EP2888009B1 - Botulinum toxin for treating premature ejaculation - Google Patents

Botulinum toxin for treating premature ejaculation Download PDF

Info

Publication number
EP2888009B1
EP2888009B1 EP13756969.5A EP13756969A EP2888009B1 EP 2888009 B1 EP2888009 B1 EP 2888009B1 EP 13756969 A EP13756969 A EP 13756969A EP 2888009 B1 EP2888009 B1 EP 2888009B1
Authority
EP
European Patent Office
Prior art keywords
botulinum toxin
botulinum
units
injection
toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13756969.5A
Other languages
German (de)
French (fr)
Other versions
EP2888009A1 (en
Inventor
Anders N. NILSSON NEIJBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Inc filed Critical Allergan Inc
Publication of EP2888009A1 publication Critical patent/EP2888009A1/en
Application granted granted Critical
Publication of EP2888009B1 publication Critical patent/EP2888009B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives

Definitions

  • the present invention relates to botulinum toxin for use in a method of treating premature ejaculation
  • Premature ejaculation is a very common sexual dysfunction in men, particularly those in the age range of about 18 to about 40 years old. It has been reported that premature ejaculation affects some 20-30% of adult men [Laumann, 2005].
  • Premature ejaculation may be classified as primary or secondary, in accordance with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV ), which classifies sexual disorders into 4 particular categories: (1) primary, (2) general medical condition-related, (3) substance-induced, and (4) not otherwise specified.
  • Primary applies to individuals who have had the condition since they became capable of functioning sexually (ie, postpuberty). Secondary indicates that the condition manifests itself in an individual where an acceptable level of ejaculatory control was previously had, and the individual began experiencing premature ejaculation thereafter. The majority of patients with premature ejaculation have a primary premature ejaculation.
  • Premature ejaculation can be generally defined as the occurrence of ejaculation prior to or sooner than hoped for by one or both sexual partners [e.g. see 'The Merck Manual', 16th Edition, p 1576, published by Merck Research Laboratories, 1992 ].
  • Premature ejaculation was defined by the International Society of Sexual Medicine (ISSM) as "a male sexual dysfunction characterized by ejaculation that always or nearly always occurs prior to or within about one minute of vaginal penetration; the inability to delay ejaculation on all or nearly all vaginal penetrations; and negative personal consequences such as distress, bother, frustration, and/or avoidance of sexual intimacy" [McMahon 2008, Waldinger 2005].
  • the inclusion of the intravaginal ejaculatory latency time (IELT) in the ISSM definition has added an objective measurement based on normative data to the characterization of primary premature ejaculation.
  • premature ejaculation e.g. the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, (DSM-IV), the World Health Organization (WHO) (1993 [ICD-10 ]), and the American Urological Association's [AUA] guideline on the pharmacological management of PE [Colpi 2004, Montague et al., 2004]. All premature ejaculation definitions include the primary concept of ejaculatory latency time that is persistently shorter than desired with minimal sexual stimulation, and the key dimensions of distress and interpersonal difficulty caused by premature ejaculation.
  • Premature ejaculation is reported to affect an individual's sexual function, self-esteem, and ability to participate in intimate relationships [Rowland et al. 2004, Symonds et al ., 2003]. Men with self-reported premature ejaculation have a lower frequency of sexual intercourse, higher levels of intercourse-related anxiety and lower levels of sexual satisfaction [Pereleman 2004, Patrick 2005].
  • Premature ejaculation can be experienced as ejaculation before, upon or shortly after penile penetration of a sexual partner.
  • Premature ejaculation can occur at virtually any age in an adult man's life. As a reported condition, it is most common in younger men (aged 18-30 years old) but may also occur in conjunction with secondary impotence in men aged 45-65 years.
  • non-drug treatments and drug treatments for premature ejaculation There are known non-drug treatments and drug treatments for premature ejaculation. Examples of known non-drug treatments for premature ejaculation include the squeeze technique developed by Masters & Johnson (1970) and the stop-start technique developed by Semans (1956). However, limitations of the two techniques include the fact that they are time-consuming and require the proper participation of the partner, leading to difficulty in practice and low success rates.
  • Dapoxetine is an oral short-acting SSRI which is the only drug currently registered for the treatment of PE in Europe and other countries, but not in the US.
  • SSRIs drugs that can, for example, increase the incidence of side effects such as vomiting, dry mouth, drowsiness, reduced libido and ejaculation.
  • SSRIs are intended for chronic use rather than on-demand use because they have a long half-life and a long Tmax, which is the time to maximal plasma concentration, and it takes a long time for SSRIs to exert their therapeutic effects or efficacies, and these are difficult to predict.
  • Another example of off-label use of a drug for treating premature ejaculation includes the application of topical anesthetics (e.g. lidocaine 5% cream, or a lidocaine-prilocaine cream) to the penis before intercourse.
  • topical anesthetics e.g. lidocaine 5% cream, or a lidocaine-prilocaine cream
  • drawbacks associated with the use such anesthetics include undesired short term inability of the patient to achieve an erection, decreased penile sensation and/or vaginal numbness in a female partner.
  • Clostridium botulinum The genus Clostridium encompasses over one hundred and twenty seven species, grouped according to their morphology and functions.
  • Clostridium botulinum produces a potent polypeptide neurotoxin, botulinum toxin, which causes a neuroparalytic illness in humans and animals referred to as botulism.
  • the spores of Clostridium botulinum are found in soil and can grow in improperly sterilized and sealed food containers of home based canneries, which are the cause of many of the cases of botulism.
  • the effects of botulism typically appear 18 to 36 hours after eating the foodstuffs infected with a Clostridium botulinum culture or spores.
  • botulinum toxin can apparently pass unattenuated through the lining of the gut and attack peripheral motor neurons. Symptoms of botulinum toxin intoxication can progress from difficulty walking, swallowing, and speaking to paralysis of the respiratory muscles and death.
  • Botulinum toxin type A is the most lethal natural biological agent known to man. About 50 picograms of a commercially available botulinum toxin type A (purified neurotoxin complex) is a LD 50 in mice (i.e. 1 unit). One unit of BOTOX® contains about 50 picograms (about 56 attomoles) of botulinum toxin type A complex. Interestingly, on a molar basis, botulinum toxin type A is about 1.8 billion times more lethal than diphtheria, about 600 million times more lethal than sodium cyanide, about 30 million times more lethal than cobra toxin and about 12 million times more lethal than cholera.
  • botulinum neurotoxins Seven generally immunologically distinct botulinum neurotoxins have been characterized, these being respectively botulinum neurotoxin serotypes A, B, C 1 , D, E, F and G each of which is distinguished by neutralization with type-specific antibodies.
  • the different serotypes of botulinum toxin vary in the animal species that they affect and in the severity and duration of the paralysis they evoke. For example, it has been determined that botulinum toxin type A is 500 times more potent, as measured by the rate of paralysis produced in the rat, than is botulinum toxin type B.
  • botulinum toxin type B has been determined to be non-toxic in primates at a dose of 480 U/kg which is about 12 times the primate LD 50 for botulinum toxin type A.
  • Botulinum Toxin Type B Experimental and Clinical Experience, being chapter 6, pages 71-85 of "Therapy With Botulinum Toxin", edited by Jankovic, J. et al. (1994), Marcel Dekker, Inc.
  • Botulinum toxin apparently binds with high affinity to cholinergic motor neurons, is translocated into the neuron and blocks the release of acetylcholine. Additional uptake can take place through low affinity receptors, as well as by phagocytosis and pinocytosis.
  • the molecular mechanism of toxin intoxication appears to be similar and to involve at least three steps or stages.
  • the toxin binds to the presynaptic membrane of the target neuron through a specific interaction between the heavy chain, H chain, and a cell surface receptor; the receptor is thought to be different for each type of botulinum toxin and for tetanus toxin.
  • the carboxyl end segment of the H chain, H C appears to be important for targeting of the toxin to the cell surface.
  • the toxin crosses the plasma membrane of the poisoned cell.
  • the toxin is first engulfed by the cell through receptor-mediated endocytosis, and an endosome containing the toxin is formed.
  • the toxin escapes the endosome into the cytoplasm of the cell.
  • This step is thought to be mediated by the amino end segment of the H chain, H N , which triggers a conformational change of the toxin in response to a pH of about 5.5 or lower.
  • Endosomes are known to possess a proton pump which decreases intra-endosomal pH.
  • the conformational shift exposes hydrophobic residues in the toxin, which permits the toxin to embed itself in the endosomal membrane.
  • the toxin (or at a minimum the light chain) then translocates through the endosomal membrane into the cytoplasm.
  • the last step of the mechanism of botulinum toxin activity appears to involve reduction of the disulfide bond joining the heavy chain, H chain, and the light chain, L chain.
  • the entire toxic activity of botulinum and tetanus toxins is contained in the L chain of the holotoxin; the L chain is a zinc (Zn++) endopeptidase which selectively cleaves proteins essential for recognition and docking of neurotransmitter-containing vesicles with the cytoplasmic surface of the plasma membrane, and fusion of the vesicles with the plasma membrane.
  • VAMP vesicle-associated membrane protein
  • Botulinum toxin serotypes A and E cleave SNAP-25.
  • Botulinum toxin serotype C 1 was originally thought to cleave syntaxin, but was found to cleave syntaxin and SNAP-25.
  • Each of the botulinum toxins specifically cleaves a different bond, except botulinum toxin type B (and tetanus toxin) which cleave the same bond.
  • Each of these cleavages block the process of vesicle-membrane docking, thereby preventing exocytosis of vesicle content.
  • botulinum toxins serotypes Although all the botulinum toxins serotypes apparently inhibit release of the neurotransmitter acetylcholine at the neuromuscular junction, they do so by affecting different neurosecretory proteins and/or cleaving these proteins at different sites.
  • botulinum types A and E both cleave the 25 kiloDalton (kDa) synaptosomal associated protein (SNAP-25), but they target different amino acid sequences within this protein.
  • Botulinum toxin types B, D, F and G act on vesicle-associated protein (VAMP, also called synaptobrevin), with each serotype cleaving the protein at a different site.
  • VAMP vesicle-associated protein
  • botulinum toxin type C 1 has been shown to cleave both syntaxin and SNAP-25.
  • the botulinum toxins are released by Clostridial bacterium as complexes comprising the 150 kDa botulinum toxin protein molecule along with associated non-toxin proteins.
  • the botulinum toxin type A complex can be produced by Clostridial bacterium as 900 kDa, 500 kDa and 300 kDa forms.
  • Botulinum toxin types B and C1 are apparently produced as only a 700 kDa or 500 kDa complex.
  • Botulinum toxin type D is produced as both 300 kDa and 500 kDa complexes.
  • botulinum toxin types E and F are produced as only approximately 300 kDa complexes.
  • the complexes i.e. molecular weight greater than about 150 kDa
  • These two non-toxin proteins (which along with the botulinum toxin molecule comprise the relevant neurotoxin complex) may act to provide stability against denaturation to the botulinum toxin molecule and protection against digestive acids when toxin is ingested.
  • botulinum toxin complexes may result in a slower rate of diffusion of the botulinum toxin away from a site of intramuscular injection of a botulinum toxin complex.
  • botulinum toxin inhibits potassium cation induced release of both acetylcholine and norepinephrine from primary cell cultures of brainstem tissue. Additionally, it has been reported that botulinum toxin inhibits the evoked release of both glycine and glutamate in primary cultures of spinal cord neurons and that in brain synaptosome preparations botulinum toxin inhibits the release of each of the neurotransmitters acetylcholine, dopamine, norepinephrine ( Habermann E., et al., Tetanus Toxin and Botulinum A and C Neurotoxins Inhibit Noradrenaline Release From Cultured Mouse Brain, J Neurochem 51(2); 522-527:1988 ) CGRP, substance P and glutamate ( Sanchez-Prieto, J., et al., Botulinum Toxin A Blocks Glutamate Exocytosis From Guinea Pig Cerebral Cortical Synaptosomes
  • Botulinum toxin type A can be obtained by establishing and growing cultures of Clostridium botulinum in a fermenter and then harvesting and purifying the fermented mixture in accordance with known procedures. All the botulinum toxin serotypes are initially synthesized as inactive single chain proteins which must be cleaved or nicked by proteases to become neuroactive. The bacterial strains that make botulinum toxin serotypes A and G possess endogenous proteases and serotypes A and G can therefore be recovered from bacterial cultures in predominantly their active form. In contrast, botulinum toxin serotypes C 1 , D and E are synthesized by nonproteolytic strains and are therefore typically unactivated when recovered from culture.
  • Serotypes B and F are produced by both proteolytic and nonproteolytic strains and therefore can be recovered in either the active or inactive form.
  • the proteolytic strains that produce, for example, the botulinum toxin type B serotype only cleave a portion of the toxin produced.
  • the exact proportion of nicked to unnicked molecules depends on the length of incubation and the temperature of the culture. Therefore, a certain percentage of any preparation of, for example, the botulinum toxin type B toxin is likely to be inactive, possibly accounting for the known significantly lower potency of botulinum toxin type B as compared to botulinum toxin type A.
  • botulinum toxin type B has, upon intramuscular injection, a shorter duration of activity and is also less potent than botulinum toxin type A at the same dose level.
  • High quality crystalline botulinum toxin type A can be produced from the Hall A strain of Clostridium botulinum with characteristics of 3 x 10 7 U/mg, an A 260 /A 278 of less than 0.60 and a distinct pattern of banding on gel electrophoresis.
  • the known Schantz process can be used to obtain crystalline botulinum toxin type A, as set forth in Schantz, E. J., et al., Properties and use of Botulinum toxin and Other Microbial Neurotoxins in Medicine, Microbiol Rev. 56; 80-99:1992 .
  • the botulinum toxin type A complex can be isolated and purified from an anaerobic fermentation by cultivating Clostridium botulinum type A in a suitable medium.
  • the known process can also be used, upon separation out of the non-toxin proteins, to obtain pure botulinum toxins, such as for example: purified botulinum toxin type A with an approximately 150 kDa molecular weight with a specific potency of 1-2 x 10 8 LD 50 U/mg or greater; purified botulinum toxin type B with an approximately 156 kDa molecular weight with a specific potency of 1-2 x 10 8 LD 50 U/mg or greater; and purified botulinum toxin type F with an approximately 155 kDa molecular weight with a specific potency of 1-2 x 10 7 LD 50 U/mg or greater.
  • Botulinum toxins and/or botulinum toxin complexes can be obtained from List Biological Laboratories, Inc., Campbell, Calif.; the Centre for Applied Microbiology and Research, Porton Down, U.K.; Wako (Osaka, Japan), Metabiologics (Madison, Wis.) as well as from Sigma Chemicals of St Louis, Mo. Pure botulinum toxin (150 kDa) can also be used to prepare a pharmaceutical composition.
  • a commercially available botulinum toxin containing pharmaceutical composition is sold under the trademark BOTOX® (available from Allergan, Inc., of Irvine, Calif.).
  • BOTOX® consists of a purified botulinum toxin type A complex, albumin and sodium chloride packaged in sterile, vacuum-dried form.
  • the botulinum toxin type A is made from a culture of the Hall strain of Clostridium botulinum grown in a medium containing N-Z amine and yeast extract.
  • the botulinum toxin type A complex is purified from the culture solution by a series of acid precipitations to a crystalline complex consisting of the active high molecular weight toxin protein and an associated hemagglutinin protein.
  • the crystalline complex is re-dissolved in a solution containing saline and albumin and sterile filtered (0.2 microns) prior to vacuum-drying.
  • the vacuum-dried product is stored in a freezer at or below -5°C.
  • BOTOX® can be reconstituted with sterile, non-preserved saline prior to intramuscular injection.
  • Each vial of BOTOX® contains about 100 units (U) of Clostridium botulinum toxin type A purified neurotoxin complex, 0.5 milligrams of human serum albumin and 0.9 milligrams of sodium chloride in a sterile, vacuum-dried form without a preservative.
  • BOTOX® To reconstitute vacuum-dried BOTOX®, sterile normal saline without a preservative (0.9% sodium chloride injection) is used by drawing up the proper amount of diluent in the appropriate size syringe. Because BOTOX® may be denatured by bubbling or similar violent agitation, the diluent is gently injected into the vial. For sterility reasons BOTOX® is usually administered within four hours after the vial is removed from the freezer and reconstituted. During these four hours, reconstituted BOTOX® can be stored in a refrigerator at about 2°C to about 8°C. Reconstituted, refrigerated BOTOX® has been reported to retain its potency for at least about two weeks ( Neurology, 48:249-53:1997 ).
  • botulinum toxin type A has been used in clinical settings as follows: use of BOTOX® for intramuscular injection (multiple muscles) to treat cervical dystonia; use of BOTOX® for intramuscular injection (e.g. procerus muscle and/or corrugator supercihii muscles) to treat glabellar lines (brow furrows); use of BOTOX® to treat constipation by intrasphincter injection of the puborectalis muscle; use of BOTOX® for intramuscular injection to treat blepharospasm by injecting the lateral pre-tarsal orbicularis oculi muscle of the upper lid and the lateral pre-tarsal orbicularis oculi of the lower lid; use of BOTOX® for intramuscular injection (e.g.
  • BOTOX® to treat upper limb spasticity following stroke by intramuscular injections, for example by injection into one or more of five different upper limb flexor muscles, as follows: (a) flexor digitorum profundus (e.g. 7.5 U to 30 U), (b) flexor digitorum sublimes (e.g. 7.5 U to 30 U), (c) flexor carpi ulnaris (e.g. 10 U to 40 U), (d) flexor carpi radialis (e.g.
  • BOTOX® to treat migraine, for example by pericranial injection symmetrically into glabellar, frontalis and temporalis muscles, or for example by injection into frontalis, corrugator, procerus, occipitalis, temporalis, trapezius and cervical paraspinal muscle groups, as a prophylactic treatment of migraine compared to vehicle as measured by decreased measures of migraine frequency, maximal severity, associated vomiting and/or acute medication use over a three month period following injection; and use of BOTOX® to treat detrusor overactivity associated with a neurological condition, for example by injection of 200 U into the detrusor muscle.
  • Clinical effects of peripheral intramuscular botulinum toxin type A are usually seen within one week of injection.
  • the typical duration of symptomatic relief from a single intramuscular injection of botulinum toxin type A averages about three months, although significantly longer periods of therapeutic activity have been reported.
  • botulinum toxin type A to treat a variety of clinical conditions has led to interest in other botulinum toxin serotypes.
  • Two commercially available botulinum type A preparations for use in humans include BOTOX® available from Allergan, Inc., of Irvine, Calif., and DYSPORT® available from Beaufour Ipsen, Porton Down, England.
  • a Botulinum toxin type B preparation (MYOBLOC®) is available from Elan Pharmaceuticals of San Francisco, Calif.
  • U.S. 2011/0052636 discloses a method of treating premature ejaculation in which botulinum toxin is administered to the penis.
  • the present invention meets the need of prolongation of climax time in a a safe and effective manner.
  • An aspect of the present invention is botulinum toxin for use in a method of treating premature ejaculation, the method comprising the step of locally administering a therapeutically effective amount of botulinum toxin to the dorsal base of the penis of the patient by at least two injections performed bilaterally on both sides of the midline of the dorsal base.
  • the botulinum neurotoxin can be selected from the group consisting of botulinum neurotoxin types A, B, C, D, E, F and G, and is preferably botulinum neurotoxin type A.
  • Various ranges/amount of botulinum neurotoxin can be therapeutically administered in accordance with the teachings of the present disclosure, for example, botulinum toxin can be administered in an amount of from about 1 unit to about 20,000 units, dependent, of course, on the potency of the botulinum toxin type utilized and its method of administration (e.g.
  • an amount of botulinum toxin contained in a slow-release implant or pulsatile implant can be many times greater than an amount of botulinum toxin that is administered directly and at once, rather than slowly released from an implant).
  • Exemplary useful amounts for a botulinum neurotoxin type A or type B can be from about 1 unit to about 2500 units, or from about 10 to about 15,000 units, or from about 25 to about 1000 units respectively, or an amount or range therebetween.
  • the botulinum toxin is a botulinum toxin type A.
  • the botulinum toxin can be administered in an amount between about 1 unit and about 10,000 units and premature ejaculation and/or prolongation of climax time can be alleviated for between about 2 weeks and about 6 months.
  • premature ejaculation and/or prolongation of climax time can be alleviated from about 2 months to about 6 months, or from about 4 to about 6 months.
  • the botulinum neurotoxin is injected into at least two penile locations, and in some examples at least three penile locations. In certain embodiments, injection is into the area between the Bucks fascia and the Tunica albuginea, in proximity to the pudendal nerve. Exemplary amounts are from about 1 to about 2500 units of a botulinum toxin type A, or any amount therebetween. When utilizing a botulinum toxin type B for example, the administered amount can be from between about 1 unit and about 25,000 units, or from about 100 units to about 20,000 units, or from about 500 units to about 15,000 units, or any amount therebetween.
  • additional administration of botulinum neurotoxin to the penis of the patient can be performed, for example from at least about 2 months to about 3 months or more after an initial administration of botulinum neurotoxin to the penis.
  • local administration of the botulinum neurotoxin type A is from about 1 unit to about 500 units, per injection site, per patient visit.
  • the local administration of botulinum toxin type A for treating premature ejaculation is at a dose of about 1 unit, about 2 units, about 3 units, about 4 units, about 5 units, about 6.25 units, about 10 units, about 12.5 units, about 15 units, about 20 units, about 25 units, about 30 units, about 35 units, about 37.5 units, about 40 units, about 50 units, about 55 units, about 60 units, about 65 units, about 70 units, about 75 units, about 80 units, about 85 units, about 90 units, about 95 units, about 100 units, about 105 units, about 110 units, about 115 units, about 120 units, about 125 units, about 130 units, about 135 units, about 140 units, about 145 units, about 150 units, about 155 units, about 160 units, about 165 units, about 170 units, about 175 units, about 180 units, about 185 units, about
  • additional injection locations include the bulbospongiosus muscle.
  • botulinum neurotoxin can be intramuscular, subcutaneous, subdermal, intradermal or by implant.
  • the botulinum neurotoxin is type A or type B.
  • the pudendal nerve can be targeted, thereby prolonging the climax time in the patient.
  • an appropriate needle for botulinum toxin injection include needles of 30-guage or smaller, preferably from about 23-gauge to about 25-gauge, and the area is preferably cleaned, such as with alcohol, before injection.
  • Local anesthetic cream, general anesthesia, sedation or any known be useful anesthetic may be utilized, and may be necessary, depending upon the particular patient (some patients being more sensitive than others) undergoing treatment.
  • topical use of an anesthetic cream such as, for example benzocaine, butamben, dibucaine, lidocaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, and tetracaine can be applied before administration of the botulinum toxin via a needle.
  • an anesthetic cream such as, for example benzocaine, butamben, dibucaine, lidocaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, and tetracaine
  • the dosage of botulinum neurotoxin administered can be increased until achieving the desired effect (e.g. until the patient is satisfied with the resultant delay in ejaculation).
  • a first dosage can be from about 10 units to about 75 units of a botulinum toxin, or from about 25 units to about 50 units of a botulinum toxin, such as BOTOX®.
  • treatment dosage can be increased, as determined by the medical practitioner's evaluation of the particular case at hand, the dosage, for example, being increased up to about 100 or about 200 units of a botulinum toxin.
  • the time between administration of increasing dosages of botulinum toxin can be about 3 weeks, preferably about 1 month and most preferably about 2 months.
  • the age range of patients can be from about 18 years old to about 75 years old, more particularly, from about 18 years old to about 40 years old, and even more particularly, from about 18 years old to about 30 years old.
  • the patient has tried various previous treatments that have not been found to satisfactorily treat the patient's premature ejaculation.
  • premature ejaculation can be experienced even after the beginning of sexual intercourse, that this, even if a patient is able to penetrate their partner (i.e. not ejaculate prior to penetration), ejaculation prematurely follows. In such instances, it is the time period between penetration and ejaculation that considered to be too short, and accordingly prolongation of climax time, here increasing the time from which sexual intercourse begins to the time of ejaculation, is desired.
  • a patient may be considered to suffer from premature ejaculation if ejaculation is achieved after from about 10 seconds to about 15 minutes after penetration, from about 15 seconds to about 10 minutes after penetration or from about 30 seconds to about 5 minutes after penetration.
  • a patient may be considered to suffer from premature ejaculation if ejaculation is achieved after from about 10 seconds to about 3 minutes after penetration, from about 25 seconds to about 2 minutes after penetration or from about 30 seconds to about 1 minute after penetration.
  • the patient may have previously partaken in regimens for treating their premature ejaculation or for prolongation of their climax time.
  • exemplary regiments can include taking a selective serotonin reuptake inhibitor, such as fluoxetine or paroxetine, for example.
  • Other approaches that may have been tried include application of topical anesthetics, such as lidocaine 5% cream, applied to the penis before intercourse.
  • Such approaches can, if desired, be combined with the use of botulinum toxin order to treat premature ejaculation or for prolongation of climax time.
  • the botulinum neurotoxin is administered on an as-needed basis. Dosing will be determined for, and be particular to, the patient/particular presentation of premature ejaculation, with non-limiting, exemplary amounts provided herein.
  • duration of effect after botulinum administration can be up to about 4 months after administration. In particular instances, the duration of effect after botulinum administration can be from about 2 days to about 3 months after botulinum administration. Shorter duration of effects can be associated with a botulinum toxin having a short acting profile/duration of effect, such as botulinum toxin type E, relative to another botulinum toxin, such as a botulinum toxin type A, for example.
  • the present invention includes within its scope: (a) a botulinum neurotoxin complex as well as a pure botulinum neurotoxin obtained or processed by bacterial culturing, toxin extraction, concentration, preservation, freeze drying and/or reconstitution and; (b) modified or recombinant botulinum neurotoxin, that is botulinum neurotoxin that has had one or more amino acids or amino acid sequences deliberately deleted, modified or replaced by known chemical/biochemical amino acid modification procedures or by use of known host cell/recombinant vector recombinant technologies, as well as derivatives or fragments of botulinum neurotoxins so made, and includes botulinum neurotoxins with one or more attached non-native targeting moieties for a cell surface receptor present on a cell.
  • botulinum type A or botulinum toxin type B is employed, although botulinum toxin type B is used with a larger protein load, as compared to type A toxin.
  • a botulinum toxin type A for use according to the present invention can be a complex of toxin and non-toxin proteins, which together comprise a total molecular weight of up to about 900 kDa. Dosage ranges and amounts, like any pharmaceutical, are based upon size, age and health of the patient, as well as upon the particular commercial preparation of the botulinum toxin used.
  • a botulinum toxin type B for use according to the present invention can be a pure toxin or complex of toxin and non-toxin proteins, which is used at a dose of between about 50 and about 20,000 units.
  • Other botulinum toxin serotypes may be used in proportion to the dosages and concentrations exemplified herein, according to their respective levels of biological activity. For example, most units listed in the instant disclosure are of BOTOX®, but different serotypes or strains of a botulinum toxin may be used, and different amounts may be administered.
  • DYSPORT® a botulinum toxin type A complex available from Ipsen Inc.
  • BOTOX® a botulinum toxin type A complex available from Ipsen Inc.
  • NEUROBLOC®/MYOBLOC® a botulinum toxin type B available from Solstice Neurosciences
  • XEOMIN® pure botulinum toxin type A, by Merz Pharma
  • the present invention also encompasses concurrent or serial administration of a mixture of two or more of the above neurotoxins to effectively treat a patient with premature ejaculation.
  • ABSOR or “approximately” as used herein means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, (i.e., the limitations of the measurement system). For example, “about” can mean within 1 or more than 1 standard deviation, per practice in the art. Where particular values are described in the application and claims, unless otherwise stated, the term “about” means within an acceptable error range for the particular value.
  • API Active pharmaceutical ingredient
  • API's can include, for example, botulinum toxins, and the like.
  • administering means the step of giving (i.e. administering) a pharmaceutical composition to a subject, or alternatively a subject receiving a pharmaceutical composition.
  • the pharmaceutical compositions disclosed herein can be locally administered by various methods. For example, intramuscular, intradermal, subcutaneous administration, and implantation (for example, of a slow-release device such as polymeric implant) can all be appropriate routes of administration.
  • Alleviating means a reduction in the occurrence of any symptom or cause of a condition or disorder. Thus, alleviating includes some reduction, significant reduction, near total reduction, and total reduction.
  • Bio activity describes the beneficial or adverse effects of a drug on living matter. When a drug is a complex chemical mixture, this activity is exerted by the substance's active ingredient but can be modified by the other constituents. Biological activity can be assessed as potency or as toxicity by an in vivo LD 50 or ED 50 assay, or through an in vitro assay such as, for example, cell-based potency assays as described in U.S. 2010/0203559 and U.S. 2010/0233802 .
  • Botulinum toxin means a neurotoxin produced by Clostridium botulinum, as well as a botulinum toxin (or the light chain or the heavy chain thereof) made recombinantly by a non-Clostridial species.
  • botulinum toxin encompasses the botulinum toxin serotypes A, B, C, D, E, F and G, and their subtypes and any other types of subtypes thereof, or any re-engineered proteins, analogs, derivatives, homologs, parts, sub-parts, variants, or versions, in each case, of any of the foregoing.
  • botulinum toxin also encompasses a “modified botulinum toxin”. Further “botulinum toxin” as used herein also encompasses a botulinum toxin complex, (for example, the 300, 600 and 900 kDa complexes), as well as the neurotoxic component of the botulinum toxin (150 kDa) that is unassociated with the complex proteins.
  • “Climax baseline time” is the pre-treatment climax time of a patient, that is, the time or average time that it takes for a patient to climax after becoming sexually aroused.
  • “Climax time” or “ejaculation time” is the time between the start of sexual intercourse (i.e. penetration of the partner) and ejaculation (i.e. when climax is achieved).
  • Clostridial neurotoxin means a neurotoxin produced from, or native to, a Clostridial bacterium, such as Clostridium botulinum, Clostridium butyricum or Clostridium beratti, as well as a Clostridial neurotoxin made recombinantly by a non-Clostridial species.
  • Light chain means the light chain of a botulinum neurotoxin. It has a molecular weight of about 50 kDa, and can be referred to as the L chain, L, or as the proteolytic domain (amino acid sequence) of a botulinum neurotoxin.
  • Heavy chain means the heavy chain of a botulinum neurotoxin. It has a molecular weight of about 100 kDa and can be referred to as the H chain, or as H.
  • H C means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the carboxyl end segment of the H chain, or the portion corresponding to that fragment in the intact H chain. It is believed to be immunogenic and to contain the portion of the natural or wild type botulinum neurotoxin involved in high affinity, presynaptic binding to motor neurons.
  • H N means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the amino end segment of the H chain, or the portion corresponding to that fragment in the intact in the H chain. It is believed to contain the portion of the natural or wild type botulinum neurotoxin involved in the translocation of the L chain across an intracellular endosomal membrane.
  • LH N or L-H N means a fragment derived from a botulinum neurotoxin that contains the L chain, or a functional fragment thereof coupled to the H N domain It can be obtained from the intact botulinum neurotoxin by proteolysis, so as to remove or to modify the H C domain.
  • Plant means a controlled release (e.g. , pulsatile or continuous) composition or drug delivery system.
  • “Local administration” means direct administration of a pharmaceutical at or to the vicinity of a site on or within an animal body, at which site a biological effect of the pharmaceutical is desired, such as via, for example, intramuscular injection, intradermal injection, subdermal injection, subcutaneous injection, and placement of an implant for administration of the neurotoxin. Local administration excludes systemic routes of administration, such as intravenous or oral administration.
  • Modified botulinum toxin means a botulinum toxin that has had at least one of its amino acids deleted, modified, or replaced, as compared to a native botulinum toxin. Additionally, the modified botulinum toxin can be a recombinantly produced neurotoxin, or a derivative or fragment of a recombinantly made neurotoxin. A modified botulinum toxin retains at least one biological activity of the native botulinum toxin, such as, the ability to bind to a botulinum toxin receptor, or the ability to inhibit neurotransmitter release from a neuron.
  • modified botulinum toxin is a botulinum toxin that has a light chain from one botulinum toxin serotype (such as serotype A), and a heavy chain from a different botulinum toxin serotype (such as serotype B).
  • a modified botulinum toxin is a botulinum toxin coupled to a neurotransmitter, such as substance P.
  • “Mutation” means a structural modification of a naturally occurring protein or nucleic acid sequence.
  • a mutation can be a deletion, addition or substitution of one or more nucleotides in the DNA sequence.
  • the mutation can be a deletion, addition or substitution of one or more amino acids in a protein sequence.
  • a specific amino acid comprising a protein sequence can be substituted for another amino acid, for example, an amino acid selected from a group which includes the amino acids alanine, aspargine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, tyrosine or any other natural or non-naturally occurring amino acid or chemically modified amino acids.
  • Mutations to a protein sequence can be the result of mutations to DNA sequences that when transcribed, and the resulting mRNA translated, produce the mutated protein sequence. Mutations to a protein sequence can also be created by fusing a peptide sequence containing the desired mutation to a desired protein sequence.
  • Neuron includes Clostridial neurotoxins both as pure toxin and complexed with one to more non-toxin, toxin associated proteins, whether made by the native Clostridial bacterium or by recombinant means in a non-Clostridial species.
  • Botulinum neurotoxin means non-complexed botulinum neurotoxin (i.e. pure botulinum neurotoxin molecule having a molecular weight of about 150 kDa) or as a complex (i.e.
  • botulinum toxins which are not neurotoxins such as the cytotoxic botulinum toxins C2 and C3, but can include recombinantly made, hybrid, modified, and chimeric botulinum toxins.
  • Patient means a human subject receiving medical care from a physician.
  • “Pharmaceutical composition” means a composition comprising an active pharmaceutical ingredient, such as, for example, a botulinum toxin, and at least one additional ingredient, such as, for example, a stabilizer or excipient or the like.
  • a pharmaceutical composition is therefore a formulation which is suitable for diagnostic or therapeutic administration to a subject, such as a human patient.
  • the pharmaceutical composition can be, for example, in a lyophilized or vacuum dried condition, a solution formed after reconstitution of the lyophilized or vacuum dried pharmaceutical composition, or as a solution or solid which does not require reconstitution.
  • Prolongation of climax time means an increase in time (increase in climax baseline time) from which a patient becomes sexually aroused to the time of sexual climax (i.e. orgasm).
  • “treating premature ejaculation” means increasing the time between the beginning of sexual arousal of a patient and ejaculation by the patient; and in particular instances, it can mean increasing the time from which sexual intercourse begins to the time of ejaculation.
  • “Therapeutically effective amount,” as used herein, means an amount of botulinum toxin type A, B, C, D, E, F or G that ameliorates premature ejaculation.
  • Treating means to alleviate (or to eliminate) at least one symptom, either temporarily or permanently.
  • this includes increasing the time (i.e. prolongation of climax time) it takes a patient to reach climax after sexual arousal.
  • climax time is the time between the start of intercourse and the time at which climax is achieved.
  • Variant means a clostridial neurotoxin, such as wild-type botulinum toxin serotype A, B, C, D, E, F or G, that has been modified by the replacement, modification, addition or deletion of at least one amino acid relative to wild-type botulinum toxin, which is recognized by a target cell, internalized by the target cell, and catalytically cleaves a SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) protein in the target cell.
  • SNARE Soluble NSF Attachment Protein
  • a variant neurotoxin component can comprise a variant light chain of a botulinum toxin having one or more amino acids substituted, modified, deleted and/or added.
  • This variant light chain may have the same or better ability to prevent exocytosis, for example, the release of neurotransmitter vesicles.
  • the biological effect of a variant may be decreased compared to the parent chemical entity.
  • a variant light chain of a botulinum toxin type A having an amino acid sequence removed may have a shorter biological persistence than that of the parent (or native) botulinum toxin type A light chain.
  • Vehicle or “reconstitution vehicle” means a liquid composition that can be used to reconstitute a solid botulinum formulation into a liquid botulinum pharmaceutical composition.
  • Wild type neuronal binding moiety means that portion of a neurotoxin which is native to the neurotoxin and which exhibits a specific binding affinity for a receptor on a neuron. Thus, wild type or native neuronal binding moiety excludes a binding moiety which is not native to the neurotoxin.
  • botulinum toxin is injected locally: (i) proximally at the dorsal base of the penis (similar to penile nerve block approach); and (ii) additionally by pelvi-perianal administration into the bulbospongiosus muscle.
  • Botulinum toxin can be injected to block the nerve pathways through the pudendal nerve. Reduced sensory signaling can reduce the trigger of the ejaculatory reflex, and as ejaculation is a spinal cord reflex, inhibiting the stereotyped rhythmic contractions of these muscles with the injection of botulinum toxin can have a beneficial effect in treating premature ejaculation.
  • the penis is innervated by the pudendal nerve and cavernous nerves.
  • the pudendal nerve eventually divides into the right and left dorsal nerves of the penis that pass under the pubis symphysis to travel just below the Buck fascia close to the arteries.
  • the pudendal nerves supply somatic motor and sensory innervation to the penis.
  • the cavernous nerves are a combination of parasympathetic and visceral afferent fibers and provide the nerve supply to the erectile tissue.
  • the cavernous nerves run in the crus and corpora of the penis, primarily dorsomedial to the deep penile arteries.
  • a botulinum toxin is provided wherein the right and left dorsal penile nerves can be blocked proximally to the base of the penis.
  • the area that is to receive the botulinum neurotoxin administration is first cleaned utilizing alcohol, such as by utilizing an alcohol wipe, for example.
  • Local anesthetic (as disclosed herein) is then applied to the cleaned area.
  • the anesthetic can be applied topically with local sterile single use local anesthetic (LA) gel or cream (eg, lidocaine gel, cream) and, when ready, the injection sites can be sterilized.
  • LA local sterile single use local anesthetic
  • cream eg, lidocaine gel, cream
  • An appropriate sized needle (e.g. 22-25 gauge) should be used for injection into the penis.
  • the botulinum toxin is injected bilaterally through the fascia into the pear shaped spaces on each side of the suspensory ligament. This avoids mid-line injection and therefore potential damage to the dorsal vessels and provides increased chance of diffusion into the nerves to block them.
  • the membranous layer of superficial fascia and the suspensory ligament suspended from the symphysis pubis of the penis fuses with the deep penile (Buck's) fascia (under which pass the dorsal nerves, arteries and veins, and the penile muscle fibers part of Tunica Albuginea are located).
  • Injection of botulinum toxin is made bilaterally on either side of the midline, avoiding injecting into the superficial dorsal penile vein (see Figure 1 ).
  • the site of insertion of the needle is shown passing through the membranous layer of the superficial fascia and then through the thicker Bucks fascia.
  • the needle can be directed to a depth of about 0.5 cm or until loss of resistance is felt to suggest that the tip of the needle is within the Buck fascia.
  • a test aspiration can be done to ensure that there was no accidental puncture of an artery, vein or the corpus cavernosum or corpus spongiosum.
  • the dose of botulinum toxin is slowly injected to infiltrate the area of the penile nerve and smooth muscle fibers of the Bulbospongiosus part of tunica albuginea.
  • botulinum toxin may be injected at sites at the perineum and the base of the penis into the bulbospongiosus muscles.
  • the scrotum is lifted up to provide an opportunity to identify the base of the penis in the area above the anus and the transverse line across in front of the ischial tuberosities at the sides.
  • the injection is made close to the scrotal base to avoid the anal sphincter muscle.
  • the injection sites can first be aneasthesized topically with local sterile single use local anesthetic (LA) gel or cream (eg, lidocaine gel or cream) applied gently topically and, when ready the injection sites can be sterilized.
  • LA local sterile single use local anesthetic
  • cream eg, lidocaine gel or cream
  • the penis 22-25 gauge can be used for injection into the penis. Injection is made bilaterally on either side of the midline of the penile base. The site of insertion of the needle is shown passing through the membranous layer of the deep fascia which covers the nerves and muscles of the perineum (pudendus nerve, ischiocavernous and bulbospongiosus muscles) ( Figure 2 ). For each injection site a test aspiration can be done to ensure that there was no accidental puncture of an artery, vein or the corpus cavernosum or corpus spongiosum. In certain embodiments, for each local administration, the dose of botulinum toxin is slowly injected to infiltrate the area of the penile nerve and smooth muscle fibers of the Bulbospongiosus.
  • the patient is observed for at least 60 minutes post-injection. Prior to leaving the site, patients can be checked to see if they experience any adverse events post-treatment.
  • the patient is instructed not to engage in sexual activity for the following 48 hours, and if edema and/or inflammation is observed, a cold compress or ice pack may be applied.
  • a cold compress or ice pack may be applied.
  • patients observe effects (e.g. delaying of previously premature ejaculation) within about 48 to about 72 hours, with full results (maximum delay) usually observed after about 3 weeks.
  • effects e.g. delaying of previously premature ejaculation
  • full results maximum delay
  • the dilution for the first 25 U total dose cohort is a vial of BOTOX 100 U diluted in 4 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 25 U/mL.
  • the patient with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e.
  • the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 6.25 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (i.e. 6.25 U per injection site) and a total injection volume of 1 mL (total dose of 25 U divided in 4 injection sites).
  • the dilution for the 50 U dose cohort is a vial of 100 U diluted in 2 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 50 U/mL.
  • the patients with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e.
  • the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 12.5 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (12.5 U per injection site) and a total injection volume of 1 mL (total dose of 50 U divided in 4 injection sites).
  • the dilution for the 100 U dose cohort is a vial of 100 U diluted in 1 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 100 U/mL.
  • the patients with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e.
  • the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 25 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (25 U per injection site) and a total injection volume of 1 mL (total dose of 100 U divided in 4 injection sites).
  • a male patient is diagnosed with premature ejaculation after presenting with climax times of less than 15 seconds after beginning sexual intercourse.
  • the patient is treated with an effective amount of a botulinum toxin, BOTOX®.
  • the doctor prepares the patient for injection by cleaning the patient's penis at the dorsal base with a skin disinfecting agent and subsequently applies topical lidocaine anesthesia cream or a local injection of lidocaine to anesthetize the area.
  • Treatment consists of two injections (bilaterally) on both sides of the midline at the dorsal base of the penis.
  • the injections are through the Superficial Fascia, into the area between the Bucks Fascia and the Tunica Albuginea, and in the proximity of the Pudendal nerve.
  • the Pudendal nerve is targeted.
  • Post procedure the patient is instructed not to have sex during the following 48 hours. If edema and/or inflammation is noted, appropriate application of an ice-pack to the area is recommended (applied not longer than about 15 minutes at a time).
  • the patient reports a doubling in his climax baseline time, with on some occasions lasting for about 10 to 15 minutes, and that both he and his partner are very satisfied with the resultant outcome of the treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reproductive Health (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

    FIELD
  • The present invention relates to botulinum toxin for use in a method of treating premature ejaculation
  • BACKGROUND
  • Premature ejaculation is a very common sexual dysfunction in men, particularly those in the age range of about 18 to about 40 years old. It has been reported that premature ejaculation affects some 20-30% of adult men [Laumann, 2005].
  • Premature ejaculation may be classified as primary or secondary, in accordance with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), which classifies sexual disorders into 4 particular categories: (1) primary, (2) general medical condition-related, (3) substance-induced, and (4) not otherwise specified. Primary applies to individuals who have had the condition since they became capable of functioning sexually (ie, postpuberty). Secondary indicates that the condition manifests itself in an individual where an acceptable level of ejaculatory control was previously had, and the individual began experiencing premature ejaculation thereafter. The majority of patients with premature ejaculation have a primary premature ejaculation.
  • Premature ejaculation can be generally defined as the occurrence of ejaculation prior to or sooner than hoped for by one or both sexual partners [e.g. see 'The Merck Manual', 16th Edition, p 1576, published by Merck Research Laboratories, 1992]. Premature ejaculation was defined by the International Society of Sexual Medicine (ISSM) as "a male sexual dysfunction characterized by ejaculation that always or nearly always occurs prior to or within about one minute of vaginal penetration; the inability to delay ejaculation on all or nearly all vaginal penetrations; and negative personal consequences such as distress, bother, frustration, and/or avoidance of sexual intimacy" [McMahon 2008, Waldinger 2005]. The inclusion of the intravaginal ejaculatory latency time (IELT) in the ISSM definition has added an objective measurement based on normative data to the characterization of primary premature ejaculation.
  • Other very similar definitions of premature ejaculation exist, e.g. the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, (DSM-IV), the World Health Organization (WHO) (1993 [ICD-10]), and the American Urological Association's [AUA] guideline on the pharmacological management of PE [Colpi 2004, Montague et al., 2004]. All premature ejaculation definitions include the primary concept of ejaculatory latency time that is persistently shorter than desired with minimal sexual stimulation, and the key dimensions of distress and interpersonal difficulty caused by premature ejaculation.
  • Premature ejaculation is reported to affect an individual's sexual function, self-esteem, and ability to participate in intimate relationships [Rowland et al. 2004, Symonds et al., 2003]. Men with self-reported premature ejaculation have a lower frequency of sexual intercourse, higher levels of intercourse-related anxiety and lower levels of sexual satisfaction [Pereleman 2004, Patrick 2005].
  • Although ejaculatory disorders were previously assumed to be psychological or secondary to a medical background, several primary neurobiological causes have been suggested. Animal and human sexual psychopharmacological studies have attributed a neurobiological basis, and possible genetic etiology, to primary premature ejaculation [Waldinger 2002].
  • Premature ejaculation can be experienced as ejaculation before, upon or shortly after penile penetration of a sexual partner.
  • Premature ejaculation can occur at virtually any age in an adult man's life. As a reported condition, it is most common in younger men (aged 18-30 years old) but may also occur in conjunction with secondary impotence in men aged 45-65 years.
  • There are known non-drug treatments and drug treatments for premature ejaculation. Examples of known non-drug treatments for premature ejaculation include the squeeze technique developed by Masters & Johnson (1970) and the stop-start technique developed by Semans (1956). However, limitations of the two techniques include the fact that they are time-consuming and require the proper participation of the partner, leading to difficulty in practice and low success rates.
  • Since the FDA has not yet approved a drug for premature ejaculation, all medical treatments in the US are classified as off-label indications. Many central and peripheral acting agents have been proposed to treat primary premature ejaculation. These include selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants, monoamine oxidase inhibitors 4- topical anesthesies, neuroleptics, sympatholytics, and phosphodiestrase inhibitors. Only chronic SSRIs and on-demand topical anaesthetic agents have consistently revealed beneficial effects in the prescription of premature ejaculation. Dapoxetine (Priligy®) is an oral short-acting SSRI which is the only drug currently registered for the treatment of PE in Europe and other countries, but not in the US. However, the long-term use of many of these drugs (e.g. SSRIs) can, for example, increase the incidence of side effects such as vomiting, dry mouth, drowsiness, reduced libido and ejaculation. Moreover, SSRIs are intended for chronic use rather than on-demand use because they have a long half-life and a long Tmax, which is the time to maximal plasma concentration, and it takes a long time for SSRIs to exert their therapeutic effects or efficacies, and these are difficult to predict.
  • Another example of off-label use of a drug for treating premature ejaculation includes the application of topical anesthetics (e.g. lidocaine 5% cream, or a lidocaine-prilocaine cream) to the penis before intercourse. However drawbacks associated with the use such anesthetics include undesired short term inability of the patient to achieve an erection, decreased penile sensation and/or vaginal numbness in a female partner.
  • Despite the prevalence of this condition and its debilitating effects, the lack of an effective treatment with minimal side effects, combined perhaps with a sense of stigma and the perception that no effective treatment is available, has led to a significant proportion of self-reported sufferers of premature ejaculation who have never been treated.
  • There is a need for a new and improved method for treating premature ejaculation and/or prolongation of climax time. In particular, a long lasting, non-systemic method for treating premature ejaculation and/or prolongation of climax time is desired that does not entail oral or repeated ingestion of a pharmaceutical compound prior to engaging in sexual activity.
  • The genus Clostridium encompasses over one hundred and twenty seven species, grouped according to their morphology and functions. The anaerobic, gram positive bacterium Clostridium botulinum produces a potent polypeptide neurotoxin, botulinum toxin, which causes a neuroparalytic illness in humans and animals referred to as botulism. The spores of Clostridium botulinum are found in soil and can grow in improperly sterilized and sealed food containers of home based canneries, which are the cause of many of the cases of botulism. The effects of botulism typically appear 18 to 36 hours after eating the foodstuffs infected with a Clostridium botulinum culture or spores. The botulinum toxin can apparently pass unattenuated through the lining of the gut and attack peripheral motor neurons. Symptoms of botulinum toxin intoxication can progress from difficulty walking, swallowing, and speaking to paralysis of the respiratory muscles and death.
  • Botulinum toxin type A is the most lethal natural biological agent known to man. About 50 picograms of a commercially available botulinum toxin type A (purified neurotoxin complex) is a LD50 in mice (i.e. 1 unit). One unit of BOTOX® contains about 50 picograms (about 56 attomoles) of botulinum toxin type A complex. Interestingly, on a molar basis, botulinum toxin type A is about 1.8 billion times more lethal than diphtheria, about 600 million times more lethal than sodium cyanide, about 30 million times more lethal than cobra toxin and about 12 million times more lethal than cholera. Singh, Critical Aspects of Bacterial Protein Toxins, pages 63-84 (chapter 4) of Natural Toxins II, edited by B. R. Singh et al., Plenum Press, New York (1976) (where the stated LD50 of botulinum toxin type A of 0.3 ng equals 1 U is corrected for the fact that about 0.05 ng of BOTOX® equals 1 unit). One unit (U) of botulinum toxin is defined as the LD50 upon intraperitoneal injection into female Swiss Webster mice weighing 18 to 20 grams each. Available from Allergan, Inc., of Irvine, Calif. under the tradename BOTOX® in 100 unit vials)
  • Seven generally immunologically distinct botulinum neurotoxins have been characterized, these being respectively botulinum neurotoxin serotypes A, B, C1, D, E, F and G each of which is distinguished by neutralization with type-specific antibodies. The different serotypes of botulinum toxin vary in the animal species that they affect and in the severity and duration of the paralysis they evoke. For example, it has been determined that botulinum toxin type A is 500 times more potent, as measured by the rate of paralysis produced in the rat, than is botulinum toxin type B. Additionally, botulinum toxin type B has been determined to be non-toxic in primates at a dose of 480 U/kg which is about 12 times the primate LD50 for botulinum toxin type A. Moyer E. et al., Botulinum Toxin Type B: Experimental and Clinical Experience, being chapter 6, pages 71-85 of "Therapy With Botulinum Toxin", edited by Jankovic, J. et al. (1994), Marcel Dekker, Inc. Botulinum toxin apparently binds with high affinity to cholinergic motor neurons, is translocated into the neuron and blocks the release of acetylcholine. Additional uptake can take place through low affinity receptors, as well as by phagocytosis and pinocytosis.
  • Regardless of serotype, the molecular mechanism of toxin intoxication appears to be similar and to involve at least three steps or stages. In the first step of the process, the toxin binds to the presynaptic membrane of the target neuron through a specific interaction between the heavy chain, H chain, and a cell surface receptor; the receptor is thought to be different for each type of botulinum toxin and for tetanus toxin. The carboxyl end segment of the H chain, HC, appears to be important for targeting of the toxin to the cell surface.
  • In the second step, the toxin crosses the plasma membrane of the poisoned cell. The toxin is first engulfed by the cell through receptor-mediated endocytosis, and an endosome containing the toxin is formed. The toxin then escapes the endosome into the cytoplasm of the cell. This step is thought to be mediated by the amino end segment of the H chain, HN, which triggers a conformational change of the toxin in response to a pH of about 5.5 or lower. Endosomes are known to possess a proton pump which decreases intra-endosomal pH. The conformational shift exposes hydrophobic residues in the toxin, which permits the toxin to embed itself in the endosomal membrane. The toxin (or at a minimum the light chain) then translocates through the endosomal membrane into the cytoplasm.
  • The last step of the mechanism of botulinum toxin activity appears to involve reduction of the disulfide bond joining the heavy chain, H chain, and the light chain, L chain. The entire toxic activity of botulinum and tetanus toxins is contained in the L chain of the holotoxin; the L chain is a zinc (Zn++) endopeptidase which selectively cleaves proteins essential for recognition and docking of neurotransmitter-containing vesicles with the cytoplasmic surface of the plasma membrane, and fusion of the vesicles with the plasma membrane. Tetanus neurotoxin, botulinum toxin types B, D, F, and G cause degradation of synaptobrevin (also called vesicle-associated membrane protein (VAMP)), a synaptosomal membrane protein. Most of the VAMP present at the cytoplasmic surface of the synaptic vesicle is removed as a result of any one of these cleavage events. Botulinum toxin serotypes A and E cleave SNAP-25. Botulinum toxin serotype C1 was originally thought to cleave syntaxin, but was found to cleave syntaxin and SNAP-25. Each of the botulinum toxins specifically cleaves a different bond, except botulinum toxin type B (and tetanus toxin) which cleave the same bond. Each of these cleavages block the process of vesicle-membrane docking, thereby preventing exocytosis of vesicle content.
  • Although all the botulinum toxins serotypes apparently inhibit release of the neurotransmitter acetylcholine at the neuromuscular junction, they do so by affecting different neurosecretory proteins and/or cleaving these proteins at different sites. For example, botulinum types A and E both cleave the 25 kiloDalton (kDa) synaptosomal associated protein (SNAP-25), but they target different amino acid sequences within this protein. Botulinum toxin types B, D, F and G act on vesicle-associated protein (VAMP, also called synaptobrevin), with each serotype cleaving the protein at a different site. Finally, botulinum toxin type C1 has been shown to cleave both syntaxin and SNAP-25. These differences in mechanism of action may affect the relative potency and/or duration of action of the various botulinum toxin serotypes.
  • The molecular weight of the botulinum toxin protein molecule, for all seven of the known botulinum toxin serotypes, is about 150 kDa. Interestingly, the botulinum toxins are released by Clostridial bacterium as complexes comprising the 150 kDa botulinum toxin protein molecule along with associated non-toxin proteins. Thus, the botulinum toxin type A complex can be produced by Clostridial bacterium as 900 kDa, 500 kDa and 300 kDa forms. Botulinum toxin types B and C1 are apparently produced as only a 700 kDa or 500 kDa complex. Botulinum toxin type D is produced as both 300 kDa and 500 kDa complexes. Finally, botulinum toxin types E and F are produced as only approximately 300 kDa complexes. The complexes (i.e. molecular weight greater than about 150 kDa) are believed to contain a non-toxin hemaglutinin protein and a non-toxin nonhemaglutinin protein. These two non-toxin proteins (which along with the botulinum toxin molecule comprise the relevant neurotoxin complex) may act to provide stability against denaturation to the botulinum toxin molecule and protection against digestive acids when toxin is ingested. Additionally, it is possible that the larger (greater than about 150 kDa molecular weight) botulinum toxin complexes may result in a slower rate of diffusion of the botulinum toxin away from a site of intramuscular injection of a botulinum toxin complex.
  • In vitro studies have indicated that botulinum toxin inhibits potassium cation induced release of both acetylcholine and norepinephrine from primary cell cultures of brainstem tissue. Additionally, it has been reported that botulinum toxin inhibits the evoked release of both glycine and glutamate in primary cultures of spinal cord neurons and that in brain synaptosome preparations botulinum toxin inhibits the release of each of the neurotransmitters acetylcholine, dopamine, norepinephrine (Habermann E., et al., Tetanus Toxin and Botulinum A and C Neurotoxins Inhibit Noradrenaline Release From Cultured Mouse Brain, J Neurochem 51(2); 522-527:1988) CGRP, substance P and glutamate (Sanchez-Prieto, J., et al., Botulinum Toxin A Blocks Glutamate Exocytosis From Guinea Pig Cerebral Cortical Synaptosomes, Eur J. Biochem 165; 675-681:1987). Thus, when adequate concentrations are used, stimulus-evoked release of most neurotransmitters is blocked by botulinum toxin. See e.g. Pearce, L. B., Pharmacologic Characterization of Botulinum Toxin For Basic Science and Medicine, Toxicon 35(9); 1373-1412 at 1393; Bigalke H., et al., Botulinum A Neurotoxin Inhibits Non-Cholinergic Synaptic Transmission in Mouse Spinal Cord Neurons in Culture, Brain Research 360; 318-324:1985; Habermann E., Inhibition by Tetanus and Botulinum A Toxin of the release of [3H]Noradrenaline and [3H]GABA From Rat Brain Homogenate, Experientia 44; 224-226:1988; Bigalke H., et al., Tetanus Toxin and Botulinum A Toxin Inhibit Release and Uptake of Various Transmitters, as Studied with Particulate Preparations From Rat Brain and Spinal Cord, Naunyn-Schmiedeberg's Arch Pharmacol 316; 244-251:1981; and Jankovic J. et al., Therapy With Botulinum Toxin, Marcel Dekker, Inc., (1994), page 5.
  • Botulinum toxin type A can be obtained by establishing and growing cultures of Clostridium botulinum in a fermenter and then harvesting and purifying the fermented mixture in accordance with known procedures. All the botulinum toxin serotypes are initially synthesized as inactive single chain proteins which must be cleaved or nicked by proteases to become neuroactive. The bacterial strains that make botulinum toxin serotypes A and G possess endogenous proteases and serotypes A and G can therefore be recovered from bacterial cultures in predominantly their active form. In contrast, botulinum toxin serotypes C1, D and E are synthesized by nonproteolytic strains and are therefore typically unactivated when recovered from culture. Serotypes B and F are produced by both proteolytic and nonproteolytic strains and therefore can be recovered in either the active or inactive form. However, even the proteolytic strains that produce, for example, the botulinum toxin type B serotype only cleave a portion of the toxin produced. The exact proportion of nicked to unnicked molecules depends on the length of incubation and the temperature of the culture. Therefore, a certain percentage of any preparation of, for example, the botulinum toxin type B toxin is likely to be inactive, possibly accounting for the known significantly lower potency of botulinum toxin type B as compared to botulinum toxin type A. The presence of inactive botulinum toxin molecules in a clinical preparation will contribute to the overall protein load of the preparation, which has been linked to increased antigenicity, without contributing to its clinical efficacy. Additionally, it is known that botulinum toxin type B has, upon intramuscular injection, a shorter duration of activity and is also less potent than botulinum toxin type A at the same dose level.
  • High quality crystalline botulinum toxin type A can be produced from the Hall A strain of Clostridium botulinum with characteristics of 3 x 107 U/mg, an A260/A278 of less than 0.60 and a distinct pattern of banding on gel electrophoresis. The known Schantz process can be used to obtain crystalline botulinum toxin type A, as set forth in Schantz, E. J., et al., Properties and use of Botulinum toxin and Other Microbial Neurotoxins in Medicine, Microbiol Rev. 56; 80-99:1992. Generally, the botulinum toxin type A complex can be isolated and purified from an anaerobic fermentation by cultivating Clostridium botulinum type A in a suitable medium. The known process can also be used, upon separation out of the non-toxin proteins, to obtain pure botulinum toxins, such as for example: purified botulinum toxin type A with an approximately 150 kDa molecular weight with a specific potency of 1-2 x 108 LD50 U/mg or greater; purified botulinum toxin type B with an approximately 156 kDa molecular weight with a specific potency of 1-2 x 108 LD50 U/mg or greater; and purified botulinum toxin type F with an approximately 155 kDa molecular weight with a specific potency of 1-2 x 107 LD50 U/mg or greater.
  • Botulinum toxins and/or botulinum toxin complexes can be obtained from List Biological Laboratories, Inc., Campbell, Calif.; the Centre for Applied Microbiology and Research, Porton Down, U.K.; Wako (Osaka, Japan), Metabiologics (Madison, Wis.) as well as from Sigma Chemicals of St Louis, Mo. Pure botulinum toxin (150 kDa) can also be used to prepare a pharmaceutical composition.
  • A commercially available botulinum toxin containing pharmaceutical composition is sold under the trademark BOTOX® (available from Allergan, Inc., of Irvine, Calif.). BOTOX® consists of a purified botulinum toxin type A complex, albumin and sodium chloride packaged in sterile, vacuum-dried form. The botulinum toxin type A is made from a culture of the Hall strain of Clostridium botulinum grown in a medium containing N-Z amine and yeast extract. The botulinum toxin type A complex is purified from the culture solution by a series of acid precipitations to a crystalline complex consisting of the active high molecular weight toxin protein and an associated hemagglutinin protein. The crystalline complex is re-dissolved in a solution containing saline and albumin and sterile filtered (0.2 microns) prior to vacuum-drying. The vacuum-dried product is stored in a freezer at or below -5°C. BOTOX® can be reconstituted with sterile, non-preserved saline prior to intramuscular injection. Each vial of BOTOX® contains about 100 units (U) of Clostridium botulinum toxin type A purified neurotoxin complex, 0.5 milligrams of human serum albumin and 0.9 milligrams of sodium chloride in a sterile, vacuum-dried form without a preservative.
  • To reconstitute vacuum-dried BOTOX®, sterile normal saline without a preservative (0.9% sodium chloride injection) is used by drawing up the proper amount of diluent in the appropriate size syringe. Because BOTOX® may be denatured by bubbling or similar violent agitation, the diluent is gently injected into the vial. For sterility reasons BOTOX® is usually administered within four hours after the vial is removed from the freezer and reconstituted. During these four hours, reconstituted BOTOX® can be stored in a refrigerator at about 2°C to about 8°C. Reconstituted, refrigerated BOTOX® has been reported to retain its potency for at least about two weeks (Neurology, 48:249-53:1997).
  • It has been reported that botulinum toxin type A has been used in clinical settings as follows: use of BOTOX® for intramuscular injection (multiple muscles) to treat cervical dystonia; use of BOTOX® for intramuscular injection (e.g. procerus muscle and/or corrugator supercihii muscles) to treat glabellar lines (brow furrows); use of BOTOX® to treat constipation by intrasphincter injection of the puborectalis muscle; use of BOTOX® for intramuscular injection to treat blepharospasm by injecting the lateral pre-tarsal orbicularis oculi muscle of the upper lid and the lateral pre-tarsal orbicularis oculi of the lower lid; use of BOTOX® for intramuscular injection (e.g. extraocular muscles) to treat strabismus, the amount injected varying based upon both the size of the muscle to be injected and the extent of muscle paralysis desired (i.e. amount of diopter correction desired); use of BOTOX® to treat upper limb spasticity following stroke by intramuscular injections, for example by injection into one or more of five different upper limb flexor muscles, as follows: (a) flexor digitorum profundus (e.g. 7.5 U to 30 U), (b) flexor digitorum sublimes (e.g. 7.5 U to 30 U), (c) flexor carpi ulnaris (e.g. 10 U to 40 U), (d) flexor carpi radialis (e.g. 15 U to 60 U), and (e) biceps brachii (e.g. 50 U to 200 U); use of BOTOX® to treat migraine, for example by pericranial injection symmetrically into glabellar, frontalis and temporalis muscles, or for example by injection into frontalis, corrugator, procerus, occipitalis, temporalis, trapezius and cervical paraspinal muscle groups, as a prophylactic treatment of migraine compared to vehicle as measured by decreased measures of migraine frequency, maximal severity, associated vomiting and/or acute medication use over a three month period following injection; and use of BOTOX® to treat detrusor overactivity associated with a neurological condition, for example by injection of 200 U into the detrusor muscle.
  • Clinical effects of peripheral intramuscular botulinum toxin type A are usually seen within one week of injection. The typical duration of symptomatic relief from a single intramuscular injection of botulinum toxin type A averages about three months, although significantly longer periods of therapeutic activity have been reported.
  • The success of botulinum toxin type A to treat a variety of clinical conditions has led to interest in other botulinum toxin serotypes. Two commercially available botulinum type A preparations for use in humans include BOTOX® available from Allergan, Inc., of Irvine, Calif., and DYSPORT® available from Beaufour Ipsen, Porton Down, England. A Botulinum toxin type B preparation (MYOBLOC®) is available from Elan Pharmaceuticals of San Francisco, Calif.
  • U.S. 2011/0052636 discloses a method of treating premature ejaculation in which botulinum toxin is administered to the penis.
  • SUMMARY
  • The present invention meets the need of prolongation of climax time in a a safe and effective manner.
  • An aspect of the present invention is botulinum toxin for use in a method of treating premature ejaculation, the method comprising the step of locally administering a therapeutically effective amount of botulinum toxin to the dorsal base of the penis of the patient by at least two injections performed bilaterally on both sides of the midline of the dorsal base.
  • The botulinum neurotoxin can be selected from the group consisting of botulinum neurotoxin types A, B, C, D, E, F and G, and is preferably botulinum neurotoxin type A. Various ranges/amount of botulinum neurotoxin can be therapeutically administered in accordance with the teachings of the present disclosure, for example, botulinum toxin can be administered in an amount of from about 1 unit to about 20,000 units, dependent, of course, on the potency of the botulinum toxin type utilized and its method of administration (e.g. an amount of botulinum toxin contained in a slow-release implant or pulsatile implant can be many times greater than an amount of botulinum toxin that is administered directly and at once, rather than slowly released from an implant). Exemplary useful amounts for a botulinum neurotoxin type A or type B can be from about 1 unit to about 2500 units, or from about 10 to about 15,000 units, or from about 25 to about 1000 units respectively, or an amount or range therebetween.
  • DRAWINGS
    • Figure 1: Injection sites proximally at the dorsal base of the penis.
    • Figure 2: Injection sites at the perineum and the base of the penis into the bulbospongiosus muscles.
    DESCRIPTION
  • In certain embodiments the botulinum toxin is a botulinum toxin type A. The botulinum toxin can be administered in an amount between about 1 unit and about 10,000 units and premature ejaculation and/or prolongation of climax time can be alleviated for between about 2 weeks and about 6 months. In particular examples, premature ejaculation and/or prolongation of climax time can be alleviated from about 2 months to about 6 months, or from about 4 to about 6 months.
  • The botulinum neurotoxin is injected into at least two penile locations, and in some examples at least three penile locations. In certain embodiments, injection is into the area between the Bucks fascia and the Tunica albuginea, in proximity to the pudendal nerve. Exemplary amounts are from about 1 to about 2500 units of a botulinum toxin type A, or any amount therebetween. When utilizing a botulinum toxin type B for example, the administered amount can be from between about 1 unit and about 25,000 units, or from about 100 units to about 20,000 units, or from about 500 units to about 15,000 units, or any amount therebetween.
  • In particular embodiments, additional administration of botulinum neurotoxin to the penis of the patient can be performed, for example from at least about 2 months to about 3 months or more after an initial administration of botulinum neurotoxin to the penis.
  • In particular embodiments, local administration of the botulinum neurotoxin type A is from about 1 unit to about 500 units, per injection site, per patient visit. In certain embodiments the local administration of botulinum toxin type A for treating premature ejaculation is at a dose of about 1 unit, about 2 units, about 3 units, about 4 units, about 5 units, about 6.25 units, about 10 units, about 12.5 units, about 15 units, about 20 units, about 25 units, about 30 units, about 35 units, about 37.5 units, about 40 units, about 50 units, about 55 units, about 60 units, about 65 units, about 70 units, about 75 units, about 80 units, about 85 units, about 90 units, about 95 units, about 100 units, about 105 units, about 110 units, about 115 units, about 120 units, about 125 units, about 130 units, about 135 units, about 140 units, about 145 units, about 150 units, about 155 units, about 160 units, about 165 units, about 170 units, about 175 units, about 180 units, about 185 units, about 190 units, about 195 units, or about 200 units, per injection site, per patient visit.
  • In particular embodiments, additional injection locations include the bulbospongiosus muscle.
  • Administration of botulinum neurotoxin can be intramuscular, subcutaneous, subdermal, intradermal or by implant. In particular embodiments, the botulinum neurotoxin is type A or type B. The pudendal nerve can be targeted, thereby prolonging the climax time in the patient.
  • In certain embodiments an appropriate needle for botulinum toxin injection include needles of 30-guage or smaller, preferably from about 23-gauge to about 25-gauge, and the area is preferably cleaned, such as with alcohol, before injection. Local anesthetic cream, general anesthesia, sedation or any known be useful anesthetic may be utilized, and may be necessary, depending upon the particular patient (some patients being more sensitive than others) undergoing treatment. In particular examples, topical use of an anesthetic cream, such as, for example benzocaine, butamben, dibucaine, lidocaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, and tetracaine can be applied before administration of the botulinum toxin via a needle.
  • In some instances, the dosage of botulinum neurotoxin administered can be increased until achieving the desired effect (e.g. until the patient is satisfied with the resultant delay in ejaculation). In a particular embodiment, a first dosage can be from about 10 units to about 75 units of a botulinum toxin, or from about 25 units to about 50 units of a botulinum toxin, such as BOTOX®. If unsatisfactory results are observed, treatment dosage can be increased, as determined by the medical practitioner's evaluation of the particular case at hand, the dosage, for example, being increased up to about 100 or about 200 units of a botulinum toxin. In such instances, the time between administration of increasing dosages of botulinum toxin can be about 3 weeks, preferably about 1 month and most preferably about 2 months.
  • The age range of patients can be from about 18 years old to about 75 years old, more particularly, from about 18 years old to about 40 years old, and even more particularly, from about 18 years old to about 30 years old. In particular instances, the patient has tried various previous treatments that have not been found to satisfactorily treat the patient's premature ejaculation.
  • In some instances premature ejaculation can be experienced even after the beginning of sexual intercourse, that this, even if a patient is able to penetrate their partner (i.e. not ejaculate prior to penetration), ejaculation prematurely follows. In such instances, it is the time period between penetration and ejaculation that considered to be too short, and accordingly prolongation of climax time, here increasing the time from which sexual intercourse begins to the time of ejaculation, is desired. In particular non-limiting examples, a patient may be considered to suffer from premature ejaculation if ejaculation is achieved after from about 10 seconds to about 15 minutes after penetration, from about 15 seconds to about 10 minutes after penetration or from about 30 seconds to about 5 minutes after penetration. In particular cases, a patient may be considered to suffer from premature ejaculation if ejaculation is achieved after from about 10 seconds to about 3 minutes after penetration, from about 25 seconds to about 2 minutes after penetration or from about 30 seconds to about 1 minute after penetration.
  • The patient may have previously partaken in regimens for treating their premature ejaculation or for prolongation of their climax time. Exemplary regiments can include taking a selective serotonin reuptake inhibitor, such as fluoxetine or paroxetine, for example. Other approaches that may have been tried include application of topical anesthetics, such as lidocaine 5% cream, applied to the penis before intercourse. Such approaches can, if desired, be combined with the use of botulinum toxin order to treat premature ejaculation or for prolongation of climax time.
  • In particular embodiments the botulinum neurotoxin is administered on an as-needed basis. Dosing will be determined for, and be particular to, the patient/particular presentation of premature ejaculation, with non-limiting, exemplary amounts provided herein. For example, duration of effect after botulinum administration can be up to about 4 months after administration. In particular instances, the duration of effect after botulinum administration can be from about 2 days to about 3 months after botulinum administration. Shorter duration of effects can be associated with a botulinum toxin having a short acting profile/duration of effect, such as botulinum toxin type E, relative to another botulinum toxin, such as a botulinum toxin type A, for example.
  • The present invention includes within its scope: (a) a botulinum neurotoxin complex as well as a pure botulinum neurotoxin obtained or processed by bacterial culturing, toxin extraction, concentration, preservation, freeze drying and/or reconstitution and; (b) modified or recombinant botulinum neurotoxin, that is botulinum neurotoxin that has had one or more amino acids or amino acid sequences deliberately deleted, modified or replaced by known chemical/biochemical amino acid modification procedures or by use of known host cell/recombinant vector recombinant technologies, as well as derivatives or fragments of botulinum neurotoxins so made, and includes botulinum neurotoxins with one or more attached non-native targeting moieties for a cell surface receptor present on a cell.
  • Preferably, because of its clinical history in successfully treating a number of indications, botulinum type A or botulinum toxin type B is employed, although botulinum toxin type B is used with a larger protein load, as compared to type A toxin. A botulinum toxin type A for use according to the present invention can be a complex of toxin and non-toxin proteins, which together comprise a total molecular weight of up to about 900 kDa. Dosage ranges and amounts, like any pharmaceutical, are based upon size, age and health of the patient, as well as upon the particular commercial preparation of the botulinum toxin used. As known in the art, therapeutic use of botulinum toxins is tailored to the particular patient that is presented for treatment, e.g. to treat premature ejaculation. A botulinum toxin type B for use according to the present invention can be a pure toxin or complex of toxin and non-toxin proteins, which is used at a dose of between about 50 and about 20,000 units. Other botulinum toxin serotypes may be used in proportion to the dosages and concentrations exemplified herein, according to their respective levels of biological activity. For example, most units listed in the instant disclosure are of BOTOX®, but different serotypes or strains of a botulinum toxin may be used, and different amounts may be administered. For example, about 3-4 times of DYSPORT® (a botulinum toxin type A complex available from Ipsen Inc.) than an amount of BOTOX® may be utilized; about 40-50 times of NEUROBLOC®/MYOBLOC® (a botulinum toxin type B available from Solstice Neurosciences) than an amount of BOTOX® may be utilized; and about equivalent amounts, in units, of XEOMIN® (pure botulinum toxin type A, by Merz Pharma) relative to BOTOX® units can be utilized, to achieve a desired therapeutic effect, respectively. The present invention also encompasses concurrent or serial administration of a mixture of two or more of the above neurotoxins to effectively treat a patient with premature ejaculation.
  • Definitions
  • As used herein, the words or terms set forth below have the following definitions:
  • "About" or "approximately" as used herein means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, (i.e., the limitations of the measurement system). For example, "about" can mean within 1 or more than 1 standard deviation, per practice in the art. Where particular values are described in the application and claims, unless otherwise stated, the term "about" means within an acceptable error range for the particular value.
  • "Active pharmaceutical ingredient" (API) means an ingredient that exerts an effect upon or after administration to a subject or patient. API's can include, for example, botulinum toxins, and the like.
  • "Administration" or "to administer" means the step of giving (i.e. administering) a pharmaceutical composition to a subject, or alternatively a subject receiving a pharmaceutical composition. The pharmaceutical compositions disclosed herein can be locally administered by various methods. For example, intramuscular, intradermal, subcutaneous administration, and implantation (for example, of a slow-release device such as polymeric implant) can all be appropriate routes of administration.
  • "Alleviating" means a reduction in the occurrence of any symptom or cause of a condition or disorder. Thus, alleviating includes some reduction, significant reduction, near total reduction, and total reduction.
  • "Biological activity" describes the beneficial or adverse effects of a drug on living matter. When a drug is a complex chemical mixture, this activity is exerted by the substance's active ingredient but can be modified by the other constituents. Biological activity can be assessed as potency or as toxicity by an in vivo LD50 or ED50 assay, or through an in vitro assay such as, for example, cell-based potency assays as described in U.S. 2010/0203559 and U.S. 2010/0233802 .
  • "Botulinum toxin" means a neurotoxin produced by Clostridium botulinum, as well as a botulinum toxin (or the light chain or the heavy chain thereof) made recombinantly by a non-Clostridial species. The phrase "botulinum toxin", as used herein, encompasses the botulinum toxin serotypes A, B, C, D, E, F and G, and their subtypes and any other types of subtypes thereof, or any re-engineered proteins, analogs, derivatives, homologs, parts, sub-parts, variants, or versions, in each case, of any of the foregoing. "Botulinum toxin", as used herein, also encompasses a "modified botulinum toxin". Further "botulinum toxin" as used herein also encompasses a botulinum toxin complex, (for example, the 300, 600 and 900 kDa complexes), as well as the neurotoxic component of the botulinum toxin (150 kDa) that is unassociated with the complex proteins.
  • "Climax baseline time" is the pre-treatment climax time of a patient, that is, the time or average time that it takes for a patient to climax after becoming sexually aroused.
  • "Climax time" or "ejaculation time" is the time between the start of sexual intercourse (i.e. penetration of the partner) and ejaculation (i.e. when climax is achieved).
  • "Clostridial neurotoxin" means a neurotoxin produced from, or native to, a Clostridial bacterium, such as Clostridium botulinum, Clostridium butyricum or Clostridium beratti, as well as a Clostridial neurotoxin made recombinantly by a non-Clostridial species.
  • "Light chain" means the light chain of a botulinum neurotoxin. It has a molecular weight of about 50 kDa, and can be referred to as the L chain, L, or as the proteolytic domain (amino acid sequence) of a botulinum neurotoxin.
  • "Heavy chain" means the heavy chain of a botulinum neurotoxin. It has a molecular weight of about 100 kDa and can be referred to as the H chain, or as H.
  • HC means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the carboxyl end segment of the H chain, or the portion corresponding to that fragment in the intact H chain. It is believed to be immunogenic and to contain the portion of the natural or wild type botulinum neurotoxin involved in high affinity, presynaptic binding to motor neurons.
  • HN means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the amino end segment of the H chain, or the portion corresponding to that fragment in the intact in the H chain. It is believed to contain the portion of the natural or wild type botulinum neurotoxin involved in the translocation of the L chain across an intracellular endosomal membrane.
  • LHN or L-HN means a fragment derived from a botulinum neurotoxin that contains the L chain, or a functional fragment thereof coupled to the HN domain It can be obtained from the intact botulinum neurotoxin by proteolysis, so as to remove or to modify the HC domain.
  • "Implant" means a controlled release (e.g., pulsatile or continuous) composition or drug delivery system.
  • "Local administration" means direct administration of a pharmaceutical at or to the vicinity of a site on or within an animal body, at which site a biological effect of the pharmaceutical is desired, such as via, for example, intramuscular injection, intradermal injection, subdermal injection, subcutaneous injection, and placement of an implant for administration of the neurotoxin. Local administration excludes systemic routes of administration, such as intravenous or oral administration.
  • "Modified botulinum toxin" means a botulinum toxin that has had at least one of its amino acids deleted, modified, or replaced, as compared to a native botulinum toxin. Additionally, the modified botulinum toxin can be a recombinantly produced neurotoxin, or a derivative or fragment of a recombinantly made neurotoxin. A modified botulinum toxin retains at least one biological activity of the native botulinum toxin, such as, the ability to bind to a botulinum toxin receptor, or the ability to inhibit neurotransmitter release from a neuron. One example of a modified botulinum toxin is a botulinum toxin that has a light chain from one botulinum toxin serotype (such as serotype A), and a heavy chain from a different botulinum toxin serotype (such as serotype B). Another example of a modified botulinum toxin is a botulinum toxin coupled to a neurotransmitter, such as substance P.
  • "Mutation" means a structural modification of a naturally occurring protein or nucleic acid sequence. For example, in the case of nucleic acid mutations, a mutation can be a deletion, addition or substitution of one or more nucleotides in the DNA sequence. In the case of a protein sequence mutation, the mutation can be a deletion, addition or substitution of one or more amino acids in a protein sequence. For example, a specific amino acid comprising a protein sequence can be substituted for another amino acid, for example, an amino acid selected from a group which includes the amino acids alanine, aspargine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, tyrosine or any other natural or non-naturally occurring amino acid or chemically modified amino acids. Mutations to a protein sequence can be the result of mutations to DNA sequences that when transcribed, and the resulting mRNA translated, produce the mutated protein sequence. Mutations to a protein sequence can also be created by fusing a peptide sequence containing the desired mutation to a desired protein sequence.
  • "Neurotoxin" includes Clostridial neurotoxins both as pure toxin and complexed with one to more non-toxin, toxin associated proteins, whether made by the native Clostridial bacterium or by recombinant means in a non-Clostridial species. "Botulinum neurotoxin" means non-complexed botulinum neurotoxin (i.e. pure botulinum neurotoxin molecule having a molecular weight of about 150 kDa) or as a complex (i.e. having a molecular weight of about 300 to about 900 kDa weight complex comprising a neurotoxin molecule and one or more associated non-toxic molecules), and excludes botulinum toxins which are not neurotoxins such as the cytotoxic botulinum toxins C2 and C3, but can include recombinantly made, hybrid, modified, and chimeric botulinum toxins.
  • "Patient" means a human subject receiving medical care from a physician.
  • "Pharmaceutical composition" means a composition comprising an active pharmaceutical ingredient, such as, for example, a botulinum toxin, and at least one additional ingredient, such as, for example, a stabilizer or excipient or the like. A pharmaceutical composition is therefore a formulation which is suitable for diagnostic or therapeutic administration to a subject, such as a human patient. The pharmaceutical composition can be, for example, in a lyophilized or vacuum dried condition, a solution formed after reconstitution of the lyophilized or vacuum dried pharmaceutical composition, or as a solution or solid which does not require reconstitution.
  • "Prolongation of climax time" means an increase in time (increase in climax baseline time) from which a patient becomes sexually aroused to the time of sexual climax (i.e. orgasm). In one aspect, "treating premature ejaculation" means increasing the time between the beginning of sexual arousal of a patient and ejaculation by the patient; and in particular instances, it can mean increasing the time from which sexual intercourse begins to the time of ejaculation.
  • "Therapeutically effective amount," as used herein, means an amount of botulinum toxin type A, B, C, D, E, F or G that ameliorates premature ejaculation.
  • "Treating" means to alleviate (or to eliminate) at least one symptom, either temporarily or permanently. Here, this includes increasing the time (i.e. prolongation of climax time) it takes a patient to reach climax after sexual arousal. In a particular example, climax time is the time between the start of intercourse and the time at which climax is achieved.
  • "Variant" means a clostridial neurotoxin, such as wild-type botulinum toxin serotype A, B, C, D, E, F or G, that has been modified by the replacement, modification, addition or deletion of at least one amino acid relative to wild-type botulinum toxin, which is recognized by a target cell, internalized by the target cell, and catalytically cleaves a SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) protein in the target cell.
  • An example of a variant neurotoxin component can comprise a variant light chain of a botulinum toxin having one or more amino acids substituted, modified, deleted and/or added. This variant light chain may have the same or better ability to prevent exocytosis, for example, the release of neurotransmitter vesicles. Additionally, the biological effect of a variant may be decreased compared to the parent chemical entity. For example, a variant light chain of a botulinum toxin type A having an amino acid sequence removed may have a shorter biological persistence than that of the parent (or native) botulinum toxin type A light chain.
  • "Vehicle" or "reconstitution vehicle" means a liquid composition that can be used to reconstitute a solid botulinum formulation into a liquid botulinum pharmaceutical composition.
  • "Wild type neuronal binding moiety" means that portion of a neurotoxin which is native to the neurotoxin and which exhibits a specific binding affinity for a receptor on a neuron. Thus, wild type or native neuronal binding moiety excludes a binding moiety which is not native to the neurotoxin.
  • Methods of treatment
  • In at least one embodiment, botulinum toxin is injected locally: (i) proximally at the dorsal base of the penis (similar to penile nerve block approach); and (ii) additionally by pelvi-perianal administration into the bulbospongiosus muscle.
  • Botulinum toxin can be injected to block the nerve pathways through the pudendal nerve. Reduced sensory signaling can reduce the trigger of the ejaculatory reflex, and as ejaculation is a spinal cord reflex, inhibiting the stereotyped rhythmic contractions of these muscles with the injection of botulinum toxin can have a beneficial effect in treating premature ejaculation.
  • The penis is innervated by the pudendal nerve and cavernous nerves. The pudendal nerve eventually divides into the right and left dorsal nerves of the penis that pass under the pubis symphysis to travel just below the Buck fascia close to the arteries. The pudendal nerves supply somatic motor and sensory innervation to the penis. The cavernous nerves are a combination of parasympathetic and visceral afferent fibers and provide the nerve supply to the erectile tissue. The cavernous nerves run in the crus and corpora of the penis, primarily dorsomedial to the deep penile arteries.
  • In the present invention, local administration of a botulinum toxin is provided wherein the right and left dorsal penile nerves can be blocked proximally to the base of the penis.
  • In exemplary embodiments, the area that is to receive the botulinum neurotoxin administration is first cleaned utilizing alcohol, such as by utilizing an alcohol wipe, for example. Local anesthetic (as disclosed herein) is then applied to the cleaned area. The anesthetic can be applied topically with local sterile single use local anesthetic (LA) gel or cream (eg, lidocaine gel, cream) and, when ready, the injection sites can be sterilized.
  • An appropriate sized needle (e.g. 22-25 gauge) should be used for injection into the penis.
  • In at least one embodiment, the botulinum toxin is injected bilaterally through the fascia into the pear shaped spaces on each side of the suspensory ligament. This avoids mid-line injection and therefore potential damage to the dorsal vessels and provides increased chance of diffusion into the nerves to block them. The membranous layer of superficial fascia and the suspensory ligament suspended from the symphysis pubis of the penis, fuses with the deep penile (Buck's) fascia (under which pass the dorsal nerves, arteries and veins, and the penile muscle fibers part of Tunica Albuginea are located). Injection of botulinum toxin is made bilaterally on either side of the midline, avoiding injecting into the superficial dorsal penile vein (see Figure 1). The site of insertion of the needle is shown passing through the membranous layer of the superficial fascia and then through the thicker Bucks fascia. The needle can be directed to a depth of about 0.5 cm or until loss of resistance is felt to suggest that the tip of the needle is within the Buck fascia. For each injection site a test aspiration can be done to ensure that there was no accidental puncture of an artery, vein or the corpus cavernosum or corpus spongiosum. In certain embodiments, for each local administration, the dose of botulinum toxin is slowly injected to infiltrate the area of the penile nerve and smooth muscle fibers of the Bulbospongiosus part of tunica albuginea.
  • Additionally, botulinum toxin may be injected at sites at the perineum and the base of the penis into the bulbospongiosus muscles. Before injection, the scrotum is lifted up to provide an opportunity to identify the base of the penis in the area above the anus and the transverse line across in front of the ischial tuberosities at the sides. The injection is made close to the scrotal base to avoid the anal sphincter muscle. The injection sites can first be aneasthesized topically with local sterile single use local anesthetic (LA) gel or cream (eg, lidocaine gel or cream) applied gently topically and, when ready the injection sites can be sterilized. An appropriate sized needle (e.g. 22-25 gauge) can be used for injection into the penis. Injection is made bilaterally on either side of the midline of the penile base. The site of insertion of the needle is shown passing through the membranous layer of the deep fascia which covers the nerves and muscles of the perineum (pudendus nerve, ischiocavernous and bulbospongiosus muscles) (Figure 2). For each injection site a test aspiration can be done to ensure that there was no accidental puncture of an artery, vein or the corpus cavernosum or corpus spongiosum. In certain embodiments, for each local administration, the dose of botulinum toxin is slowly injected to infiltrate the area of the penile nerve and smooth muscle fibers of the Bulbospongiosus.
  • In certain embodiments the patient is observed for at least 60 minutes post-injection. Prior to leaving the site, patients can be checked to see if they experience any adverse events post-treatment.
  • In certain embodiments, post-procedurally, the patient is instructed not to engage in sexual activity for the following 48 hours, and if edema and/or inflammation is observed, a cold compress or ice pack may be applied. Typically, patients observe effects (e.g. delaying of previously premature ejaculation) within about 48 to about 72 hours, with full results (maximum delay) usually observed after about 3 weeks. The following are non-limiting examples where patient's suffering from premature ejaculation are treated.
  • EXAMPLES
  • The following examples illustrate embodiments and aspects of the present invention and are not intended to limit the scope of the present invention.
  • Example 1
  • Treatment of premature ejaculation in three cohorts with escalating doses of either a total dose of 25 U or a total dose of 50 U of botulinum toxin type A (BOTOX).
  • The dilution for the first 25 U total dose cohort is a vial of BOTOX 100 U diluted in 4 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 25 U/mL. (a) For the 25 U total dose cohort, the patient with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e. 12.5 U per injection site) and a total injection volume of 1 mL (total dose of 25 U divided in 2 injection sites); (b) For the 25 U total dose cohort the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 6.25 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (i.e. 6.25 U per injection site) and a total injection volume of 1 mL (total dose of 25 U divided in 4 injection sites).
  • The dilution for the 50 U dose cohort is a vial of 100 U diluted in 2 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 50 U/mL. (a) For the 50 U total dose cohort the patients with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e. 25 U per injection site) and a total injection volume of 1 mL (total dose of 50 U divided in 2 injection sites); (b) For the 50 U total dose cohort the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 12.5 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (12.5 U per injection site) and a total injection volume of 1 mL (total dose of 50 U divided in 4 injection sites).
  • The dilution for the 100 U dose cohort is a vial of 100 U diluted in 1 mL with 0.9% non-preserved sterile saline i.e. with a final diluted concentration of 100 U/mL. (a) For the 100 U total dose cohort the patients with the first injection regimen (1) will be injected with 0.5 mL of the diluted BOTOX on each side of the midline into the dorsal base of the penis (i.e. 50 U per injection site) and a total injection volume of 1 mL (total dose of 100 U divided in 2 injection sites); (b) For the 100 U total dose cohort the patients with the second injection regimen (2) will be injected both according to regimen (1) but only with 0.25 mL of the diluted BOTOX on each side into the proximal dorsal base of the penis (i.e. 25 U per injection site), as well as 0.25 mL of the diluted BOTOX on each side of the midline into the bulbuspongiosus muscles of the perineum (25 U per injection site) and a total injection volume of 1 mL (total dose of 100 U divided in 4 injection sites).
  • Example 2 Treatment of Premature Ejaculation
  • A male patient is diagnosed with premature ejaculation after presenting with climax times of less than 15 seconds after beginning sexual intercourse. The patient is treated with an effective amount of a botulinum toxin, BOTOX®.
  • The doctor prepares the patient for injection by cleaning the patient's penis at the dorsal base with a skin disinfecting agent and subsequently applies topical lidocaine anesthesia cream or a local injection of lidocaine to anesthetize the area.
  • Treatment consists of two injections (bilaterally) on both sides of the midline at the dorsal base of the penis. The injections are through the Superficial Fascia, into the area between the Bucks Fascia and the Tunica Albuginea, and in the proximity of the Pudendal nerve. The Pudendal nerve is targeted.
  • 25 units of BOTOX® is injected at each injection site utilizing a 25 gauge needle for each injection, for a total of 50 units.
  • Post procedure, the patient is instructed not to have sex during the following 48 hours. If edema and/or inflammation is noted, appropriate application of an ice-pack to the area is recommended (applied not longer than about 15 minutes at a time).
  • At a follow up session 2 weeks later, the patient reports a doubling in his climax baseline time, with on some occasions lasting for about 10 to 15 minutes, and that both he and his partner are very satisfied with the resultant outcome of the treatment.

Claims (4)

  1. Botulinum toxin for use in a method of treating premature ejaculation, the method comprising the step of locally administering a therapeutically effective amount of botulinum toxin to the dorsal base of the penis of the patient by at least two injections performed bilaterally on both sides of the midline of the dorsal base.
  2. Botulinum toxin for use according to claim 1, wherein the botulinum toxin is botulinum toxin type A and the method comprises administering the botulinum toxin type A in an amount between 1 and 500 units per injection site.
  3. Botulinum toxin for use according to claim 1 or claim 2, wherein the botulinum toxin is administered into the area between the Bucks fascia and the Tunica albuginea, in proximity to the pudendal nerve.
  4. Botulinum toxin for use according to claim 3, wherein the method further comprises administering the botulinum toxin to the bulbospongiosus muscle.
EP13756969.5A 2012-08-24 2013-08-22 Botulinum toxin for treating premature ejaculation Active EP2888009B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261693192P 2012-08-24 2012-08-24
PCT/US2013/056088 WO2014031809A1 (en) 2012-08-24 2013-08-22 A neurotoxin for treating premature ejaculation

Publications (2)

Publication Number Publication Date
EP2888009A1 EP2888009A1 (en) 2015-07-01
EP2888009B1 true EP2888009B1 (en) 2018-11-07

Family

ID=49115587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756969.5A Active EP2888009B1 (en) 2012-08-24 2013-08-22 Botulinum toxin for treating premature ejaculation

Country Status (6)

Country Link
US (1) US9764010B2 (en)
EP (1) EP2888009B1 (en)
AU (1) AU2013305784B2 (en)
CA (1) CA2882892A1 (en)
TW (1) TW201414484A (en)
WO (1) WO2014031809A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147848B2 (en) 2009-08-26 2012-04-03 Allergan, Inc. Method for treating premature ejaculation with a botulinum neurotoxin
JP7423531B2 (en) 2017-12-27 2024-01-29 ヴィリリティ メディカル リミテッド ejaculation control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879462B1 (en) * 2004-12-21 2008-12-26 Sod Conseils Rech Applic USE OF BOTULINUM TOXIN FOR PROLONGED LOCAL INSENSITION
KR101604515B1 (en) 2008-03-14 2016-03-17 알러간, 인코포레이티드 Immuno-Based Botulinum Toxin Serotype A Activity Assays
KR102017327B1 (en) 2009-03-13 2019-09-03 알러간, 인코포레이티드 Cells Useful for Immuno-Based Botulinum Toxin Serotype A Activity Assays
US8147848B2 (en) 2009-08-26 2012-04-03 Allergan, Inc. Method for treating premature ejaculation with a botulinum neurotoxin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140065130A1 (en) 2014-03-06
US9764010B2 (en) 2017-09-19
AU2013305784A1 (en) 2015-03-19
CA2882892A1 (en) 2014-02-27
AU2013305784B2 (en) 2018-06-07
TW201414484A (en) 2014-04-16
WO2014031809A1 (en) 2014-02-27
EP2888009A1 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US10420823B2 (en) Method for treating premature ejaculation with a botulinum neurotoxin
AU2006259728B2 (en) Treatment of autoimmune disorders with a neurotoxin
US6776991B2 (en) Methods for treating priapism
EP2888009B1 (en) Botulinum toxin for treating premature ejaculation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180430

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180926

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1061377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013046329

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. GEVERS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DES NOYERS 11, 2000 NEUCHATEL (CH)

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1061377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013046329

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190822

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20220726

Year of fee payment: 10

Ref country code: GB

Payment date: 20220726

Year of fee payment: 10

Ref country code: DE

Payment date: 20220615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220713

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220901

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013046329

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A