EP2907187B1 - Fuel cell system based on solid oxide fuel cells - Google Patents

Fuel cell system based on solid oxide fuel cells Download PDF

Info

Publication number
EP2907187B1
EP2907187B1 EP13759693.8A EP13759693A EP2907187B1 EP 2907187 B1 EP2907187 B1 EP 2907187B1 EP 13759693 A EP13759693 A EP 13759693A EP 2907187 B1 EP2907187 B1 EP 2907187B1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
heat exchanger
air
exhaust gas
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13759693.8A
Other languages
German (de)
French (fr)
Other versions
EP2907187A1 (en
Inventor
Wolfgang Friede
Uwe Limbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2907187A1 publication Critical patent/EP2907187A1/en
Application granted granted Critical
Publication of EP2907187B1 publication Critical patent/EP2907187B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system based on solid oxide fuel cells according to claim 1. Furthermore, the invention relates to a method for operating such a fuel cell system according to claim 9.
  • Fuel cell systems serve to generate electrical energy.
  • hydrocarbons for example natural gas
  • a reformer the conversion of the natural gas usually used in hydrogen and carbon monoxide is carried out, with a steam reforming is performed to achieve a high efficiency.
  • hydrogen and carbon monoxide react to form water vapor and carbon dioxide.
  • Fuel cell systems are usually used to increase efficiency in the context of combined heat and power. Combined heat and power produces combined power and heat generation, reducing energy consumption and CO 2 emissions compared to conventional separate power and heat generation. As a result, combined heat and power in the energy sector is becoming increasingly important.
  • Fuel cell systems often include Solid Oxide Fuel Cells (SOFCs). Such fuel cells are operated at temperatures between 650 ° C and 1000 ° C and have a high electrical efficiency. Ensuring a long lifetime of fuel cells is the biggest problem here.
  • SOFCs Solid Oxide Fuel Cells
  • Fuel cell systems are equipped for the purpose of integration into the electrical network with an inverter, which converts the direct current of the fuel cell stack into grid-compatible alternating current.
  • the losses occurring in the inverter are discharged in the form of waste heat in the installation space, wherein the installation space in turn, the fresh air required for cooling is withdrawn.
  • it may overheat the Inverter or to a power reduction to avoid such overheating come.
  • the thereafter in the exhaust gas which now has a temperature between 200 ° C and 300 ° C, still contained heat can be delivered to a heat transfer medium of a heating circuit.
  • the heat transfer medium is typically heating water, which serves for heating a building or for heating water.
  • the water vapor produced as a product in the fuel cell process can condense and be brought back into the process via a water treatment. For this, however, a sufficient cooling is required.
  • There is a risk of overheating of the heating circuit which can cause overpressure due to evaporation.
  • the invention has for its object to overcome the existing disadvantages of the prior art and to provide a fuel cell system based on solid oxide fuel cells, the operation is ensured even without external water supply.
  • this system should be characterized by a long service life of the fuel cell, with low labor, cost and equipment cost feasible and be used regardless of the nature of the stack concept.
  • the second heat exchanger takes place in contrast to the prior art, an additional temperature control step, either with respect to the fuel cell exhaust gas or the heat transfer medium. It is particularly advantageous in this case that the second heat exchanger is connected to an air supply line. By supplying cold air, not only heat is always coupled out even at high return temperature of the heat transfer medium or the exhaust gas, but at the same time also ensures that sufficient water condenses out. At the same time overheating of the heat transfer medium is avoided.
  • An embodiment of the fuel cell system provides that it has a room-air-independent exhaust system which is connected to the air supply line of the second heat exchanger.
  • the room air-independent exhaust system is an air-exhaust chimney system.
  • the chimney thus serves at the same time for the supply of air and for the removal of exhaust gas.
  • the number of components is kept small.
  • the fuel cell system has an air compressor, can be fed via the air of the fuel cell, and a further air compressor, which is arranged in the air supply line to the second heat exchanger.
  • a further air compressor which is arranged in the air supply line to the second heat exchanger.
  • the guided to the second heat exchanger air can be controlled independently.
  • the fuel cell system provides that it has an inverter having a heat sink connected to the air supply line.
  • the structure of the fuel cell system over the prior art is much less expensive and expensive. This increases the efficiency of the fuel cell system.
  • a third heat exchanger between the fuel cell exhaust and heating circuit is arranged.
  • the third heat exchanger which is arranged between the fuel cell exhaust gas and the heating circuit, a second heat transfer point between the fuel cell exhaust gas and the heat transfer medium of the heating circuit is present. For heat transfer is thus a larger area available.
  • the second heat exchanger is provided in a preferred embodiment of the fuel cell system that it is arranged in the fuel cell exhaust, in particular after the first heat exchanger.
  • the second heat exchanger is arranged in the heating circuit, in particular in front of the first heat exchanger.
  • the fact that the second heat exchanger is arranged either in the fuel cell exhaust gas or in the heating circuit shows the variability and scope of the fuel cell system.
  • Another embodiment of the fuel cell system provides that a condenser is mounted in the recirculation for the condensate of the fuel cell exhaust gas. Before the condensate is fed to the water treatment, last steam residues can be condensed in the condenser. Thus, the condensate yield is further increased.
  • a condensate trap after the first heat exchanger or the second heat exchanger is provided or the third heat exchanger is designed so that the condensate does not evaporate again. This is particularly advantageous if, after the first or second heat exchanger, a cool point is reached at which sufficient condensate is obtained to replenish the condensate reservoir or at least to ensure a constant level of condensate in the condensate reservoir.
  • the condensate trap prevents re-evaporation of the condensate once formed.
  • the method for operating a fuel cell system according to the invention is characterized in that a fuel cell exhaust gas or a heat transfer medium of a heating circuit, which are in heat-transferring connection via a first heat exchanger, is tempered in a second heat exchanger with air.
  • the available in any amount of oxidizing agent air or atmospheric oxygen is used not only for the fuel cell reaction, but also for the cooling of the inverter.
  • the exhaust air of the inverter is thus used here, for temperature control of the fuel cell exhaust gas or the heat transfer medium of a heating circuit.
  • a further embodiment of the method for operating a fuel cell system according to the invention provides that the fuel cell exhaust gas is cooled in the first heat exchanger to a first temperature and in the second Heat exchanger is brought to a second temperature, and optionally brought in a third heat exchanger to a third temperature. So there is a multi-stage tempering.
  • the temperature of the fuel cell exhaust gas can be adjusted precisely. For example, it can be ensured that the fuel cell exhaust gas is at least briefly cooled to a temperature of at most 50 ° C, so that a sufficient amount of condensate is obtained.
  • a further embodiment of the method for operating a fuel cell system according to the invention is characterized in that the heat transfer medium is pre-tempered in the second heat exchanger and then passed through the first heat exchanger, the heat transfer medium is optionally passed before the second heat exchanger by a third heat exchanger through which the fuel cell exhaust gas to be led.
  • Overheating of the heat transfer medium can then be reliably prevented for example by heat in the second heat exchanger.
  • the air guided to the air compressor is used for controlling the temperature of the inverter.
  • the cooling of the inverter via the room-air-independent exhaust system has the advantage that the intake air is colder.
  • the cold return line is used for cooling the inverter via the room air-independent exhaust system.
  • the delivery rate of the air compressor 16 is adjusted in dependence on the level of the condensate storage in the condensate treatment 25 with the inventive method.
  • the amount of air is preferably increased when reaching a predetermined lower level threshold.
  • the heat transfer medium of a heating circuit overheated and as a result of evaporation creates an overpressure. Consequently, a shutdown of the fuel cell in short-term, d. H. Daily, interruptions of the heat demand is not required, so that the life is not adversely affected.
  • Fig. 1 shows a flow diagram of a fuel cell system 1 according to the invention. It can be an open tubular SOFC stack or any other SOFC stack design can be used.
  • a reformer 2 is supplied with hydrocarbons, typically natural gas, via a gas compressor 3.
  • hydrocarbons are converted with water in a mixture of carbon monoxide and hydrogen, which is then fed to an input 4 at least one fuel cell 5 and from there into the anode gas space 6 of the fuel cell 5.
  • Air which is supplied via an air supply line 7 and an air compressor 8 to the input 4 and then into a cathode gas space 9 of the fuel cell 5, reacts in at least one fuel cell 5 with the carbon monoxide / hydrogen mixture electrochemically to water vapor and carbon dioxide, wherein current and Heat free.
  • Hot fuel cell exhaust 12 of post-combustion zone 11 is used to evaporate water for reforming, heat the endothermic reforming reaction, and preheat the air. Thereafter, the fuel cell exhaust gas in the fuel cell exhaust pipe 12 has a temperature of about 200 ° C to 300 ° C.
  • Fig. 1 In the left part of Fig. 1 is to be seen as a room air-independent exhaust system 13, an air-exhaust chimney (LAS system), in which the exhaust gas is discharged in the inner tube and fresh air is sucked in the outer space.
  • LAS system air-exhaust chimney
  • another room air-independent exhaust system can be arranged.
  • the air from the room-air-independent exhaust system 13 is guided into an air box 14.
  • the air box 14 is shown here by way of example and may also contain more or fewer parts of the system.
  • air is conveyed not only from the air compressor 8 in the cathode 9 of the fuel cell 5, but also via a further air supply line 15 and a further air compressor 16 and an inverter 17 or via the heat sink 18.
  • air is conveyed not only from the air compressor 8 in the cathode 9 of the fuel cell 5, but also via a further air supply line 15 and a further air compressor 16 and an inverter 17 or via the heat sink 18.
  • the exhaust air of the inverter 17 is passed through a second heat exchanger 19, which is arranged in the exhaust path between a first heat exchanger 20 and a third heat exchanger 21.
  • the fuel cell exhaust gas 12 is cooled in the first heat exchanger 20 in a first step, for example, from 300 ° C to 40 ° C. Thereafter, it passes through the second heat exchanger 19, in which it is reheated by the waste heat of the inverter 17, for example, to 45 ° C. The remaining heat is released in the third heat exchanger 21 to the heat transfer medium of the heating circuit 22. The heat transfer medium is thereby heated, e.g. from 30 ° C to 35 ° C while the fuel cell exhaust gas is cooled to 30 ° C.
  • the fuel cell exhaust gas 12 emerging from the second heat exchanger 19 comes in contact with the coldest point of the system, the return 23 of the heating circuit 22, in the third heat exchanger 21.
  • the fuel cell exhaust gas 12 is cooled as much as possible.
  • the resulting condensation allows the use of the condensate and at the same time the utilization of the condensing effect to improve the efficiency.
  • the fuel cell exhaust gas 12 from the third heat exchanger 21 and the air discharged from the second heat exchanger 19 are discharged together to the room air-independent exhaust system 13.
  • Fig. 1 the temperatures for a cold return 23 are indicated.
  • the air compressor 16 is operated so that the air flow is as low as possible and the highest permissible temperature in the inverter 17, z. B. 60 ° C occurs.
  • the speed of the air compressor 16 is controlled by a temperature measuring point 27, which is arranged after the inverter 17.
  • the product water condenses in the third heat exchanger 21 and optionally also in the second 19.
  • the resulting condensate is deposited after the heat exchanger 21 in a separator (not shown).
  • the condensate is z. B. supplied with a pump 24 a condensate treatment 25.
  • the condensate treatment 25 has at least one condensate store, in which, depending on the concept, condensate or deionized water is stored. As long as a sufficiently high level is available in this memory, the in Fig. 1 to be kept illustrated mode.
  • the waste heat of the inverter 17 via the second heat exchanger 19 is first transferred to the fuel cell exhaust 12, which exits from the first heat exchanger 20, and from there via the third heat exchanger 21 to the heat transfer medium of the heating circuit 22.
  • the cooling of the inverter 17 via the room air independent exhaust system 13 has the advantage that the intake air is colder than the existing in the installation space. Indirectly, the waste heat from the inverter is delivered to the heating system.
  • the air compressor 16 is regulated to full power, so that the air in the inverter 17 heats only slightly. This operating case is in Fig. 2 shown.
  • the fuel cell exhaust gas 12 is cooled in the first heat exchanger 20 in a first step, for example, from 300 ° C to 80 ° C. Thereafter, it is cooled in the second heat exchanger 19 so far that it can take as much heat from the heat transfer medium of the heating circuit 22 in the third heat exchanger 21, as is supplied again in the first heat exchanger 20. After the second heat exchanger 19, the fuel cell exhaust gas is cooled, for example, from 80 ° C to 35 ° C. Thus, a temperature is reached at which sufficient condensate is formed to replenish the condensate supply or at least to keep the level in the condensate tank constant.
  • a condensate trap not shown after the second heat exchanger 19 is required, or the third heat exchanger 21 must be constructive designed so that evaporation of the condensate is prevented as possible.
  • This can be z. B. by at least one channel in the lower part of the heat exchanger, whereby the contact area of water to gas is minimized.
  • the fuel cell exhaust gas absorbs heat from the heat transfer medium of the heating circuit 22, wherein the fuel cell exhaust gas from 35 ° C to 80 ° C, while the heat transfer medium of the heating circuit is cooled from 80 ° C to 40 ° C.
  • a regulation should be such that neither the maximum storage charging temperature at a temperature measuring point 28 (eg 90 ° C.), which is arranged behind the first heat exchanger 20, ie in the outlet 26 of the heating circuit 22, nor the temperature required for the condensation at a temperature measuring point 29, which is arranged in the fuel cell exhaust gas 12 between the second heat exchanger 19 and the third heat exchanger 21, is exceeded.
  • a temperature measuring point 28 eg 90 ° C.
  • This operating condition benefits that a high temperature of the return 23 always occurs when the heat demand is low. A heat-guided or -oriented operation will then cause a power reduction of the fuel cell 5. This reduces the heat output of the inverter 17 and the SOFC stack.
  • Fig. 2a shows an embodiment of the in Fig. 2 illustrated embodiment, in which the heat exchangers 19, 20, 21 are integrated in a single plate heat exchanger.
  • the heat transfer medium and inverter cooling air flow in common planes and the exhaust gas flow in the other planes are alternately supplied crosswise.
  • the deflection can also take place within the plate in the channel structure of the heat exchanger.
  • the supply and discharge lines z. B. in the form of multiple distributors.
  • the exhaust air of the inverter 17 can also be coupled into the heat transfer medium of the heating circuit 22.
  • the second heat exchanger 19 is arranged in the heating circuit 22.
  • the fuel cell exhaust gas 12 is cooled in two steps via the first heat exchanger 20 and the third heat exchanger 21.
  • the fuel cell exhaust gas 12 in the first heat exchanger 20 for example, initially cooled from 300 ° C to 100 ° C.
  • the fuel cell exhaust gas 12 is then cooled, for example, from 100 ° C to 30 ° C, while the heat transfer medium of the heating circuit 22 is heated from 30 ° C to 40 ° C.
  • the heat transfer medium of the heating circuit 22 is heated by the waste heat of the inverter 17 from 40 ° C to 43 ° C. Thereafter, the heat transfer medium is passed through the first heat exchanger 20, wherein it is heated from 43 ° C to 60 ° C.
  • the heat transfer medium of the heating circuit 22 is so far cooled over the third heat exchanger 21 and the second heat exchanger 19 that it is able to be reheated in the first heat exchanger 20 to reach the temperature , which had the heat transfer medium of the heating circuit 22 before flowing through the third heat exchanger 21.
  • the previously cooled heat transfer medium of the heating circuit 22 removes heat from the fuel cell exhaust gas 12 and cools it down so far that condensation occurs.
  • the heat transfer medium of the heating circuit 22 is cooled, for example, in the second heat exchanger 19 from 45 ° C to 35 ° C. After that happens Heat transfer medium, the first heat exchanger 20, wherein it is heated from 35 ° C to 80 ° C, while the fuel cell exhaust gas 12 cools from 300 ° C to 45 ° C.
  • the fuel cell exhaust gas 12 receives heat from the heat transfer medium of the heating circuit 22. In this case, the fuel cell exhaust gas 12 is heated from 45 ° C to 80 ° C, while the heat transfer medium from 80 ° C to 45 ° C is cooled.
  • Fig. 4 In the arrangement in Fig. 4 is a condensate trap (not shown) after the first heat exchanger 20 is required to collect the accumulating condensate here for the condensate treatment 25, or the third heat exchanger 21 must be designed so that the condensate can flow through without re-evaporating.
  • the variants off Fig. 2 and Fig. 4 can also be built without the involvement of the inverter 17. Then the air is only used to cool the fuel cell exhaust 12 to collect enough condensate and not to overheat the condensate. The inverter 17 is then to operate with a cooling of the prior art.
  • Fig. 4 is also the in Fig. 5 shown, simplified construction possible.
  • a higher cooling capacity is required because the heat transfer medium of the heating circuit 22 before entering the second heat exchanger 19 could not transfer heat to the fuel cell exhaust gas 12.
  • the heat transfer medium of the heating circuit 22 is cooled, for example, from 80 ° C to 35 ° C before it passes the first heat exchanger 20.
  • the heat transfer medium is heated from 35 ° C to 80 ° C, while the fuel cell exhaust gas from 300 ° C to 45 ° C is cooled.
  • the fuel cell system according to the invention ensures that heat can be coupled out at high temperature at the same time and sufficient water can be condensed out. This avoids that the heating water overheats and evaporation creates an overpressure. In addition, overheating of the exhaust system is avoided. Thus, the fuel cell does not have to be switched off during short-term (daily) interruptions of the heat requirement, which would adversely affect the service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft ein Brennstoffzellensystem auf der Basis von Festoxid-Brennstoffzellen gemäß Anspruch 1. Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines derartigen Brennstoffzellensystems gemäß Anspruch 9. Brennstoffzellensysteme dienen zur Erzeugung von elektrischer Energie. Zum Betreiben eines Brennstoffzellensystems werden als Brennstoffe unter anderem Kohlenwasserstoffe, z.B. Erdgas, eingesetzt. In einem Reformer erfolgt die Umwandlung des üblicherweise eingesetzten Erdgases in Wasserstoff und Kohlenmonoxid, wobei zur Erzielung eines hohen Wirkungsgrades eine Dampfreformierung durchgeführt wird. In den Brennstoffzellen selber reagieren Wasserstoff und Kohlenmonoxid zu Wasserdampf und Kohlendioxid. Brennstoffzellensysteme sind zur Effizienzsteigerung üblicherweise im Zusammenhang mit einer Kraft-Wärme-Kopplung eingesetzt. Mit Hilfe von Kraft-Wärme-Kopplung erfolgt eine kombinierte Strom- und Wärmeerzeugung, so dass der Energieverbrauch und der CO2-Ausstoß - verglichen mit einer herkömmlichen separaten Strom- und Wärmeerzeugung - gesenkt werden. Daher gewinnt die Kraft-Wärme-Kopplung auf dem Energiesektor zunehmend an Bedeutung.The invention relates to a fuel cell system based on solid oxide fuel cells according to claim 1. Furthermore, the invention relates to a method for operating such a fuel cell system according to claim 9. Fuel cell systems serve to generate electrical energy. To operate a fuel cell system, hydrocarbons, for example natural gas, are used as fuels. In a reformer, the conversion of the natural gas usually used in hydrogen and carbon monoxide is carried out, with a steam reforming is performed to achieve a high efficiency. In the fuel cells themselves, hydrogen and carbon monoxide react to form water vapor and carbon dioxide. Fuel cell systems are usually used to increase efficiency in the context of combined heat and power. Combined heat and power produces combined power and heat generation, reducing energy consumption and CO 2 emissions compared to conventional separate power and heat generation. As a result, combined heat and power in the energy sector is becoming increasingly important.

Brennstoffzellensysteme weisen häufig Festoxid-Brennstoffzellen (Solid Oxide Fuel Cells, SOFCs) auf. Derartige Brennstoffzellen werden bei Temperaturen zwischen 650 °C und 1000 °C betrieben und besitzen einen hohen elektrischen Wirkungsgrad. Die Gewährleistung einer langen Lebensdauer der Brennstoffzellen stellt hier das größte Problem dar.Fuel cell systems often include Solid Oxide Fuel Cells (SOFCs). Such fuel cells are operated at temperatures between 650 ° C and 1000 ° C and have a high electrical efficiency. Ensuring a long lifetime of fuel cells is the biggest problem here.

Brennstoffzellensystemen sind zwecks Einbindung in das elektrische Netz mit einem Wechselrichter ausgestattet, welcher den Gleichstrom des Brennstoffzellen-Stacks in netzkonformen Wechselstrom umrichtet. Die im Wechselrichter auftretenden Verluste werden in Form von Abwärme in den Aufstellungsraum abgegeben, wobei dem Aufstellungsraum wiederum die zur Kühlung erforderliche Frischluft entzogen wird. Besonders im Falle eines warmen Aufstellungsortes kann es zur Überhitzung des Wechselrichters bzw. zu einer Leistungsreduktion zur Vermeidung einer solchen Überhitzung kommen.Fuel cell systems are equipped for the purpose of integration into the electrical network with an inverter, which converts the direct current of the fuel cell stack into grid-compatible alternating current. The losses occurring in the inverter are discharged in the form of waste heat in the installation space, wherein the installation space in turn, the fresh air required for cooling is withdrawn. Especially in the case of a warm site, it may overheat the Inverter or to a power reduction to avoid such overheating come.

In einem typischen Brennstoffzellensystem wird ein offener tubularer SOFC-Stack eingesetzt. Dabei erfolgt die (Erd-)Gaszufuhr über einen Verdichter und die Zufuhr des Oxidationsmittels, üblicherweise Luft bzw. Luftsauerstoff, über einen weiteren Verdichter. Im Stack werden beide Komponenten elektrochemisch zu Strom und Wärme umgesetzt. Überschüssiges (Erd-)Gas und überschüssige Luft werden in der Nachbrennzone verbrannt. Das heiße Abgas der Nachbrennzone wird für folgende Zwecke genutzt:

  1. 1. zur Verdampfung von Wasser für die Reformierung;
  2. 2. zur Versorgung der endothermen Reformierungsreaktion mit Wärme;
  3. 3. zur Vorwärmung der für den Brennstoffzellenprozess eingesetzten Luft.
In a typical fuel cell system, an open tubular SOFC stack is used. The (natural) gas supply via a compressor and the supply of the oxidizing agent, usually air or atmospheric oxygen, via another compressor. In the stack, both components are electrochemically converted to electricity and heat. Excess gas and excess air are burned in the reburning zone. The hot exhaust gas of the afterburning zone is used for the following purposes:
  1. 1. for the evaporation of water for reforming;
  2. 2. to supply the endothermic reforming reaction with heat;
  3. 3. to preheat the air used for the fuel cell process.

Die danach im Abgas, das nun eine Temperatur zwischen 200 °C und 300 °C besitzt, noch enthaltene Wärme kann an ein Wärmeträgermedium eines Heizkreislaufs abgegeben werden. Bei dem Wärmeträgermedium handelt es sich typischerweise um Heizwasser, das zur Beheizung eines Gebäudes oder zur Warmwasserbereitung dient. Durch Abkühlung des Abgases kann der im Brennstoffzellenprozess als Produkt angefallene Wasserdampf kondensieren und über eine Wasseraufbereitung zurück in den Prozess gebracht werden. Dafür ist allerdings eine ausreichende Abkühlung erforderlich. Dabei besteht die Gefahr einer Überhitzung des Heizkreislaufs, wobei durch Verdampfung ein Überdruck entstehen kann.The thereafter in the exhaust gas, which now has a temperature between 200 ° C and 300 ° C, still contained heat can be delivered to a heat transfer medium of a heating circuit. The heat transfer medium is typically heating water, which serves for heating a building or for heating water. By cooling the exhaust gas, the water vapor produced as a product in the fuel cell process can condense and be brought back into the process via a water treatment. For this, however, a sufficient cooling is required. There is a risk of overheating of the heating circuit, which can cause overpressure due to evaporation.

Für eine entsprechende Abkühlung des Abgases durch Wärmeübertragung auf den Heizkreislauf schlagen Ströhle et al. (US 6 723 459 B2 ) eine Kühlung des Heizwassers unter Verwendung der Luftversorgung eines integrierten Spitzenkessels vor. Der Einbau eines Spitzenkessels ist allerdings mit hohem apparativem Aufwand verbunden. Darüber hinaus ist er arbeits- und kostenintensiv.For a corresponding cooling of the exhaust gas beat by heat transfer to the heating circuit Ströhle et al. (US 6,723,459 B2 ) a cooling of the heating water using the air supply of an integrated tip boiler. However, the installation of a tip boiler is associated with high equipment costs. In addition, it is labor-intensive and cost-intensive.

In DE 10 2010 1260 A1 ist der Aufbau einer Anodenrestgaszirkulation beschrieben. Von Nachteil bei dieser Maßnahme ist, dass sie sich nicht für jedes Stack-Konzept realisieren lässt.In DE 10 2010 1260 A1 the construction of an anode residual gas circulation is described. The disadvantage of this measure is that it can not be realized for every stack concept.

Es ist auch bekannt, zusätzliches Wasser in den Prozess einzubringen, falls die Menge an Kondensat nicht ausreicht. Unvorteilhaft ist hierbei, dass der Anschluss einer Wasserzufuhr einen zusätzlichen Installationsaufwand mit sich bringt. Weiterhin nachteilig ist, dass eine aufwändige Wasseraufbereitung, d. h. eine Deionisation, durchzuführen ist, da beispielsweise Leitungswasser in der Regel höhere Ionenkonzentrationen als Kondensat aufweist und es somit zu Ablagerungen im Verdampfer kommen kann. Insbesondere angesichts der nicht absehbaren Schwankungen in der Wasserqualität gestalten sich Auswahl und Dimensionierung der Filter schwierig.It is also known to introduce additional water into the process if the amount of condensate is insufficient. Unfavorable here is that the connection of a water supply brings with it an additional installation effort. Another disadvantage is that a complex water treatment, ie a deionization, is carried out, since, for example, tap water usually has higher ion concentrations than condensate and thus can lead to deposits in the evaporator. Especially in view of the unforeseeable fluctuations in the water quality, the selection and dimensioning of the filters are difficult.

Der Erfindung liegt die Aufgabe zugrunde, die bestehenden Nachteile des Standes der Technik zu überwinden und eine Brennstoffzellenanlage auf der Basis von Festoxid-Brennstoffzellen zur Verfügung zu stellen, deren Betrieb auch ohne externe Wasserzufuhr gewährleistet ist. Insbesondere soll diese Anlage sich durch eine hohe Lebensdauer der Brennstoffzellen auszeichnen, mit geringem Arbeits-, Kosten- und apparativem Aufwand realisierbar und unabhängig von der Art des Stack-Konzeptes einsetzbar sein. Weiterhin ist es Aufgabe der Erfindung, den Wirkungsgrad zu verbessern.The invention has for its object to overcome the existing disadvantages of the prior art and to provide a fuel cell system based on solid oxide fuel cells, the operation is ensured even without external water supply. In particular, this system should be characterized by a long service life of the fuel cell, with low labor, cost and equipment cost feasible and be used regardless of the nature of the stack concept. Furthermore, it is an object of the invention to improve the efficiency.

Erfindungsgemäß wird dies mit den Merkmalen der Patentansprüche 1 und 9 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen 2 bis 8 bzw. 10 bis 13 zu entnehmen.This is achieved with the features of claims 1 and 9 according to the invention. Advantageous developments can be found in the dependent claims 2 to 8 or 10 to 13.

Ein Brennstoffzellensystem auf der Basis von Festoxid-Brennstoffzellen mit wenigstens einer Brennstoffzelle, die mindestens einen Eingang und mindestens einen Ausgang aufweist, wobei ein Brennstoffzellenabgas vom Ausgang zu einem ersten Wärmeübertrager geführt ist, der in einem Heizkreislauf für ein Wärmeträgermedium angeordnet ist, wobei das Brennstoffzellensystem eine Rückführung für ein Kondensat des Brennstoffzellenabgases aufweist, ist erfindungsgemäß dadurch gekennzeichnet, dass das Brennstoffzellensystem einen zweiten Wärmeübertrager zur Temperierung des Brennstoffzellenabgases oder des Wärmeträgermediums des Heizkreislaufs aufweist, der mit einer Luft-Zuleitung verbunden ist.A fuel cell system based on solid oxide fuel cells with at least one fuel cell having at least one input and at least one output, wherein a fuel cell exhaust gas is guided from the output to a first heat exchanger, which is arranged in a heating circuit for a heat transfer medium, wherein the fuel cell system a Having recirculation for a condensate of the fuel cell exhaust gas is, according to the invention characterized in that the fuel cell system comprises a second heat exchanger for controlling the temperature of the fuel cell exhaust gas or the heat transfer medium of the heating circuit, which is connected to an air supply line.

Mittels des zweiten Wärmeübertragers erfolgt im Gegensatz zum Stand der Technik ein zusätzlicher Temperierungsschritt, und zwar entweder in Bezug auf das Brennstoffzellenabgas oder das Wärmeträgermedium. Besonders vorteilhaft ist hierbei, dass der zweiten Wärmeübertrager mit einer Luft-Zuleitung verbunden ist. Durch die Zufuhr kalter Luft wird auch bei hoher Rücklauftemperatur des Wärmeträgermediums oder des Abgases immer nicht nur Wärme ausgekoppelt, sondern gleichzeitig auch sichergestellt, dass ausreichend Wasser auskondensiert. Zugleich wird eine Überhitzung des Wärmeträgermediums vermieden.By means of the second heat exchanger takes place in contrast to the prior art, an additional temperature control step, either with respect to the fuel cell exhaust gas or the heat transfer medium. It is particularly advantageous in this case that the second heat exchanger is connected to an air supply line. By supplying cold air, not only heat is always coupled out even at high return temperature of the heat transfer medium or the exhaust gas, but at the same time also ensures that sufficient water condenses out. At the same time overheating of the heat transfer medium is avoided.

Eine Ausführungsform des Brennstoffzellensystems sieht vor, dass es ein raumluftunabhängiges Abgassystem aufweist, das mit der Luft-Zuleitung des zweiten Wärmeübertragers verbunden ist.An embodiment of the fuel cell system provides that it has a room-air-independent exhaust system which is connected to the air supply line of the second heat exchanger.

Im Gegensatz zum Stand der Technik wird die zur Kühlung benötigte Luft hier also nicht dem Aufstellungsraum entnommen. Folglich wärmt sich der Aufstellungsraum nicht unnötig stark auf, was sich insbesondere im Falle eines warmen Aufstellungsortes als vorteilhaft erweist. Durch die Verwendung eines raumluftunabhängigen Abgassystems wird die Gefahr des Überhitzens und damit die Gefahr von überhitzungsbedingten Ausfällen von Bauteilen im Vergleich zum Stand der Technik verringert.In contrast to the prior art, the air required for cooling is therefore not taken from the room. Consequently, the installation space does not warm up unnecessarily, which proves to be advantageous, in particular in the case of a warm installation site. By using a room air independent exhaust system is the Danger of overheating and thus reduces the risk of overheating caused component failures compared to the prior art.

Bevorzugt ist das raumluftunabhängige Abgassystem ein Luft-Abgas-Schornsteinsystem. Der Schornstein dient also gleichzeitig zur Zufuhr von Luft und zur Abfuhr von Abgas. Die Anzahl an Bauelementen wird damit klein gehalten.Preferably, the room air-independent exhaust system is an air-exhaust chimney system. The chimney thus serves at the same time for the supply of air and for the removal of exhaust gas. The number of components is kept small.

In einer weiteren Ausführungsform weist das Brennstoffzellensystem einen Luftverdichter auf, über den Luft der Brennstoffzelle zuführbar ist, und einen weiteren Luftverdichter, der in der Luft-Zuleitung zum zweiten Wärmeübertrager angeordnet ist. Über den zweiten Luftverdichter kann die zum zweiten Wärmeübertrager geführte Luft unabhängig gesteuert werden.In a further embodiment, the fuel cell system has an air compressor, can be fed via the air of the fuel cell, and a further air compressor, which is arranged in the air supply line to the second heat exchanger. About the second air compressor, the guided to the second heat exchanger air can be controlled independently.

Dabei ist es besonders vorteilhaft, wenn der Weg von einem Lufteintritt des raumluftunabhängigen Abgassystems zu dem Luftverdichter, der in der Luft-Zuleitung zum zweiten Wärmeübertrager angeordnet ist, möglichst kurz gewählt wird, um so ein unnötig starkes Aufwärmen der Luft zu verhindern. Dadurch ist immer eine gute Wärmeaufnahme der Luft sichergestellt.It is particularly advantageous if the path from an air inlet of the room air-independent exhaust system to the air compressor, which is arranged in the air supply line to the second heat exchanger, is chosen as short as possible, so as to prevent an unnecessarily strong warming of the air. As a result, a good heat absorption of the air is always ensured.

Ferner sieht das Brennstoffzellensystem vor, dass es einen Wechselrichter aufweist, der einen Kühlkörper hat, der mit der Luft-Zuleitung verbunden ist. Dadurch, dass der Kühlkörper des Wechselrichters mit der Luft-Zuleitung verbunden ist, erübrigt sich eine zusätzliche Kühlung des Wechselrichters gemäß dem Stand der Technik. Somit ist der Aufbau des Brennstoffzellensystems gegenüber dem Stand der Technik deutlich weniger aufwändig und kostenintensiv. Damit steigert sich die Effizienz des Brennstoffzellensystems.Further, the fuel cell system provides that it has an inverter having a heat sink connected to the air supply line. The fact that the heat sink of the inverter is connected to the air supply line, there is no need for additional cooling of the inverter according to the prior art. Thus, the structure of the fuel cell system over the prior art is much less expensive and expensive. This increases the efficiency of the fuel cell system.

In einer weiteren Ausführungsform des Brennstoffzellensystems ist vorgesehen, dass ein dritter Wärmeübertrager zwischen Brennstoffzellenabgas und Heizkreislauf angeordnet ist. Durch den dritten Wärmeübertrager, der zwischen Brennstoffzellenabgas und Heizkreislauf angeordnet ist, ist ein zweiter Wärmeübertragungspunkt zwischen Brennstoffzellenabgas und Wärmeträgermedium des Heizkreislaufs vorhanden. Für die Wärmeübertragung steht damit eine größere Fläche zur Verfügung.In a further embodiment of the fuel cell system is provided that a third heat exchanger between the fuel cell exhaust and heating circuit is arranged. By the third heat exchanger, which is arranged between the fuel cell exhaust gas and the heating circuit, a second heat transfer point between the fuel cell exhaust gas and the heat transfer medium of the heating circuit is present. For heat transfer is thus a larger area available.

Für den zweiten Wärmeübertrager ist in einer bevorzugten Ausführungsform des Brennstoffzellensystems vorgesehen, dass er im Brennstoffzellenabgas angeordnet ist, insbesondere nach dem ersten Wärmeübertrager. In einer alternativen Ausführungsform ist der zweite Wärmeübertrager im Heizkreislauf angeordnet, insbesondere vor dem ersten Wärmeübertrager.For the second heat exchanger is provided in a preferred embodiment of the fuel cell system that it is arranged in the fuel cell exhaust, in particular after the first heat exchanger. In an alternative embodiment, the second heat exchanger is arranged in the heating circuit, in particular in front of the first heat exchanger.

Die Tatsache, dass der zweite Wärmeübertrager entweder im Brennstoffzellenabgas oder im Heizkreislauf angeordnet ist, zeigt die Variabilität und Anwendungsbreite des Brennstoffzellensystems.The fact that the second heat exchanger is arranged either in the fuel cell exhaust gas or in the heating circuit shows the variability and scope of the fuel cell system.

Eine weitere Ausführungsform des Brennstoffzellensystems sieht vor, dass ein Kondensator in der Rückführung für das Kondensat des Brennstoffzellenabgases angebracht ist. Bevor das Kondensat der Wasseraufbereitung zugeführt wird, können im Kondensator letzte Dampfreste kondensiert werden. Somit wird die Kondensatausbeute weiter erhöht.Another embodiment of the fuel cell system provides that a condenser is mounted in the recirculation for the condensate of the fuel cell exhaust gas. Before the condensate is fed to the water treatment, last steam residues can be condensed in the condenser. Thus, the condensate yield is further increased.

In einer weiteren Ausführungsform des Brennstoffzellensystems ist eine Kondensatfalle nach dem ersten Wärmeübertrager oder dem zweiten Wärmeübertrager vorgesehen oder der dritte Wärmeübertrager ist so ausgebildet, dass das Kondensat nicht wieder verdampft. Dies ist besonders vorteilhaft, wenn nach dem ersten oder zweiten Wärmeübertrager ein kühler Punkt erreicht wird, bei dem ausreichend Kondensat anfällt, um den Kondensatvorrat wieder aufzufüllen oder zumindest einen konstanten Pegel an Kondensat im Kondensatspeicher zu gewährleisten. Durch die Kondensatfalle wird ein erneutes Verdampfen des einmal gebildeten Kondensates vermieden.In a further embodiment of the fuel cell system, a condensate trap after the first heat exchanger or the second heat exchanger is provided or the third heat exchanger is designed so that the condensate does not evaporate again. This is particularly advantageous if, after the first or second heat exchanger, a cool point is reached at which sufficient condensate is obtained to replenish the condensate reservoir or at least to ensure a constant level of condensate in the condensate reservoir. The condensate trap prevents re-evaporation of the condensate once formed.

Das Verfahren zum Betreiben eines erfindungsgemäßen Brennstoffzellensystems ist dadurch gekennzeichnet, dass ein Brennstoffzellenabgas oder ein Wärmeträgermedium eines Heizkreislaufs, die über einen ersten Wärmeübertrager in wärmeübertragender Verbindung stehen, in einem zweiten Wärmeübertrager mit Luft temperiert wird.The method for operating a fuel cell system according to the invention is characterized in that a fuel cell exhaust gas or a heat transfer medium of a heating circuit, which are in heat-transferring connection via a first heat exchanger, is tempered in a second heat exchanger with air.

Auf Grund des Vorhandenseins eines zweiten, mit einer Luft-Zuleitung verbundenen Wärmeübertragers erfolgt im Gegensatz zum Stand der Technik ein weiterer Temperierungsschritt, und zwar entweder in Bezug auf das Brennstoffzellenabgas oder das Wärmeträgermedium. Beim Betreiben eines derartigen Brennstoffzellensystems wird auch bei hoher Rücklauftemperatur genug Wärme ausgekoppelt, um ausreichend Wasser auszukondensieren. Im Verfahren zum Betreiben eines erfindungsgemäßen Brennstoffzellensystems wird Luft aus einem raumluftunabhängigen Abgassystem über einen Luftverdichter und anschließend über einen Wechselrichter und/oder durch den zweiten Wärmeübertrager geführt.Due to the presence of a second, connected to an air supply line heat exchanger takes place in contrast to the prior art, a further tempering step, either with respect to the fuel cell exhaust gas or the heat transfer medium. When operating such a fuel cell system enough heat is decoupled even at high return temperature to condense sufficient water. In the method for operating a fuel cell system according to the invention, air is conducted from a room-air-independent exhaust system via an air compressor and subsequently via an inverter and / or through the second heat exchanger.

Auf diese Weise wird das in beliebiger Menge verfügbare Oxidationsmittel Luft bzw. Luftsauerstoff nicht nur für die Brennstoffzellenreaktion genutzt, sondern auch für die Kühlung des Wechselrichters. Im Gegensatz zum Stand der Technik wird die Abluft des Wechselrichters hier also genutzt, und zwar zur Temperierung des Brennstoffzellenabgases oder des Wärmeträgermediums eines Heizkreislaufs. Damit wird eine Verbesserung des Wirkungsgrades des Wechselrichters im Vergleich zum Stand der Technik erzielt.In this way, the available in any amount of oxidizing agent air or atmospheric oxygen is used not only for the fuel cell reaction, but also for the cooling of the inverter. In contrast to the prior art, the exhaust air of the inverter is thus used here, for temperature control of the fuel cell exhaust gas or the heat transfer medium of a heating circuit. Thus, an improvement in the efficiency of the inverter is achieved compared to the prior art.

Eine weitere Ausführungsform des Verfahrens zum Betreiben eines erfindungsgemäßen Brennstoffzellensystems sieht vor, dass das Brennstoffzellenabgas im ersten Wärmeübertrager auf eine erste Temperatur abgekühlt wird und im zweiten Wärmeübertrager auf eine zweite Temperatur gebracht wird, und gegebenenfalls in einem dritten Wärmeübertrager auf eine dritte Temperatur gebracht wird. Es erfolgt also eine mehrstufige Temperierung. Die Temperatur des Brennstoffzellenabgases lässt sich dadurch genau einstellen. Beispielsweise kann sichergestellt werden, dass das Brennstoffzellenabgas zumindest kurzzeitig auf eine Temperatur von höchstens 50 °C abgekühlt wird, so dass eine ausreichende Menge an Kondensat erhalten wird.A further embodiment of the method for operating a fuel cell system according to the invention provides that the fuel cell exhaust gas is cooled in the first heat exchanger to a first temperature and in the second Heat exchanger is brought to a second temperature, and optionally brought in a third heat exchanger to a third temperature. So there is a multi-stage tempering. The temperature of the fuel cell exhaust gas can be adjusted precisely. For example, it can be ensured that the fuel cell exhaust gas is at least briefly cooled to a temperature of at most 50 ° C, so that a sufficient amount of condensate is obtained.

Eine weitere Ausführungsform des Verfahrens zum Betreiben eines erfindungsgemäßen Brennstoffzellensystems ist dadurch gekennzeichnet, dass das Wärmeträgermedium im zweiten Wärmeübertrager vortemperiert wird und anschließend durch den ersten Wärmeübertrager geführt wird, wobei das Wärmeträgermedium gegebenenfalls vor dem zweiten Wärmeübertrager durch einen dritten Wärmeübertrager geführt wird, durch den das Brennstoffzellenabgas geführt wird.A further embodiment of the method for operating a fuel cell system according to the invention is characterized in that the heat transfer medium is pre-tempered in the second heat exchanger and then passed through the first heat exchanger, the heat transfer medium is optionally passed before the second heat exchanger by a third heat exchanger through which the fuel cell exhaust gas to be led.

Ein Überhitzen des Wärmeträgermediums kann dann beispielsweise durch Wärmeabgabe im zweiten Wärmeübertrager zuverlässig verhindert werden.Overheating of the heat transfer medium can then be reliably prevented for example by heat in the second heat exchanger.

In einer weiteren Ausführungsform des Verfahrens zum Betreiben eines erfindungsgemäßen Brennstoffzellensystems wird die zum Luftverdichter geführte Luft zur Temperierung des Wechselrichters verwendet.In a further embodiment of the method for operating a fuel cell system according to the invention, the air guided to the air compressor is used for controlling the temperature of the inverter.

Insbesondere bei heißer Umgebungstemperatur im Aufstellungsraum hat die Kühlung des Wechselrichters über das raumluftunabhängige Abgassystem den Vorteil, dass die angesaugte Luft kälter ist. Indirekt wird über das raumluftunabhängige Abgassystem der kalte Rücklauf für die Kühlung des Wechselrichters genutzt.Particularly when the ambient temperature in the installation room is hot, the cooling of the inverter via the room-air-independent exhaust system has the advantage that the intake air is colder. Indirectly, the cold return line is used for cooling the inverter via the room air-independent exhaust system.

Weiterhin wird mit dem erfindungsgemäßen Verfahren die Fördermenge des Luftverdichters 16 in Abhängigkeit vom Füllstand des Kondensatspeichers in der Kondensataufbereitung 25 eingestellt. Dabei wird vorzugsweise beim Erreichen einer vorgebbaren unteren Füllstandsschwelle die Luftmenge erhöht.Furthermore, the delivery rate of the air compressor 16 is adjusted in dependence on the level of the condensate storage in the condensate treatment 25 with the inventive method. In this case, the amount of air is preferably increased when reaching a predetermined lower level threshold.

Insgesamt gelingt mit dem Betreiben eines erfindungsgemäßen Brennstoffzellensystems die Auskopplung von Wärme bei hoher Temperatur, wobei sich gleichzeitig ausreichend viel Kondensat bildet. Damit ist eine externe Wasserzufuhr nicht erforderlich.Overall, with the operation of a fuel cell system according to the invention, the extraction of heat at high temperature, at the same time forms sufficient condensate. Thus, an external water supply is not required.

Weiterhin wird durch das erfindungsgemäße Verfahren vorteilhafterweise vermieden, dass das Wärmeträgermedium eines Heizkreislauf überhitzt und infolge Verdampfung ein Überdruck entsteht. Folglich ist ein Abschalten der Brennstoffzelle bei kurzzeitigen, d. h. tageweisen, Unterbrechungen des Wärmebedarfs nicht erforderlich, so dass die Lebensdauer nicht negativ beeinflusst wird.Furthermore, it is advantageously avoided by the method according to the invention that the heat transfer medium of a heating circuit overheated and as a result of evaporation creates an overpressure. Consequently, a shutdown of the fuel cell in short-term, d. H. Daily, interruptions of the heat demand is not required, so that the life is not adversely affected.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel eines Brennstoffzellensystems,
Fig. 2
ein zweites Ausführungsbeispiel des Brennstoffzellensystems,
Fig. 2a
eine Ausgestaltung des zweiten Ausführungsbeispiels des Brennstoffzellensystems,
Fig. 3
ein drittes Ausführungsbeispiel des Brennstoffzellensystems,
Fig. 4
ein viertes Ausführungsbeispiel des Brennstoffzellensystems und
Fig. 5
ein fünftes Ausführungsbeispiel des Brennstoffzellensystems.
Further features, details and advantages of the invention will become apparent from the wording of the claims and from the following description of exemplary embodiments with reference to the drawings. Show it:
Fig. 1
A first embodiment of a fuel cell system,
Fig. 2
A second embodiment of the fuel cell system,
Fig. 2a
an embodiment of the second embodiment of the fuel cell system,
Fig. 3
A third embodiment of the fuel cell system,
Fig. 4
A fourth embodiment of the fuel cell system and
Fig. 5
A fifth embodiment of the fuel cell system.

Fig. 1 zeigt ein Fließbild eines erfindungsgemäßen Brennstoffzellensystems 1. Es kann ein offener tubularer SOFC-Stack oder jedes andere SOFC-Stack-Design verwendet werden. Einem Reformer 2 werden Kohlenwasserstoffe, typischerweise Erdgas, über einen Gasverdichter 3 zugeführt. Im Reformer 2 werden Kohlenwasserstoffe mit Wasser in ein Gemisch aus Kohlenmonoxid und Wasserstoff umgewandelt, das dann zu einem Eingang 4 wenigstens einer Brennstoffzelle 5 und von dort in den Anodengasraum 6 der Brennstoffzelle 5 geführt wird. Luft, welche über eine Luft-Zuleitung 7 und einen Luftverdichter 8 zum Eingang 4 und dann in einen Kathodengasraum 9 der Brennstoffzellen 5 zugeführt wird, reagiert in mindestens einer Brennstoffzelle 5 mit dem Kohlenmonoxid/Wasserstoff-Gemisch elektrochemisch zu Wasserdampf und Kohlendioxid, wobei Strom und Wärme frei werden. Überschüssige Kohlenwasserstoffe und überschüssige Luft werden durch mindestens einen Ausgang 10 der Brennstoffzelle 5 in eine Nachbrennzone 11 oder einen Nachbrenner geführt, wo sie verbrannt werden. Heißes Brennstoffzellenabgas 12 der Nachbrennzone 11 wird genutzt, um Wasser für die Reformierung zu verdampfen, die endotherme Reformierungsreaktion mit Wärme zu versorgen und die Luft vorzuwärmen. Danach hat das Brennstoffzellenabgas in der Brennstoffzellenabgasleitung 12 eine Temperatur von etwa 200 °C bis 300 °C. Fig. 1 shows a flow diagram of a fuel cell system 1 according to the invention. It can be an open tubular SOFC stack or any other SOFC stack design can be used. A reformer 2 is supplied with hydrocarbons, typically natural gas, via a gas compressor 3. In the reformer 2 hydrocarbons are converted with water in a mixture of carbon monoxide and hydrogen, which is then fed to an input 4 at least one fuel cell 5 and from there into the anode gas space 6 of the fuel cell 5. Air, which is supplied via an air supply line 7 and an air compressor 8 to the input 4 and then into a cathode gas space 9 of the fuel cell 5, reacts in at least one fuel cell 5 with the carbon monoxide / hydrogen mixture electrochemically to water vapor and carbon dioxide, wherein current and Heat free. Excess hydrocarbons and excess air are passed through at least one output 10 of the fuel cell 5 in a Nachbrennzone 11 or an afterburner, where they are burned. Hot fuel cell exhaust 12 of post-combustion zone 11 is used to evaporate water for reforming, heat the endothermic reforming reaction, and preheat the air. Thereafter, the fuel cell exhaust gas in the fuel cell exhaust pipe 12 has a temperature of about 200 ° C to 300 ° C.

Im linken Teil von Fig. 1 ist als raumluftunabhängiges Abgassystem 13 ein Luft-Abgas-Schornstein (LAS-System) zu sehen, bei dem im inneren Rohr das Abgas abgeführt wird und im äußeren Raum Frischluft angesaugt wird. Hier kann auch ein anderes raumluftunabhängiges Abgassystem angeordnet sein. Die Luft aus dem raumluftunabhängigen Abgassystem 13 wird in einen Luftkasten 14 geführt. Der Luftkasten 14 ist hier exemplarisch gezeichnet und kann auch mehr oder weniger Teile des Systems enthalten.In the left part of Fig. 1 is to be seen as a room air-independent exhaust system 13, an air-exhaust chimney (LAS system), in which the exhaust gas is discharged in the inner tube and fresh air is sucked in the outer space. Here, another room air-independent exhaust system can be arranged. The air from the room-air-independent exhaust system 13 is guided into an air box 14. The air box 14 is shown here by way of example and may also contain more or fewer parts of the system.

Im erfindungsgemäßen Brennstoffzellensystem 1 wird Luft nicht nur vom Luftverdichter 8 in die Kathode 9 der Brennstoffzellen 5 gefördert, sondern auch über eine weitere Luft-Zuleitung 15 und einen weiteren Luftverdichter 16 und über einen Wechselrichter 17 bzw. über dessen Kühlkörper 18. Hierbei ist es besonders vorteilhaft, den Weg vom Luftaustritt aus dem raumluftunabhängigen Abgassystem 13 zum Luftverdichter 16 möglichst kurz zu wählen, damit sich die Luft nicht unnötig stark aufwärmt. Die Abluft des Wechselrichters 17 wird durch einen zweiten Wärmeübertrager 19 geführt, welcher im Abgaspfad zwischen einem ersten Wärmeübertrager 20 und einem dritten Wärmeübertrager 21 angeordnet ist. Das Brennstoffzellenabgas 12 wird im ersten Wärmeübertrager 20 in einem ersten Schritt abgekühlt, beispielsweise von 300 °C auf 40 °C. Danach passiert es den zweiten Wärmeübertrager 19, in dem es durch die Abwärme des Wechselrichters 17 wieder aufgewärmt wird, beispielsweise auf 45 °C. Die verbleibende Wärme wird im dritten Wärmeübertrager 21 an das Wärmeträgermedium des Heizkreislaufs 22 abgegeben. Das Wärmeträgermedium erwärmt sich dadurch z.B. von 30 °C auf 35 °C, während das Brennstoffzellenabgas auf 30 °C abgekühlt ist. Das aus dem zweiten Wärmeübertrager 19 austretende Brennstoffzellenabgas 12 kommt im dritten Wärmeübertrager 21 in Kontakt mit dem kältesten Punkt des Systems, dem Rücklauf 23 des Heizkreislaufs 22. Somit wird das Brennstoffzellenabgas 12 so weit wie möglich abgekühlt. Die dabei eintretende Kondensation erlaubt die Nutzung des Kondensats und gleichzeitig die Nutzung des Brennwerteffekts zur Verbesserung des Wirkungsgrads. Das Brennstoffzellenabgas 12 aus dem dritten Wärmeübertrager 21 und die aus dem zweiten Wärmeübertrager 19 abgeführte Luft werden zusammen an das raumluftunabhängige Abgassystem 13 abgegeben.In the fuel cell system 1 according to the invention air is conveyed not only from the air compressor 8 in the cathode 9 of the fuel cell 5, but also via a further air supply line 15 and a further air compressor 16 and an inverter 17 or via the heat sink 18. Here it is special advantageous to choose the path from the air outlet from the room air-independent exhaust system 13 to the air compressor 16 as short as possible, so that the air does not warm up unnecessarily strong. The exhaust air of the inverter 17 is passed through a second heat exchanger 19, which is arranged in the exhaust path between a first heat exchanger 20 and a third heat exchanger 21. The fuel cell exhaust gas 12 is cooled in the first heat exchanger 20 in a first step, for example, from 300 ° C to 40 ° C. Thereafter, it passes through the second heat exchanger 19, in which it is reheated by the waste heat of the inverter 17, for example, to 45 ° C. The remaining heat is released in the third heat exchanger 21 to the heat transfer medium of the heating circuit 22. The heat transfer medium is thereby heated, e.g. from 30 ° C to 35 ° C while the fuel cell exhaust gas is cooled to 30 ° C. The fuel cell exhaust gas 12 emerging from the second heat exchanger 19 comes in contact with the coldest point of the system, the return 23 of the heating circuit 22, in the third heat exchanger 21. Thus, the fuel cell exhaust gas 12 is cooled as much as possible. The resulting condensation allows the use of the condensate and at the same time the utilization of the condensing effect to improve the efficiency. The fuel cell exhaust gas 12 from the third heat exchanger 21 and the air discharged from the second heat exchanger 19 are discharged together to the room air-independent exhaust system 13.

In Fig. 1 sind die Temperaturen für einen kalten Rücklauf 23 angegeben. In diesem Fall wird der Luftverdichter 16 so betrieben, dass der Luftdurchfluss möglichst gering ist und die höchste zulässige Temperatur im Wechselrichter 17, z. B. 60 °C, auftritt. Die Drehzahl des Luftverdichters 16 wird über eine Temperaturmessstelle 27, die nach dem Wechselrichter 17 angeordnet ist, geregelt.In Fig. 1 the temperatures for a cold return 23 are indicated. In this case, the air compressor 16 is operated so that the air flow is as low as possible and the highest permissible temperature in the inverter 17, z. B. 60 ° C occurs. The speed of the air compressor 16 is controlled by a temperature measuring point 27, which is arranged after the inverter 17.

Im dritten Wärmeübertrager 21 und ggf. auch im zweiten 19 kondensiert das Produktwasser..Das dabei entstehende Kondensat wird nach dem Wärmeübertrager 21 in einem nicht dargestellten Abscheider abgeschieden. Das Kondensat wird z. B. mit einer Pumpe 24 einer Kondensataufbereitung 25 zugeführt. Die Kondensataufbereitung 25 weist mindestens einen Kondensatspeicher auf, in dem je nach Konzept Kondensat oder deionisiertes Wasser gespeichert wird. So lange ein ausreichend hoher Füllstand in diesem Speicher vorhanden ist, kann der in Fig. 1 illustrierte Modus beibehalten werden.The product water condenses in the third heat exchanger 21 and optionally also in the second 19. The resulting condensate is deposited after the heat exchanger 21 in a separator (not shown). The condensate is z. B. supplied with a pump 24 a condensate treatment 25. The condensate treatment 25 has at least one condensate store, in which, depending on the concept, condensate or deionized water is stored. As long as a sufficiently high level is available in this memory, the in Fig. 1 to be kept illustrated mode.

In diesem Betriebszustand wird die Abwärme des Wechselrichters 17 über den zweiten Wärmeübertrager 19 zunächst an das Brennstoffzellenabgas 12, das aus dem ersten Wärmeübertrager 20 austritt, übertragen und von dort über den dritten Wärmeübertrager 21 auf das Wärmeträgermedium des Heizkreislaufs 22. Bei heißer Umgebungstemperatur im Aufstellungsraum hat die Kühlung des Wechselrichters 17 über das raumluftunabhängige Abgassystem 13 den Vorteil, dass die angesaugte Luft kälter als die im Aufstellungsraum vorhandene ist. Indirekt wird hier die Abwärme des Wechselrichters an das Heizsystem abgegeben.In this operating state, the waste heat of the inverter 17 via the second heat exchanger 19 is first transferred to the fuel cell exhaust 12, which exits from the first heat exchanger 20, and from there via the third heat exchanger 21 to the heat transfer medium of the heating circuit 22. At hot ambient temperature in the installation space the cooling of the inverter 17 via the room air independent exhaust system 13 has the advantage that the intake air is colder than the existing in the installation space. Indirectly, the waste heat from the inverter is delivered to the heating system.

Weist der Kondensatspeicher einen zu geringen Füllstand auf, so ist davon zugehen, dass auf Grund einer zu hohen Temperatur des Rücklaufes 23 kein Kondensat gebildet werden kann. In diesem Fall wird der Luftverdichter 16 auf volle Leistung geregelt, so dass sich die Luft im Wechselrichter 17 nur noch unwesentlich erwärmt. Dieser Betriebsfall ist in Fig. 2 dargestellt.If the condensate store has too low a level, then it can be assumed that due to a too high temperature of the return line 23, no condensate can be formed. In this case, the air compressor 16 is regulated to full power, so that the air in the inverter 17 heats only slightly. This operating case is in Fig. 2 shown.

In dem in Fig. 2 gezeigten Fließbild wird das Brennstoffzellenabgas 12 im ersten Wärmeübertrager 20 in einem ersten Schritt abgekühlt, beispielsweise von 300 °C auf 80 °C. Danach wird es im zweiten Wärmeübertrager 19 so weit abgekühlt, dass es dem Wärmeträgermedium des Heizkreislaufs 22 im dritten Wärmeübertrager 21 so viel Wärme entnehmen kann, wie im ersten Wärmeübertrager 20 wieder zugeführt wird. Nach dem zweiten Wärmeübertrager 19 ist das Brennstoffzellenabgas beispielsweise von 80 °C auf 35 °C abgekühlt. Damit ist eine Temperatur erreicht, bei der ausreichend Kondensat gebildet wird, um den Kondensatvorrat wieder aufzufüllen oder zumindest den Pegel im Kondensatspeicher konstant zu halten. Dazu ist eine nicht dargestellte Kondensatfalle nach dem zweiten Wärmeübertrager 19 erforderlich, oder der dritte Wärmeübertrager 21 muss konstruktiv so gestaltet sein, dass ein Verdampfen des Kondensats möglichst verhindert wird. Dies kann z. B. durch mindestens eine Rinne im unteren Teil des Wärmeübertragers erfolgen, womit die Kontaktfläche von Wasser zu Gas minimiert wird. Im dritten Wärmeübertrager 21 nimmt das Brennstoffzellenabgas Wärme aus dem Wärmeträgermedium des Heizkreislaufs 22 auf, wobei sich das Brennstoffzellenabgas von 35 °C auf 80 °C erwärmt, während das Wärmeträgermedium des Heizkreislaufs von 80 °C auf 40 °C abgekühlt ist.In the in Fig. 2 shown flow diagram, the fuel cell exhaust gas 12 is cooled in the first heat exchanger 20 in a first step, for example, from 300 ° C to 80 ° C. Thereafter, it is cooled in the second heat exchanger 19 so far that it can take as much heat from the heat transfer medium of the heating circuit 22 in the third heat exchanger 21, as is supplied again in the first heat exchanger 20. After the second heat exchanger 19, the fuel cell exhaust gas is cooled, for example, from 80 ° C to 35 ° C. Thus, a temperature is reached at which sufficient condensate is formed to replenish the condensate supply or at least to keep the level in the condensate tank constant. For this purpose, a condensate trap not shown after the second heat exchanger 19 is required, or the third heat exchanger 21 must be constructive designed so that evaporation of the condensate is prevented as possible. This can be z. B. by at least one channel in the lower part of the heat exchanger, whereby the contact area of water to gas is minimized. In the third heat exchanger 21, the fuel cell exhaust gas absorbs heat from the heat transfer medium of the heating circuit 22, wherein the fuel cell exhaust gas from 35 ° C to 80 ° C, while the heat transfer medium of the heating circuit is cooled from 80 ° C to 40 ° C.

Eine Regelung sollte so erfolgen, dass weder die maximale Speicherladetemperatur bei einer Temperaturmessstelle 28 (z. B. 90 °C), die hinter dem ersten Wärmeübertrager 20, d. h. im Ablauf 26 des Heizkreislaufs 22, angeordnet ist, noch die zur Kondensation erforderliche Temperatur bei einer Temperaturmessstelle 29, die im Brennstoffzellenabgas 12 zwischen dem zweiten Wärmeübertrager 19 und dem dritten Wärmeübertrager 21 angeordnet ist, überschritten wird.A regulation should be such that neither the maximum storage charging temperature at a temperature measuring point 28 (eg 90 ° C.), which is arranged behind the first heat exchanger 20, ie in the outlet 26 of the heating circuit 22, nor the temperature required for the condensation at a temperature measuring point 29, which is arranged in the fuel cell exhaust gas 12 between the second heat exchanger 19 and the third heat exchanger 21, is exceeded.

Diesem Betriebszustand kommt zugute, dass eine hohe Temperatur des Rücklaufs 23 immer dann auftritt, wenn der Wärmebedarf gering ist. Eine wärmegeführte oder -orientierte Betriebsweise wird dann eine Leistungsreduktion der Brennstoffzelle 5 bewirken. Dadurch sinken die Wärmeabgabe des Wechselrichters 17 und des SOFC-Stacks.This operating condition benefits that a high temperature of the return 23 always occurs when the heat demand is low. A heat-guided or -oriented operation will then cause a power reduction of the fuel cell 5. This reduces the heat output of the inverter 17 and the SOFC stack.

Fig. 2a zeigt eine Ausgestaltung des in Fig. 2 illustrierten Ausführungsbeispiels, bei der die Wärmeübertrager 19, 20, 21 in einem einzigen Plattenwärmeübertrager integriert sind. Dabei werden der Wärmeträgermedium- und Wechselrichter-Kühlluft-Strom in gemeinsamen Ebenen und der Abgasstrom in den anderen Ebenen im Wechsel kreuzweise zugeführt. Die Umlenkung kann auch innerhalb der Platte in der Kanalstruktur des Wärmeübertragers erfolgen. Die Zu- und Ableitungen erfolgen z. B. in Form von Mehrfachverteilern. Fig. 2a shows an embodiment of the in Fig. 2 illustrated embodiment, in which the heat exchangers 19, 20, 21 are integrated in a single plate heat exchanger. In this case, the heat transfer medium and inverter cooling air flow in common planes and the exhaust gas flow in the other planes are alternately supplied crosswise. The deflection can also take place within the plate in the channel structure of the heat exchanger. The supply and discharge lines z. B. in the form of multiple distributors.

Alternativ zu Fig. 1 und Fig. 2 kann die Abluft des Wechselrichters 17 auch in das Wärmeträgermedium des Heizkreislaufs 22 eingekoppelt werden. Dies ist in Fig. 3 und Fig. 4 gezeigt. Dann wird der zweite Wärmeübertrager 19 im Heizkreislauf 22 angeordnet. In Fig. 3 wird das Brennstoffzellenabgas 12 in zwei Schritten über den ersten Wärmeübertrager 20 und den dritten Wärmeübertrager 21 abgekühlt. Dabei wird das Brennstoffzellenabgas 12 im ersten Wärmeübertrager 20 beispielsweise zunächst von 300 °C auf 100 °C abgekühlt. Im dritten Wärmeübertrager 21 wird das Brennstoffzellenabgas 12 dann beispielsweise von 100 °C auf 30 °C abgekühlt, während das Wärmeträgermedium des Heizkreislaufs 22 von 30 °C auf 40 °C erwärmt wird. Im zweiten Wärmeübertrager 19 wird das Wärmeträgermedium des Heizkreislaufs 22 durch die Abwärme des Wechselrichters 17 von 40 °C auf 43°C erwärmt. Danach wird das Wärmeträgermedium durch den ersten Wärmeübertrager 20 geführt, wobei es von 43 °C auf 60 °C erwärmt wird.alternative to Fig. 1 and Fig. 2 the exhaust air of the inverter 17 can also be coupled into the heat transfer medium of the heating circuit 22. This is in Fig. 3 and Fig. 4 shown. Then, the second heat exchanger 19 is arranged in the heating circuit 22. In Fig. 3 For example, the fuel cell exhaust gas 12 is cooled in two steps via the first heat exchanger 20 and the third heat exchanger 21. In this case, the fuel cell exhaust gas 12 in the first heat exchanger 20, for example, initially cooled from 300 ° C to 100 ° C. In the third heat exchanger 21, the fuel cell exhaust gas 12 is then cooled, for example, from 100 ° C to 30 ° C, while the heat transfer medium of the heating circuit 22 is heated from 30 ° C to 40 ° C. In the second heat exchanger 19, the heat transfer medium of the heating circuit 22 is heated by the waste heat of the inverter 17 from 40 ° C to 43 ° C. Thereafter, the heat transfer medium is passed through the first heat exchanger 20, wherein it is heated from 43 ° C to 60 ° C.

Im Kühlfall nach Fig. 4, d. h. bei hoher Temperatur des Rücklaufs 23, wird das Wärmeträgermedium des Heizkreislaufs 22 über den dritten Wärmeübertrager 21 und den zweiten Wärmeübertrager 19 so weit abgekühlt, dass es in der Lage ist, im ersten Wärmeübertrager 20 erneut erwärmt zu werden, um die Temperatur zu erreichen, die das Wärmeträgermedium des Heizkreislaufs 22 vor Durchströmen des dritten Wärmeübertragers 21 aufwies. Um eine derartig hohe Kühlleistung zu erzielen, ist wie bereits in Fig. 2 gezeigt der Volumenstrom durch den Luftverdichter 16 deutlich zu erhöhen. Im ersten Wärmeübertrager 20 entzieht das zuvor gekühlte Wärmeträgermedium des Heizkreislaufs 22 dem Brennstoffzellenabgas 12 Wärme und kühlt es dabei so weit ab, dass Kondensation eintritt.After cooling Fig. 4 , ie at high temperature of the return line 23, the heat transfer medium of the heating circuit 22 is so far cooled over the third heat exchanger 21 and the second heat exchanger 19 that it is able to be reheated in the first heat exchanger 20 to reach the temperature , which had the heat transfer medium of the heating circuit 22 before flowing through the third heat exchanger 21. To achieve such a high cooling performance, as already in Fig. 2 shown to increase the flow rate through the air compressor 16 significantly. In the first heat exchanger 20, the previously cooled heat transfer medium of the heating circuit 22 removes heat from the fuel cell exhaust gas 12 and cools it down so far that condensation occurs.

Das Wärmeträgermedium des Heizkreislaufs 22 wird beispielsweise im zweiten Wärmeübertrager 19 von 45 °C auf 35 °C abgekühlt. Danach passiert das Wärmeträgermedium den ersten Wärmeübertrager 20, wobei es von 35 °C auf 80 °C erwärmt wird, während das Brennstoffzellenabgas 12 von 300 °C auf 45 °C abkühlt. Im dritten Wärmeübertrager 21 nimmt das Brennstoffzellenabgas 12 Wärme vom Wärmeträgermedium des Heizkreislaufs 22 auf. Dabei wird das Brennstoffzellenabgas 12 von 45 °C auf 80 °C erwärmt, während das Wärmeträgermedium von 80 °C auf 45 °C abkühlt.The heat transfer medium of the heating circuit 22 is cooled, for example, in the second heat exchanger 19 from 45 ° C to 35 ° C. After that happens Heat transfer medium, the first heat exchanger 20, wherein it is heated from 35 ° C to 80 ° C, while the fuel cell exhaust gas 12 cools from 300 ° C to 45 ° C. In the third heat exchanger 21, the fuel cell exhaust gas 12 receives heat from the heat transfer medium of the heating circuit 22. In this case, the fuel cell exhaust gas 12 is heated from 45 ° C to 80 ° C, while the heat transfer medium from 80 ° C to 45 ° C is cooled.

In der Anordnung in Fig. 4 ist eine Kondensatfalle (nicht gezeigt) nach dem ersten Wärmeübertrager 20 erforderlich, um das hier anfallende Kondensat für die Kondensataufbereitung 25 aufzufangen, oder der dritte Wärmeübertrager 21 muss so ausgelegt sein, dass das Kondensat hindurchfließen kann, ohne wieder zu verdampfen. Die Varianten aus Fig. 2 und Fig. 4 können auch ohne Einbindung des Wechselrichters 17 aufgebaut werden. Dann wird die Luft nur zur Kühlung des Brennstoffzellenabgases 12 genutzt, um genug Kondensat aufzufangen und den Kondensatspeicher nicht zu überhitzen. Der Wechselrichter 17 ist dann mit einer Kühlung aus dem Stand der Technik zu betreiben.In the arrangement in Fig. 4 is a condensate trap (not shown) after the first heat exchanger 20 is required to collect the accumulating condensate here for the condensate treatment 25, or the third heat exchanger 21 must be designed so that the condensate can flow through without re-evaporating. The variants off Fig. 2 and Fig. 4 can also be built without the involvement of the inverter 17. Then the air is only used to cool the fuel cell exhaust 12 to collect enough condensate and not to overheat the condensate. The inverter 17 is then to operate with a cooling of the prior art.

Alternativ zu Fig. 4 ist auch der in Fig. 5 gezeigte, vereinfachte Aufbau möglich. Dabei ist eine höhere Kühlleistung erforderlich, da das Wärmeträgermedium des Heizkreislaufs 22 vor Eintritt in den zweiten Wärmeübertrager 19 noch keine Wärme an das Brennstoffzellenabgas 12 übertragen konnte. Im zweiten Wärmeübertrager 19 wird das Wärmeträgermedium des Heizkreislaufs 22 beispielsweise von 80 °C auf 35 °C abgekühlt, bevor es den ersten Wärmeübertrager 20 passiert. Dabei wird das Wärmeträgermedium von 35 °C auf 80 °C erwärmt, während das Brennstoffzellenabgas von 300 °C auf 45 °C abkühlt.alternative to Fig. 4 is also the in Fig. 5 shown, simplified construction possible. In this case, a higher cooling capacity is required because the heat transfer medium of the heating circuit 22 before entering the second heat exchanger 19 could not transfer heat to the fuel cell exhaust gas 12. In the second heat exchanger 19, the heat transfer medium of the heating circuit 22 is cooled, for example, from 80 ° C to 35 ° C before it passes the first heat exchanger 20. The heat transfer medium is heated from 35 ° C to 80 ° C, while the fuel cell exhaust gas from 300 ° C to 45 ° C is cooled.

Durch das erfindungsgemäße Brennstoffzellensystem wird erreicht, dass gleichzeitig Wärme bei hoher Temperatur ausgekoppelt und ausreichend Wasser auskondensiert werden kann. Dabei wird vermieden, dass das Heizwasser überhitzt und durch Verdampfung ein Überdruck entsteht. Außerdem wird eine Überhitzung des Abgassystems vermieden. So muss die Brennstoffzelle bei kurzzeitigen (tageweisen) Unterbrechungen des Wärmebedarfs nicht abgeschaltet werden, was die Lebensdauer negativ beeinträchtigen würde.The fuel cell system according to the invention ensures that heat can be coupled out at high temperature at the same time and sufficient water can be condensed out. This avoids that the heating water overheats and evaporation creates an overpressure. In addition, overheating of the exhaust system is avoided. Thus, the fuel cell does not have to be switched off during short-term (daily) interruptions of the heat requirement, which would adversely affect the service life.

Claims (13)

  1. Fuel cell system (1) based on solid oxide fuel cells, comprising at least one fuel cell (5) which has at least one inlet (4) and at least one outlet (10), wherein a fuel cell exhaust gas (12) is guided from the outlet (10) to a first heat exchanger (20), which heat exchanger is arranged in a heating circuit (22) for a heat transfer medium, wherein the fuel cell system (1) has a return passage for a condensate of the fuel cell exhaust gas (12), wherein the fuel cell system (1) has a second heat exchanger (19) for controlling the temperature of the fuel cell exhaust gas (12) or of the heat transfer medium of the heating circuit (22), which heat exchanger is connected to an air supply line (15), characterized in that said fuel cell system has an inverter (17) which has a cooling body (18) which is connected to the air supply line (15).
  2. Fuel cell system according to Claim 1, characterized in that the fuel cell system (1) has a room-air-independent exhaust gas system (13) which is connected to the air supply line (15) of the second heat exchanger (19).
  3. Fuel cell system according to Claim 1 or 2, characterized in that the fuel cell system (1) has an air compressor (8), via which air can be supplied to the fuel cell (5), and an air compressor (16), which is arranged in the air supply line (15) to the second heat exchanger (19).
  4. Fuel cell system according to one of Claims 1 to 3,
    characterized in that a third heat exchanger (21) is arranged between the fuel cell exhaust gas (12) and the heating circuit (22).
  5. Fuel cell system according to one of Claims 1 to 4,
    characterized in that the second heat exchanger (19) is arranged in the fuel cell exhaust gas (12), in particular downstream of the first heat exchanger (20).
  6. Fuel cell system according to one of Claims 1 to 4,
    characterized in that the second heat exchanger (19) is arranged in the heating circuit (22), in particular upstream of the first heat exchanger (20).
  7. Fuel cell system according to one of Claims 1 to 6,
    characterized in that a condenser (24) is fitted in the return passage for the condensate of the fuel cell exhaust gas (12).
  8. Fuel cell system according to one of Claims 1 to 7,
    characterized in that a condensate trap is provided downstream of the first heat exchanger (20) or the second heat exchanger (19), or the third heat exchanger (21) is designed in such a manner that the condensate does not evaporate again.
  9. Method for operating a fuel cell system according to at least one of Claims 1 to 8,
    characterized in that a fuel cell exhaust gas (12) or a heat transfer medium of a heating circuit (22), which gas and medium are connected in a heat-transferring manner via a first heat exchanger (20), is temperature-controlled in a second heat exchanger (19) using air, wherein the air which is guided to the air compressor (16) and which serves for controlling the temperature of the inverter (17) is used.
  10. Method according to Claim 9,
    characterized in that air from a room-air-independent exhaust gas system (13) is guided via an air compressor (16) and subsequently via an inverter (17) and/or through the second heat exchanger (19).
  11. Method according to Claim 9 or 10,
    characterized in that the fuel cell exhaust gas (12) is cooled down to a first temperature in the first heat exchanger (20) and is brought to a second temperature in the second heat exchanger (19), and if appropriate is brought to a third temperature in a third heat exchanger (21).
  12. Method according to Claim 10 or 11,
    characterized in that the heat transfer medium undergoes preliminary temperature control in the second heat exchanger (19) and is subsequently guided through the first heat exchanger (20), wherein, upstream of the second heat exchanger (19), the heat transfer medium is if appropriate guided through a third heat exchanger (21) through which the fuel cell exhaust gas (12) is guided.
  13. Method according to one of Claims 10 to 12,
    characterized in that the delivery quantity of the air compressor (16) is set in dependence on the fill level of the condensate store in the condensate treatment unit (25), wherein the air quantity is increased if a predefinable lower fill level threshold is reached.
EP13759693.8A 2012-10-12 2013-09-03 Fuel cell system based on solid oxide fuel cells Active EP2907187B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012020058.7A DE102012020058A1 (en) 2012-10-12 2012-10-12 Fuel cell system based on solid oxide fuel cells
PCT/EP2013/068125 WO2014056660A1 (en) 2012-10-12 2013-09-03 Fuel cell system based on solid oxide fuel cells

Publications (2)

Publication Number Publication Date
EP2907187A1 EP2907187A1 (en) 2015-08-19
EP2907187B1 true EP2907187B1 (en) 2017-11-15

Family

ID=49150916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13759693.8A Active EP2907187B1 (en) 2012-10-12 2013-09-03 Fuel cell system based on solid oxide fuel cells

Country Status (3)

Country Link
EP (1) EP2907187B1 (en)
DE (1) DE102012020058A1 (en)
WO (1) WO2014056660A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210833A1 (en) 2014-06-06 2015-12-17 Robert Bosch Gmbh Combined heat and power plant and method for operating a combined heat and power plant
AT521208B1 (en) * 2018-04-26 2020-03-15 Avl List Gmbh Fuel cell system
CN110739470B (en) * 2018-07-18 2024-02-27 宇通客车股份有限公司 Fuel cell auxiliary system
CN110077221B (en) * 2019-04-19 2021-05-28 西安交通大学 Solid oxide fuel cell and internal combustion engine combined power system and operation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582150A (en) * 1991-09-20 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> Condenser for fuel cell
DK0818840T3 (en) * 1996-07-11 2002-06-17 Sulzer Hexis Ag Method for simultaneously generating electrical energy and heat for heating purposes
DE19731642C1 (en) * 1997-07-23 1999-02-18 Dbb Fuel Cell Engines Gmbh Fuel cell vehicle
DE19802038A1 (en) * 1998-01-21 1999-07-22 Forschungszentrum Juelich Gmbh Direct methanol fuel cell is operated with gaseous fuel for low power losses
US6723459B2 (en) 2000-07-12 2004-04-20 Sulzer Hexis Ag Plant with high temperature fuel cells
JP2010257644A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Method of controlling fuel cell system
US20110136026A1 (en) * 2009-12-03 2011-06-09 Enerfuel Inc. Hybrid power plant system for vehicles
DE102010001260A1 (en) 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Fuel cell system with improved fuel gas circulation
JP5763484B2 (en) * 2011-09-15 2015-08-12 本田技研工業株式会社 Fuel cell system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102012020058A1 (en) 2014-04-17
WO2014056660A1 (en) 2014-04-17
EP2907187A1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
EP3281245B1 (en) High temperature steam electrolysis arrangement or reversible high temperature solid oxide fuel cell and thermal management thereof
EP2865045B1 (en) Power station arrangement with high temperature storage unit
DE19857398B4 (en) Fuel cell system, in particular for electric motor driven vehicles
EP2907187B1 (en) Fuel cell system based on solid oxide fuel cells
DE60319869T2 (en) CONTROL SYSTEM OF THE THERMAL ENERGY OF ELECTROCHEMICAL FUEL CELLS
WO1997033330A1 (en) Process for utilising the enthalpy contained in the waste gases of a low-temperature fuel cell, and plant for carrying out said process
EP2526344B1 (en) Method for operating a cogeneration plant
WO2013135772A1 (en) High-temperature battery integrated into a steam power station
DE10343264A1 (en) The fuel cell system
EP1297582B1 (en) Method for regulating operation of fuel cell installations controlled according to heat and/or power requirement
AT408915B (en) HEATING SYSTEM
DE102013204162A1 (en) Heating system and method for operating a heating system
DE102016214866B4 (en) Fuel cell cogeneration system, method for starting operation of the fuel cell cogeneration system and method for operating the fuel cell cogeneration system
EP4095286A1 (en) Assembly and method for environmentally friendly hydrogen production
DE102015004802A1 (en) cooler
EP2639414A2 (en) Cooling system for a fuel cell and connected steam turbine
DE10160463B4 (en) fuel cell plant
DE102009053839A1 (en) Fuel cell system and method for operating a fuel cell system
EP1233467A2 (en) Method and device for mutually cooling and preheating of coupled electrochemical transducers
WO2010012392A1 (en) Fuel cell system and method for operating the same
EP3129612B1 (en) District heating power plant
WO2007033733A1 (en) Fuel cell system and method of operating a fuel cell
DE10225557B4 (en) Low-temperature fuel cell system and method for operating such
DE102019212024A1 (en) System for operating a fuel cell stack
EP1983598A1 (en) Fuel cell assembly and method for operating a fuel cell assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04119 20160101ALI20170206BHEP

Ipc: H01M 8/0432 20160101ALI20170206BHEP

Ipc: H01M 8/04701 20160101ALN20170206BHEP

Ipc: H01M 8/04029 20160101ALI20170206BHEP

Ipc: H01M 8/04828 20160101ALN20170206BHEP

Ipc: H01M 8/0612 20160101ALN20170206BHEP

Ipc: H01M 8/04007 20160101ALN20170206BHEP

Ipc: H01M 8/04014 20160101AFI20170206BHEP

Ipc: H01M 8/124 20160101ALN20170206BHEP

INTG Intention to grant announced

Effective date: 20170222

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04119 20160101ALI20170210BHEP

Ipc: H01M 8/04828 20160101ALN20170210BHEP

Ipc: H01M 8/04701 20160101ALN20170210BHEP

Ipc: H01M 8/04007 20160101ALN20170210BHEP

Ipc: H01M 8/04029 20160101ALI20170210BHEP

Ipc: H01M 8/04014 20160101AFI20170210BHEP

Ipc: H01M 8/124 20160101ALN20170210BHEP

Ipc: H01M 8/0612 20160101ALN20170210BHEP

Ipc: H01M 8/0432 20160101ALI20170210BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013008832

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0008040000

Ipc: H01M0008040140

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04828 20160101ALN20170614BHEP

Ipc: H01M 8/04014 20160101AFI20170614BHEP

Ipc: H01M 8/0612 20160101ALN20170614BHEP

Ipc: H01M 8/0432 20160101ALI20170614BHEP

Ipc: H01M 8/04007 20160101ALN20170614BHEP

Ipc: H01M 8/04701 20160101ALN20170614BHEP

Ipc: H01M 8/124 20160101ALN20170614BHEP

Ipc: H01M 8/04119 20160101ALI20170614BHEP

Ipc: H01M 8/04029 20160101ALI20170614BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 947105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008832

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 947105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130903

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240923

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240930

Year of fee payment: 12