions also are biosoluble.
- Biosolubility is a measure of the speed at which a material dissolves in biological fluid.
- the fibers may have a fiber biosolubility that is greater than about 100 ng/cm 2 /hour.
- methods of forming fibers having a high modulus are provided.
- the methods may include, for example, using a traditional mineral wool process to form fibers from the compositions of the present invention.
- the methods may also include using a traditional glass fiber forming process.
- glass batch compositions useful for forming fibers are provided. Additionally, fibers formed from the glass batch compositions are also provided. Fibers formed using the compositions of the present invention may have a modulus substantially higher than the modulus of S-Glass fibers, such as XStrand®S, FliteStrand®S, and ShieldStrand®S, and S-2 Glass®. The fibers formed using the compositions of the present invention may also have high strengths.
- the glass batch compositions of the present invention may be used to produce fibers having a high modulus without the use of traditional melters that may employ platinum/rhodium alloy, as will be discussed further herein.
- the glass batch compositions of the present invention may be formed in traditional melters, as will be discussed further herein.
- the compositions of the present invention may be based on the Eutectic composition: 48 wt% Si0 2 , 35 wt% A1 2 0 3 , and 17 wt% MgO.
- the glass batch composition of the present invention includes about 40 - 60 wt% Si0 2 ; 15 - 50 wt% A1 2 0 3 ; 0 - 30 wt% MgO; 0 - 25 wt% CaO; 0 - 5 wt% Li 2 0; 0 - 9 wt% B 2 0 3 , and 0 - 5 wt% Na 2 0.
- the glass composition includes about 45 - 55 wt% Si0 2 ; 20 - 45 wt% A1 2 0 3 ; 5 - 25 wt% MgO; 3 - 25 wt% CaO; 0 - 5 wt% Li 2 0; 0 - 5 wt% B 2 0 3 ; and 0 - 5 wt% Na 2 0.
- the glass composition includes about 45 - 55 wt% Si0 2 ; 20 - 35 wt% A1 2 0 3 ; 10 - 20 wt% MgO; 5 - 25 wt% CaO; 0 - 5 wt% Li 2 0; 0 - 5 wt% B 2 0 3 ; and 0 - 5 wt% Na 2 0.
- compositions may include about 5.0 or less weight % of additional compounds, such as oxides, for example.
- additional compounds such as oxides, for example.
- Exemplary oxides that may be included in the composition include K 2 0, P 2 0 5 , ZnO, Zr0 2 , SrO, BaO, S0 3 , F 2 , Ce 2 0 3 , BeO, Se0 2 , Y 2 0 3 , La 2 0 3 , Ti0 2 and Fe 2 0 3 , and combinations thereof as intentional additives or impurities, each being present in up to 5.0 weight %.
- components may be added to the batch composition, for example, to facilitate processing, that are later eliminated, thereby forming a glass composition that is essentially free of such components.
- minute quantities of components such as "tramp" oxides, may be present as trace impurities in the raw materials providing the silica, calcia, alumina, and magnesia components in commercial practice of the invention or they may be processing aids that are essentially removed during manufacture.
- tramp oxides are present in less than about 5.0 weight %, or less than about 1.0 weight %.
- the fibers formed from the compositions described herein have a Young's modulus greater than about 82.7 GPa (12 MPSI). In other embodiments, the fibers from the compositions described herein may have a Young's modulus greater than about 89.6 GPa (13 MPSI). In yet other examples, the fibers formed from the compositions may have a Young's modulus greater than about 96.5 GPa (14 MPSI), and even greater than 103.4 GPa (15.0 MPSI).
- the glass fibers formed of the batch compositions may be biosoluble, as measured by a biosolubility index (k d j s ).
- the biosolubility may be estimated using a published model for high alumina fibers. This model is published as an on- line calculator at http://fiberscience.owenscorning.comykdisapp.html.
- the fibers may have a fiber biosolubility that is greater than about 100 ng/cm 2 /hour.
- the fibers have a fiber biosolubility of greater than about 200 ng/cm 2 /hour or even greater than about 300 ng/cm /hour.
- the fibers have a fiber biosolubility of greater than about 1000 ng/cm 2 /hour, greater than about 2000 ng/cm 2 /hour, or even greater than about 10,000 ng/cm 2 /hour.
- the biosolubility of the compositions allows the glass to be safely fiberized using the rotating wheels of the mineral wool process, or using other processes that are not traditionally used to form high modulus fibers. Additionally, the biosolubility of the fibers allow the production of fibers having small diameters using traditional reinforcement fiber forming processes.
- glass fibers formed from of the inventive batch composition disclosed herein have a density ranging from about 2.4 g/cc to about 3.0 g/cc. In other exemplary embodiments, the glass fibers formed of the inventive batch composition have a density from about 2.57 g/cc to about 2.97 g/cc.
- continuous glass fibers are formed by passing molten glass material through a bushing. As the glass exits the bushing through very fine orifices, the glass is cooled, such as by water jets, and mechanically drawn onto a high speed winder. As the fibers are wound, tension causes the streams of molten glass to be pulled into thin fibrous elements called filaments.
- the inventive glass fibers are discontinuous and may be formed using any known fiber forming process, such as, for example, a mineral wool process, a steam jet process, rotary process, flame attenuation, and the like.
- the mineral wool process includes any suitable melting furnace such as a cupola or a tank furnace (not illustrated) into which the batch components may be introduced and melted to form a molten material.
- molten glass from the furnace flows into a cylindrical container that includes small holes. As the cylindrical container spins, horizontal streams of glass begin to flow out of the holes.
- the molten glass streams may be attenuated by a downward blast of air, hot gas, or both.
- the fibers fall against one or more fiberizing rolls.
- a first fiberizing roll works to break up the molten material, forming fibers that may then be propelled to an optional second fiberizing roll.
- the second fiberizing roll spins in a direction counter to that of the first roll and further breaks up the material to form finished fibers.
- a jet of high pressure air may be again used between the first and second rolls to further attenuate the fibers.
- the fibers may have a sizing composition applied as they leave the rolls or may be collected and have a sizing composition applied in a post manufacturing process. It will be understood that any suitable sizing composition may be used to size the fibers, and the sizing composition may be selected to be compatible with the particular resin system of a composite article made using the fibers.
- any suitable discontinuous fiber forming process may be used to form the fibers.
- the fibers produced from the discontinuous process may have dimensions that allow the fibers to be respirable. Particularly, during air attenuation, the discontinuous fibers may run the risk of being released into the air, becoming respirable fibers. It is an advantage of the present invention that any respirable fibers produced from the discontinuous processes exhibit a biosolubility with k d i S greater than 100 ng/cm 2 /hour, such that the fibers are soluble in biological fluids.
- the glass composition may be formed using a traditional glass forming processes employed to produce continuous fibers.
- a traditional direct melt process may be used, and the fibers may be formed through any suitable bushing, such as a platinum or platinum/rhodium bushings, and wound on a winder.
- the fibers may be formed using traditional batch processes.
- the fibers may be formed using a platinum lined melter and produced with the use of any suitable bushings.
- the fiber diameters may be controlled to produce continuous fibers having a desired diameter. It is an advantage of the present invention that continuous fibers having very small diameters, while exhibiting biosolubility, strength, and modulus, may be formed.
- the fibers of the present invention may be used as reinforcements in composite articles formed using any suitable resin, to form fabrics useful in forming composite articles, or for any other purpose.
- Fibers having the compositions listed in Tables I-A - I-I include the constituents listed by weight percent. (Please note that * indicates a predicted value).
- Table I-A
- the fibers of the above Examples were formed using a one hole bushing in a lab scale melter.
- the Young's modulus was measured using the well established sonic technique whereby the speed of sound is measured in an individual fiber.
- Pristine fiber strengths were measured by pulling pristine fibers from a one-hole bushing and measuring the breaking stress over a 2-inch gauge length.
- the biosolubility was estimated using a published model for high alumina fibers. This model is published as an on-line calculator at http ://fiberscience . o wenscorning. com/kdisapp .html .
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261715494P | 2012-10-18 | 2012-10-18 | |
PCT/US2013/065554 WO2014062987A2 (en) | 2012-10-18 | 2013-10-18 | Glass composition for the manufacture of fibers and process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2909148A2 true EP2909148A2 (en) | 2015-08-26 |
EP2909148B1 EP2909148B1 (en) | 2018-10-17 |
Family
ID=49515516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13785738.9A Active EP2909148B1 (en) | 2012-10-18 | 2013-10-18 | Glass composition for the manufacture of fibers and process |
Country Status (5)
Country | Link |
---|---|
US (1) | US9546107B2 (en) |
EP (1) | EP2909148B1 (en) |
CN (2) | CN104781202A (en) |
CA (1) | CA2888470C (en) |
WO (1) | WO2014062987A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10035727B2 (en) | 2013-07-15 | 2018-07-31 | Ppg Industries Ohio, Inc. | Glass compositions, fiberizable glass compositions, and glass fibers made therefrom |
US9278883B2 (en) | 2013-07-15 | 2016-03-08 | Ppg Industries Ohio, Inc. | Glass compositions, fiberizable glass compositions, and glass fibers made therefrom |
US9944551B2 (en) * | 2015-05-07 | 2018-04-17 | Ppg Industries Ohio, Inc. | Glass compositions, fiberizable glass compositions, and glass fibers made therefrom |
WO2017033246A1 (en) * | 2015-08-21 | 2017-03-02 | 日東紡績株式会社 | Glass composition for glass fibers |
GB201703057D0 (en) * | 2017-02-24 | 2017-04-12 | Knauf Insulation Doo Skofja Loka | Mineral wool |
US11760684B2 (en) | 2017-06-29 | 2023-09-19 | Nippon Sheet Glass Company, Limited | Glass composition and glass product using same |
CN116282906A (en) * | 2017-06-29 | 2023-06-23 | 日本板硝子株式会社 | Glass composition and glass product using same |
MX2020003641A (en) | 2017-10-10 | 2020-07-29 | Unifrax I Llc | Crystalline silica free low biopersistence inorganic fiber. |
MX2020006064A (en) | 2017-12-19 | 2020-08-24 | Ocv Intellectual Capital Llc | High performance fiberglass composition. |
CN108503227A (en) * | 2018-04-08 | 2018-09-07 | 重庆国际复合材料股份有限公司 | A kind of high-performance glass fiber composition and glass fibre |
US10882779B2 (en) | 2018-05-25 | 2021-01-05 | Unifrax I Llc | Inorganic fiber |
WO2020123224A2 (en) | 2018-12-12 | 2020-06-18 | Corning Incorporated | Ion-exchangeable lithium-containing aluminosilicate glasses |
CN111233338B (en) * | 2019-12-19 | 2022-04-29 | 重庆国际复合材料股份有限公司 | High-refractive-index and high-performance glass fiber |
CN112624620B (en) * | 2021-01-06 | 2022-04-05 | 泰山玻璃纤维有限公司 | Low-thermal expansion coefficient glass fiber |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH218012A (en) * | 1937-10-16 | 1941-11-30 | Mij Exploitatie Octrooien Nv | Glass fiber. |
DE1026928B (en) * | 1954-02-03 | 1958-03-27 | Gruenzweig & Hartmann A G | Resistant to weathering, highly elastic silicate fibers or threads |
GB1209244A (en) * | 1967-04-05 | 1970-10-21 | Owens Corning Fiberglass Corp | Glass composition |
SU366165A1 (en) * | 1971-02-05 | 1973-01-16 | GLASS | |
US3904424A (en) * | 1972-06-09 | 1975-09-09 | Nippon Asbestos Company Ltd | Alkali resistant glassy fibers |
JPS506823A (en) * | 1973-06-02 | 1975-01-24 | ||
JPS5098914A (en) * | 1974-01-07 | 1975-08-06 | ||
DK163494C (en) | 1990-02-01 | 1992-08-10 | Rockwool Int | MINERAL FIBER |
JPH056823A (en) * | 1991-06-03 | 1993-01-14 | Murata Mfg Co Ltd | Solid inductor |
DE4447577A1 (en) * | 1994-05-28 | 1996-05-09 | Gruenzweig & Hartmann | Moisture resistant bio-degradable glass fibre compsn. |
CZ40496A3 (en) * | 1994-05-28 | 1997-05-14 | Saint Gobain Isover | Glass fiber composition |
EP0790962B1 (en) | 1994-11-08 | 1998-11-25 | Rockwool International A/S | Man-made vitreous fibres |
DE29515168U1 (en) | 1994-11-08 | 1996-03-14 | Rockwool International A/S, Hedehusene | Artificial glassy fibers |
GB9525641D0 (en) | 1995-12-15 | 1996-02-14 | Rockwool Int | Production of mineral fibres |
GB9604264D0 (en) | 1996-02-29 | 1996-05-01 | Rockwool Int | Man-made vitreous fibres |
AU5227298A (en) | 1996-11-28 | 1998-06-22 | Isover Saint-Gobain | Textile additive for cement material, materials and product containing same |
FR2778399A1 (en) * | 1998-05-06 | 1999-11-12 | Saint Gobain Isover | COMPOSITION OF MINERAL WOOL |
CN100347114C (en) * | 2001-12-12 | 2007-11-07 | 罗克伍尔国际公司 | Fibres and their production |
US7144633B2 (en) * | 2002-07-29 | 2006-12-05 | Evanite Fiber Corporation | Glass compositions |
FR2883864B1 (en) | 2005-04-01 | 2007-06-15 | Saint Gobain Isover Sa | COMPOSITIONS FOR GLASS FIBERS |
US7799713B2 (en) * | 2005-11-04 | 2010-09-21 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
US7763558B2 (en) * | 2006-12-27 | 2010-07-27 | Johns Manville | Glass compositions for fiber formation |
US8450226B2 (en) | 2009-11-18 | 2013-05-28 | Glass Incorporated | High temperature glass fiber insulation |
EP2354104A1 (en) * | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
CN102557459A (en) * | 2010-03-18 | 2012-07-11 | 杨德宁 | Glass fiber with high strength and energy-saving, emission-reducing, environment-friendly and low-viscosity characteristics, preparation method for glass fiber, and glass fiber composite material |
US9650282B2 (en) * | 2011-02-23 | 2017-05-16 | Dening Yang | Glass fiber with properties of high strength, energy saving, environment protecting and low viscosity, production method thereof and composite material containing the same |
CN104350019A (en) * | 2012-05-28 | 2015-02-11 | 霓佳斯株式会社 | Si-Mg-based inorganic fiber and composition containing same |
-
2013
- 2013-10-18 CA CA2888470A patent/CA2888470C/en active Active
- 2013-10-18 EP EP13785738.9A patent/EP2909148B1/en active Active
- 2013-10-18 CN CN201380060017.XA patent/CN104781202A/en active Pending
- 2013-10-18 US US14/435,788 patent/US9546107B2/en active Active
- 2013-10-18 CN CN202011222164.0A patent/CN112521006A/en active Pending
- 2013-10-18 WO PCT/US2013/065554 patent/WO2014062987A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CA2888470C (en) | 2021-04-20 |
WO2014062987A2 (en) | 2014-04-24 |
WO2014062987A3 (en) | 2015-01-29 |
US20150259243A1 (en) | 2015-09-17 |
CN112521006A (en) | 2021-03-19 |
CA2888470A1 (en) | 2014-04-24 |
US9546107B2 (en) | 2017-01-17 |
EP2909148B1 (en) | 2018-10-17 |
CN104781202A (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9546107B2 (en) | Glass composition for the manufacture of fibers and process | |
US8987154B2 (en) | Modulus, lithium free glass | |
US8252707B2 (en) | Composition for high performance glass fibers and fibers formed therewith | |
US8338319B2 (en) | Composition for high performance glass fibers and fibers formed therewith | |
JP7480142B2 (en) | High performance glass fiber composition having improved specific modulus | |
WO2008112978A1 (en) | Low viscosity e-glass composition enabling the use of platinum and rhodium free bushings | |
CA2824644C (en) | High strength glass composition and fibers | |
JP7488260B2 (en) | High performance glass fiber composition having improved elastic modulus - Patents.com | |
WO2014062715A1 (en) | High modulus glass fibers | |
US8586491B2 (en) | Composition for high performance glass, high performance glass fibers and articles therefrom | |
US20130217807A1 (en) | High refractive index glass composition | |
DK2630095T3 (en) | Glass composition for the production of high strength and high modulus fibers | |
US9878941B2 (en) | Glass composition for producing high strength and high modulus fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150512 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20170727 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013045284 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1053800 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1053800 Country of ref document: AT Kind code of ref document: T Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190118 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013045284 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
26N | No opposition filed |
Effective date: 20190718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181018 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131018 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181017 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013045284 Country of ref document: DE Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, TOLED, US Free format text: FORMER OWNER: OCV INTELLECTUAL CAPITAL, LLC, TOLEDO, OHIO, US |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20210916 AND 20210922 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602013045284 Country of ref document: DE Representative=s name: CBDL PATENTANWAELTE GBR, DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231025 Year of fee payment: 11 Ref country code: DE Payment date: 20231027 Year of fee payment: 11 |