EP2884092A1 - Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils - Google Patents

Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils Download PDF

Info

Publication number
EP2884092A1
EP2884092A1 EP13197361.2A EP13197361A EP2884092A1 EP 2884092 A1 EP2884092 A1 EP 2884092A1 EP 13197361 A EP13197361 A EP 13197361A EP 2884092 A1 EP2884092 A1 EP 2884092A1
Authority
EP
European Patent Office
Prior art keywords
adjusting
fluid reservoir
injection valve
volume
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13197361.2A
Other languages
English (en)
French (fr)
Other versions
EP2884092B1 (de
Inventor
Claus BIEDERER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonplas GmbH
Original Assignee
Sonplas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonplas GmbH filed Critical Sonplas GmbH
Priority to EP13197361.2A priority Critical patent/EP2884092B1/de
Publication of EP2884092A1 publication Critical patent/EP2884092A1/de
Application granted granted Critical
Publication of EP2884092B1 publication Critical patent/EP2884092B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8092Fuel injection apparatus manufacture, repair or assembly adjusting or calibration

Definitions

  • the invention relates to a device for adjusting a flow rate of an injection valve according to the preamble of claim 1 and to a method for adjusting a flow rate of an injection valve according to the preamble of claim 11.
  • the device comprises a receptacle for receiving and holding the injector to be adjusted, an adjusting device for adjusting a setting mechanism of the injector for adjusting the flow, a fluid reservoir for a test fluid, a pump for generating or changing a pressure of the test fluid in the fluid reservoir and a measuring device for Determining the pressure in the fluid reservoir.
  • the injection valve to be adjusted is attached to a receptacle, a test fluid is pressurized in a fluid reservoir by means of a pump, a defined number of injection processes are executed, a pressure change in the fluid reservoir is determined and the flow rate of the injection valve is determined converted a change in volume and adjusted by means of an adjusting device adjustment mechanism of the injector for adjusting the flow of the injector.
  • Injectors are of great importance for modern internal combustion engines. Only by a precise metering of the fuel in the cylinder compliance with the emissions regulations and optimum fuel consumption can be achieved.
  • the tolerance of the injection quantity characteristic q f (ti / tp) is of primary importance. in this connection q denotes the injection quantity and f (ti / tp) a function f as a function of the injection duration ti and the period tp.
  • the requirements of the injection quantity characteristic of the injectors are always higher, and it is looking for new, innovative methods that allow to increase the quality of the setting to expand the application of the injectors beyond the previous areas .
  • the use of the so-called ballistic operating range in which very small injection quantities can be generated by means of very short control signals, is becoming increasingly important.
  • this operating range it is necessary to set the injection valves in the lowest range of the quantity characteristic.
  • the injection quantity characteristic of an injection valve in particular a gasoline injection valve, can be adjusted by means of a spring system in the valve. This adjustment process is a crucial manufacturing process and tight tolerances in the production of injectors.
  • An adjusting device usually has a hydraulic measuring circuit with storage tank, feed pump, admission pressure control, filtration, high-pressure pump, pressure regulator, pressure sensor and flow sensor and a Mixierkopf over which the injection valve is supplied with a test fluid.
  • a correction value is calculated for the spring system, on the basis of which the spring system of the injection valve is adjusted or adjusted by means of the adjusting mechanism. As a rule, this process is repeated until the desired nominal flow rate is reached, wherein as a rule several iterations are carried out until the desired flow rate can be achieved within the required tolerances.
  • the volume displaced by the adjusting pin during the adjustment represents a considerable disturbance which impairs the accuracy of the measurement and requires additional waiting times in the adjustment.
  • a device and a method for adjusting and checking the flow in valves is in the DE 44 33 543 C1 described.
  • the valve is arranged in a measuring device and acted upon by a fluid at a predefined volume flow.
  • the self-adjusting pressure of the fluid in the measuring device is determined.
  • An adjusting device on the valve is adjusted according to the determined pressure value until the actual pressure corresponds to a desired pressure.
  • the invention has for its object to provide an apparatus and a method for adjusting the flow of an injector, which allow a particularly precise and fast adjustment.
  • the device comprises a compensating body with which the volume of the fluid reservoir can be changed.
  • the compensating body is coupled to the adjusting device such that during a movement of the adjusting device, which causes a change in volume of the fluid reservoir, the compensating body is movable so that the volume change is at least partially, preferably completely, compensated.
  • a balancing body is coupled to the actuator so that upon movement of the actuator, by which a volume change of the fluid reservoir is generated, the balancing body is moved so that the volume change at least partially , preferably completely, is compensated.
  • the invention is based on the finding that the movement of the adjusting element arranged in the fluid reservoir effects a change, albeit slight, in the volume of the fluid reservoir.
  • the pressure in the fluid reservoir which can also be referred to as a hydraulic measuring circuit, changes. Since usually several adjustments of the adjusting device are required to adjust the injection valve within the predetermined tolerances to a desired flow rate, so far had the pressure in the fluid reservoir determined again after each adjustment of the actuator or a corresponding inaccuracy be accepted.
  • a basic idea of the invention can thus be seen in compensating for the change in volume of the fluid reservoir caused by the adjustment of the adjusting device, in particular at the same time, by an equally large volume change elsewhere.
  • a compensating body coupled to the adjusting device is provided according to the invention, by the movement of which an opposite volume change can be generated in accordance with the movement of the adjusting device.
  • the volume in the fluid reservoir thus remains constant, so that a new test injection can take place immediately after.
  • the adjustment process can thereby be significantly accelerated.
  • the test fluid may be any fluid, in particular any fluid.
  • a liquid is used which in parameters such as density, viscosity and / or compressibility at least largely coincides with the fluid used in the operation of the injection valve.
  • the same fluid can be used, for example a fuel such as gasoline or diesel.
  • the compensating piston is mechanically connected to the adjusting device.
  • the mechanical connection ensures a reliable adjustment of the balance piston according to the movement of the actuator.
  • a mechanical coupling is also robust and reliable.
  • the coupling causes a movement of the compensation body takes place with each movement of the adjusting device.
  • all active connections in which a component of the adjusting device, with which the adjusting pin is moved, also causes a movement of the compensating body can be understood to mean the coupling.
  • This component can be, for example, a lifting body or a drive, which is mechanically connected or coupled both to the adjusting pin and to the compensating body.
  • the component may also be an electronic control unit which actuates both a drive of the adjusting pin and a drive of the compensating body.
  • the coupling of the invention differs from conventional adjustment methods.
  • the volume change resulting from the movement of the adjusting pin is measured, for example by a pressure change.
  • a compensatory movement is performed, such as a volume reduction by a piston pump.
  • the adjusting device can also be referred to as an actuating element. It can in principle be designed as desired, as long as it has at least one movable component with which the adjusting mechanism of an injection valve can be adjusted. For this purpose, it may include a setting pin. This is preferably hollow for passing the test fluid.
  • the compensating body can basically have any shape and be positioned at any desired location, as long as it adjoins the fluid reservoir or partially protrudes into it.
  • the balance body comprises a movable balance piston. This is moved coupled to the adjustment pin.
  • the balancing piston is coupled to the actuator, that upon movement of the adjusting pin of the balance piston is moved by an equal distance.
  • the coupling is such that the compensation piston is moved by a greater distance than the adjustment pin.
  • a cross-sectional area of the balance piston is smaller than that of the adjustment pin.
  • the compensating body can also be designed as part of the adjusting device, that is to say be mechanically connected thereto or be formed in one piece with a component of the adjusting device.
  • the compensating body may also be formed identically to the adjusting pin.
  • a fluid volume around the adjusting body can be shaped in the same way as a fluid volume around the adjusting pin to the injection valve, with the difference that no test fluid can be hosed off via the compensating body.
  • the balance body is moved opposite to the adjustment pin. Because of the matching dimensions, a volume change is compensated for particularly reliably here.
  • the compensation body can also be realized by the pump.
  • the coupling is realized via an electronic control unit, which additionally controls the pump when the adjusting element adjusts the adjusting mechanism of the injection valve.
  • the pump is just controlled so that it changes the fluid reservoir by a volume which is the same amount to the volume change by the adjusting device, but has an opposite sign.
  • the compensating body and the adjusting pin are formed by a common body.
  • a portion of the adjusting pin leads to an increase in volume of the fluid reservoir, while another portion of the adjusting pin leads to a reduction in volume.
  • a relatively simple production is made possible when the compensation body is movable within a compensation chamber of the fluid reservoir, wherein the compensation chamber via a conduit with other portions of the fluid reservoir connected is.
  • the conduit may fluidly communicate the balance body with the pump and / or with the inner cavity of the adjustment pin.
  • the compensating body is coupled to the adjusting device such that during a movement of the adjusting device, the compensating body is moved simultaneously.
  • the movement of the compensating body can also take place before or after the movement of the setting device.
  • the adjusting element is set up to act on a spring device in the injection valve for changing the flow rate of the injection valve.
  • the spring device By means of the spring device, the injection valve can be adjusted to a desired nominal flow rate.
  • the actuating element can be driven by means of a spindle drive.
  • This can in turn be driven by a motor, in particular a stepper or servomotor.
  • a spindle drive allows a particularly precise adjustment of the actuating element in small steps.
  • the compensation of the volume change by the balance piston can be realized in an advantageous manner that an end face of the balance piston is in communication with the fluid reservoir and that the end face of the balance piston is the same size as an end face of the control element. In this way, an axial adjustment of actuator and balance piston leads by the same amount to an exact compensation of the change in volume.
  • volume compensation piston and actuator can be coupled such that a movement of the actuating element causes a rectified or opposite movement of the balance piston.
  • a computing unit is provided for calculating the flow rate of the injection valve based on a determined pressure change.
  • the pressure in the fluid reservoir is determined before and after a discharge or injection process. Due to the measured pressure change, it is possible to calculate the change in the amount of test fluid in the fluid reservoir and thus the amount injected or injected.
  • calibration measurements are preferably carried out before the actual setting process, in which the storage behavior of the hydraulic circuit or fluid reservoir is determined.
  • the fluid reservoir is pressurized.
  • the pressure increase is recorded and stored as a function of the change in volume up to a desired maximum pressure by a measuring device.
  • the pressure drop history is recorded. Based on the measurements characteristic curves can be determined, which indicate a relation between volume and pressure with rising and falling pressure.
  • Fig. 1 schematically shows an embodiment of a device 100 according to the invention for adjusting a flow of an injection valve.
  • the injection valve 1 is held in a receptacle 10 of the device 100, which is formed on an adjusting head 3 of the device 100.
  • the injection quantity characteristic of the injection valve 1 can be adjusted by means of a spring device 19 in the injection valve 1. This adjustment is done before the regular operation of the injector 1 with the device 100th
  • This first has as an essential component an adjusting element 4 with an adjusting pin 41.
  • an adjusting mechanism 30 of the injection valve 1 can be adjusted, whereby the flow through the injection valve 1 is changed.
  • the flow through the injection valve 1 is determined as the flow rate per injection process. To determine this flow rate, a test fluid is pumped through the injection valve 1 with the device 100.
  • the device 100 comprises a fluid reservoir 15 with which a test fluid can be conducted to the injection nozzle 1.
  • a fluid reservoir 15 As a fluid reservoir 15, the entire area can be understood, which is fluidly connected to an inlet of the injection valve 1, in particular without line breaks or shut-offs.
  • a pump 8 is connected to the fluid reservoir 15 in order to generate a pressure in the fluid reservoir 15 and thus to convey the test fluid through the injection nozzle 1.
  • the pump 8 is preferably a high-pressure pump 8, in particular a leakage-free working piston pump.
  • This includes a displacement member which is adjustable with a spindle drive. This can in turn be driven by a stepper motor or servomotor. This allows the pump 8 to generate a hydraulic volume flow. Since the speed of the motor is adjustable over a wide range, advantageously, the volume flow provided by the pump can also be adjusted over a wide range. If the final stroke of the pump is reached, it must be refilled with test fluid.
  • the pump 8 can also be used as a metering pump to nachzu busyn a certain volume.
  • an inlet valve 6 is present. While the flow rate through the injection valve 1 is measured and adjusted with the device 100, the inlet valve 6 remains shut off. For refilling test fluid between measuring processes of the device 100 alone, the inlet valve 6 is opened. Therefore, the inlet valve 6 can be regarded as a boundary of the fluid reservoir 15.
  • the flow rate of test fluid through the injection valve 1 is calculated via the pressure in the fluid reservoir 15. This calculation and the actual measuring operation will be described in more detail later.
  • a measuring device 11, that is, a pressure sensor 11, is provided to measure the pressure in the fluid reservoir 15. This can be arranged at any point of the fluid reservoir 15, that is, it is fluidly and continuously connected to the rest of the fluid reservoir 15.
  • the pressure sensor 11 is arranged on a line, with which test fluid can be conducted away from device 100. This line and thus the fluid reservoir 15 are limited by a flushing valve 16, which is closed in the measuring operation of the device 100.
  • the volume of the fluid reservoir 15 plays an important role. In conventional devices 100, however, this volume is not constant during the adjustment process. Thus, movement of the adjustment pin 41 results in a change in the volume of the fluid reservoir 15. This volume change is conventionally calculated or estimated and used to calculate the flow rate. This is associated with inaccuracies, which are reduced or bypassed in the inventive device 100. In addition, a time saving is achieved, as will be explained in more detail later.
  • the compensation body 5 comprises a compensation piston 55 which is movable in a cylinder 56.
  • This interior is part of the fluid reservoir 15 and therefore fluidly connected to the inlet opening of the injection valve 1.
  • the cylinder 56 may include an inlet 51 and an outlet 52 at its interior. In this case, the interior is shaped so that the inlet 51 and outlet 52 are connected to each other regardless of the position of the balance piston 55 via the interior.
  • the pump 8 is fluidly connected to the inlet 51 and the outlet 52 is fluidly connected to an adjusting head 3 of the device 100, wherein from the adjusting head 3, the test fluid into the injection valve 1 can be introduced.
  • the fluid reservoir 15 is not fluidly connected via the outlet 52, but via the inlet 51 with the adjusting head 3 is.
  • the interior of the cylinder 56 is a final volume or dead end whose volume is adjustable.
  • the compensating body 5, in the illustrated example of the compensating piston 55 is displaced by a movement of the actuating element 4.
  • the compensating piston 55 is coupled via a coupling element 60 to a lifting body 42 of the adjusting element 4.
  • the lifting body 42 By a movement of the lifting body 42 is on the one hand, the adjusting pin 41 slidably.
  • the coupling element 60 and thus the compensating piston 55 is movable.
  • the coupling between the coupling element and the lifting body 42 can be designed in principle arbitrary. For a particularly robust design, the coupling can be done mechanically. Alternatively, a magnetic coupling is possible. As a result, the coupling element 60 can be released more easily from the lifting body 42, thus facilitating component replacement if required.
  • the compensating body 5 can be of any desired shape as long as a movement is effected via the coupling to the adjusting element 4 by which a volume change of the fluid reservoir 15 is just the same but opposite to a volume change of the fluid reservoir 15 by a movement of the adjusting pin 41.
  • This condition is met particularly easily and reliably in the illustrated embodiment.
  • the cross-sectional dimensions of the balance piston 55 and the adjustment pin 41 are the same. As a result, the volume changes that are generated by moving the adjusting pin 41 and the compensating piston 55 are also the same.
  • the cross-sectional dimensions of the cavity of the cylinder 56 may be greater than the outer dimensions of the balance piston 55.
  • the lateral surface of the balance piston 55 is surrounded by test fluid, whereby frictional losses are reduced by moving the balance piston 55.
  • FIG. 1 An enlarged view of the in Fig. 1
  • the area indicated by reference numeral 70 is in Fig. 2 shown. Visible is in particular the adjusting pin 41, which contacts the adjusting mechanism 30 of the injection valve 1 and can adjust it. moreover the adjusting pin 41 is hollow, so that test fluid can be introduced through this into the injection valve 1.
  • a flow rate of test fluid through the injector 1 is determined. This actual value is compared with a desired value. Depending on the result of the comparison, the setting mechanism 30 of the injection valve 1 is adjusted via the setting pin 41. Thus, the flow rate through the injection valve 1 is changed by an injection process. Then, an actual value of the flow rate is again determined and compared with the desired value. This process can be repeated until the deviation from the actual value to the desired value is below a predetermined tolerance threshold. The steps performed in this procedure are described in more detail below.
  • the pressure or a pressure change in the fluid reservoir 15 is detected. It should be concluded that a change in volume of test fluid in the fluid reservoir 15. From this volume change, it is possible to deduce the volume of test fluid which has been passed through the injection valve 1 over the measurement period.
  • the feed direction of the pump 8 is switched, whereby the volume of the fluid reservoir 15 is increased and the pressure in the fluid reservoir 15 is reduced. Meanwhile, the pressure drop 11 is recorded with the pressure sensor.
  • the fluid reservoir 15 and thus also the high-pressure pump 8 are filled again with test fluid.
  • the injection valve 1 is flushed with a low pressure supply to avoid trapped air.
  • the inlet and the purge valves 6, 9, 16 and the injection valve 1 are closed.
  • the high-pressure pump 8 is actuated until it has generated a desired pressure in the fluid reservoir 15.
  • the injection valve 1 is driven to spray test fluid for predetermined periods.
  • several injection processes can be carried out with the injection valve 1. Then, the pressure drop in the fluid reservoir 15 is determined with the pressure sensor 11.
  • the volume Q can also be calculated as the integral of the pressure change dP over Kc.
  • the volume determined in this way can be converted to a corrected volume, which corresponds to the volume that would have been sprayed through the injection nozzle 1, if the pressure had remained constant at the previously set pressure.
  • the corrected volume may be divided by the number of injections during the described measuring operation.
  • an actual value of the injection quantity is calculated.
  • This is compared with a desired value of the injection quantity.
  • an adjustment path for the adjustment mechanism 30 is calculated. This adjustment is set by means of the adjusting pin 41.
  • the volume of the fluid reservoir 15 is reduced by means of the pump 8. As a result, the desired pressure in the fluid reservoir 15 is set again.
  • the volume reduction required for this purpose is calculated from the previously ascertained rising graph of the characteristic curve.
  • the described procedure of measuring and adjusting is repeated until the measured actual value of the injection quantity is within a predetermined tolerance range around the desired value.
  • the pump 8 is preferably dimensioned so that it can generate a volume change of the fluid reservoir 15, which is sufficient for the number of successive injection operations of the injection valve 1, which are performed between two adjustment operations with the adjusting pin 41.
  • the coupled movement of the compensation body 5 reduces volume and pressure changes in the fluid reservoir 15. Thereby, the time required for setting the desired pressure with the pump after a setting operation of the adjusting pin 41 can be reduced.
  • a device 100 can set a larger number of injectors 1 within a predetermined time.
  • a total number of devices 1 can be reduced, thus achieving a cost saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Justieren eines Durchflusses eines Einspritzventils (1) mit einer Aufnahme (10) zum Aufnehmen und Halten des zu justierenden Einspritzventiles (1), einem Stellelement (4) zum Verstellen einer Einstellmechanik des Einspritzventils zum Justieren des Durchflusses, einem Fluidreservoir für ein Testfluid, einer Pumpe (8) zum Erzeugen eines Drucks des Testfluids in dem Fluidreservoir, und einer Messeinrichtung (11) zum Ermitteln des Drucks in dem Fluidreservoir. Es ist ein mit dem Stellelement (4) gekoppelter Ausgleichskolben (5) vorgesehen, durch welchen eine durch eine Bewegung des Stellelements (4) verursachte Änderung des Volumens des Fluidreservoirs kompensierbar ist. Die Erfindung betrifft des Weiteren ein Verfahren zum Justieren eines Durchflusses eines Einspritzventils.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Justieren eines Durchflusses eines Einspritzventils gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zum Justieren eines Durchflusses eines Einspritzventils gemäß dem Oberbegriff des Anspruchs 11.
  • Die Vorrichtung umfasst eine Aufnahme zum Aufnehmen und Halten des zu justierenden Einspritzventils, eine Stelleinrichtung zum Verstellen einer Einstellmechanik des Einspritzventils zum Justieren des Durchflusses, ein Fluidreservoir für ein Testfluid, eine Pumpe zum Erzeugen oder Ändern eines Drucks des Testfluids in dem Fluidreservoir und eine Messeinrichtung zum Ermitteln des Drucks in dem Fluidreservoir.
  • Verfahrensmäßig wird zum Justieren des Durchflusses des Einspritzventils das zu justierende Einspritzventil an einer Aufnahme befestigt, mittels einer Pumpe ein Testfluid in einem Fluidreservoir unter Druck gesetzt, eine definierte Anzahl von Einspritzvorgängen ausgeführt, eine Druckänderung in dem Fluidreservoir bestimmt und zum Ermitteln des Durchflusses des Einspritzventils in eine Volumenänderung umgerechnet und mittels einer Stelleinrichtung eine Einstellmechanik des Einspritzventils zum Justieren des Durchflusses des Einspritzventils verstellt.
  • Einspritzventile sind für moderne Verbrennungsmotoren von großer Bedeutung. Nur durch eine präzise Dosierung des Kraftstoffs in dem Zylinder sind die Einhaltung der Abgasvorschriften und ein optimaler Kraftstoffverbrauch erreichbar. Die Toleranz der Einspritzmengencharakteristik q = f (ti/tp) ist dabei von primärer Bedeutung. Hierbei bezeichnet q die Einspritzmenge und f(ti/tp) eine Funktion f in Abhängigkeit der Einspritzdauer ti und der Periodendauer tp.
  • Aufgrund der zunehmenden Verschärfung der Abgasgesetze werden die Anforderungen an die Einspritzmengencharakteristik der Einspritzventile immer höher, und es wird nach neuen, innovativen Verfahren gesucht, die es erlauben, die Qualität der Einstellung zu erhöhen, um den Einsatzbereich der Injektoren über die bisherigen Bereiche hinaus zu erweitern. Insbesondere die Nutzung des sogenannten ballistischen Betriebsbereiches, in dem mittels sehr kurzer Ansteuersignale besonders kleine Einspritzmengen erzeugt werden können, gewinnt zunehmend an Bedeutung. Um diesen Betriebsbereich nutzen zu können, ist es erforderlich, die Einspritzventile im untersten Bereich der Mengencharakteristik einzustellen. Hierfür ist es notwendig, besonders kleine Einspritzmengen messen zu können, die mit der bisher üblichen Durchflussmesstechnik nicht oder nur verbunden mit langen Messzeiten oder mit sehr aufwändigen und teuren Einspritzmengenmessgeräten gemessen werden können.
  • Die Einspritzmengencharakteristik eines Einspritzventils, insbesondere eines Benzineinspritzventils, kann mittels eines Federsystems im Ventil eingestellt werden. Dieser Einstellvorgang ist bei der Produktion von Einspritzventilen ein entscheidender Herstellungsprozess und engen Toleranzen unterworfen.
  • Eine Einstellvorrichtung verfügt üblicherweise über einen hydraulischen Messkreis mit Vorratstank, Vorförderpumpe, Vordruckregelung, Filtration, Hochdruckpumpe, Druckregler, Drucksensor und Durchflusssensor sowie über einen Kontaktierkopf, über den das Einspritzventil mit einem Testfluid versorgt wird. Mittels einer im Kontaktierkopf integrierten Verstellmechanik ist es möglich, das Federsystem im Einspritzsystem auf eine gewünschte Solldurchflussmenge abzugleichen.
  • Bei einer Abweichung zwischen Soll- und Istdurchfluss wird für das Federsystem ein Korrekturwert berechnet, auf dessen Basis das Federsystem des Einspritzventils mittels der Verstellmechanik eingestellt beziehungsweise justiert wird. Dieser Vorgang wird in der Regel solange wiederholt, bis sich der gewünschte Solldurchfluss einstellt, wobei in der Regel mehrere Iterationen durchgeführt werden, bis der Solldurchfluss innerhalb der erforderlichen Toleranzen erreicht werden kann.
  • Insbesondere bei der Messung von sehr kleinen Durchflussmengen stellt das durch den Einstellstift während der Verstellung verdrängte Volumen eine erhebliche Störgröße dar, welche die Genauigkeit der Messung beeinträchtigt und zusätzliche Wartezeiten bei der Einstellung erfordert.
  • Eine Vorrichtung sowie ein Verfahren zur Einstellung und Überprüfung des Durchflusses bei Ventilen ist in der DE 44 33 543 C1 beschrieben. Hierbei wird das Ventil in einer Messvorrichtung angeordnet und mit einem Fluid bei vordefiniertem Volumenstrom beaufschlagt. Der sich einstellende Druck des Fluides in der Messvorrichtung wird ermittelt. Eine Einstelleinrichtung am Ventil wird entsprechend dem ermittelten Druckwert solange verstellt, bis der Ist-Druck einem Soll-Druck entspricht.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zum Justieren des Durchflusses eines Einspritzventils anzugeben, welche eine besonders präzise und schnelle Justierung ermöglichen.
  • Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 sowie ein Verfahren mit den Merkmalen des Anspruchs 11 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Die Vorrichtung umfasst erfindungsgemäß einen Ausgleichskörper, mit welchem das Volumen des Fluidreservoirs änderbar ist. Der Ausgleichskörper ist mit der Stelleinrichtung so gekoppelt, dass bei einer Bewegung der Stelleinrichtung, durch welche eine Volumenänderung des Fluidreservoirs hervorgerufen wird, der Ausgleichskörper so bewegbar ist, dass die Volumenänderung zumindest teilweise, vorzugsweise vollständig, kompensiert wird.
  • Bei dem Verfahren zum Justieren des Durchflusses des Einspritzventils ist erfindungsgemäß vorgesehen, dass ein Ausgleichskörper mit der Stelleinrichtung so gekoppelt ist, dass bei einer Bewegung der Stelleinrichtung, durch welche eine Volumenänderung des Fluidreservoirs erzeugt wird, der Ausgleichskörper so bewegt wird, dass die Volumenänderung zumindest teilweise, vorzugsweise vollständig, kompensiert wird.
  • Mit der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren ist es möglich, ein Einspritzventil schnell, präzise und auf sehr geringe Durchflüsse einzustellen.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass die Bewegung des in dem Fluidreservoir angeordneten Stellelements eine - wenn auch geringfügige - Änderung des Volumens des Fluidreservoirs bewirkt. Hierdurch ändert sich der Druck in dem Fluidreservoir, das auch als hydraulischer Messkreis bezeichnet werden kann,. Da üblicherweise mehrere Verstellungen der Stelleinrichtung benötigt werden, um das Einspritzventil innerhalb der vorgegebenen Toleranzen auf eine Solldurchflussmenge einzustellen, musste bisher der Druck in dem Fluidreservoir nach jeder Verstellung der Stelleinrichtung erneut ermittelt oder eine entsprechende Ungenauigkeit in Kauf genommen werden.
  • Ein Grundgedanke der Erfindung kann somit darin gesehen werden, die durch die Verstellung der Stelleinrichtung verursachte Volumenänderung des Fluidreservoirs, insbesondere zeitgleich, durch eine gleichgroße Volumenänderung an anderer Stelle auszugleichen. Hierzu ist erfindungsgemäß ein mit der Stelleinrichtung gekoppelter Ausgleichskörper vorgesehen, durch dessen Bewegung sich entsprechend der Bewegung der Stelleinrichtung eine entgegengesetzte Volumenänderung erzeugen lässt.
  • Nach einer Verstellung der Stelleinrichtung bleibt somit das Volumen im Fluidreservoir konstant, so dass unmittelbar im Anschluss eine erneute Testeinspritzung erfolgen kann. Der Justiervorgang kann hierdurch deutlich beschleunigt werden.
  • Als Testfluid kann ein beliebiges Fluid, insbesondere eine beliebige Flüssigkeit verwendet werden. Vorzugsweise wird eine Flüssigkeit eingesetzt, die in Parametern wie Dichte, Viskosität und/oder Kompressibilität mit dem im Betrieb des Einspritzventils verwendeten Fluid zumindest weitgehend übereinstimmt. Insbesondere kann das gleiche Fluid genutzt werden, beispielsweise ein Kraftstoff wie Benzin oder Diesel.
  • In einer bevorzugten Ausführungsform ist der Ausgleichskolben mit der Stelleinrichtung mechanisch verbunden. Die mechanische Verbindung gewährleistet eine zuverlässige Verstellung des Ausgleichskolbens entsprechend der Bewegung dem Stellelement. Eine mechanische Kopplung ist zudem robust und zuverlässig.
  • Durch die Kopplung wird bewirkt, dass bei jeder Bewegung der Stelleinrichtung eine Bewegung des Ausgleichskörpers erfolgt. Unter der Kopplung können insbesondere alle Wirkverbindungen aufgefasst werden, bei denen eine Komponente der Stelleinrichtung, mit welcher der Einstellstift bewegt wird, auch eine Bewegung des Ausgleichskörpers bewirkt. Diese Komponente kann beispielsweise ein Hubkörper oder ein Antrieb sein, der mechanisch sowohl mit dem Einstellstift als auch mit dem Ausgleichskörper verbunden oder gekoppelt ist. Es kann sich bei der Komponente aber auch um eine elektronische Steuereinheit handeln, welche sowohl einen Antrieb des Einstellstifts als auch einen Antrieb des Ausgleichskörpers ansteuert.
  • Daher unterscheidet sich die Kopplung der Erfindung von herkömmlichen Verstellverfahren. Bei diesen wird die Volumenänderung, die aus der Bewegung des Einstellstifts resultiert, gemessen, beispielsweise durch eine Druckänderung. Darauf wird eine ausgleichende Bewegung durchgeführt, etwa eine Volumenreduzierung durch eine Kolbenpumpe.
  • Die Stelleinrichtung kann auch als Stellelement bezeichnet werden. Sie kann grundsätzlich beliebig ausgeführt sein, solange sie zumindest eine bewegliche Komponente aufweist, mit welcher die Einstellmechanik eines Einspritzventils verstellt werden kann. Hierzu kann sie einen Einstellstift umfassen. Dieser ist vorzugsweise zum Durchleiten des Testfluids hohl.
  • Der Ausgleichskörper kann grundsätzlich eine beliebige Form haben und an beliebigem Ort positioniert sein, solange er an das Fluidreservoir angrenzt oder teilweise in dieses hineinragt. Vorzugsweise umfasst der Ausgleichskörper einen bewegbaren Ausgleichskolben. Dieser wird gekoppelt zu dem Einstellstift bewegt.
  • Damit eine Volumenänderung durch den Einstellstift und eine Volumenänderung durch den Ausgleichskörper möglichst genau übereinstimmen, kann der Ausgleichskolben so an die Stelleinrichtung gekoppelt ist, dass bei einer Bewegung des Einstellstifts der Ausgleichskolben um eine gleiche Strecke bewegt wird.
  • Dies ist besonders bevorzugt, wenn eine Querschnittsfläche des Ausgleichskolbens und eine Querschnittsfläche des Einstellstifts gleich groß sind.
  • Um die Folgen von Bewegungsungenauigkeiten gering zu halten, kann auch vorgesehen sein, dass die Kopplung derart ist, dass der Ausgleichskolben um eine größere Strecke bewegt wird als der Einstellstift. Hierbei ist eine Querschnittsfläche des Ausgleichskolbens geringer ist die des Einstellstifts. Solange die Abmessungen des Ausgleichskolbens präzise hergestellt werden können, wird in dieser Weise eine gute Kompensation auch bei Bewegungsungenauigkeiten des Ausgleichskolbens erreicht.
  • Grundsätzlich kann der Ausgleichskörper auch als Teil der Stelleinrichtung ausgeführt sein, das heißt mechanisch mit dieser verbunden sein oder einstückig mit einer Komponente der Stelleinrichtung gebildet sein.
  • Der Ausgleichskörper kann auch identisch zum Einstellstift geformt sein. Insbesondere kann ein Fluidvolumen um den Einstellkörper gleich geformt sein wie ein Fluidvolumen um den Einstellstift zum Einspritzventil, mit dem Unterschied, dass über den Ausgleichskörper kein Testfluid abgespritzt werden kann. In diesem Fall wird der Ausgleichskörper entgegengesetzt zum Einstellstift bewegt. Wegen den übereinstimmenden Abmessungen wird hier eine Volumenänderung besonders zuverlässig kompensiert.
  • Prinzipiell kann der Ausgleichskörper auch durch die Pumpe verwirklicht werden. In diesem Fall wird die Kopplung über eine elektronische Steuereinheit verwirklicht, welche die Pumpe zusätzlich dann angesteuert, wenn das Stellelement die Einstellmechanik des Einspritzventils verstellt. Dabei wird die Pumpe gerade so angesteuert, dass sie das Fluidreservoir um ein Volumen ändert, das zu der Volumenänderung durch die Stelleinrichtung betragsgleich ist, aber ein entgegengesetztes Vorzeichen hat.
  • Es ist auch möglich, dass der Ausgleichskörper und der Einstellstift durch einen gemeinsamen Körper gebildet sind. In diesem Fall führt bei einer Bewegung des Einstellstifts jedenfalls ein Abschnitt des Einstellstifts zu einer Volumenvergrößerung des Fluidreservoirs, während ein anderer Abschnitt des Einstellstifts zu einer Volumenverringerung führt.
  • Eine verhältnismäßig einfache Herstellung wird ermöglicht, wenn der Ausgleichskörper innerhalb eines Ausgleichsraums des Fluidreservoirs bewegbar ist, wobei der Ausgleichsraum über ein Leitungsrohr mit übrigen Abschnitten des Fluidreservoirs verbunden ist. Insbesondere kann das Leitungsrohr den Ausgleichskörper fluidmäßig mit der Pumpe und/oder mit dem inneren Hohlraum des Einstellstifts.
  • Vorzugsweise ist der Ausgleichskörper so mit der Stelleinrichtung gekoppelt, dass bei einer Bewegung der Stelleinrichtung der Ausgleichskörper gleichzeitig bewegt wird. Insbesondere bei einer Kopplung über eine elektronische Steuereinheit kann die Bewegung des Ausgleichskörpers aber auch vor oder nach der Bewegung der Stelleinrichtung erfolgen.
  • In einer bevorzugten Ausführungsform ist das Stellelement eingerichtet, auf eine Federeinrichtung im Einspritzventil zum Ändern des Durchflusses des Einspritzventils einzuwirken. Durch die Federeinrichtung lässt sich das Einspritzventil auf eine gewünschte Solldurchflussmenge abgleichen.
  • Vorzugsweise ist das Stellelement mittels eines Spindeltriebs antreibbar. Dieser kann wiederum durch einen Motor, insbesondere einen Schritt- oder Servomotor angetrieben werden. Ein Spindeltrieb ermöglicht eine besonders präzise Verstellung des Stellelements in kleinen Schritten.
  • Die Kompensierung der Volumenänderung durch den Ausgleichskolben lässt sich auf vorteilhafte Weise dadurch realisieren, dass eine Stirnfläche des Ausgleichskolbens mit dem Fluidreservoir in Verbindung steht und dass die Stirnfläche des Ausgleichskolbens gleich dimensioniert ist wie eine Stirnfläche des Stellelements. Auf diese Weise führt eine axiale Verstellung von Stellelement und Ausgleichskolben um den gleichen Betrag zu einem exakten Ausgleich der Volumenänderung.
  • Zur Volumenkompensation können Ausgleichskolben und Stellelement derart gekoppelt sein, dass eine Bewegung des Stellelements eine gleichgerichtete oder entgegengesetzte Bewegung des Ausgleichskolbens bewirkt.
  • Vorzugsweise ist eine Recheneinheit zum Berechnen des Durchflusses des Einspritzventils basierend auf einer ermittelten Druckänderung vorgesehen. Hierzu wird der Druck in dem Fluidreservoir vor und nach einem Ab- oder Einspritzvorgang ermittelt. Aufgrund der gemessenen Druckänderung lässt sich die Änderung der Menge des Testfluids in dem Fluidreservoir und somit die ab- beziehungsweise eingespritzte Menge berechnen.
  • Zur Justierung des Durchflusses des Einspritzventils werden vorzugsweise vor dem eigentlichen Einstellvorgang Kalibrierungsmessungen durchgeführt, in welchen das Speicherverhalten des hydraulischen Kreises beziehungsweise Fluidreservoirs bestimmt wird. Hierbei wird das Fluidreservoir unter Druck gesetzt. Der Druckanstieg wird als Funktion der Volumenveränderung bis zu einem gewünschten Maximaldruck von einer Messeinrichtung aufgenommen und abgespeichert. Des Weiteren wird der Druckabfallverlauf aufgezeichnet. Basierend auf den Messungen können Kennlinien ermittelt werden, welche eine Relation zwischen Volumen und Druck bei ansteigendem und bei fallendem Druck angeben.
  • Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsformen weiter beschreiben, welche in den beiliegenden Figuren dargestellt sind. Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung und
    Fig. 2
    einen vergrößerten Ausschnitt aus Fig. 1;
  • Gleiche oder gleich wirkende Komponenten sind in beiden Figuren in der Regel mit übereinstimmenden Bezugszeichen versehen.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung 100 zum Justieren eines Durchflusses eines Einspritzventils 1.
  • Das Einspritzventil 1 wird in einer Aufnahme 10 der Vorrichtung 100 gehalten, welche an einem Einstellkopf 3 der Vorrichtung 100 gebildet ist.
  • Mit dem Einspritzventil 1 sollen besonders kleine Einspritzmengen erzeugt werden können. Um dies zu ermöglichen, ist die Einspritzmengencharakteristik des Einspritzventils 1 mittels einer Federeinrichtung 19 im Einspritzventil 1 einstellbar. Dieser Einstellvorgang erfolgt vor dem regulären Betrieb des Einspritzventils 1 mit der Vorrichtung 100.
  • Diese weist zunächst als wesentliche Komponente ein Stellelement 4 mit einem Einstellstift 41 auf. Durch Bewegen des Einstellstifts 41 kann eine Einstellmechanik 30 des Einspritzventils 1 verstellt werden, womit der Durchfluss durch das Einspritzventil 1 geändert wird.
  • Der Durchfluss durch das Einspritzventil 1 wird als Durchflussmenge pro Einspritzvorgang bestimmt. Zur Ermittlung dieser Durchflussmenge wird mit der Vorrichtung 100 ein Testfluid durch das Einspritzventil 1 gepumpt.
  • Hierzu umfasst die Vorrichtung 100 ein Fluidreservoir 15, mit welchem ein Testfluid zu der Einspritzdüse 1 geleitet werden kann. Als Fluidreservoir 15 kann der gesamte Bereich verstanden werden, der fluidmäßig mit einem Einlass des Einspritzventils 1 verbunden ist, insbesondere ohne Leitungsunterbrechungen oder -absperrungen.
  • Mit dem Fluidreservoir 15 ist eine Pumpe 8 verbunden, um einen Druck im Fluidreservoir 15 zu erzeugen und so das Testfluid durch die Einspritzdüse 1 zu fördern. Die Pumpe 8 ist vorzugsweise eine Hochdruckpumpe 8, insbesondere eine leckagefrei arbeitende Kolbenpumpe. Diese umfasst ein Verdrängungsorgan, welches mit einem Spindeltrieb verstellbar ist. Dieser kann wiederum mit einem Schrittmotor oder Servomotor angetrieben werden. Dadurch kann die Pumpe 8 einen hydraulischen Volumenstrom erzeugen. Da die Geschwindigkeit des Motors über einen weiten Bereich verstellbar ist, kann vorteilhafterweise der durch die Pumpe bereitgestellte Volumenstrom ebenfalls über einen großen Bereich verstellt werden. Wird der Endhub der Pumpe erreicht, muss diese neu mit Testfluid befüllt werden. Die Pumpe 8 kann auch als Dosierpumpe verwendet werden, um ein bestimmtes Volumen nachzufördern.
  • Um das Testfluid in das Fluidreservoir 15 und die damit verbundene Pumpe 8 einzuleiten, ist ein Einlassventil 6 vorhanden. Während mit der Vorrichtung 100 der Durchfluss durch das Einspritzventil 1 gemessen und eingestellt wird, bleibt das Einlassventil 6 abgesperrt. Allein zum Nachfüllen von Testfluid zwischen Messvorgängen der Vorrichtung 100 wird das Einlassventil 6 geöffnet. Daher kann das Einlassventil 6 als eine Begrenzung des Fluidreservoirs 15 angesehen werden.
  • Die Durchflussmenge von Testfluid durch das Einspritzventil 1 wird über den Druck im Fluidreservoir 15 berechnet. Diese Berechnung und der eigentliche Messbetrieb werden im Späteren näher beschrieben. Zur Messung des Drucks im Fluidreservoir 15 ist eine Messeinrichtung 11, das heißt ein Drucksensor 11, vorhanden. Dieser kann an einer beliebigen Stelle des Fluidreservoirs 15 angeordnet sein, das heißt er ist fluidmäßig und ununterbrochen mit dem Rest des Fluidreservoirs 15 verbunden. Im dargestellten Beispiel ist der Drucksensor 11 an einer Leitung angeordnet, mit welcher Testfluid von der Vorrichtung 100 weggeleitet werden kann. Diese Leitung und damit das Fluidreservoir 15 werden durch ein Spülventil 16 begrenzt, welches im Messbetrieb der Vorrichtung 100 geschlossen ist.
  • Um aus dem gemessenen Druck auf die Durchflussmenge durch das Einspritzventil 1 zu schließen, spielt das Volumen des Fluidreservoirs 15 eine wichtige Rolle. Bei herkömmlichen Vorrichtungen 100 ist dieses Volumen während des Einstellvorgangs aber nicht konstant. So führt eine Bewegung des Einstellstifts 41 zu einer Veränderung des Volumens des Fluidreservoirs 15. Diese Volumenänderung wird herkömmlicherweise berechnet oder geschätzt und für die Berechnung der Durchflussmenge verwendet. Hiermit sind Ungenauigkeiten verbunden, welche bei der erfindungsgemäßen Vorrichtung 100 reduziert oder umgangen werden. Zudem wird eine Zeitersparnis erzielt, wie im Späteren näher dargelegt wird.
  • So führt ein Bewegen des Einstellstifts 41 für sich betrachtet zwar auch bei der Erfindung zu einer Volumenänderung des Fluidreservoirs 15. Erfindungsgemäß wird diese Volumenänderung aber durch Bewegen eines Ausgleichskörpers 5 ausgeglichen. Der Ausgleichskörper 5 ist mit einem Bereich des Fluidreservoirs 15 verbunden und kann dessen Volumen verändern.
  • Bei der dargestellten Ausführungsform umfasst der Ausgleichskörper 5 einen Ausgleichskolben 55, der in einem Zylinder 56 bewegbar ist. Dadurch wird die Größe des Innenraums des Zylinders 56 verändert. Dieser Innenraum ist Bestandteil des Fluidreservoirs 15 und daher mit der Einlassöffnung des Einspritzventils 1 fluidmäßig verbunden. Der Zylinder 56 kann einen Einlass 51 und einen Auslass 52 an seinem Innenraum aufweisen. Dabei ist der Innenraum so geformt, dass der Einlass 51 und Auslass 52 unabhängig von der Stellung des Ausgleichskolbens 55 über den Innenraum miteinander verbunden sind.
  • Es kann vorgesehen sein, dass über das Fluidreservoir 15 die Pumpe 8 mit dem Einlass 51 fluidmäßig verbunden ist und der Auslass 52 mit einem Einstellkopf 3 der Vorrichtung 100 fluidmäßig verbunden ist, wobei von dem Einstellkopf 3 das Testfluid in das Einspritzventil 1 einleitbar ist.
  • Alternativ kann vorgesehen sein, dass das Fluidreservoir 15 nicht über den Auslass 52, sondern über den Einlass 51 mit dem Einstellkopf 3 fluidmäßig verbunden ist. In diesem Fall stellt der Innenraum des Zylinders 56 ein Endvolumen oder eine Sackgasse dar, deren Volumen einstellbar ist.
  • Ein wesentlicher Gedanke der Erfindung liegt darin, dass der Ausgleichskörper 5, im dargestellten Beispiel der Ausgleichskolben 55, durch eine Bewegung des Stellelements 4 verschoben wird. Hierfür ist der Ausgleichskolben 55 über ein Koppelelement 60 an einen Hubkörper 42 des Stellelements 4 gekoppelt. Durch eine Bewegung des Hubkörpers 42 ist zum einen der Einstellstift 41 verschiebbar. Zum anderen ist damit das Koppelelement 60 und somit der Ausgleichskolben 55 bewegbar. Die Kopplung zwischen dem Koppelelement und dem Hubkörper 42 kann prinzipiell beliebig ausgeführt sein. Für eine besonders robuste Ausführung kann die Kopplung mechanisch erfolgen. Alternativ ist auch eine magnetische Kopplung möglich. Dadurch kann das Koppelelement 60 leichter vom Hubkörper 42 gelöst werden, womit bei Bedarf ein Komponentenaustausch erleichtert wird.
  • Prinzipiell kann der Ausgleichskörper 5 beliebig geformt sein, solange über die Kopplung zu dem Stellelement 4 mit ihm eine Bewegung ausgeführt wird, durch die eine Volumenänderung des Fluidreservoirs 15 gerade gleich groß aber entgegengesetzt zu einer Volumenänderung des Fluidreservoirs 15 durch eine Bewegung des Einstellstifts 41 ist. Diese Bedingung wird bei der dargestellten Ausführungsform besonders einfach und zuverlässig erfüllt. Dazu erfolgt eine 1:1-Übertragung von dem Hubkörper 42 zu dem Ausgleichskolben 55. Das heißt, bei einer Bewegung des Einstellstifts 41 wird der Ausgleichskolben 55 um eine gleich große Strecke bewegt. Zudem sind die Querschnittsabmessungen des Ausgleichskolbens 55 und des Einstellstifts 41 gleich. Dadurch sind auch die Volumenänderungen betragsgleich, die durch das Bewegen des Einstellstifts 41 und des Ausgleichskolbens 55 erzeugt werden.
  • Die Querschnittsabmessungen des Hohlraums des Zylinders 56 können größer sein als die Außenabmessungen des Ausgleichkolbens 55. Dadurch ist die Mantelfläche des Ausgleichskolbens 55 von Testfluid umgeben, womit Reibungsverluste durch Bewegen des Ausgleichskolbens 55 verringert sind.
  • Eine vergrößerte Darstellung des in Fig. 1 mit dem Bezugszeichen 70 versehenen Bereichs ist in Fig. 2 gezeigt. Erkennbar ist insbesondere der Einstellstift 41, der die Einstellmechanik 30 des Einspritzventils 1 kontaktiert und diese verstellen kann. Zudem ist der Einstellstift 41 hohl ausgeführt, so dass Testfluid durch diesen hindurch in das Einspritzventil 1 eingeleitet werden kann.
  • Im Folgenden wird der Betrieb der Vorrichtung 100 beschrieben. Im Betrieb wird eine Durchflussmenge von Testfluid durch das Einspritzventil 1 bestimmt. Dieser Ist-Wert wird mit einem Soll-Wert verglichen. Abhängig vom Ergebnis des Vergleichs wird über den Einstellstift 41 die Einstellmechanik 30 des Einspritzventils 1 verstellt. Damit wird die Durchflussmenge durch das Einspritzventil 1 von einem Einspritzvorgang verändert. Sodann wird erneut ein Ist-Wert der Durchflussmenge ermittelt und mit dem Soll-Wert verglichen. Dieser Vorgang kann solange wiederholt werden, bis die Abweichung vom Ist-Wert zum Soll-Wert unterhalb einer vorgegebenen Toleranzschwelle liegt. Die in diesem Verfahren durchgeführten Schritte werden im Folgenden detaillierter beschrieben.
  • Mit der Vorrichtung 100 wird der Druck oder eine Druckänderung im Fluidreservoir 15 erfasst. Daraus soll auf eine Volumenänderung von Testfluid im Fluidreservoir 15 geschlossen werden. Aus dieser Volumenänderung kann auf das Volumen von Testfluid geschlossen werden, welches über den Messzeitraum durch das Einspritzventil 1 geleitet wurde.
  • Daher muss der Zusammenhang zwischen einer Druckänderung und der zugehörigen Volumenänderung bekannt sein. Dies wird durch die Kennlinie der Kreiskompressibilität Kc = dV/dP beschrieben. Dabei bezeichnen dV und dP eine infinitesimale Volumenänderung und eine infinitesimale Druckänderung. Diese Kennlinie muss für die Vorrichtung 100 vor dem eigentlichen Messbetrieb ermittelt werden. Dazu wird zunächst die Hochdruckpumpe 8 vollständig mit Testfluid über das Einlassventil 6 befüllt. Sodann werden das Einlassventil 6 und die Spülventile 9 und 16 geschlossen. Dadurch kann das Testfluid nicht aus dem Fluidreservoir 15 abfließen. Nun wird die Pumpe 8, insbesondere mit niedriger Vorschubgeschwindigkeit, betrieben, womit das Volumen des Fluidreservoirs 15 verringert wird. Gleichzeitig steigt der Druck des Testfluids im Fluidreservoir 15. Über den Drucksensor 11 wird der Druckanstieg als Funktion der Volumenänderung bis zu einem gewünschten Maximaldruck aufgezeichnet.
  • Hierauf wird die Vorschubrichtung der Pumpe 8 umgeschaltet, womit das Volumen des Fluidreservoirs 15 vergrößert und der Druck im Fluidreservoir 15 verringert wird. Währenddessen wird mit dem Drucksensor 11 der Druckabfallverlauf aufgezeichnet.
  • Aus dem ansteigenden Graph der Kennlinie kann ermittelt werden, welche Volumenänderung des Fluidreservoirs 15 erforderlich ist, um einen gewünschten Druck im Fluidreservoir 15 einzustellen. Analog kann aus dem absteigenden Graph der Kennlinie die Volumenänderung des Fluidreservoirs 15 ermittelt werden, welche für einen gewünschten Druckabfall einzustellen ist.
  • Vor dem Mess- und Einstellbetrieb der Vorrichtung 100 werden erneut das Fluidreservoir 15 und damit auch die Hochdruckpumpe 8 mit Testfluid befüllt. Zudem wird das Einspritzventil 1 mit einer Niederdruckversorgung gespült, um Lufteinschlüsse zu vermeiden.
  • Das Einlass- und die Spülventile 6, 9, 16 sowie das Einspritzventil 1 werden geschlossen. Die Hochdruckpumpe 8 wird solange angesteuert, bis sie einen gewünschten Druck im Fluidreservoir 15 erzeugt hat. Darauf wird das Einspritzventil 1 angesteuert, um für vorbestimmte Periodendauern Testfluid abzuspritzen. Für eine Erhöhung der Messgenauigkeit können mehrere Einspritzvorgänge mit dem Einspritzventil 1 durchgeführt werden. Daraufhin wird der Druckabfall im Fluidreservoir 15 mit dem Drucksensor 11 ermittelt.
  • Mithilfe der vorab ermittelten Kennlinie kann das abgeflossene Volumen Q an Testfluid mittels der Formel Q = Kc*ΔP ermittelt werden. Alternativ kann das Volumen Q auch als Integral der Druckänderung dP über Kc berechnet werden.
  • Das in dieser Weise ermittelte Volumen kann auf ein korrigiertes Volumen umgerechnet werden, welches dem Volumen entspricht, das durch die Einspritzdüse 1 abgespritzt worden wäre, wenn der Druck konstant auf dem zuvor eingestellten Druck geblieben wäre. Um die Einspritzmenge einer einzelnen Einspritzung zu erhalten, kann das korrigierte Volumen durch die Anzahl der Einspritzungen während des beschriebenen Messvorgangs geteilt werden. Somit wird ein Ist-Wert der Einspritzmenge berechnet. Dieser wird mit einem Soll-Wert der Einspritzmenge verglichen. Abhängig vom Vergleich wird ein Verstellweg für die Einstellmechanik 30 berechnet. Dieser Verstellweg wird mithilfe des Einstellstifts 41 eingestellt.
  • Zwar führt die Bewegung des Einstellstifts 41 zu einer Volumenänderung des Fluidreservoirs 15. Vorteilhafterweise wird diese Volumenänderung aber gerade durch eine gekoppelte Bewegung des Ausgleichskörpers 5 ausgeglichen. Dadurch muss vorteilhafterweise keine hierauf zurückgehende Volumenänderung berücksichtigt werden, womit eine verbesserte Messgenauigkeit erreicht werden kann. Außerdem kann die gesamte für den Einstellvorgang erforderliche Zeit reduziert werden.
  • Nach einer Einstellungsänderung über den Einstellstift 41 und vor einem nächsten Messdurchgang der Vorrichtung 1 wird mithilfe der Pumpe 8 das Volumen des Fluidreservoirs 15 verringert. Dadurch wird erneut der gewünschte Druck im Fluidreservoir 15 eingestellt. Die hierfür erforderliche Volumenverringerung wird aus dem vorab ermittelten ansteigenden Graph der Kennlinie berechnet.
  • Der beschriebene Ablauf des Messens und Einstellens wird solange wiederholt, bis der gemessene Ist-Wert der Einspritzmenge innerhalb eines vorgegebenen Toleranzbereichs um den Soll-Wert liegt.
  • Die Pumpe 8 ist vorzugsweise so dimensioniert, dass sie eine Volumenänderung des Fluidreservoirs 15 erzeugen kann, welche für die Anzahl aufeinanderfolgender Einspritzvorgänge des Einspritzventils 1 ausreicht, welche zwischen zwei Einstellvorgängen mit dem Einstellstift 41 durchgeführt werden.
  • Durch die gekoppelte Bewegung des Ausgleichskörpers 5 werden Volumen- und Druckänderungen im Fluidreservoir 15 verringert. Dadurch kann die Zeit verringert werden, die zum Einstellen des gewünschten Drucks mit der Pumpe nach einem Einstellvorgang des Einstellstifts 41 benötigt wird. Somit kann eine Vorrichtung 100 innerhalb einer vorgegebenen Zeit eine größere Anzahl an Einspritzventilen 1 einstellen. Vorteilhafterweise kann daher eine Gesamtzahl an Vorrichtungen 1 verringert werden, womit eine Kostenersparnis erzielt wird.

Claims (11)

  1. Vorrichtung zum Justieren eines Durchflusses eines Einspritzventils (1) mit
    - einer Aufnahme (10) zum Aufnehmen und Halten des zu justierenden Einspritzventils (1),
    - einer Stelleinrichtung (4) zum Verstellen einer Einstellmechanik (30) des Einspritzventils (1) zum Justieren des Durchflusses,
    - einem Fluidreservoir (15) für ein Testfluid,
    - einer Pumpe (8) zum Erzeugen eines Drucks des Testfluids in dem Fluidreservoir (15), und
    - einer Messeinrichtung (11) zum Ermitteln des Drucks in dem Fluidreservoir (15),
    dadurch gekennzeichnet,
    dass ein Ausgleichskörper (5) vorgesehen ist, mit welchem das Volumen des Fluidreservoirs (15) änderbar ist,
    dass der Ausgleichskörper (5) mit der Stelleinrichtung (4) so gekoppelt ist, dass bei einer Bewegung der Stelleinrichtung (4), durch welche eine Volumenänderung des Fluidreservoirs (15) hervorgerufen wird, der Ausgleichskörper (5) so bewegbar ist, dass die Volumenänderung zumindest teilweise kompensiert wird.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Ausgleichskörper (5) mechanisch an die Stelleinrichtung (4) gekoppelt ist.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der Ausgleichskörper (5) einen bewegbaren Ausgleichskolben (55) umfasst.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Stelleinrichtung (4) einen Einstellstift (41) aufweist, der zum Verstellen der Einstellmechanik bewegbar ist.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass der Ausgleichskolben (55) so an die Stelleinrichtung (4) gekoppelt ist, dass bei einer Bewegung des Einstellstifts (41) der Ausgleichskolben (55) um eine gleiche Strecke bewegt wird.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass eine Querschnittsfläche des Ausgleichskolbens (55) und eine Querschnittsfläche des Einstellstifts (41) gleich groß sind.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    - dass zumindest eine Stirnfläche des Ausgleichskörpers (5) mit dem Fluidreservoir (15) in Verbindung steht und
    - dass die Stirnfläche des Ausgleichskörpers (5) gleich dimensioniert ist wie eine Stirnfläche desjenigen Abschnitts der Stelleinrichtung (4), welcher mit dem Fluidreservoir (15) in Verbindung steht und zum Verstellen der Einstellmechanik (30) bewegbar ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass der Ausgleichskörper (5) innerhalb eines Ausgleichsraums des Fluidreservoirs (15) bewegbar ist, wobei der Ausgleichsraum über ein Leitungsrohr mit übrigen Abschnitten des Fluidreservoirs (15) verbunden ist.
  9. Vorrichtung nach einem der Ansprüche 4 bis 8,
    dadurch gekennzeichnet,
    dass der Ausgleichskörper (5) und der Einstellstift (41) durch einen gemeinsamen Körper gebildet sind.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass der Ausgleichskörper (5) so mit der Stelleinrichtung (4) gekoppelt ist, dass bei einer Bewegung der Stelleinrichtung (4) der Ausgleichskörper (5) gleichzeitig bewegt wird.
  11. Verfahren zum Justieren eines Durchflusses eines Einspritzventils (1), insbesondere mit einer Vorrichtung nach einem der Ansprüche 1 bis 10,
    bei welchem
    - das zu justierende Einspritzventil (1) an einer Aufnahme (10) befestigt wird,
    - mittels einer Pumpe (8) ein Testfluid in einem Fluidreservoir (15) unter Druck gesetzt wird,
    - eine vorgegebene Anzahl von Einspritzvorgängen ausgeführt wird,
    - eine Druckänderung in dem Fluidreservoir (15) bestimmt und zum Ermitteln des Durchflusses des Einspritzventils (1) in eine Volumenänderung umgerechnet wird und
    - mittels einer Stelleinrichtung (4) eine Einstellmechanik (30) des Einspritzventils (1) zum Justieren des Durchflusses des Einspritzventils (1) verstellt wird,
    dadurch gekennzeichnet,
    dass ein Ausgleichskörper (5) mit der Stelleinrichtung (4) so gekoppelt ist, dass bei einer Bewegung der Stelleinrichtung (4), durch welche eine Volumenänderung des Fluidreservoirs (15) erzeugt wird, der Ausgleichskörper (5) so bewegt wird, dass die Volumenänderung zumindest teilweise kompensiert wird.
EP13197361.2A 2013-12-16 2013-12-16 Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils Active EP2884092B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13197361.2A EP2884092B1 (de) 2013-12-16 2013-12-16 Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13197361.2A EP2884092B1 (de) 2013-12-16 2013-12-16 Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils

Publications (2)

Publication Number Publication Date
EP2884092A1 true EP2884092A1 (de) 2015-06-17
EP2884092B1 EP2884092B1 (de) 2016-04-27

Family

ID=49882816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13197361.2A Active EP2884092B1 (de) 2013-12-16 2013-12-16 Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils

Country Status (1)

Country Link
EP (1) EP2884092B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219441A1 (de) * 2015-10-07 2017-04-13 Continental Automotive Gmbh Fluidinjektor zum Betreiben eines Kraftfahrzeugs und Verfahren zum Herstellen eines Fluidinjektors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882331B (zh) * 2019-02-28 2020-11-13 一汽解放汽车有限公司 一种长针阀喷油嘴偶件高压流量测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798084A (en) * 1985-12-09 1989-01-17 Toyota Jidosha Kabushiki Kaisha Measuring device for measuring a fuel injection quantity
DE4433543C1 (de) 1994-09-20 1995-12-21 Sonplas Gmbh Planung Montage U Verfahren zur Einstellung und Überprüfung des Durchflusses bei Ventilen
WO2002046606A1 (de) * 2000-12-06 2002-06-13 Robert Bosch Gmbh Vorrichtung und verfahren zum messen der einspritzmenge von einspritzdüsen, insbesonderer für kraftfahrzeuge
DE10103899A1 (de) * 2001-01-30 2002-08-22 Bosch Gmbh Robert Vorrichtung zum Kalibrieren von Einspritzmengenindikatoren sowie Einspritzmengenindikator
DE102004060531A1 (de) * 2004-12-16 2006-06-22 Robert Bosch Gmbh Verfahren zum Justieren von hydraulischen Ventilen
DE102010002898A1 (de) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung eines Einspritzorgans
EP2453123A1 (de) * 2010-11-10 2012-05-16 Magneti Marelli S.p.A. Verfahren zur Bestimmung des Injektionsgesetzes eines Kraftstoffinjektors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798084A (en) * 1985-12-09 1989-01-17 Toyota Jidosha Kabushiki Kaisha Measuring device for measuring a fuel injection quantity
DE4433543C1 (de) 1994-09-20 1995-12-21 Sonplas Gmbh Planung Montage U Verfahren zur Einstellung und Überprüfung des Durchflusses bei Ventilen
WO2002046606A1 (de) * 2000-12-06 2002-06-13 Robert Bosch Gmbh Vorrichtung und verfahren zum messen der einspritzmenge von einspritzdüsen, insbesonderer für kraftfahrzeuge
DE10103899A1 (de) * 2001-01-30 2002-08-22 Bosch Gmbh Robert Vorrichtung zum Kalibrieren von Einspritzmengenindikatoren sowie Einspritzmengenindikator
DE102004060531A1 (de) * 2004-12-16 2006-06-22 Robert Bosch Gmbh Verfahren zum Justieren von hydraulischen Ventilen
DE102010002898A1 (de) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung eines Einspritzorgans
EP2453123A1 (de) * 2010-11-10 2012-05-16 Magneti Marelli S.p.A. Verfahren zur Bestimmung des Injektionsgesetzes eines Kraftstoffinjektors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219441A1 (de) * 2015-10-07 2017-04-13 Continental Automotive Gmbh Fluidinjektor zum Betreiben eines Kraftfahrzeugs und Verfahren zum Herstellen eines Fluidinjektors

Also Published As

Publication number Publication date
EP2884092B1 (de) 2016-04-27

Similar Documents

Publication Publication Date Title
DE10032022B4 (de) Verfahren zur Bestimmung der Ansteuerspannung für ein Einspritzentil mit einem piezoelektrischen Aktor
DE102011003751B4 (de) Einspritzvorrichtung
DE102011005285B4 (de) Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
WO1999020893A1 (de) Kraftstoffeinspritzanlage für eine brennkraftmaschine
EP2205846B1 (de) Verfahren zur steuerung eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE102005036192A1 (de) Verfahren zur Steuerung eines Einspritzsystems einer Brennkraftmaschine
DE2755222A1 (de) Kraftstoffeinspritzeinrichtung, insbesondere fuer dieselbrennkraftmaschinen
WO2009149987A1 (de) Verfahren zur einspritzmengenabweichungsdetektion und zur korrektur einer einspritzmenge sowie einspritzsystem
DE102007052451B4 (de) Verfahren zum Bestimmen der aktuellen Dauerleckagemenge einer Common-Rail-Einspritzanlage und Einspritzanlage für eine Brennkraftmaschine
DE102016119047B4 (de) Verfahren zur schnellen Ermittlung einer Kraftstoffmengenänderung
DE112008001845B4 (de) System und Verfahren zur Kraftstoffeinspritzsteuerung
DE102007008201B3 (de) Verfahren zur Regelung einer Einspritzmenge eines Injektors einer Brennkraftmaschine
EP2884092B1 (de) Vorrichtung und Verfahren zum Justieren eines Durchflusses eines Einspritzventils
EP0982492A2 (de) Vorrichtung zum Einspritzen von Brennstoff für eine Hubkolbenbrennkraftmaschine
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
DE10254844A1 (de) Verfahren und Vorrichtung zum Betrieb eines Einspritzsystems einer Brennkraftmaschine
EP2807366B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE202013104714U1 (de) Kraftstoffversorgungssystem einer direkteinspritzenden Brennkraftmaschine
WO2002010582A1 (de) Ventilanordnung, insbesondere für ein kraftstoffeinspritzsystem einer verbrennungsmaschine
DE102013220997B4 (de) Direkteinspritzende Brennkraftmaschine mit Kraftstoffversorgungssystem und Verfahren zum direkten Einspritzen von Kraftstoff
DE102014220363B4 (de) Verfahren zum direkten Einbringen von Kraftstoff in einen Zylinder einer direkteinspritzenden Brennkraftmaschine
DE102013221001A1 (de) Kraftstoffversorgungssystem einer direkteinspritzenden Brennkraftmaschine und Verfahren zum direkten Einspritzen von Kraftstoff
EP1718854A1 (de) Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors
DE10301822B4 (de) Verfahren zur Bestimmung der Längenausdehnung eines piezoelektrischen Aktors
DE102006046470B4 (de) Verfahren zum Betrieb eines Einspritzventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 795105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002769

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002769

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013002769

Country of ref document: DE

Representative=s name: WUNDERLICH & HEIM PATENTANWAELTE PARTNERSCHAFT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 795105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231220

Year of fee payment: 11