EP2885654A1 - Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons - Google Patents

Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons

Info

Publication number
EP2885654A1
EP2885654A1 EP13748315.2A EP13748315A EP2885654A1 EP 2885654 A1 EP2885654 A1 EP 2885654A1 EP 13748315 A EP13748315 A EP 13748315A EP 2885654 A1 EP2885654 A1 EP 2885654A1
Authority
EP
European Patent Office
Prior art keywords
electronic circuit
circuit according
transistor
current
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13748315.2A
Other languages
German (de)
French (fr)
Inventor
Christophe DE LA TAILLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2885654A1 publication Critical patent/EP2885654A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting

Definitions

  • Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding photon detection device
  • the field of the invention is that of microelectronics and optoelectronics.
  • the invention relates to a technique relating to current conveyors used in many devices that can detect physical parameters related to the photons received.
  • the invention has many applications, such as for example in the medical field (and more particularly in the devices for performing positron emission tomographies, which are also called PET devices, acronym for "Positron Emission Tomography”). only in areas using photomultipliers or assimilable devices.
  • a photomultiplier comprises a photocathode which, when an incident photon comes into contact with it, releases, under the photoelectric effect, an electron. Such an electron is then directed to a succession of dynodes in order to be multiplied (via an avalanche phenomenon) to be able to perform measurements at the output of the photomultiplier.
  • Quantification of the energy received by a photomultiplier has an impact on the quality of tomographies obtained via a PET device.
  • the dynamic range characterizes the ratio of the maximum signal to the minimum signal (often the electronic noise or the single photon) and this ratio is a few thousand.
  • the current PET domain is looking for temporal accuracies of a few tens of pico-seconds (10 12 s) for a trigger threshold of a few photoelectrons and dynamic ranges of a few thousand photoelectrons.
  • This time precision requires bandwidths of the order of GHz and an amplification of the weakest signals of the order of a factor of 10 (20 dB).
  • ASICs integrated circuits
  • solid-state photodetectors or silicon photomultiplier SiPM (for "Silicon photomultipliers”
  • MPPC for "Multi-Pixel Photon Counter" which have sufficiently good intrinsic resolutions and limit the parasitic inductances, but their high capacity (a few hundred pF) requires amplifiers with low input impedance from which the use of current conveyors which make it possible to achieve this characteristic.
  • a difficulty encountered with current conveyors is to obtain a strong amplification while properly processing the strongest signals that tend to saturate the amplifier and thus distort the amplitude measurement.
  • a so-called low gain output, and a so-called high gain output which respectively feeds a so-called fast channel (or "Fast Shaper”, which makes it possible to obtain temporal information on the incident photons) and a so-called slow channel. (or "Slow Shaper”, which measures the charge of the photon or photons detected by the photomultiplier).
  • the invention in at least one embodiment, is intended in particular to overcome these various disadvantages of the state of the art.
  • one objective is to provide a technique for amplifying a current that does not use current mirror circuits and makes it possible to obtain two output voltages always directly from the current from the photodetector.
  • At least one embodiment of the invention also aims to provide such a technique that allows both to obtain precise temporal information on the first incident photons, as well as to obtain an accurate measurement of the energy level. received even at high current levels.
  • the present technique aims to best use the intrinsic performance of time and energy measurement of different types of photodetectors (conventional photomultipliers, or silicon) mentioned previously by the signal conditioning circuit.
  • an electronic circuit comprising a current conveyor connected to a load, said load providing at least a first and a second voltage output.
  • a current conveyor connected to a load, said load providing at least a first and a second voltage output.
  • said second voltage output has a so-called nonlinear behavior with respect to the intensity of the input current of said electronic circuit over a given range.
  • the circuit is not saturated, and allows, by its behavior, to achieve via said first and second output voltage accurate measurements.
  • the intensity of the input current is correlated with the photons received via a photomultiplier device, it is possible to carry out measurements accurate, regardless of the intensity of the input current, on data relating to the arrival time of the photons, as well as the level of energy received.
  • said first voltage output of said load is proportional to the intensity of the input current over the entire dynamic range of said input current (low gain output), and in that said second voltage output of said load is proportional to the intensity of the input current over a fraction of said dynamic range (high gain output).
  • said load comprises at least two resistors of distinct values, and an anti-saturation device connected in parallel with the resistor having the greatest value.
  • such a circuit has a simple architecture, which allows the current conveyor not to saturate and therefore to provide an output current always identical to the input current even for the largest signals, ensuring the accuracy of the load measurement . It avoids using current mirror circuits making current copies, not necessarily identical and which present more electronic noise.
  • such a circuit because of its simplicity (few components are necessary for the realization of the circuit) makes it possible to carry out the measurements of interest (relative to the arrival time of the photons, and the energy levels received) of faster than state-of-the-art techniques with bandwidth greater than GHz.
  • the ratio between said larger value and a value of the other resistance is at least equal to 5.
  • said ratio is a real number in the range [10; 20]. This ratio makes it possible to have a maximum amplification for the small signals corresponding to the first photons received and thus to be able to discriminate more easily on which optimizes the temporal precision.
  • such an electronic circuit comprises a first resistor having a value of 100 ohms, and a second resistor having a value of 1000 ohms. These values allow, in technology integrated, to minimize the parasitic capacitances, while allowing to provide a strong amplification. Such a circuit makes it possible to reach a bandwidth greater than GHz.
  • said anti-saturation device is a diode.
  • This nonlinear device has both a very strong compression (logarithmic) over a very large dynamic range while minimizing the parasitic capacitance which limits the bandwidth, essential for the accurate measurement of time ( ⁇ 10 ps)
  • said anti-saturation device comprises at least one transistor mounted diode.
  • said current conveyor comprises at least one transistor.
  • said transistor is a bipolar transistor of PNP or NPN type.
  • said transistor is mounted in common base.
  • said transistor is a P-channel or N-channel field effect transistor.
  • said transistor is mounted as a common gate.
  • said current conveyor comprises a plurality of transistors.
  • such a circuit comprises a negative feedback control circuit.
  • a photon detection device comprising an electronic circuit as mentioned above.
  • FIG. 1 shows an electronic circuit according to a first embodiment of the invention, in which a current conveyor comprises an NPN bipolar transistor which can also be replaced by an N MOS;
  • FIG. 2 shows an electronic circuit according to a second embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the PN P type or a PMOS;
  • FIG. 3 shows an electronic circuit according to a third embodiment of the invention, in which a current conveyor is made by a composite assembly of two super common base NPN transistors which can also be realized with combinations of N PNs. , NMOS, PN P or PMOS.
  • FIG. 1 shows an electronic circuit according to a first embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the NPN type.
  • the induced current / 'by such a device is generally not intense enough to be measured by conventional measuring devices.
  • the circuit of FIG. 1 makes it possible to amplify the current received while being able to deal with situations in which a large flux of photons is received by the photomultiplier device 101.
  • Such a circuit comprises a bipolar transistor NPN 103 (ie a current conveyor) mounted so that the base B is connected to a DC voltage source ("common base" mounting), the collector C is connected to an active load having the two terminals a and b, and the emitter E is connected to the output of the photomultiplier device 101 and a polarization device 102 (which is a current source).
  • a bipolar transistor NPN 103 ie a current conveyor mounted so that the base B is connected to a DC voltage source ("common base" mounting), the collector C is connected to an active load having the two terminals a and b, and the emitter E is connected to the output of the photomultiplier device 101 and a polarization device 102 (which is a current source).
  • such an active load comprises two resistors 104 and 105, the resistor 104 having a value greater than that of the resistor 105, and an anti-saturation device 106 connected in parallel with the resistor.
  • the measurements obtained at the level of the first output 107 enable the energy conveyed by the photons received by the photomultiplier device 101 to be determined quickly and precisely.
  • the measurements obtained at the second output 108 make it possible to determine the arrival time of the photons received by the photomultiplier device
  • the NPN type bipolar transistor can be replaced by an NMOS transistor.
  • FIG. 2 presents an electronic circuit according to a second embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the PNP type.
  • the current conveyor corresponds to a bipolar transistor PNP type mounted so that the base B 'is connected to ground, the collector C is connected to an active load having both terminals a and b, and the emitter E 'is connected to the output of the photomultiplier device 101 and to a polarization device 201.
  • the PNP bipolar transistor may be replaced by a PMOS transistor.
  • FIG. 3 presents an electronic circuit according to a third embodiment of the invention, in which a current conveyor is made by a composite assembly of two super common base NPN transistors.
  • the current conveyor corresponds to the combination of two NPN transistors 302, 303 mounted so that the emitter E of the NPN type bipolar transistor 302 is connected to ground, the collector C of the bipolar transistor of the type NPN 302 is connected to the base of the NPN type bipolar transistor 303, and to a biasing device 304, and the base B of the NPN type bipolar transistor 302 is connected to the emitter E of the NPN type bipolar transistor 303, to the output of the photomultiplier device 101, and a polarization device 301.
  • such a current conveyor may also be realized with combinations of NPN, NMOS, PNP or PMOS transistors.
  • the resistor 104 has a value of 1000 ohms and the resistor 105 has a value of 100 ohms.

Abstract

An electronic circuit comprising a current conveyor (103) connected to a load is provided, said load delivering at least one first voltage output (107) and one second voltage output (108). Such a circuit is noteworthy in that said second voltage output (108) has what is called a non-linear behaviour relative to the magnitude of the input current of said electronic circuit in a given range.

Description

Circuit électronique comprenant un convoyeur de courant agencé avec un dispositif anti-saturation, et dispositif de détection de photons correspondant  Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding photon detection device
1. DOMAINE DE L'INVENTION  1. DOMAIN OF THE INVENTION
Le domaine de l'invention est celui de la microélectronique et de l'optoélectronique.  The field of the invention is that of microelectronics and optoelectronics.
Plus précisément, l'invention concerne une technique relative aux convoyeurs de courant utilisés dans de nombreux dispositifs pouvant détecter des paramètres physiques liés aux photons reçus.  More specifically, the invention relates to a technique relating to current conveyors used in many devices that can detect physical parameters related to the photons received.
L'invention a de nombreuses applications, telles que par exemple dans le domaine médical (et plus particulièrement dans les dispositifs permettant de réaliser des tomographies par émission de positons, qui sont aussi appelés dispositifs PET, acronyme anglais pour « Positron Emission Tomography), ainsi que dans les domaines utilisant des photomultiplicateurs ou des dispositifs assimilables.  The invention has many applications, such as for example in the medical field (and more particularly in the devices for performing positron emission tomographies, which are also called PET devices, acronym for "Positron Emission Tomography"). only in areas using photomultipliers or assimilable devices.
2. ARRIÈRE-PLAN TECHNOLOGIQUE  2. TECHNOLOGICAL BACKGROUND
On s'attache plus particulièrement dans la suite de ce document à décrire la problématique existant dans le domaine des photomultiplicateurs, à laquelle ont été confrontés les inventeurs de la présente demande de brevet. L'invention ne se limite bien sûr pas à ce domaine particulier d'application, mais présente un intérêt pour toute technique d'amplification de courant devant faire face à une problématique proche ou similaire.  More particularly, in the rest of this document, the problem existing in the field of photomultipliers encountered by the inventors of the present patent application is described. The invention is of course not limited to this particular field of application, but is of interest for any current amplification technique to face a similar problem or similar.
Traditionnellement, un photomultiplicateur comprend une photocathode qui, lorsqu'un photon incident entre en contact avec celle-ci, libère, sous l'effet photoélectrique, un électron. Un tel électron est ensuite dirigé vers une succession de dynodes en vue d'être multiplié (via un phénomène d'avalanche) pour pouvoir effectuer des mesures en sortie du photomultiplicateur.  Traditionally, a photomultiplier comprises a photocathode which, when an incident photon comes into contact with it, releases, under the photoelectric effect, an electron. Such an electron is then directed to a succession of dynodes in order to be multiplied (via an avalanche phenomenon) to be able to perform measurements at the output of the photomultiplier.
Plus précisément, il est important de pouvoir déterminer précisément à la fois l'instant auquel un photon arrive sur la photocathode (et donc potentiellement d'ordonnancer les photons incidents), ainsi que de quantifier avec précision l'énergie véhiculée par les photons incidents.  More precisely, it is important to be able to precisely determine both the moment at which a photon arrives on the photocathode (and thus potentially to order the incident photons), as well as accurately quantify the energy carried by the incident photons.
En effet, plus on est capable de déterminer avec précision l'instant d'arrivé d'un photon, et plus on est capable de déterminer si deux photons sont arrivés simultanément. Ce critère est crucial, notamment dans le domaine médical où l'on cherche à identifier l'annihilation d'un positon via la détection de deux photons émis simultanément, qui s'échappent d'un patient, via l'utilisation d'au moins deux photomultiplicateurs positionnés à l'opposé l'un de l'autre (on considère que deux photons qui sont arrivés sur des photocathodes de photomultiplicateurs dans une telle configuration, avec un écart de l'ordre de la pico seconde sont signalés comme étant détectés simultanément). Indeed, the more we are able to accurately determine the arrival time of a photon, and the more we are able to determine if two photons have arrived simultaneously. This criterion is crucial, especially in the medical field where it is sought to identify the annihilation of a positon via the detection of two photons emitted simultaneously, which escape from a patient, via the use of at least one two photomultipliers positioned opposite each other (it is considered that two photons which arrived on photocathodes of photomultipliers in such a configuration, with a deviation of the order of one pico second are reported as being detected simultaneously ).
La quantification de l'énergie reçue par un photomultiplicateur a quant à elle un impact sur la qualité des tomographies obtenues via un dispositif PET. Plus la quantification est précise, et plus la qualité des tomographies obtenues est grande. La gamme dynamique caractérise le rapport du signal maximum au signal minimum (souvent le bruit électronique ou le photon unique) et ce rapport est de quelques milliers.  Quantification of the energy received by a photomultiplier has an impact on the quality of tomographies obtained via a PET device. The more precise the quantification, the higher the quality of the tomographies obtained. The dynamic range characterizes the ratio of the maximum signal to the minimum signal (often the electronic noise or the single photon) and this ratio is a few thousand.
Le domaine PET actuel recherche des précisions temporelles de quelques dizaines de pico-secondes (10 12 s) pour un seuil déclenchement de quelques photoélectrons et des gammes dynamiques de quelques milliers de photoélectrons. Cette précision temporelle requiert des bandes passantes de l'ordre du GHz et une amplification des plus faibles signaux de l'ordre d'un facteur 10 (20 dB). Ces bandes passantes élevées sont maintenant possibles à puissance raisonnable grâce aux progrès des circuits intégrés (ASICs), en particulier en technologie BiCMOS Silicium Germanium et au progrès des photodétecteurs « solid-state » (ou photomultiplicateur en silicium SiPM (pour « Silicon photomultipliers ») ou MPPC (pour « Multi-Pixel Photon Counter ») qui ont des résolutions intrinsèques suffisamment bonnes et limitent les inductances parasites. Par contre leur capacité élevée (quelques centaines de pF) nécessite des amplificateurs à faible impédance d'entrée d'où l'utilisation de convoyeurs de courants qui permettent de réaliser cette caractéristique. The current PET domain is looking for temporal accuracies of a few tens of pico-seconds (10 12 s) for a trigger threshold of a few photoelectrons and dynamic ranges of a few thousand photoelectrons. This time precision requires bandwidths of the order of GHz and an amplification of the weakest signals of the order of a factor of 10 (20 dB). These high bandwidths are now possible at reasonable power thanks to advances in integrated circuits (ASICs), especially in BiCMOS Silicon Germanium technology and the progress of solid-state photodetectors (or silicon photomultiplier SiPM (for "Silicon photomultipliers"). or MPPC (for "Multi-Pixel Photon Counter") which have sufficiently good intrinsic resolutions and limit the parasitic inductances, but their high capacity (a few hundred pF) requires amplifiers with low input impedance from which the use of current conveyors which make it possible to achieve this characteristic.
Une difficulté rencontrée avec les convoyeurs de courant est cependant d'obtenir une forte amplification tout en traitant convenablement les plus forts signaux qui tendent à saturer l'amplificateur et faussent donc la mesure d'amplitude.  A difficulty encountered with current conveyors, however, is to obtain a strong amplification while properly processing the strongest signals that tend to saturate the amplifier and thus distort the amplitude measurement.
On connaît, dans l'état de la technique, différents types de techniques permettant de résoudre ces deux problèmes simultanément. Une première technique décrite dans l'article « A front end read out chip for the OPERA scintillator tracker » de A. Lucotte et al. publié en 2004 dans la revue : « Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment », présente un circuit intégré spécialisé (i.e un ASIC, acronyme anglais de « Application-specific integrated circuit ») positionné en sortie d'un photomultiplicateur. Un tel circuit comprend un bloc de pré amplification et de correction de gain, comprenant des transistors et des circuits miroir de courant (visant à réaliser des copies de courant, en vue d'être utilisé séparément), qui permet d'amplifier un courant d'entrée d'un large facteur. Plus précisément, le bloc de pré amplification (« current preamplifier ») et de correction de gain fournit deux sortiesIn the state of the art, various types of techniques are known that make it possible to solve these two problems simultaneously. A first technique described in the article "A front end read out chip for the OPERA scintillator tracker" by A. Lucotte et al. published in 2004 in the journal: "Nuclear instruments and methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment ", presents a specialized integrated circuit (ie an ASIC, acronym for" Application-specific integrated circuit ") positioned at the output of a photomultiplier. Such a circuit comprises a pre-amplification and gain correction block, comprising transistors and current mirror circuits (intended to make current copies, for use separately), which amplifies a current of current. entry of a large factor. More precisely, the pre-amplification ("current preamplifier") and gain correction block provides two outputs
(une sortie dite de bas gain, et une sortie dite de haut gain), qui alimente respectivement un canal dit rapide (ou « Fast Shaper », qui permet l'obtention d'informations temporelles sur les photons incidents) et un canal dit lent (ou « Slow Shaper », qui mesure la charge du ou des photons détectés par le photomultiplicateur). (A so-called low gain output, and a so-called high gain output), which respectively feeds a so-called fast channel (or "Fast Shaper", which makes it possible to obtain temporal information on the incident photons) and a so-called slow channel. (or "Slow Shaper", which measures the charge of the photon or photons detected by the photomultiplier).
Cependant, un inconvénient de cette première technique est que la branche de miroir « Grand Gain » qui sature entraîne une distorsion sur la branche « bas gain » et donc une copie imparfaite du courant en provenance du détecteur. De plus ces miroirs rajoutent des capacités parasites qui réduisent la bande passante à faible puissance. Enfin, les copies de courant augmentent la consommation du circuit.  However, a disadvantage of this first technique is that the "Grand Gain" mirror branch which saturates causes distortion on the "low gain" branch and therefore an imperfect copy of the current coming from the detector. In addition, these mirrors add parasitic capacitances which reduce the bandwidth at low power. Finally, the current copies increase the consumption of the circuit.
Une deuxième technique utilisée dans le calorimètre à tuiles scintillantes A second technique used in the scintillating tile calorimeter
(Tilecal) du détecteur ATLAS au sein du LHC, et décrite dans l'article « the Tilecal 3-in-l PMT Base concept and the PMT block assembly» de Z. Ajaltouni et al., consiste à amplifier non un courant en sortie du photomultiplicateur, mais une tension (« voltage preamplifier ») en ayant converti le courant du détecteur sur une résistance passive (en général 50 ohm) Le comportement en saturation est alors excellent et il est facile d'attaquer simultanément les deux étages de mesure de charge et de temps, mais le rapport signal sur bruit pour les faibles signaux est bien moins bon car la résistance de 50 ohm domine le bruit électronique. I l faut alors utiliser un amplificateur très bas bruit qui consomme typiquement des dizaines de mW. (Tilecal) of the ATLAS detector within the LHC, and described in the article "The Tilecal 3-in-1 PMT Basic concept and the PMT block assembly" by Z. Ajaltouni et al., Consists in amplifying a current not output photomultiplier, but a voltage ("voltage preamplifier") having converted the detector current on a passive resistor (usually 50 ohm) The saturation behavior is excellent and it is easy to simultaneously attack the two stages of measurement. load and time, but the signal-to-noise ratio for weak signals is much worse because the 50 ohm resistor dominates the electronic noise. It is then necessary to use a very low noise amplifier which typically consumes tens of mW.
3. OBJECTIFS DE L'INVENTION L'invention, dans au moins un mode de réalisation, a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique. 3. OBJECTIVES OF THE INVENTION The invention, in at least one embodiment, is intended in particular to overcome these various disadvantages of the state of the art.
Plus précisément, dans au moins un mode de réalisation de l'invention, un objectif est de fournir une technique permettant d'amplifier un courant qui n'utilise pas de circuits de miroirs de courant et permet d'obtenir deux tensions de sortie toujours directement issues du courant provenant du photodétecteur.  More specifically, in at least one embodiment of the invention, one objective is to provide a technique for amplifying a current that does not use current mirror circuits and makes it possible to obtain two output voltages always directly from the current from the photodetector.
Au moins un mode de réalisation de l'invention a également pour objectif de fournir une telle technique qui permette à la fois d'obtenir des informations temporelles précises sur les premiers photons incidents, ainsi que d'obtenir une mesure précise du niveau d'énergie reçu, même à des niveaux de courant élevés.  At least one embodiment of the invention also aims to provide such a technique that allows both to obtain precise temporal information on the first incident photons, as well as to obtain an accurate measurement of the energy level. received even at high current levels.
En outre, dans au moins un mode de réalisation de l'invention, il est proposé une technique n'utilisant que peu de composants électroniques, et minimisant la puissance dissipée, permettant de limiter réchauffement du photodétecteur situé à proximité immédiate et très sensibleà la température.  Furthermore, in at least one embodiment of the invention, there is provided a technique using only few electronic components, and minimizing the power dissipated, to limit the temperature of the photodetector located in the immediate vicinity and very sensitive to temperature. .
La présente technique a pour objectif d'utiliser au mieux les performances intrinsèques de mesure de temps et d'énergie des différents types de photodétecteurs (photomultiplicateurs classiques, ou en silicium) mentionnés précédemment par le circuit de conditionnement du signal.  The present technique aims to best use the intrinsic performance of time and energy measurement of different types of photodetectors (conventional photomultipliers, or silicon) mentioned previously by the signal conditioning circuit.
4. EXPOSÉ DE L'INVENTION 4. PRESENTATION OF THE INVENTION
Dans un mode de réalisation particulier de l'invention, il est proposé un circuit électronique comprenant un convoyeur de courant relié à une charge, ladite charge fournissant au moins une première et une deuxième sortie en tension. Un tel circuit est remarquable en ce que ladite deuxième sortie en tension possède un comportement dit non linéaire par rapport à l'intensité du courant d'entrée dudit circuit électronique sur une plage donnée.  In a particular embodiment of the invention, there is provided an electronic circuit comprising a current conveyor connected to a load, said load providing at least a first and a second voltage output. Such a circuit is remarkable in that said second voltage output has a so-called nonlinear behavior with respect to the intensity of the input current of said electronic circuit over a given range.
Ainsi, quand bien même l'intensité du courant est élevée, le circuit n'est pas saturé, et permet, de par son comportement, de réaliser via lesdites première et deuxième sortie en tension des mesures précises.  Thus, even if the intensity of the current is high, the circuit is not saturated, and allows, by its behavior, to achieve via said first and second output voltage accurate measurements.
Notamment, lorsque l'intensité du courant d'entrée est corrélée aux photons reçus via un dispositif photomultiplicateur, il est possible de réaliser des mesures précises, quelle que soit l'intensité du courant d'entrée, sur des données relatives au temps d'arrivée des photons, ainsi que du niveau d'énergie reçu. In particular, when the intensity of the input current is correlated with the photons received via a photomultiplier device, it is possible to carry out measurements accurate, regardless of the intensity of the input current, on data relating to the arrival time of the photons, as well as the level of energy received.
Selon un aspect particulier de l'invention, pour un tel circuit électronique, ladite première sortie en tension de ladite charge est proportionnelle à l'intensité du courant d'entrée sur toute la gamme dynamique dudit courant d'entrée (sortie bas gain), et en ce que ladite deuxième sortie en tension de ladite charge est proportionnelle à l'intensité du courant d'entrée sur une fraction de ladite gamme dynamique (sortie haut gain).  According to a particular aspect of the invention, for such an electronic circuit, said first voltage output of said load is proportional to the intensity of the input current over the entire dynamic range of said input current (low gain output), and in that said second voltage output of said load is proportional to the intensity of the input current over a fraction of said dynamic range (high gain output).
Selon un aspect particulier de l'invention, ladite charge comprend au comprend au moins deux résistances de valeurs distinctes, et un dispositif anti-saturation monté en parallèle de la résistance possédant la plus grande valeur.  According to one particular aspect of the invention, said load comprises at least two resistors of distinct values, and an anti-saturation device connected in parallel with the resistor having the greatest value.
Ainsi, un tel circuit présente une architecture simple, qui permet au convoyeur de courant de ne pas saturer et donc de fournir un courant de sortie toujours identique au courant d'entrée même pour les plus grands signaux, garantissant la précision de la mesure de charge. Il évite d'utiliser des circuits de miroirs de courant réalisant des copies de courant, non nécessairement à l'identique et qui présentent davantage de bruit électronique. De plus, un tel circuit, de par sa simplicité (peu de composants sont nécessaires à la réalisation du circuit) permet de réaliser les mesures d'intérêt (relatives au temps d'arrivée des photons, et des niveaux d'énergie reçu) de manière plus rapide que les techniques de l'état de l'art en présentant une bande passante supérieure au GHz.  Thus, such a circuit has a simple architecture, which allows the current conveyor not to saturate and therefore to provide an output current always identical to the input current even for the largest signals, ensuring the accuracy of the load measurement . It avoids using current mirror circuits making current copies, not necessarily identical and which present more electronic noise. In addition, such a circuit, because of its simplicity (few components are necessary for the realization of the circuit) makes it possible to carry out the measurements of interest (relative to the arrival time of the photons, and the energy levels received) of faster than state-of-the-art techniques with bandwidth greater than GHz.
Selon un aspect particulier de l'invention, le rapport entre ladite plus grande valeur et une valeur de l'autre résistance est au moins égal à 5.  According to a particular aspect of the invention, the ratio between said larger value and a value of the other resistance is at least equal to 5.
Selon un aspect particulier de l'invention, ledit rapport est un nombre réel compris dans l'intervalle [10 ; 20]. Ce rapport permet d'avoir une amplification maximale pour les petits signaux correspondant aux premiers photons reçus et donc de pouvoir discriminer plus facilement dessus ce qui optimise la précision temporelle  According to one particular aspect of the invention, said ratio is a real number in the range [10; 20]. This ratio makes it possible to have a maximum amplification for the small signals corresponding to the first photons received and thus to be able to discriminate more easily on which optimizes the temporal precision.
Selon un aspect particulier de l'invention, un tel circuit électronique comprend une première résistance possédant une valeur de 100 ohms, et une deuxième résistance possédant une valeur de 1000 ohms. Ces valeurs permettent, en technologie intégrée, de minimiser les capacités parasites, tout en permettant de fournir une forte amplification. Un tel circuit permet d'atteindre une bande passante supérieure au GHz. According to a particular aspect of the invention, such an electronic circuit comprises a first resistor having a value of 100 ohms, and a second resistor having a value of 1000 ohms. These values allow, in technology integrated, to minimize the parasitic capacitances, while allowing to provide a strong amplification. Such a circuit makes it possible to reach a bandwidth greater than GHz.
Selon un aspect particulier de l'invention, ledit dispositif anti-saturation est une diode. Ce dispositif non linéaire présente à la fois une très forte compression (logarithmique) sur une très grande gamme dynamique tout en minimisant la capacité parasite qui limite la bande passante, essentielle à la mesure précise du temps (<10 ps) Selon un aspect particulier de l'invention, ledit dispositif anti-saturation comprend au moins un transistor monté en diode.  According to a particular aspect of the invention, said anti-saturation device is a diode. This nonlinear device has both a very strong compression (logarithmic) over a very large dynamic range while minimizing the parasitic capacitance which limits the bandwidth, essential for the accurate measurement of time (<10 ps) According to a particular aspect of the invention, said anti-saturation device comprises at least one transistor mounted diode.
Selon un aspect particulier de l'invention, ledit convoyeur de courant comprend au moins un transistor.  According to a particular aspect of the invention, said current conveyor comprises at least one transistor.
Selon un aspect particulier de l'invention, ledit transistor est un transistor bipolaire de type PNP ou de type NPN.  According to a particular aspect of the invention, said transistor is a bipolar transistor of PNP or NPN type.
Selon un aspect particulier de l'invention, ledit transistor est monté en base commune.  According to a particular aspect of the invention, said transistor is mounted in common base.
Selon un aspect particulier de l'invention, ledit transistor est un transistor à effet de champ de canal P ou de canal N.  According to a particular aspect of the invention, said transistor is a P-channel or N-channel field effect transistor.
Selon un aspect particulier de l'invention, ledit transistor est monté en grille commune.  According to a particular aspect of the invention, said transistor is mounted as a common gate.
Selon un aspect particulier de l'invention, ledit convoyeur de courant comprend une pluralité de transistors.  According to a particular aspect of the invention, said current conveyor comprises a plurality of transistors.
Selon un aspect particulier de l'invention, un tel circuit comprend un circuit de rétro-contrôle négatif.  According to a particular aspect of the invention, such a circuit comprises a negative feedback control circuit.
Dans un autre mode de réalisation de l'invention, il est proposé un dispositif de détection de photons comprenant un circuit électronique tel que mentionné précédemment.  In another embodiment of the invention, there is provided a photon detection device comprising an electronic circuit as mentioned above.
5. LISTE DES FIGURES  5. LIST OF FIGURES
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels : la figure 1 présente un circuit électronique selon un premier mode de réalisation de l'invention, dans lequel un convoyeur de courant comprend un transistor bipolaire de type NPN qui peut aussi être remplacé par un N MOS; la figure 2 présente un circuit électronique selon un deuxième mode de réalisation de l'invention, dans lequel un convoyeur de courant comprend un transistor bipolaire de type PN P ou un PMOS; Other features and advantages of the invention will appear on reading the following description, given by way of indicative and nonlimiting example, and the appended drawings, in which: FIG. 1 shows an electronic circuit according to a first embodiment of the invention, in which a current conveyor comprises an NPN bipolar transistor which can also be replaced by an N MOS; FIG. 2 shows an electronic circuit according to a second embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the PN P type or a PMOS;
la figure 3 présente un circuit électronique selon un troisième mode de réalisation de l'invention, dans lequel un convoyeur de courant est réalisé par un montage composite de deux transistors NPN « super common base » qui peut aussi être réalisé avec des combinaisons de N PN, NMOS, PN P ou PMOS.  FIG. 3 shows an electronic circuit according to a third embodiment of the invention, in which a current conveyor is made by a composite assembly of two super common base NPN transistors which can also be realized with combinations of N PNs. , NMOS, PN P or PMOS.
6. DESCRIPTION DÉTAILLÉE  6. DETAILED DESCRIPTION
Sur toutes les figures du présent document, les éléments et étapes identiques sont désignés par une même référence numérique.  In all the figures of this document, the elements and identical steps are designated by the same numerical reference.
La figure 1 présente un circuit électronique selon un premier mode de réalisation de l'invention, dans lequel un convoyeur de courant comprend un transistor bipolaire de type NPN .  FIG. 1 shows an electronic circuit according to a first embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the NPN type.
Lorsqu'un photon est reçu 100 par un dispositif photomultiplicateur 101, le courant induit /' par un tel dispositif n'est généralement pas assez intense pour pouvoir être mesuré par des dispositifs de mesure classiques. Le circuit de la figure 1 permet d'amplifier le courant reçu tout en étant capable de traiter des situations où un flux important de photons est reçu par le dispositif photomultiplicateur 101. When a photon is received 100 by a photomultiplier device 101, the induced current / 'by such a device is generally not intense enough to be measured by conventional measuring devices. The circuit of FIG. 1 makes it possible to amplify the current received while being able to deal with situations in which a large flux of photons is received by the photomultiplier device 101.
Un tel circuit comprend un transistor bipolaire NPN 103 (i.e un convoyeur de courant) monté de sorte que la base B soit relié à une source de tension continue (montage « base commune »), le collecteur C soit relié à une charge active possédant les deux bornes a et b, et l'émetteur E soit relié à la sortie du dispositif photomultiplicateur 101 et d'un dispositif de polarisation 102 (qui est une source de courant).  Such a circuit comprises a bipolar transistor NPN 103 (ie a current conveyor) mounted so that the base B is connected to a DC voltage source ("common base" mounting), the collector C is connected to an active load having the two terminals a and b, and the emitter E is connected to the output of the photomultiplier device 101 and a polarization device 102 (which is a current source).
Selon ce mode de réalisation, une telle charge active comprend deux résistances 104 et 105, la résistance 104 ayant une valeur plus grande que celle de la résistance 105, et un dispositif anti-saturation 106 monté en parallèle de la résistance According to this embodiment, such an active load comprises two resistors 104 and 105, the resistor 104 having a value greater than that of the resistor 105, and an anti-saturation device 106 connected in parallel with the resistor.
104. Les mesures obtenues au niveau de la première sortie 107 permettent de déterminer de manière rapide et avec précision l'énergie véhiculée par les photons reçus par le dispositif photomultiplicateur 101. 104. The measurements obtained at the level of the first output 107 enable the energy conveyed by the photons received by the photomultiplier device 101 to be determined quickly and precisely.
Les mesures obtenues au niveau de la deuxième sortie 108 permettent de déterminer le temps d'arrivée des photons reçus par le dispositif photomultiplicateur The measurements obtained at the second output 108 make it possible to determine the arrival time of the photons received by the photomultiplier device
101. 101.
Dans un autre mode de réalisation, le transistor bipolaire de type NPN peut être remplacé par un transistor NMOS.  In another embodiment, the NPN type bipolar transistor can be replaced by an NMOS transistor.
La figure 2 présente un circuit électronique selon un deuxième mode de réalisation de l'invention, dans lequel un convoyeur de courant comprend un transistor bipolaire de type PNP.  FIG. 2 presents an electronic circuit according to a second embodiment of the invention, in which a current conveyor comprises a bipolar transistor of the PNP type.
Dans ce mode de réalisation, le convoyeur de courant correspond à un transistor bipolaire de type PNP monté de sorte que la base B' soit relié à la masse, le collecteur C soit relié à une charge active possédant les deux bornes a et b, et l'émetteur E' soit relié à la sortie du dispositif photomultiplicateur 101 et d'un dispositif de polarisation 201.  In this embodiment, the current conveyor corresponds to a bipolar transistor PNP type mounted so that the base B 'is connected to ground, the collector C is connected to an active load having both terminals a and b, and the emitter E 'is connected to the output of the photomultiplier device 101 and to a polarization device 201.
Dans un autre mode de réalisation, le transistor bipolaire de type PNP peut être remplacé par un transistor PMOS.  In another embodiment, the PNP bipolar transistor may be replaced by a PMOS transistor.
La figure 3 présente un circuit électronique selon un troisième mode de réalisation de l'invention, dans lequel un convoyeur de courant est réalisé par un montage composite de deux transistors NPN « super common base ».  FIG. 3 presents an electronic circuit according to a third embodiment of the invention, in which a current conveyor is made by a composite assembly of two super common base NPN transistors.
Dans ce mode de réalisation, le convoyeur de courant correspond à la combinaison de deux transistors NPN 302, 303 montés de sorte que l'émetteur E du transistor bipolaire de type NPN 302 soit relié à la masse, le collecteur C du transistor bipolaire de type NPN 302 soit relié à la base du transistor bipolaire de type NPN 303, et à un dispositif de polarisation 304, et la base B du transistor bipolaire de type NPN 302 soit reliée à l'émetteur E du transistor bipolaire de type NPN 303, à la sortie du dispositif photomultiplicateur 101, et à un dispositif de polarisation 301.  In this embodiment, the current conveyor corresponds to the combination of two NPN transistors 302, 303 mounted so that the emitter E of the NPN type bipolar transistor 302 is connected to ground, the collector C of the bipolar transistor of the type NPN 302 is connected to the base of the NPN type bipolar transistor 303, and to a biasing device 304, and the base B of the NPN type bipolar transistor 302 is connected to the emitter E of the NPN type bipolar transistor 303, to the output of the photomultiplier device 101, and a polarization device 301.
Dans un autre mode de réalisation, un tel convoyeur de courant peut aussi être réalisé avec des combinaisons de transistors NPN, NMOS, PNP ou PMOS. Dans un mode de réalisation préférentiel de l'invention, la résistance 104 possède une valeur de 1000 ohms et la résistance 105 possède une valeur de 100 ohms. In another embodiment, such a current conveyor may also be realized with combinations of NPN, NMOS, PNP or PMOS transistors. In a preferred embodiment of the invention, the resistor 104 has a value of 1000 ohms and the resistor 105 has a value of 100 ohms.

Claims

REVENDICATIONS
1. Circuit électronique comprenant un convoyeur de courant (103 ; 202 ; 303, 302) relié à une charge, ladite charge fournissant au moins une première (107) et une deuxième sortie (108) en tension, caractérisé en ce que ladite deuxième sortie en tension possède un comportement dit non linéaire par rapport à l'intensité du courant d'entrée dudit circuit électronique sur une plage donnée.  An electronic circuit comprising a current conveyor (103; 202; 303; 302) connected to a load, said load providing at least a first voltage (107) and a second output (108) characterized in that said second output in voltage has a so-called non-linear behavior with respect to the intensity of the input current of said electronic circuit over a given range.
2. Circuit électronique selon la revendication 1, caractérisé en ce que ladite première sortie (107) en tension de ladite charge est proportionnelle à l'intensité du courant d'entrée sur toute la gamme dynamique dudit courant d'entrée, et en ce que ladite deuxième sortie (108) en tension de ladite charge est proportionnelle à l'intensité du courant d'entrée sur une fraction de ladite gamme dynamique.  2. An electronic circuit according to claim 1, characterized in that said first output (107) in voltage of said load is proportional to the intensity of the input current over the entire dynamic range of said input current, and in that said second output (108) in voltage of said load is proportional to the intensity of the input current over a fraction of said dynamic range.
3. Circuit électronique selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ladite charge comprend au comprend au moins deux résistances de valeurs distinctes, et un dispositif anti-saturation monté en parallèle de la résistance possédant la plus grande valeur.  3. An electronic circuit according to any one of claims 1 and 2, characterized in that said load comprises the comprises at least two resistors of distinct values, and an anti-saturation device connected in parallel with the resistor having the largest value.
4. Circuit électronique selon la revendication 3, caractérisé en ce que le rapport entre la dite plus grande valeur et une valeur de l'autre résistance est au moins égal à 5.  4. An electronic circuit according to claim 3, characterized in that the ratio between said larger value and a value of the other resistance is at least equal to 5.
5. Circuit électronique selon la revendication 4, caractérisé en ce que ledit rapport est un nombre réel compris dans l'intervalle [10 ; 20].  An electronic circuit according to claim 4, characterized in that said ratio is a real number in the range [10; 20].
6. Circuit électronique selon l'une quelconque des revendications 4 et 5, caractérisé en ce qu'une première résistance a une valeur de 100 ohms, et en ce qu'une deuxième résistance a une valeur de 1000 ohms.  An electronic circuit according to any one of claims 4 and 5, characterized in that a first resistor has a value of 100 ohms, and a second resistor has a value of 1000 ohms.
7. Circuit électronique selon l'une quelconque des revendications 3 à 6, caractérisé en ce que ledit dispositif anti-saturation est une diode.  7. Electronic circuit according to any one of claims 3 to 6, characterized in that said anti-saturation device is a diode.
8. Circuit électronique selon l'une quelconque des revendications 3 à 6, caractérisé en ce que ledit dispositif anti-saturation comprend au moins un transistor monté en diode.  8. Electronic circuit according to any one of claims 3 to 6, characterized in that said anti-saturation device comprises at least one transistor mounted diode.
9. Circuit électronique selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit convoyeur de courant comprend au moins un transistor. 9. Electronic circuit according to any one of claims 1 to 8, characterized in that said current conveyor comprises at least one transistor.
10. Circuit électronique selon la revendication 9, caractérisé en ce que ledit transistor appartient au groupe comprenant : Electronic circuit according to claim 9, characterized in that said transistor belongs to the group comprising:
- des transistors bipolaires de type PNP ou de type NPN ; et  bipolar transistors of the PNP or NPN type; and
- des transistors à effet de champ de canal P ou de canal N.  - P-channel or N-channel field effect transistors
11. Circuit électronique selon la revendication 10, caractérisé en ce que lorsque ledit transistor est un transistor bipolaire, il est monté en base commune, et lorsque ledit transistor est un transistor à effet de champ, il est monté en grille commune.11. An electronic circuit according to claim 10, characterized in that when said transistor is a bipolar transistor, it is mounted common base, and when said transistor is a field effect transistor, it is mounted common grid.
12. Circuit électronique selon l'une quelconque des revendications 1 à 11, caractérisé en ce que ledit convoyeur de courant comprend une pluralité de transistors. 12. Electronic circuit according to any one of claims 1 to 11, characterized in that said current conveyor comprises a plurality of transistors.
13. Circuit électronique selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend un circuit de rétro-contrôle négatif.  13. Electronic circuit according to any one of claims 1 to 12, characterized in that it comprises a negative feedback control circuit.
14. Dispositif de détection de photons caractérisé en ce qu'il comprend un circuit électronique selon l'une quelconque des revendications 1 à 13.  14. A photon detection device characterized in that it comprises an electronic circuit according to any one of claims 1 to 13.
EP13748315.2A 2012-08-14 2013-08-13 Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons Withdrawn EP2885654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257813A FR2994595B1 (en) 2012-08-14 2012-08-14 ELECTRONIC CIRCUIT COMPRISING AN AGENCY CURRENT CONVEYOR WITH AN ANTI-SATURATION DEVICE, AND DEVICE FOR DETECTING CORRESPONDING PHOTONS
PCT/EP2013/066937 WO2014027001A1 (en) 2012-08-14 2013-08-13 Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons

Publications (1)

Publication Number Publication Date
EP2885654A1 true EP2885654A1 (en) 2015-06-24

Family

ID=47553225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13748315.2A Withdrawn EP2885654A1 (en) 2012-08-14 2013-08-13 Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons

Country Status (4)

Country Link
US (1) US9933302B2 (en)
EP (1) EP2885654A1 (en)
FR (1) FR2994595B1 (en)
WO (1) WO2014027001A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037221A (en) * 2021-01-28 2021-06-25 明峰医疗系统股份有限公司 Common base pre-amplification network circuit for SiPM reading system and reading method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825735B1 (en) * 2009-10-20 2010-11-02 Sandia Corporation Dual-range linearized transimpedance amplifier system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH520444A (en) * 1970-08-04 1972-03-15 Bbc Brown Boveri & Cie Differential amplifier
DE3806283A1 (en) * 1988-02-27 1989-09-07 Telefunken Electronic Gmbh OPTOELECTRONIC TRANSIMPEDANCE AMPLIFIER
JP4248773B2 (en) * 2001-07-26 2009-04-02 富士通マイクロエレクトロニクス株式会社 Current-voltage converter
US7042295B2 (en) * 2004-03-31 2006-05-09 Cornell Research Foundation, Inc. Low-voltage, low-power transimpedance amplifier architecture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825735B1 (en) * 2009-10-20 2010-11-02 Sandia Corporation Dual-range linearized transimpedance amplifier system

Also Published As

Publication number Publication date
WO2014027001A1 (en) 2014-02-20
US20150204719A1 (en) 2015-07-23
FR2994595B1 (en) 2014-09-12
US9933302B2 (en) 2018-04-03
FR2994595A1 (en) 2014-02-21

Similar Documents

Publication Publication Date Title
JP6212605B2 (en) Photoreceiver having Geiger mode avalanche photodiode and readout method
US9164144B2 (en) Characterization and calibration of large area solid state photomultiplier breakdown voltage and/or capacitance
Shcheslavskiy et al. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector
Kurtti et al. A wide dynamic range CMOS laser radar receiver with a time-domain walk error compensation scheme
Huizenga et al. A fast preamplifier concept for SiPM-based time-of-flight PET detectors
RU2649607C2 (en) Method for controlling the gain and zero setting for multi-pixel photon counter and light-measuring system implementing said method
CN108696256B (en) Trans-impedance amplifier with rapid overload recovery function
JP2017053833A (en) Correction device, correction method, and distance measuring device
JP6825565B2 (en) Distance measuring device
US8867929B2 (en) Optical receiver using single ended voltage offset measurement
Despeisse et al. Multi-channel amplifier-discriminator for highly time-resolved detection
TW202249418A (en) Differential active pixel
EP2746817A1 (en) Readout circuits for multi-channel photomultiplier arrays
CN110595530B (en) Electronic device, optical gas sensor and method for measuring photocurrent and temperature
EP2518660B1 (en) Circuit and method for performing arithmetic operations on current signals
Ghimouz et al. A Preamplifier-discriminator circuit based on a Common Gate Feedforward TIA for fast time measurements using diamond detectors
EP2885654A1 (en) Electronic circuit comprising a current conveyor arranged with an anti-saturation device, and corresponding device for detecting photons
Dolinsky et al. Timing resolution performance comparison of different SiPM devices
Corsi et al. Current-mode front-end electronics for silicon photo-multiplier detectors
EP1931030B1 (en) Current preamplifier and associated current comparator
Hintikka et al. A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS
Wang et al. An Analog SiPM Based Receiver With On-Chip Wideband Amplifier Module for Direct ToF LiDAR Applications
Hintikka et al. A CMOS laser radar receiver for sub-ns optical pulses
JP3155191B2 (en) Low light measurement device
Acconcia et al. Fast and compact time-correlated single photon counting system for high-speed measurement with low distortion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20181017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190228