EP2878088B1 - Procédé et dispositif de transmission d'un signal de client par un resau optique - Google Patents

Procédé et dispositif de transmission d'un signal de client par un resau optique Download PDF

Info

Publication number
EP2878088B1
EP2878088B1 EP12816030.6A EP12816030A EP2878088B1 EP 2878088 B1 EP2878088 B1 EP 2878088B1 EP 12816030 A EP12816030 A EP 12816030A EP 2878088 B1 EP2878088 B1 EP 2878088B1
Authority
EP
European Patent Office
Prior art keywords
optical
channel
super
otu
client signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12816030.6A
Other languages
German (de)
English (en)
Other versions
EP2878088A1 (fr
Inventor
Ghani Abdul Muttalib Abbas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP2878088A1 publication Critical patent/EP2878088A1/fr
Application granted granted Critical
Publication of EP2878088B1 publication Critical patent/EP2878088B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0273Transmission of OAMP information using optical overhead, e.g. overhead processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • This invention relates to optical transport networks and to methods and apparatus therefore.
  • ITU-T International Telecommunications Union
  • G.709 defines the optical transport network (OTN) interfaces and hierarchy.
  • OTN optical transport network
  • G.709 also defines the largest container ODU4 to transport 100Gbit/s of data traffic.
  • a method of transporting a client signal across an optical transport network comprising dividing a received client signal into a plurality of parallel signals at a lower bit rate; mapping the parallel signals into a respective number of optical data units (ODU) each having payload bytes and overhead bytes; mapping each ODU into a respective optical transport unit (OTU) having payload bytes and overhead bytes; transmitting the OTUs across respective optical carriers of a super-channel, the optical carriers of the super-channel being synchronously modulated; and inserting optical channel control information (OCCI) into the overhead bytes of the ODU and/or OTU, the OCCI being used to manage and/or control the transport of the client signal using the super-channel.
  • OTN optical transport network
  • the OTN, ODU, OTU and the optical carriers of the super-channel may be constructed according to ITU-T standard G.709. Other types of containers (ODU/OTU) are however contemplated.
  • the super-channel may be transmitted using a single laser.
  • the super-channel may consist of multiple frequency-locked carriers using coherent optical orthogonal frequency-division multiplexing (CO-OFDM), however other types of modulation may alternatively be used.
  • CO-OFDM coherent optical orthogonal frequency-division multiplexing
  • the OCCI may be used to identify which optical carriers are used to carry the respective OTU, and may also include information about structure, types, and management information about the signal/s transported.
  • the OCCI may be used to request a change in the optical carriers used to transport the client signal. This may include adding or subtracting sub-carriers, or re-allocating the same number of sub-carriers.
  • a method of transporting a client signal across an optical transport network comprising: dividing a received client signal into a plurality of parallel signals at a lower bit rate; mapping the parallel signals into a respective number of optical data units (ODU) each having payload bytes and overhead bytes; mapping each ODU into a respective optical transport unit (OTU) having payload bytes and overhead bytes; mapping the resulting OTUs into a higher bit rate OTU having payload bytes and overhead bytes; transmitting the higher rate OTU across the OTN as an optical super-carrier, the optical super-carrier having a wavelength wider than the wavelength of an optical carrier normally allocated to transmitting a lower rate OTU across the OTN; inserting optical channel control information (OCCI) into the overhead bytes of the ODU and/or OTU, the OCCI being used to manage and/or control the transport of the client signal using the optical super-carrier.
  • ODU optical data units
  • OFT optical transport unit
  • the OTN, ODU, and OTU may operate according to G.709.
  • the lower rate ODU and OTU may be ODU4 and OTU4 respectively, whilst the higher rate OTU may be OTU5.
  • the lower bit rate OTU may first be interleaved to form a single higher bit rate signal for mapping into the higher bit rate OTU.
  • the interleaving may be performed using bit, byte or block interleaving. Circuit processing may be used to de-skew/align the signals.
  • the optical carriers have a wavelength defined in ITU Recommendations G.694.1 and G.694.2 and the optical super-carrier has a wavelength wider than what would be used for the optical carriers.
  • a method of transporting a client signal across an optical transport network comprising: dividing a received client signal into a plurality of parallel signals at a lower bit rate; mapping the parallel signals into a respective number of optical data units (ODU) each having payload bytes and overhead bytes; mapping each ODU into a respective optical transport unit (OTU) having payload bytes and overhead bytes; transmitting the OTUs across respective optical carriers of a super-channel, the optical carriers of the super-channel being synchronously modulated; inserting optical channel control information (OCCI) into the overhead bytes of the ODU and/or OTU, the OCCI being used to request a change in the optical carriers used to transport the client signal.
  • OTN optical transport network
  • the OTN, ODU, OTU may operate according to G.709.
  • the optical carriers may be formed as part of a super-channel or as standard parallel wavelengths as defined in G.709, G.694.1 and G.694.2.
  • in-band signaling to change the number of optical carriers used to transport the client signal allows for increased flexibility for handling the client signal.
  • equipment such as optical nodes having optical-electrical-optical (OEO), optical-electrical (OE), electrical-optical (EO) capability which are arranged to carry out these methods.
  • OEO optical-electrical-optical
  • OE optical-electrical
  • EO electrical-optical
  • computer code on a suitable carrier and executable by a suitable processor to carry out the above methods.
  • the functionality described here can be implemented in hardware, software executed by a processing apparatus, or by a combination of hardware and software.
  • the processing apparatus can comprise a computer, a processor, a state machine, a logic array or any other suitable processing apparatus.
  • the processing apparatus can be a general-purpose processor which executes software to cause the general-purpose processor to perform the required tasks, or the processing apparatus can be dedicated to perform the required functions.
  • Another aspect of the invention provides machine-readable instructions (software) which, when executed by a processor, perform any of the described methods.
  • the machine-readable instructions may be stored on an electronic memory device, hard disk, optical disk or other machine-readable storage medium.
  • the machine-readable medium can be a non-transitory medium.
  • the machine-readable instructions can be downloaded to the storage medium via a network connection.
  • Figure 1 shows an OTN network 10 and two nodes 11, 12 forming part of the OTN network 10 at which client signals can ingress 13 the OTN network and/or egress 14 the OTN network 10.
  • Figures 2A and 2B show one embodiment of apparatus at the nodes 11, 12 of Figure 1 in more detail.
  • Figure 2A shows ingress functions at one of the nodes 11, 12.
  • the node receives a 400G client signal 13 and uses a demultiplexer/divider 21 to demultiplex/divide the client signal 13 into four parallel 100G signals 22 which are mapped by a mapper 23 into ODU4 containers 24 as will be appreciated by those skilled in the art.
  • a mapper 23 into ODU4 containers 24
  • ODU4 containers 24 are able to transport 100G client signals across the OTN network 10, and thus the embodiment is able to transport the 400G client signal 13 across four parallel ODU4 signals.
  • the ODU4 containers 24 are mapped by a further mapper 25 into OTU4 containers 26 as is known.
  • a channel managing entity 31 inserts 32, 33 optical channel control information into the overhead bytes 24A, 26A of the ODU4 and/or OTU4 containers 24, 26.
  • the channel managing entity 31 may be implemented by a suitably programmed processor and memory in the node 11, 12.
  • the set 28 of OTU4 signals are input to a super-channel multiplexer 29 which cooperates with a super-transponder 30 to generate an optical signal 31 comprising a group of optical sub-carriers or channels to transport the OTU4 containers across the OTN 10.
  • a super-channel can comprise a group of optical carriers which are synchronously modulated.
  • four sub-carriers or wavelengths are used which correspond to the four parallel OTU4 streams.
  • Various modulation schemes may be used such as QAM, QPSK, 16QPSK, etc.
  • the sub-carriers may be further multiplexed to form part of a DWDM transport system.
  • the super-channel multiplexer 29 and super-channel transponder 30 can be implemented in various ways as will be appreciated by those skilled in the art.
  • the Infinera DTN-X platform is a current commercially available product.
  • the optical carriers are modulated synchronously which provides improved optical performance.
  • Such an implementation is described in the paper " Terabit Superchannels for High Spectral Efficiency Transmission” by S. Chandrasekhar and Xiang Liu, in ECOC 2010, 19-23 September, Torino Italy .
  • the implementation described in this paper uses coherent optical orthogonal frequency division multiplexing (CO-OFDM), however alternative super-channel implementations could also be used.
  • CO-OFDM coherent optical orthogonal frequency division multiplexing
  • the super-channel mux 29 and super-transponders 30 effectively integrate what would otherwise be the modulation of separate optical channels or wavelengths.
  • the use of photonic integration has allowed the implementation of super-channels or groups of multiple wavelengths to be modulated together in a cost effective manner.
  • Figure 2B shows apparatus at a node 11, 12 for egress of a client signal.
  • a corresponding arrangement receives the four optical signals which form the super-channel 71 and recovers 69 the 4x OTU4 streams 68, which are demapped 65 into 4x ODU4 streams.
  • a channel manager entity 71 recovers optical channel control information 73, 72 from the overheads 66A, 64A of the OTU4 and/or ODU4 66, 64.
  • a transponder 70 receives the optical signal 71 which comprises the super-channel.
  • a demultiplexer 69 recovers the OTU4 streams 68.
  • the OTU4 streams are demapped 65 to ODU4 streams 64.
  • a set 62 of output signals recovered from the ODU4s are combined 61 and output as a client signal 14.
  • Figure 2C shows two examples 96, 97 of 400G super-channel signals and, by way of contrast, a conventional 100G signal 95.
  • the super-channel signal 96 shown in Figure 2C is of the type described above. It comprises four sub-carriers SC1, SC2, SC3, SC4.
  • the super-channel signal 97 comprises two sub-carriers SC1, SC2.
  • Modulation scheme can be selected from a range of possible modulation schemes. A different modulation scheme may be used for one or more of the sub-carriers in the plurality of sub-carriers.
  • the number of sub-carriers of the super-channel and their particular wavelengths are referred to as the optical channels structure.
  • the optical channel control information may include requests to change the optical channels structure used to transport the client signal. For example, should the client wish to increase the client signal from 400G to 500G, this may be accommodated by adding a fifth parallel OTU4 signal and corresponding optical sub-carrier. Alternatively, it may be necessary to change which sub-carriers are used (without changing their number) due to operational network considerations such as protection switching or congestion. In this case one or more of the OTU4 streams may need to be switched to a different optical sub-carrier.
  • Management information relating to the optical channels structure is communicated between nodes using optical channel control information (OCCI) which is inserted into and recovered from the overhead bytes of the ODU and/or OTU containers as will be described in more detail below.
  • This management information may include the number of optical carriers used in the super-channel, their identities and other management information which would be familiar to those skilled in the art of optical transport network technologies.
  • the OCCI may include requests, acknowledgements and other hand-shaking messages in order to control a change in the optical channels structure, such as adding or subtracting optical carriers from the super-channel.
  • the optical channel control information may be distributed in the overhead 24A, 26A of the ODU and OTU in any suitable manner.
  • the information may be in the overhead of just one of the parallel streams of ODU/OTU or in any number of the parallel streams of ODU/OTN in any combination of unique or redundant formats.
  • Figure 3 shows a standard OTUk frame structure which includes both OTUk OH (overhead) and ODUk OH as indicated.
  • the client signal is mapped into the OPUk payload area as known and as indicated in the figure.
  • Figure 4 shows the structure of the OH bytes 24A, 26A in more detail, where the acronyms represent:
  • Step 201 comprises dividing a received client signal into a plurality of parallel signals at a lower bit rate.
  • Step 202 comprises mapping the parallel signals into a respective number of optical data units, ODU, each having payload bytes and overhead bytes.
  • Step 203 comprises mapping each ODU into a respective optical transport unit, OTU, having payload bytes and overhead bytes.
  • Step 204 comprises transmitting the OTUs across respective optical carriers of a super-channel, the optical carriers of the super-channel being synchronously modulated.
  • Step 205 comprises inserting optical channel control information into the overhead bytes of the ODU and/or OTU, the optical channel control information being used to manage and/or control the transport of the client signal using the super-channel.
  • a method of implementing a change in the optical channels structure is illustrated in Figure 6 .
  • a step 101 can monitor the client signal.
  • the client may indicate a need for a higher (e.g. 500G) or lower (e.g. 300G) rate signal, or the network may indicate a need to change the particular optical wavelengths to be used for transport.
  • Step 102 determines if a change to the optical channel structure is needed. If a need for such a change to the optical channels structure arises, then suitable OCCI is inserted into the ODU/OTU OH 24A, 26A, 64A, 66A at step 103.
  • the method which will be implemented by the channel manager, then awaits an acknowledgement from the second node or receiver.
  • the second node recovers the OCCI, and if it can receive the suggested optical signal and accommodate the addition OTU4 stream, will provide a positive acknowledgement signal, again typically using the ODU/OTU OH of optical signals in the reverse direction.
  • Step 104 determines if an acknowledgement is received from the second node. Once the acknowledgement is received, the channel manager of the first egress node sends a control signal (34) to the demux 22 to demultiplex to five parallel 100G streams which are then mapped into five ODU4 and five OTU4. The channel manager 31 also controls 35 the super-channel mux 29 to generate a super-channel to accommodate the five OTU4 and controls 36 the super-transponder 30 to generate the corresponding five sub-wavelength optical channels.
  • Various other dynamic control operations can be achieved in this way, for example to reduce the number of optical carriers used (if the client signal rate reduces for example) or to change which wavelengths are used.
  • the OCCI channel may also be used to send other commands, acknowledgements or implement other control operations.
  • various static control information can also be transferred across the optical link for example confirming which optical channels and modulation types are being used.
  • a method of receiving a signal from an optical transport network is shown in Figure 7 .
  • the method can be performed by one of the nodes 11, 12.
  • Step 211 comprises receiving optical carriers of a super-channel, the optical carriers of the super-channel being synchronously modulated.
  • Step 212 comprises recovering optical transport units, OTU, each having payload bytes and overhead bytes.
  • Step 213 comprises recovering optical data units, ODU, each having payload bytes and overhead bytes.
  • Step 214 comprises recovering a plurality of parallel data signals from the ODUs.
  • Step 215 comprises combining the plurality of parallel data signals into a client signal at a higher bit rate.
  • Step 216 comprises recovering optical channel control information from the overhead bytes of the ODU and/or OTU, the optical channel control information being used to manage and/or control the transport of the client signal using the super-channel.
  • FIGS 8A and 8B show an alternative example suitable for understanding the invention which does not use super-channels but utilises the standard OTN/DWDM system of optical channels which are modulated separately (e.g. using OCh4) and then optically multiplexed to generate a DWDM signal.
  • the initial stages of this embodiment are the same as described for the previous embodiment, and common reference numerals are used to indicate similar features.
  • each OTU4 is mapped into a respective OCh4 which is used to modulate 41 a respective separate laser.
  • Four parallel optical wavelengths 42 are then used to transport the client signal across to the egress node.
  • FIG. 8B shows apparatus at a second node 12 which receives the optical signal.
  • the second node 12 receives the four optical wavelengths 82 and recovers the four parallel OTU4 streams according to the G.709 standard.
  • These containers are demapped into four ODU4 64 which are fed to the mux/combiner 61 to reconstitute the client signal 14. Any de-skewing processing can also be carried out.
  • the channel manager 71 of the second node 12 recovers 72, 73, the OCCI from the ODU/OTU OH 64A, 66A.
  • Figure 9 shows a method of transporting a client signal across an optical transport network (OTN), which can be performed by one of the nodes 11, 12.
  • Step 301 comprises dividing a received client signal into a plurality of parallel signals at a lower bit rate.
  • Step 302 comprises mapping the parallel signals into a respective number of optical data units, ODU, each having payload bytes and overhead bytes.
  • Step 303 comprises mapping each ODU into a respective optical transport unit, OTU, having payload bytes and overhead bytes.
  • Step 304 comprises transmitting the OTUs across respective optical carriers.
  • Step 305 comprises inserting optical channel control information into the overhead bytes of the ODU and/or OTU, the optical channel control information being used to request a change in the optical carriers used to transport the client signal.
  • Figure 10 shows a method of implementing changes to the optical channels structure, whether these are implemented using the super-channel embodiment or the separate optical channels DWDM embodiment.
  • a request to increase the client signal transport from 500G to 700G is received at step 111.
  • the method can be implemented by the channel manager entity, which may receive the request upon completion of the method of Figure 6 , for example.
  • the channel manager 31 instructs the demux/divider to split the incoming client signal into seven parallel streams of 100G and to map these into seven ODU4 streams.
  • the method adjusts the OCCI input into the ODU/OTU OH.
  • the OCCI can indicate which optical channels are being used and in which order so that the client signal can be correctly reconstituted.
  • the method then reconfigures the super-channel mux and super-transponder as appropriate.
  • the method maps seven OTU4 are mapped to seven OCh4 which are used to modulate seven separate wavelength lasers, as is known.
  • the OCCI may be forwarded using control plane or management plane messaging in an out-of-band signal.
  • the method then reconfigures the super-channel mux and super-transponder as appropriate.
  • the method maps seven OTU4 are mapped to seven OCh4 which are used to modulate seven separate wavelength lasers.
  • a method of receiving a signal from an optical transport network is shown in Figure 11 .
  • the method can be performed by one of the nodes 11, 12.
  • Step 311 comprises receiving optical carriers.
  • Step 312 comprises recovering optical transport units, OTU, each having payload bytes and overhead bytes.
  • Step 313 comprises recovering optical data units, ODU, each having payload bytes and overhead bytes and can also include performing de-skewing.
  • Step 314 comprises recovering a plurality of parallel data signals from the ODUs.
  • Step 315 comprises combining the plurality of parallel data signals into a client signal at a higher bit rate.
  • Step 316 comprises recovering optical channel control information from the overhead bytes of the ODU and/or OTU, the optical channel control information being used to manage and/or control the transport of the client signal using the super-channel.
  • optical channels may be used, not just four optical channels for a 400G client signal.
  • ODU3/OTU3, ODU5/OTU5 or other variations of OTN containers could alternatively be used.
  • FIG. 12A and 12B A further alternative embodiment is shown in Figures 12A and 12B , which utilises OTU5 containers from recent developments in the ITU-T G.709 standard.
  • OTU5 are the next higher rate transport container for OTN as defined by G.709. Whilst the exact definition of the data rate to be used by ODU5 is still to be agreed, this will be significantly higher than the current highest OTU4 container which can support 100G client signals over a single optical carrier. It is anticipated that ODU5 will support either 400G or 1T (1000G) client signals and will be capable of carrying multiple ODU4 containers.
  • the current G.709 living list (Version 2011-05) is available from ITU-T and details the current specification options for ODU5 in more detail. However these will follow the G.709 principles for earlier defined data rates so that the skilled person will be fully understanding of the use of ODU5 as described in this embodiment.
  • the incoming client signal 13 is divided 21 into four parallel digital signals 22 which are mapped 23 into four ODU4 containers 24. These ODU4 are then mapped 25 into OTU4 containers 26 according to G.709.
  • the channel manager entity 31 inserts OCCI into the overheads 24A, 26A of the ODU4 and/or OTU4 as previously described.
  • the four OTU4 are then input to an interleaver 45 which bit, byte or block interleaves the four parallel OTU4 signals into a single digital stream 46 which is then mapped 48 into the payload bytes of an OTU5 container 47. As per G.709, overhead bytes 47A are added.
  • the OTU5 container 47 shown corresponds to a 400G data rate, however other container sizes could alternatively be used with the number of OTU4 containers added adjusted accordingly as would be appreciated by those skilled in the art.
  • the OTU5 are then further processed according to G.709 in a manner corresponding to how older OTU containers are processed (e.g. OTU4, OTU3 etc.) - for example processing into OCh5.
  • the OTU5 containers are applied to a super-carrier transponder which generates a wide bandwidth optical carrier modulated by the OTU5 data. As will be appreciated, a wider bandwidth optical signal allows a higher data rate signal to be transported using the same modulation rate and type.
  • Figure 12B shows apparatus at one of the nodes 11, 12 which receives the optical signal 90 at a transponder/receiver 89 and recovers the higher rate (e.g. OTU5) container.
  • a bitstream 86 is recovered from the higher-rate containers 87 and the bitstream is de-interleaved 85 to a parallel set of lower-rate OTUs (e.g. OTU4).
  • These containers are demapped 65 into four ODU4 which are fed to the mux/combiner 61 to reconstitute the client signal 14.
  • the channel manager 71 of the second node 12 recovers 72, 73, 77 the OCCI from one or more of the ODU/OTU OH 64A, 66A, 87A.
  • Figure 13 shows a wide bandwidth optical carrier 50, 90 which can be used to carry the higher data rate signal, such as an OTU5, and a conventional, narrower bandwidth, optical carrier 140 which can be used to carry a lower rate signal.
  • a conventional 100G signal can have a bandwidth of 50GHz while the higher rate signal can have a bandwidth of 75GHz, although other carrier bandwidths can be used.
  • G.709 is associated with a grid of optical wavelengths which are used to carry ODU4 signals.
  • This grid is defined in ITU-T G.694 and specifies the frequency grid, anchored to 193.1 THz. This supports a variety of channel spacings ranging from 12.5 GHz to 100 GHz. The wavelengths of the optical carriers fit within these spacings.
  • the super-carrier has a wavelength broader than what would be used for the optical carriers and spans multiple defined spacings.
  • Using a super-carrier with a wavelength wider than the optical carrier wavelengths provides an alternative to using higher order modulation and/or higher optical bit rates to carry higher data rate signals like OTU5. This eases the requirements on optical components making them cheaper to implement.
  • the super-carrier can co-exist with conventional carriers in the OTN 10.
  • the super-carrier is received by a super-carrier transponder at the egress node and the OTU5 recovered using known G.709 technology.
  • the OTU5 payload is de-interleaved to recover the original parallel OTU4 signals. These are de-mapped into 4 ODU4 signals which are combined to generate the original 400G client signal. Signal processing and de-skewing/alignment of the individual signals are performed as necessary.
  • the egress node's channel manager entity recovers OCCI from the overheads of the OTU and/or ODU as previously described. This allows for management as well as control of the super-carrier - for example to change the wavelength to accommodate a different size client signal.
  • Figure 14 shows a method of transporting a client signal across an optical transport network (OTN) which can be performed by one of the nodes 11, 12.
  • Step 401 comprises dividing a received client signal into a plurality of parallel signals at a lower bit rate.
  • Step 402 comprises mapping the parallel signals into a respective number of optical data units, ODU, each having payload bytes and overhead bytes.
  • Step 403 comprises mapping each ODU into a respective optical transport unit, OTU, having payload bytes and overhead bytes.
  • Step 404 comprises mapping the resulting OTUs into a higher bit rate OTU having payload bytes and overhead bytes.
  • Step 405 comprises transmitting the higher rate OTU across the OTN as an optical super-carrier, the optical super-carrier having a bandwidth wider than the bandwidth of an optical carrier normally allocated to transmitting a lower rate OTU across the OTN.
  • Step 406 comprises inserting optical channel control information into the overhead bytes of the ODU and/or OTU, the optical channel control information being used to manage and/or control the transport of the client signal using the optical super-carrier.
  • a method of receiving a signal from an optical transport network is shown in Figure 15 .
  • the method can be performed by one of the nodes 11, 12.
  • Step 411 comprises receiving an optical super-carrier having a bandwidth wider than a bandwidth of an optical carrier normally allocated to transmitting a lower rate OTU across the OTN.
  • Step 412 comprises recovering higher-rate optical transport units, OTU, each having payload bytes and overhead bytes.
  • Step 413 comprises recovering lower-rate optical transport units, OTU, each having payload bytes and overhead bytes.
  • Step 414 comprises recovering optical data units, ODU, each having payload bytes and overhead bytes.
  • Step 415 comprises recovering a plurality of parallel data signals from the ODUs.
  • Step 416 comprises combining the plurality of parallel data signals into a client signal at a higher bit rate and performing any de-skewing processing, if required.
  • Step 417 comprises recovering optical channel control information from the overhead bytes of the ODU and/or OTU, the optical channel control information being used to manage and/or control the transport of the client signal using the optical super-carrier.
  • FIG 16 shows an exemplary processing apparatus 130 which may be implemented as any form of a computing and/or electronic device, and in which embodiments of the system and methods described above may be implemented.
  • Processing apparatus 130 can be provided at one of the nodes 11, 12.
  • Processing apparatus may implement any of the methods described above.
  • Processing apparatus 130 comprises one or more processors 131 which may be microprocessors, controllers or any other suitable type of processors for executing instructions to control the operation of the device.
  • the processor 131 is connected to other components of the device via one or more buses 136.
  • Processor-executable instructions 133 may be provided using any computer-readable media, such as memory 132.
  • the processor-executable instructions 133 can comprise instructions for implementing the functionality of the described methods.
  • the memory 132 is of any suitable type such as read-only memory (ROM), random access memory (RAM), a storage device of any type such as a magnetic or optical storage device. Additional memory 134 can be provided to store data 135 used by the processor 131.
  • the processing apparatus 130 comprises one or more network interfaces 138 for interfacing with other network entities, such as other nodes 11, 12 of the network 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Claims (15)

  1. Procédé de transport d'un signal client dans un réseau de transport optique, OTN, le procédé comprenant :
    la division (201) d'un signal client reçu en une pluralité de signaux parallèles à un débit binaire inférieur ;
    la mise en concordance (202) des signaux parallèles avec un nombre respectif d'unités de données optiques, ODU, chacune d'elles ayant des octets de charge utile et des octets de surdébit (24A) ;
    la mise en concordance (203) de chaque ODU avec une unité de transport optique, OTU, respective ayant des octets de charge utile et des octets de surdébit (26A) ;
    la transmission (204) des OTU dans des porteuses optiques respectives d'un super canal, les porteuses optiques du super canal étant modulées de manière synchrone ; et
    le procédé est caractérisé par :
    l'insertion (205) d'informations de commande de canal optique dans les octets de surdébit (24A, 26A) de l'ODU et/ou de l'OTU, les informations de commande de canal optique étant utilisées pour gérer et/ou commander le super canal transportant le signal client.
  2. Procédé selon la revendication 1, dans lequel le super canal est transmis en utilisant un laser unique.
  3. Procédé selon la revendication 2, dans lequel le super canal comprend de multiples porteuse à verrouillage de fréquence utilisant un multiplexage par répartition de fréquence orthogonale optique cohérent, CO-OFDM.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel les informations de commande de canal optique identifient l'une de : les porteuses optiques qui sont utilisées pour transporter l'OTU respective, des informations relatives à une structure, des informations relatives à un type de modulation, et des informations de gestion relatives aux signaux transportés.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les informations de commande de canal optique sont utilisées pour demander un changement des porteuses optiques utilisées pour transporter le signal client.
  6. Procédé selon la revendication 5, dans lequel le changement comprend au moins l'un de : l'ajout de sous-porteuses, ou la soustraction de sous-porteuses, et la réallocation du même nombre de sous-porteuses.
  7. Procédé selon la revendication 5 ou 6, comprenant en outre la commande d'au moins l'une des étapes de la division (201) du signal client reçu en une pluralité de signaux parallèles, la mise en concordance (202) des signaux clients avec un nombre respectif d'unités de données optiques, la mise en concordance (203) de chaque ODU avec une unité de transport optique respective et la transmission (204) de l'OTU dans des porteuses optiques respectives d'un super canal.
  8. Procédé selon la revendication 7, qui est effectué à la réception d'un accusé de réception provenant d'un autre noeud.
  9. Procédé de réception d'un signal en provenance d'un réseau de transport optique, OTN, le procédé comprenant :
    la réception (211) de porteuses optiques d'un super canal, les porteuses optiques du super canal étant modulées de manière synchrone ;
    la récupération (212) d'unités de transport optique, OTU, chacune d'elles ayant des octets de charge utile et des octets de surdébit ;
    la récupération (213) d'unités de données optiques, ODU, chacune d'elles ayant des octets de charge utile et des octets de surdébit ;
    la récupération (214) d'une pluralité de signaux de données parallèles à partir des ODU ;
    la combinaison (215) de la pluralité de signaux de données parallèles dans un signal client à un débit binaire supérieur ; et
    le procédé est caractérisé par :
    la récupération (216) d'informations de commande de canal optique à partir des octets de surdébit de l'ODU et/ou de l'OTU, les informations de commande de canal optique étant utilisées pour gérer et/ou commander le super canal transportant le signal client.
  10. Procédé selon la revendication 9, les informations de commande de canal optique étant utilisées pour demander un changement des porteuses optiques utilisées pour transporter le signal client.
  11. Appareil destiné à être utilisé à un noeud pour transporter un signal client dans un réseau de transport optique, OTN, comprenant :
    un démultiplexeur (22) agencé pour effectuer la division d'un signal client reçu en une pluralité de signaux parallèles à un débit binaire inférieur ;
    un dispositif de mise en concordance d'ODU (23) agencé pour effectuer la mise en concordance des signaux parallèles avec un nombre respectif d'unités de données optiques, ODU, chacune d'elles ayant des octets de charge utile et des octets de surdébit ;
    un dispositif de mise en concordance d'OTU (25) agencé pour effectuer la mise en concordance de chaque ODU avec une unité de transport optique, OTU, respective ayant des octets de charge utile et des octets de surdébit ;
    un transpondeur (30) agencé pour effectuer la transmission des OTU dans des porteuses optiques respectives d'un super canal, les porteuses optiques du super canal étant modulées de manière synchrone ; et
    l'appareil est caractérisé par :
    un gestionnaire de canal (31) agencé pour effectuer l'insertion (205) d'informations de commande de canal optique dans les octets de surdébit de l'ODU et/ou de l'OTU, les informations de commande de canal optique étant utilisées pour gérer et/ou commander le super canal transportant le signal client.
  12. Appareil selon la revendication 11, les informations de commande de canal optique étant utilisées pour demander un changement des porteuses optiques utilisées pour transporter le signal client.
  13. Appareil destiné à être utilisé à un noeud pour la réception d'un signal en provenance d'un réseau de transport optique, OTN, comprenant :
    un récepteur (70) agencé pour effectuer la réception de porteuses optiques d'un super canal, les porteuses optiques du super canal étant modulées de manière synchrone ;
    un démultiplexeur (69) agencé pour effectuer la récupération d'unités de transport optique, OTU, chacune d'elles ayant des octets de charge utile et des octets de surdébit ;
    un dispositif de mise hors concordance d'OTU (65) agencé pour effectuer la récupération d'unités de données optiques, ODU, chacune d'elles ayant des octets de charge utile et des octets de surdébit à partir des OTU ;
    un dispositif de mise hors concordance d'ODU (63) agencé pour effectuer la récupération d'une pluralité de signaux de données parallèles à partir des ODU ;
    un multiplexeur (61) agencé pour effectuer la combinaison de la pluralité de signaux de données parallèles dans un signal client à un débit binaire supérieur ; et
    l'appareil est caractérisé par :
    un gestionnaire de canal (71) agencé pour effectuer la récupération d'informations de commande de canal optique à partir des octets de surdébit de l'ODU et/ou de l'OTU, les informations de commande de canal optique étant utilisées pour gérer et/ou commander le super canal transportant le signal client.
  14. Appareil selon la revendication 13, les informations de commande de canal optique étant utilisées pour demander un changement des porteuses optiques utilisées pour transporter le signal client.
  15. Produit de programme informatique comprenant un support lisible par machine portant des instructions qui, lorsqu'elles sont exécutées par un processeur, amènent le processeur à effectuer le procédé selon l'une quelconque des revendications 1 à 10.
EP12816030.6A 2012-07-26 2012-12-11 Procédé et dispositif de transmission d'un signal de client par un resau optique Not-in-force EP2878088B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261675980P 2012-07-26 2012-07-26
PCT/EP2012/075110 WO2014015918A1 (fr) 2012-07-26 2012-12-11 Procédé et appareil pour transporter un signal de client sur un réseau optique

Publications (2)

Publication Number Publication Date
EP2878088A1 EP2878088A1 (fr) 2015-06-03
EP2878088B1 true EP2878088B1 (fr) 2018-09-19

Family

ID=47561541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12816030.6A Not-in-force EP2878088B1 (fr) 2012-07-26 2012-12-11 Procédé et dispositif de transmission d'un signal de client par un resau optique

Country Status (5)

Country Link
US (2) US9300429B2 (fr)
EP (1) EP2878088B1 (fr)
BR (1) BR112015001429A2 (fr)
MY (1) MY169356A (fr)
WO (1) WO2014015918A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820951B (zh) * 2012-07-30 2016-12-21 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN107925635A (zh) * 2015-09-24 2018-04-17 华为技术有限公司 一种发送和接收光传送网otn信号的方法、otn设备和系统
CN109802742B (zh) * 2017-11-16 2020-05-19 华为技术有限公司 一种传输数据的方法、设备及系统
CN112042163B (zh) 2018-05-25 2022-09-09 华为技术有限公司 传输数据的方法和装置
US10750260B1 (en) * 2019-07-29 2020-08-18 Ciena Corporation Subrating and multiplexing non-standard rates in ZR and ZR+ optical interfaces

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111673A (en) * 1998-07-17 2000-08-29 Telcordia Technologies, Inc. High-throughput, low-latency next generation internet networks using optical tag switching
US7340183B2 (en) * 1998-11-17 2008-03-04 Broadwing Corporation Optical communications systems, devices, and methods
IT1318267B1 (it) * 2000-07-28 2003-07-28 Cit Alcatel Concatenazione virtuale dei canali ottici in reti wdm
US7039316B2 (en) * 2001-01-30 2006-05-02 The Regents Of The University Of California Optical layer multicasting using a multiple sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing
EP1229692A1 (fr) * 2001-02-02 2002-08-07 BRITISH TELECOMMUNICATIONS public limited company Procédé et dispositif pour un mode tunnel dans un réseau
CA2339902A1 (fr) * 2001-03-07 2002-09-07 Cedric Don-Carolis Systeme de communication photonique ayant une granularite de largeur de bande a sous-« frequence de ligne »
US20040220886A1 (en) * 2003-04-30 2004-11-04 Lucent Technologies, Inc. Communication signal resource chain assignment for optical networks subject to reach constraints
CN100596043C (zh) * 2004-08-26 2010-03-24 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
JP2007096822A (ja) * 2005-09-29 2007-04-12 Fujitsu Ltd 信号多重化装置およびそのスタッフ制御方法
CN100459555C (zh) * 2006-05-17 2009-02-04 华为技术有限公司 通过光传送网透传光通道传输单元信号的方法和装置
EP2073459A1 (fr) * 2007-12-17 2009-06-24 Alcatel-Lucent Deutschland AG Transmission via un réseau commuté en rafale ou en cadre avec préservation temporelle des paquets de clients transmis
US8045863B2 (en) * 2007-12-26 2011-10-25 Ciena Corporation Byte-interleaving systems and methods for 100G optical transport enabling multi-level optical transmission
JP5359202B2 (ja) * 2008-11-06 2013-12-04 富士通株式会社 フレーム生成装置、光伝送システム、フレーム生成方法および光伝送方法
US20100142947A1 (en) * 2008-12-08 2010-06-10 Jong-Yoon Shin Apparatus and method for pseudo-inverse multiplexing/de-multiplexing transporting
US8259733B2 (en) * 2009-04-27 2012-09-04 Ciena Corporation Systems and methods for rapid optical transport network circuit provisioning
US8446906B2 (en) * 2009-07-01 2013-05-21 Infinera Corporation Providing access to client overhead while transparently transmitting the client signal
CN102025478B (zh) * 2009-09-15 2015-03-18 华为技术有限公司 数据传送、接收的方法及装置
US9019997B1 (en) * 2009-11-30 2015-04-28 Pmc-Sierra Us, Inc. Method and system for transporting constant bit rate clients across a packet interface
US8542708B1 (en) * 2009-11-30 2013-09-24 Pmc-Sierra Us, Inc. Method and system for transporting constant bit rate clients across a packet interface
JP4878648B2 (ja) * 2010-03-12 2012-02-15 日本電信電話株式会社 クライアント信号収容多重装置及び方法
US8929735B2 (en) * 2010-05-07 2015-01-06 Ciena Corporation Dynamic trail termination point creation for optical transport networks
US8666247B2 (en) * 2010-08-25 2014-03-04 Ciena Corporation Bandwidth defragmentation systems and methods in optical networks
US8417111B2 (en) * 2010-10-28 2013-04-09 Ciena Corporation Optical network in-band control plane signaling, virtualized channels, and tandem connection monitoring systems and methods
US8724932B2 (en) * 2011-01-31 2014-05-13 Hewlett-Packard Development Company, L.P. Fiber-optic modulators
US8559829B2 (en) * 2011-07-05 2013-10-15 Fujitsu Limited Flexible multi-band multi-traffic optical OFDM network
US20130101288A1 (en) * 2011-10-19 2013-04-25 Accipiter Systems, Inc. Optical Switch for Networks Using Wavelength Division Multiplexing
US9485015B2 (en) * 2011-11-14 2016-11-01 Infinera Corporation Optical layer status exchange over OSC-OAM method for ROADM networks
US8817824B2 (en) * 2011-12-02 2014-08-26 Ciena Corporation Optical transport network line management system and methods
US8942557B2 (en) * 2012-03-05 2015-01-27 Infinera Corporation Super-channel optical parameters GMPLS signaling and routing extensions systems and methods
EP3021595B1 (fr) * 2013-07-10 2018-07-25 Japan Science and Technology Agency Répartiteur optique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014015918A1 (fr) 2014-01-30
US20160173224A1 (en) 2016-06-16
MY169356A (en) 2019-03-26
EP2878088A1 (fr) 2015-06-03
BR112015001429A2 (pt) 2017-07-04
US9300429B2 (en) 2016-03-29
US9705627B2 (en) 2017-07-11
US20140161460A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
EP3300266B1 (fr) Procédé et appareil de transport de signal de client dans un réseau de transport optique
EP2745476B1 (fr) Redimensionnement du flux de trafic existant dans un réseau de transport optique
EP3306840B1 (fr) Procédé et dispositif de transmission et de réception d'un signal client
EP2051420B1 (fr) Systeme de transmission multiplex et procede de transmission multiplex
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US20060104309A1 (en) Method and apparatus for transporting a client layer signal over an optical transport network (OTN)
US9705627B2 (en) Method and apparatus for transporting a client signal over an optical network
JP2019519999A (ja) 光伝送ネットワーク内でのクライアント信号の送信方法および光伝送デバイス
CN102349310B (zh) 一种可变速率信号的处理方法、装置及系统
CN102884808A (zh) 一种分配光频谱带宽资源的方法及装置
EP2884687B1 (fr) Procédé et dispositif pour la mise en correspondance de données dans un réseau de transport optique
US20230198622A1 (en) Providing Access To Client Overhead While Transparently Transmitting The Client Signal Over Multiple Optical Subcarriers
JP3816425B2 (ja) パス容量変更方法および光波長多重伝送装置
KR20090039403A (ko) 종속신호를 통합하는 방법 및 통합 접속보드

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012051354

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1044486

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1044486

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012051354

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121211

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211227

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012051354

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221211