EP2877702A1 - Method for producing a guide vane and guide vane - Google Patents

Method for producing a guide vane and guide vane

Info

Publication number
EP2877702A1
EP2877702A1 EP13739396.3A EP13739396A EP2877702A1 EP 2877702 A1 EP2877702 A1 EP 2877702A1 EP 13739396 A EP13739396 A EP 13739396A EP 2877702 A1 EP2877702 A1 EP 2877702A1
Authority
EP
European Patent Office
Prior art keywords
blade
turbine
cooling air
blade root
airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13739396.3A
Other languages
German (de)
French (fr)
Inventor
Michael HÄNDLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2877702A1 publication Critical patent/EP2877702A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/12Manufacture by removing material by spark erosion methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Definitions

  • the invention relates to a method for producing a turbine blade with an airfoil and a blade root. It further relates to such a turbine blade.
  • a turbine is a turbomachine that converts the internal energy (enthalpy) of a flowing fluid (liquid or gas) into rotational energy and ultimately into mechanical drive energy. Due to the turbulence-free laminar flow around the turbine blades, a portion of its internal energy is dissipated from the fluid flow which is transferred to the rotor blades of the turbine. About this then the turbine shaft is rotated, the usable power is delivered to a coupled machine, such as a generator. Blades and shaft are parts of the movable rotor or rotor of the turbine, which is arranged within a housing.
  • Blades mounted on the axle are mounted on the axle. Blades mounted in a plane each form a paddle wheel or impeller. The blades are slightly curved profiled, similar to an aircraft wing. Before each impeller is usually a stator. These vanes protrude from the housing into the flowing medium and cause it to spin. The swirl generated in the stator (kinetic energy) is used in the following impeller to set the shaft on which the impeller blades are mounted in rotation.
  • stator and the impeller together are called stages. Often several such stages are connected in series. Since the stator is stationary, its vanes can be mounted both on the inside of the housing and on the outside of the housing, and thus provide a bearing for the shaft of the impeller. Both vanes and rotor blades of the turbine usually comprise, in addition to the aerodynamically effective actual blade, a blade root, which is also referred to as a platform, widened relative to the blade and has fastening devices for fixing the respective blade to, for example, the rotor or the housing. The blade root and blade are usually cast together in the piece in the production process and then coated metallically.
  • the film cooling is used for cooling the hot gas-charged components of a turbine, in particular a gas turbine, among other things.
  • the cooling medium - typically air - is passed through cylindrical or diffuser-like cooling air openings on the surface to be cooled in order to form a protective cooling film.
  • the optimum cooling efficiency is obtained by tilting the cooling air openings in relation to the surface, depending on the local flow conditions along the flow lines.
  • the cooling air holes are mainly introduced by laser or erosion.
  • the accessibility of the laser or eroding tool is severely restricted in the region of the transition of the blade to the platform due to the concave edge formed there.
  • Three-dimensionally shaped airfoils with an angle between the pressure side of the airfoil and platform smaller than 90 ° and flow lines influenced by secondary flow effects make it impossible to introduce optimally aligned cooling air holes.
  • the object is achieved according to the invention by the method comprising the following steps: a) producing a blade and a blade root as separate components,
  • the invention is based on the consideration that improvement in the efficiency of the turbine could be achieved in that the cooling air holes could be optimally introduced just in the region of the transition from blade to platform with respect to the streamlines of the circulating medium.
  • the corresponding tools for introducing the openings have sufficient freedom of movement. This can be achieved if platform or blade root and blade are produced as separate components and only joined together when the openings are introduced.
  • the openings can be introduced without hindrance by the blade root in the blade or the opening without obstruction by the blade in the blade root in each streamlined optimal order.
  • the manufacture of blade root and / or blade by pouring takes place. hereby a production of the components is guaranteed in an exact form with low fault tolerance.
  • the introduction of the cooling air openings is advantageously carried out by laser and / or by spark erosion. As a result, both the axis of the openings and their shape are particularly easy to control.
  • the axis of the cooling air opening on the outside of the airfoil is directed onto the blade root or the axis of the cooling air opening on the outside of the blade root on the airfoil.
  • Such openings are necessary just in the region of the concave edge between the blade and the platform in order to ensure optimum alignment of the cooling air flow along the hot gas flow lines.
  • they are particularly easy to produce with the described method, since the obstruction of the insertion tool deleted by the blade root and this is free to move.
  • the method comprises the additional step:
  • Airfoil be applied to a closed coating, which increase the thermal and / or mechanical resistance of the component.
  • the coating only takes place after the cooling air openings have been introduced. This can lead to a local clogging of the cooling air openings. If the axis of the cooling air holes is oriented counter to the coating direction, this risk can be minimized.
  • the cooling air opening is conical. As a result, the metallic layer within the opening does not affect the cooling air flow. Especially at an introduction by laser is a conical design without much effort possible.
  • a turbine blade is advantageously produced by the described method.
  • the object is achieved by the turbine blade comprising an airfoil and a blade root, wherein the airfoil has a cooling air opening, the axis of which is directed to the blade root on the outside of the airfoil.
  • a turbine advantageously comprises such a turbine blade.
  • the advantages achieved by the invention are, in particular, that a particularly high flexibility with respect to the orientation of the axis of the opening is achieved by the introduction of the cooling air openings on the separate airfoil after casting, so that the cooling air holes can be aligned optimized along the streamlines of the hot gas, the cooling efficiency and thus the efficiency of the turbine is increased.
  • the described method can effectively cool even the most complex 3D geometries.
  • FIG 4 a vane with pre-assembly of the blade and blade root introduced cooling holes in plan
  • FIG. 5 shows a guide blade with cooling holes introduced in front of the blade blade and the blade root before assembly
  • FIG. 1 shows a turbine 100, here a gas turbine, in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted around a rotation axis 102 (axial direction) rotor 103, which is also referred to as a turbine runner.
  • a rotation axis 102 axial direction
  • rotor 103 which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105
  • a toroidal combustion chamber 110 in particular annular combustion chamber 106
  • burners 107 a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular hot gas channel 111.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the vanes 130 are attached to the stator 143, whereas the blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133.
  • the rotor blades 120 thus form components of the rotor or rotor 103.
  • Coupled to the rotor 103 is a generator or a working machine (not shown).
  • air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
  • the blades 120, 130 may have coatings against corrosion
  • M Fe, Co, Ni, rare earths
  • heat thermal barrier coating, for example Zr0 2 , Y 2 0 4 -Zr0 2 ).
  • FIG 2 a guide blade 130 according to the prior art in plan view and in FIG 3 is shown in partial section.
  • the vane 130 has a vane root 145 facing the inner shell 138 of the turbine 108 and a vane head 147 opposite the vane root 145.
  • the vane head is assigned to the rotor 103. turns and attached to a mounting ring 140 of the stator 143.
  • the vane 130 is hollow. In the interior 131 circulates a cooling medium, typically air.
  • the guide blade 130 has a plurality of cooling air openings 151, in particular on the guide blade blade 149 located between the guide blade root 145 and the guide blade head 147.
  • the cooling air openings 151 are introduced into the cast guide vane 130 in the prior art.
  • the axis 155 of the cooling air opening 151 in the region of the edge 153 is directed onto the guide blade root 145.
  • the guide blade 130 shown in FIGS. 4 and 5 is analogous to FIGS. 2 and 3.
  • the flow of cooling air K is directed along the flow lines of the hot gas H and a much better efficiency of the gas turbine 100 is achieved.
  • cooling air openings 151 is made possible by the manufacturing method, which will be explained below.
  • vane blade 149 and vane foot 145 are cast separately.
  • the critical cooling air openings 151 are introduced in the region of the edge 153 by means of laser or spark erosion.
  • the tool is freely movable.
  • the blade root 145 and blade 149 are connected to the seam 157 shown in FIG 5, z. B. welded.
  • a coating of the guide vane 130, z. B. with a metallic layer In this case, the cooling air openings 151 can become clogged with the coating material. So that there is no impairment of the cooling air flow, the cooling air openings 151 are configured conical.
  • the coating over the cooling air openings 151 can subsequently be removed again by means of laser or spark erosion.
  • the accessibility uncritical cooling air openings can be introduced.
  • a guide blade 130 manufactured in this way increases the efficiency of the gas turbine 100 due to the improved cooling effect.

Abstract

A method for producing a turbine vane (130) with a vane airfoil (149) and a vane root (145) is intended to achieve a higher efficiency for a turbine. To this end, the method comprises the steps: a) production of a vane airfoil (149) and a vane root (145) as separate parts; b) introduction of a cooling air opening (151) into the vane airfoil (149); and c) joining the vane airfoil (149) and vane root (145) together after step b).

Description

Beschreibung description
VERFAHREN ZUR HERSTELLUNG EINER LEITSCHAUFEL SOWIE LEITSCHAUFEL Die Erfindung betrifft ein Verfahren zur Herstellung einer Turbinenschaufel mit einem Schaufelblatt und einem Schaufel - fuß. Sie betrifft weiter eine derartige Turbinenschaufel. The invention relates to a method for producing a turbine blade with an airfoil and a blade root. It further relates to such a turbine blade.
Eine Turbine ist eine Strömungsmaschine, welche die innere Energie (Enthalpie) eines strömenden Fluids (Flüssigkeit oder Gas) in Rotationsenergie und letztlich in mechanische Antriebsenergie umwandelt. Dem Fluidstrom wird durch die möglichst wirbelfreie laminare Umströmung der Turbinenschaufeln ein Teil seiner inneren Energie entzogen, der auf die Lauf- schaufeln der Turbine übergeht. Über diese wird dann die Turbinenwelle in Drehung versetzt, die nutzbare Leistung wird an eine angekuppelte Arbeitsmaschine, wie beispielsweise an einen Generator, abgegeben. Laufschaufeln und Welle sind Teile des beweglichen Rotors oder Läufers der Turbine, der inner- halb eines Gehäuses angeordnet ist. A turbine is a turbomachine that converts the internal energy (enthalpy) of a flowing fluid (liquid or gas) into rotational energy and ultimately into mechanical drive energy. Due to the turbulence-free laminar flow around the turbine blades, a portion of its internal energy is dissipated from the fluid flow which is transferred to the rotor blades of the turbine. About this then the turbine shaft is rotated, the usable power is delivered to a coupled machine, such as a generator. Blades and shaft are parts of the movable rotor or rotor of the turbine, which is arranged within a housing.
In der Regel sind mehrere Schaufeln auf der Achse montiert. In einer Ebene montierte Laufschaufeln bilden jeweils ein Schaufelrad oder Laufrad. Die Schaufeln sind leicht gekrümmt profiliert, ähnlich einer Flugzeugtragfläche. Vor jedem Laufrad befindet sich üblicherweise ein Leitrad. Diese Leitschaufeln ragen vom Gehäuse in das strömende Medium hinein und versetzen es in einen Drall. Der im Leitrad erzeugte Drall (kinetische Energie) wird im darauffolgenden Laufrad genutzt, um die Welle, auf der die Laufradschaufeln montiert sind, in Rotation zu versetzen. As a rule, several blades are mounted on the axle. Blades mounted in a plane each form a paddle wheel or impeller. The blades are slightly curved profiled, similar to an aircraft wing. Before each impeller is usually a stator. These vanes protrude from the housing into the flowing medium and cause it to spin. The swirl generated in the stator (kinetic energy) is used in the following impeller to set the shaft on which the impeller blades are mounted in rotation.
Leitrad und Laufrad zusammen bezeichnet man als Stufe. Oft sind mehrere solcher Stufen hintereinandergeschaltet. Da das Leitrad stillsteht, können seine Leitschaufeln sowohl am Gehäuseinneren als auch am Gehäuseäußeren befestigt sein, und somit für die Welle des Laufrads ein Lager bieten. Sowohl Leitschaufeln als auch Laufschaufeln der Turbine umfassen neben dem aerodynamisch wirksamen eigentlichen Schaufelblatt üblicherweise einen Schaufelfuß, der auch als Plattform bezeichnet wird, gegenüber dem Schaufelblatt verbreitert ist und Befestigungsvorrichtungen zur Fixierung der jeweiligen Schaufel beispielsweise am Rotor oder am Gehäuse aufweist. Schaufelfuß und Schaufelblatt werden üblicherweise im Herstellungsprozess am Stück gemeinsam gegossen und anschließend metallisch beschichtet. The stator and the impeller together are called stages. Often several such stages are connected in series. Since the stator is stationary, its vanes can be mounted both on the inside of the housing and on the outside of the housing, and thus provide a bearing for the shaft of the impeller. Both vanes and rotor blades of the turbine usually comprise, in addition to the aerodynamically effective actual blade, a blade root, which is also referred to as a platform, widened relative to the blade and has fastening devices for fixing the respective blade to, for example, the rotor or the housing. The blade root and blade are usually cast together in the piece in the production process and then coated metallically.
Zur Kühlung der heißgasbeaufschlagten Bauteile einer Turbine, insbesondere einer Gasturbine, wird unter anderem die Filmkühlung eingesetzt. Dies gilt auch für die Turbinenschaufeln. Dabei wird durch zylindrische oder diffusorartige Kühlluft- Öffnungen das Kühlmedium - typischerweise Luft - auf die zu kühlende Oberfläche geleitet, um einen schützenden Kühlfilm zu bilden. Den optimalen Kühlwirkungsgrad erhält man, indem man die Kühlluftöffnungen gegenüber der Oberfläche abhängig von den lokalen Strömungsverhältnissen entlang der Strom- linien neigt. For cooling the hot gas-charged components of a turbine, in particular a gas turbine, among other things, the film cooling is used. This also applies to the turbine blades. In this case, the cooling medium - typically air - is passed through cylindrical or diffuser-like cooling air openings on the surface to be cooled in order to form a protective cooling film. The optimum cooling efficiency is obtained by tilting the cooling air openings in relation to the surface, depending on the local flow conditions along the flow lines.
Im Herstellungsprozess werden die Kühlluftbohrungen überwiegend durch Laser oder Erodierverfahren eingebracht. Bei Tur- binenleitschaufein ist im Bereich des Überganges des Schau- felblatts zur Plattform aufgrund der dort entstehenden konkaven Kante die Zugängigkeit des Laser- bzw. Erodierwerkzeuges stark eingeschränkt. Dreidimensional geformte Schaufelblätter mit einem Winkel zwischen Druckseite des Schaufelblatts und Plattform kleiner als 90° sowie durch Sekundär- Strömungseffekte beeinflusste Stromlinien machen das Einbringen optimal ausgerichteter Kühlluftbohrungen unmöglich. In the manufacturing process, the cooling air holes are mainly introduced by laser or erosion. In the case of turbine guide vanes, the accessibility of the laser or eroding tool is severely restricted in the region of the transition of the blade to the platform due to the concave edge formed there. Three-dimensionally shaped airfoils with an angle between the pressure side of the airfoil and platform smaller than 90 ° and flow lines influenced by secondary flow effects make it impossible to introduce optimally aligned cooling air holes.
Da das Einbringen optimal ausgerichteter Bohrungen mit maximalem Kühlwirkungsgrad bislang nicht möglich war, musste die schlechtere Kühlwirkung durch eine erhöhte Anzahl von nicht optimalen Bohrungen kompensiert werden. Dadurch wurde der Kühlluftverbrauch erhöht und der aerodynamische Wirkungsgrad der Schaufelreihe reduziert. Beides führt zu einer Verschlechterung des Turbinenwirkungsgrades. Since the introduction of optimally aligned holes with maximum cooling efficiency was previously not possible, the worse cooling effect had to be compensated by an increased number of non-optimal holes. This increased the cooling air consumption and the aerodynamic efficiency reduced the blade row. Both leads to a deterioration of the turbine efficiency.
Es ist daher Aufgabe der Erfindung, ein Verfahren zur Her- Stellung einer Turbinenschaufel sowie eine Turbinenschaufel aufzuzeigen, mit dem ein höherer Wirkungsgrad einer Turbine erzielt werden kann. It is therefore an object of the invention to provide a method for producing a turbine blade and a turbine blade, with which a higher efficiency of a turbine can be achieved.
Bezüglich des Verfahrens wird die Aufgabe erfindungsgemäß ge- löst, indem das Verfahren die folgenden Schritte umfasst: a) Herstellen eines Schaufelblatts und eines Schaufelfußes als separate Bauteile, With regard to the method, the object is achieved according to the invention by the method comprising the following steps: a) producing a blade and a blade root as separate components,
b) Einbringen zumindest einer Kühlluftöffnung in das Schaufelblatt oder in den Schaufelfuß oder b) introducing at least one cooling air opening in the blade or in the blade root or
das Einbringen von zumindest zwei Öffnung, von denen jeweils zumindest eine in dem Schaufelfuß und in dem Schaufelblatt angeordnet ist, und the introduction of at least two openings, of which in each case at least one is arranged in the blade root and in the blade leaf, and
c) Zusammenfügen von Schaufelblatt und Schaufelfuß nach c) assembly of the blade and the blade root
Schritt b) . Step b).
Die Erfindung geht dabei von der Überlegung aus, dass Verbesserung des Wirkungsgrades der Turbine dadurch erreicht werden könnte, dass die Kühlluftbohrungen gerade im Bereich des Überganges von Schaufelblatt zu Plattform hinsichtlich der Stromlinien des umfließenden Mediums optimiert eingebracht werden könnten. Dies ist jedoch nur möglich, wenn die entsprechenden Werkzeuge zur Einbringung der Öffnungen eine ausreichende Bewegungsfreiheit haben. Dies ist erreichbar, wenn Plattform bzw. Schaufelfuß und Schaufelblatt als getrennte Bauteile hergestellt und erst zusammengefügt werden, wenn die Öffnungen eingebracht sind. Somit können die Öffnungen ohne Behinderung durch den Schaufelfuß in das Schaufelblatt oder die Öffnung ohne Behinderung durch das Schaufelblatt in den Schaufelfuß jeweils in beliebiger stromlinienoptimierter An- Ordnung eingebracht werden. The invention is based on the consideration that improvement in the efficiency of the turbine could be achieved in that the cooling air holes could be optimally introduced just in the region of the transition from blade to platform with respect to the streamlines of the circulating medium. However, this is only possible if the corresponding tools for introducing the openings have sufficient freedom of movement. This can be achieved if platform or blade root and blade are produced as separate components and only joined together when the openings are introduced. Thus, the openings can be introduced without hindrance by the blade root in the blade or the opening without obstruction by the blade in the blade root in each streamlined optimal order.
In vorteilhafter Ausgestaltung erfolgt das Herstellen von Schaufelfuß und/oder Schaufelblatt durch Gießen. Hierdurch wird eine Herstellung der Bauteile in exakter Form mit geringer Fehlertoleranz gewährleistet. In an advantageous embodiment, the manufacture of blade root and / or blade by pouring takes place. hereby a production of the components is guaranteed in an exact form with low fault tolerance.
Das Einbringen der Kühlluftöffnungen erfolgt vorteilhafter- weise durch Laser und/oder mittels Funkenerodieren. Dadurch kann sowohl die Achse der Öffnungen als auch deren Form besonders einfach kontrolliert werden. The introduction of the cooling air openings is advantageously carried out by laser and / or by spark erosion. As a result, both the axis of the openings and their shape are particularly easy to control.
In vorteilhafter Ausgestaltung ist die Achse der Kühlluftöff- nung an der Außenseite des Schaufelblatts auf den Schaufelfuß bzw. die Achse der Kühlluftöffnung an der Außenseite des Schaufelfußes auf das Schaufelblatt gerichtet. Derartige Öffnungen sind gerade im Bereich der konkaven Kante zwischen Schaufelblatt und Plattform notwendig, um eine optimale Aus- richtung des Kühlluftstromes entlang der Heißgasstromlinien zu gewährleisten. Gleichzeitig sind sie mit dem beschriebenen Verfahren besonders einfach herzustellen, da die Behinderung des Einbringwerkzeuges durch den Schaufelfuß entfällt und dieses frei beweglich ist. In an advantageous embodiment, the axis of the cooling air opening on the outside of the airfoil is directed onto the blade root or the axis of the cooling air opening on the outside of the blade root on the airfoil. Such openings are necessary just in the region of the concave edge between the blade and the platform in order to ensure optimum alignment of the cooling air flow along the hot gas flow lines. At the same time they are particularly easy to produce with the described method, since the obstruction of the insertion tool deleted by the blade root and this is free to move.
In weiterer vorteilhafter Ausgestaltung umfasst das Verfahren den zusätzlichen Schritt: In a further advantageous embodiment, the method comprises the additional step:
d) Beschichten eines Bereiches von Schaufelfuß und Schaufelblatt mit einer Beschichtung. d) coating a portion of the blade root and airfoil with a coating.
Dadurch kann nach dem Zusammenfügen von Schaufelfuß und As a result, after the assembly of blade root and
Schaufelblatt eine geschlossene Beschichtung aufgebracht werden, die die thermische und/oder mechanische Widerstandsfähigkeit des Bauteils erhöhen. Hierbei kann es problematisch sein, dass im beschriebenen Verfahren die Beschichtung erst erfolgt, nachdem die Kühlluftöffnungen eingebracht worden sind. Hier kann es zu einem lokalen Zusetzen der Kühlluftöffnungen kommen. Wird die Achse der Kühlluftbohrungen entgegen der Beschichtungsrichtung ori- entiert, lässt sich diese Gefahr minimieren. Vorteilhafterweise wird die Kühlluftöffnung jedoch konisch ausgestaltet. Dadurch wirkt sich die metallische Schicht innerhalb der Öffnung nicht auf den Kühlluftdurchfluss aus. Insbesondere bei einer Einbringung mittels Laser ist eine konische Ausgestaltung ohne größeren Aufwand möglich. Airfoil be applied to a closed coating, which increase the thermal and / or mechanical resistance of the component. In this case, it can be problematic that in the method described the coating only takes place after the cooling air openings have been introduced. This can lead to a local clogging of the cooling air openings. If the axis of the cooling air holes is oriented counter to the coating direction, this risk can be minimized. Advantageously, however, the cooling air opening is conical. As a result, the metallic layer within the opening does not affect the cooling air flow. Especially at an introduction by laser is a conical design without much effort possible.
In alternativer oder zusätzlicher Ausgestaltung des Verfah- rens umfasst es den zusätzlichen Schritt: In an alternative or additional embodiment of the method, it comprises the additional step:
e) Entfernen der Beschichtung über der Kühlluftöffnung durch Laser und/oder mittels Funkenerodieren. e) removing the coating over the cooling air opening by laser and / or by spark erosion.
Da hier lediglich eine oberflächliche Entfernung und keine tiefe Bohrung mehr vorgenommen wird, ist keine so große Be- weglichkeit des Werkzeugs erforderlich, so dass die Entfernung auch nach Zusammenbau und Beschichten des Bauteils möglich ist. Dazu ist lediglich die Kenntnis der genauen Position der Öffnung notwendig. Eine Turbinenschaufel wird vorteilhafterweise mit dem beschriebenen Verfahren hergestellt.  Since only a superficial removal and no deep drilling is done here, so much mobility of the tool is required, so that the removal is possible even after assembly and coating of the component. For this, only the knowledge of the exact position of the opening is necessary. A turbine blade is advantageously produced by the described method.
Bezüglich der Turbinenschaufel wird die Aufgabe gelöst, indem die Turbinenschaufel ein Schaufelblatt und einen Schaufelfuß umfasst, wobei das Schaufelblatt eine Kühlluftöffnung aufweist, deren Achse an der Außenseite des Schaufelblatts auf den Schaufelfuß gerichtet ist. With respect to the turbine blade, the object is achieved by the turbine blade comprising an airfoil and a blade root, wherein the airfoil has a cooling air opening, the axis of which is directed to the blade root on the outside of the airfoil.
Eine Turbine umfasst vorteilhafterweise eine derartige Turbi- nenschaufel . A turbine advantageously comprises such a turbine blade.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Einbringung der Kühlluftöffnungen am separaten Schaufelblatt nach dem Gießen eine besonders hohe Flexibilität hinsichtlich der Ausrichtung der Achse der Öffnung erreicht wird, so dass die Kühlluftbohrungen entlang der Stromlinien des Heißgases optimiert ausgerichtet werden können, der Kühlwirkungsgrad und somit auch der Wirkungsgrad der Turbine erhöht wird. Durch das beschriebene Verfahren lassen sich auch komplexeste 3D-Geometrien effektiv kühlen. The advantages achieved by the invention are, in particular, that a particularly high flexibility with respect to the orientation of the axis of the opening is achieved by the introduction of the cooling air openings on the separate airfoil after casting, so that the cooling air holes can be aligned optimized along the streamlines of the hot gas, the cooling efficiency and thus the efficiency of the turbine is increased. The described method can effectively cool even the most complex 3D geometries.
Die Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen: FIG 1 eine Gasturbine im Längsteilschnitt, The invention will be explained in more detail with reference to a drawing. Show: 1 shows a gas turbine in longitudinal section,
FIG 2 eine Leitschaufel nach dem Stand der Technik in 2 shows a vane according to the prior art in
Aufsicht,  At sight,
FIG 3 eine Leitschaufel nach dem Stand der Technik im 3 shows a vane according to the prior art in
Schnitt , FIG 4 eine Leitschaufel mit vor Zusammenbau von Schaufelblatt und Schaufelfuß eingebrachten Kühllöchern in Aufsicht, und  Section, FIG 4 a vane with pre-assembly of the blade and blade root introduced cooling holes in plan, and
FIG 5 eine Leitschaufei mit vor Zusammenbau von Schaufel - blatt und Schaufelfuß eingebrachten Kühllöchern imFIG. 5 shows a guide blade with cooling holes introduced in front of the blade blade and the blade root before assembly
Schnitt . Cut .
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen. Identical parts are provided with the same reference numerals in all figures.
Die FIG 1 zeigt eine Turbine 100, hier eine Gasturbine, in einem Längsteilschnitt. Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 (Axialrichtung) drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgas- gehäuse 109. 1 shows a turbine 100, here a gas turbine, in a longitudinal partial section. The gas turbine 100 has inside a rotatably mounted around a rotation axis 102 (axial direction) rotor 103, which is also referred to as a turbine runner. Along the rotor 103 successively follow an intake housing 104, a compressor 105, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
Die Ringbrennkammer 106 kommuniziert mit einem ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108. Jede Turbinenstufe 112 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125. Die Leitschaufeln 130 sind dabei am Stator 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. Die Lauf- schaufeln 120 bilden somit Bestandteile des Rotors oder Läu- fers 103. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) . The annular combustion chamber 106 communicates with an annular hot gas channel 111. There, for example, four turbine stages 112 connected in series form the turbine 108. Each turbine stage 112 is formed from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows. The vanes 130 are attached to the stator 143, whereas the blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133. The rotor blades 120 thus form components of the rotor or rotor 103. Coupled to the rotor 103 is a generator or a working machine (not shown).
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver- dichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine. During operation of the gas turbine 100, air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet. Um den dort herrschenden Temperaturen standzuhalten, werden diese mittels eines Kühlmittels gekühlt. Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant. Likewise, the blades 120, 130 may have coatings against corrosion
(MCrAlX; M = Fe, Co, Ni , Seltene Erden) und Wärme (Wärmedämmschicht, beispielsweise Zr02, Y204-Zr02) aufweisen. (MCrAlX, M = Fe, Co, Ni, rare earths) and heat (thermal barrier coating, for example Zr0 2 , Y 2 0 4 -Zr0 2 ).
In FIG 2 ist eine Leitschaufel 130 gemäß dem Stand der Technik in Aufsicht und in FIG 3 im Teilschnitt dargestellt. Mit Bezug zu FIG 1 weist die Leitschaufel 130 einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß 145 und einen dem Leitschaufelfuß 145 gegenüberliegenden Leitschaufelkopf 147 auf. Der Leitschaufelkopf ist dem Rotor 103 zuge- wandt und an einem Befestigungsring 140 des Stators 143 befestigt. Die Leitschaufel 130 ist hohl ausgestaltet. Im Innenraum 131 zirkuliert ein Kühlmedium, typischerweise Luft. Die Leitschaufel 130 weist insbesondere an dem zwischen Leitschaufelfuß 145 und Leitschaufelkopf 147 liegenden Leitschaufelblatt 149 eine Vielzahl von Kühlluftöffnungen 151 auf. Die Kühlluftöffnungen 151 werden im Stand der Technik in die am Stück gegossene Leitschaufel 130 eingebracht. Insbesondere im Bereich des Übergangs zwischen Leitschaufelfuß 145 und Leitschaufelblatt 149, wo eine konkave Kante 153 entsteht, ist hierbei jedoch die Flexibilität des Werkzeugs zum Einbringen der Kühlluftöffnungen 151 eingeschränkt. So konnten bislang nur Kühlluftöffnungen 151 eingebracht werden, deren Achse 155 nicht auf den Leitschaufelfuß 145 gerichtet ist. In den FIG 2 und 3 zeigen Pfeile die Strömungsrichtung von Kühlluft K und Heißgas H. Wie FIG 3 deutlich zeigt, sind die Strömungsrichtungen teilweise entgegengesetzt, so dass keine optimale Kühlung gewährleistet ist und der Kühlluftverbrauch erhöht ist. In FIG 2, a guide blade 130 according to the prior art in plan view and in FIG 3 is shown in partial section. Referring to FIG. 1, the vane 130 has a vane root 145 facing the inner shell 138 of the turbine 108 and a vane head 147 opposite the vane root 145. The vane head is assigned to the rotor 103. turns and attached to a mounting ring 140 of the stator 143. The vane 130 is hollow. In the interior 131 circulates a cooling medium, typically air. The guide blade 130 has a plurality of cooling air openings 151, in particular on the guide blade blade 149 located between the guide blade root 145 and the guide blade head 147. The cooling air openings 151 are introduced into the cast guide vane 130 in the prior art. In particular, in the region of the transition between the guide blade root 145 and the vane blade 149, where a concave edge 153 is formed, however, the flexibility of the tool for introducing the cooling air openings 151 is limited. So far, only cooling air openings 151 could be introduced, the axis 155 is not directed to the Leitschaufelfuß 145. In FIGS. 2 and 3, arrows show the flow direction of cooling air K and hot gas H. As FIG. 3 clearly shows, the flow directions are partially opposite, so that optimum cooling is not guaranteed and the cooling air consumption is increased.
Eine erhebliche Verbesserung bietet hier die in FIG 4 und 5 analog zu FIG 2 bzw. 3 gezeigte Leitschaufel 130. Hier ist die Achse 155 der Kühlluftöffnung 151 im Bereich der Kante 153 auf den Leitschaufelfuß 145 gerichtet. Dadurch ist der Strom der Kühlluft K entlang der Stromlinien des Heißgases H gerichtet und es wird ein wesentlich besserer Wirkungsgrad der Gasturbine 100 erreicht. Here, the axis 155 of the cooling air opening 151 in the region of the edge 153 is directed onto the guide blade root 145. The guide blade 130 shown in FIGS. 4 and 5 is analogous to FIGS. 2 and 3. As a result, the flow of cooling air K is directed along the flow lines of the hot gas H and a much better efficiency of the gas turbine 100 is achieved.
Ermöglicht wird diese Anordnung der Kühlluftöffnungen 151 durch das Herstellungsverfahren, das im Folgenden erläutert wird. Zunächst werden Leitschaufelblatt 149 und Leitschaufel - fuß 145 getrennt gegossen. Dann werden die kritischen Kühl- luftöffnungen 151 im Bereich der Kante 153 mittels Laser oder Funkenerodieren eingebracht. Das Werkzeug ist dabei frei be- weglich. Anschließend werden Schaufelfuß 145 und Schaufelblatt 149 an der in FIG 5 gezeigten Naht 157 verbunden, z. B. verschweißt . Anschließend erfolgt eine Beschichtung der Leitschaufel 130, z. B. mit einer metallischen Schicht. Dabei können sich die Kühlluftöffnungen 151 mit dem Beschichtungsmaterial zusetzen. Damit hier keine Beeinträchtigung des Kühlluftflusses ent- steht, sind die Kühlluftöffnungen 151 konisch ausgestaltet. Alternativ oder zusätzlich kann die Beschichtung über den Kühlluftöffnungen 151 anschließend mittels Laser oder Funkenerodieren wieder entfernt werden. Gleichzeitig können weitere, hinsichtlich der Erreichbarkeit unkritische Kühlluft- Öffnungen eingebracht werden. This arrangement of the cooling air openings 151 is made possible by the manufacturing method, which will be explained below. First, vane blade 149 and vane foot 145 are cast separately. Then, the critical cooling air openings 151 are introduced in the region of the edge 153 by means of laser or spark erosion. The tool is freely movable. Subsequently, the blade root 145 and blade 149 are connected to the seam 157 shown in FIG 5, z. B. welded. Subsequently, a coating of the guide vane 130, z. B. with a metallic layer. In this case, the cooling air openings 151 can become clogged with the coating material. So that there is no impairment of the cooling air flow, the cooling air openings 151 are configured conical. Alternatively or additionally, the coating over the cooling air openings 151 can subsequently be removed again by means of laser or spark erosion. At the same time further, with regard to the accessibility uncritical cooling air openings can be introduced.
Eine derart gefertigte Leitschaufel 130 erhöht den Wirkungsgrad der Gasturbine 100 aufgrund der verbesserten Kühlwirkung . A guide blade 130 manufactured in this way increases the efficiency of the gas turbine 100 due to the improved cooling effect.

Claims

Patentansprüche Patent claims
1. Verfahren zur Herstellung einer Turbinenschaufel (130) mit einem Schaufelblatt (149) und einem Schaufelfuß (145) mit den Schritten: 1. Method for producing a turbine blade (130) with an airfoil (149) and a blade root (145) with the steps:
a) Herstellen eines Schaufelblatts (149) und eines Schaufelfußes (145) als separate Bauteile, a) producing a blade (149) and a blade root (145) as separate components,
b) Einbringen zumindest einer Kühlluftöffnung (151) in das Schaufelblatt (149) und/oder in den Schaufelfuß (145) , und c) Zusammenfügen von Schaufelblatt (149) und Schaufelfuß (145) nach Schritt b) . b) introducing at least one cooling air opening (151) into the airfoil (149) and/or into the blade root (145), and c) joining the airfoil (149) and blade root (145) together according to step b).
2. Verfahren nach Anspruch 1, 2. Method according to claim 1,
bei dem das Herstellen der separaten Bauteile (145, 149) gemäß Schritt a) durch Gießen erfolgt. in which the separate components (145, 149) are manufactured according to step a) by casting.
3. Verfahren nach einem der vorhergehenden Ansprüche, 3. Method according to one of the preceding claims,
bei dem das Einbringen von der zumindest einen Kühlluftöff- nung gemäß Schritt b) durch Laser und/oder mittels Funkenerodieren erfolgt . in which the introduction of the at least one cooling air opening according to step b) is carried out by laser and/or by spark erosion.
4. Verfahren nach einem der vorhergehenden Ansprüche, 4. Method according to one of the preceding claims,
bei dem die Achse (155) der Kühlluftöffnung (151) an der Außenseite des Schaufelblatts (149) auf den Schaufelfuß (145) bzw. umgekehrt gerichtet ist. in which the axis (155) of the cooling air opening (151) on the outside of the airfoil (149) is directed towards the blade root (145) or vice versa.
5. Verfahren nach einem der vorhergehenden Ansprüche mit dem zusätzlichen Schritt: 5. Method according to one of the preceding claims with the additional step:
d) Beschichten eines Bereiches von Schaufelfuß (145) und Schaufelblatt (149) mit einer Beschichtung . d) Coating an area of the blade root (145) and blade (149) with a coating.
6. Verfahren nach Anspruch 5, 6. Method according to claim 5,
bei dem die Kühlluftöffnung (151) konisch ausgestaltet wird. in which the cooling air opening (151) is designed conically.
Verfahren nach Anspruch 5 oder 6 mit dem zusätzlichen Schritt : Method according to claim 5 or 6 with the additional step:
e) Entfernen der Beschichtung über der Kühlluftöffnung (151) durch Laser und/oder mittels Funkenerodieren. e) Removing the coating above the cooling air opening (151) by laser and/or by spark erosion.
Turbinenschaufel (130) , Turbine blade (130),
hergestellt mit dem Verfahren nach einem der vorhergehenden Ansprüche . produced using the method according to one of the preceding claims.
Turbinenschaufel (130) mit einem Schaufelblatt (149) und einem Schaufelfuß (145) , bei der das Schaufelblatt (149) eine Kühlluftöffnung (151) aufweist, deren Achse (155) an der Außenseite des Schaufelblatts (149) auf den Schaufelfuß (145) gerichtet ist. Turbine blade (130) with a blade (149) and a blade root (145), in which the blade (149) has a cooling air opening (151), the axis (155) of which rests on the outside of the blade (149) on the blade root (145). is directed.
10. Turbine (100) mit einer Turbinenschaufel (130) nach Anspruch 8 oder 9. 10. Turbine (100) with a turbine blade (130) according to claim 8 or 9.
EP13739396.3A 2012-07-25 2013-07-15 Method for producing a guide vane and guide vane Withdrawn EP2877702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213017.9A DE102012213017A1 (en) 2012-07-25 2012-07-25 Method for producing a turbine blade
PCT/EP2013/064886 WO2014016149A1 (en) 2012-07-25 2013-07-15 Method for producing a guide vane and guide vane

Publications (1)

Publication Number Publication Date
EP2877702A1 true EP2877702A1 (en) 2015-06-03

Family

ID=48808321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13739396.3A Withdrawn EP2877702A1 (en) 2012-07-25 2013-07-15 Method for producing a guide vane and guide vane

Country Status (8)

Country Link
US (1) US20150198048A1 (en)
EP (1) EP2877702A1 (en)
JP (1) JP2015528876A (en)
CN (1) CN104487657A (en)
DE (1) DE102012213017A1 (en)
IN (1) IN2015DN00258A (en)
RU (1) RU2015106136A (en)
WO (1) WO2014016149A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988932B2 (en) 2013-12-06 2018-06-05 Honeywell International Inc. Bi-cast turbine nozzles and methods for cooling slip joints therein
US9885245B2 (en) * 2014-05-20 2018-02-06 Honeywell International Inc. Turbine nozzles and cooling systems for cooling slip joints therein
FR3025563B1 (en) * 2014-09-04 2019-04-05 Safran Aircraft Engines AUBE A PLATFORM AND EXCROIDANCE CREUSEE
EP3103580B1 (en) * 2015-06-12 2021-01-20 Ansaldo Energia IP UK Limited Method for manufacturing a blading member assembly
CN105904043B (en) * 2016-06-06 2017-12-08 南京航空航天大学 Misfit type negative electrode feeds the blade full-sized electrolysis system and method for annular feed flow

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1210254B (en) * 1962-03-26 1966-02-03 Rolls Royce Gas turbine engine with cooled turbine blades
JPS59101504A (en) * 1982-11-18 1984-06-12 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Gas turbine blade apparatus
GB2227965B (en) * 1988-10-12 1993-02-10 Rolls Royce Plc Apparatus for drilling a shaped hole in a workpiece
US5216808A (en) * 1990-11-13 1993-06-08 General Electric Company Method for making or repairing a gas turbine engine component
JP3824324B2 (en) * 1994-10-31 2006-09-20 ウエスチングハウス・エレクトリック・コーポレイション Gas turbine blades with cooling platform
GB9617093D0 (en) * 1996-08-14 1996-09-25 Rolls Royce Plc A method of drilling a hole in a workpiece
US6270317B1 (en) * 1999-12-18 2001-08-07 General Electric Company Turbine nozzle with sloped film cooling
US6439837B1 (en) * 2000-06-27 2002-08-27 General Electric Company Nozzle braze backside cooling
US6354797B1 (en) * 2000-07-27 2002-03-12 General Electric Company Brazeless fillet turbine nozzle
GB0202619D0 (en) * 2002-02-05 2002-03-20 Rolls Royce Plc Cooled turbine blade
US7214901B1 (en) * 2006-01-17 2007-05-08 General Electric Company Duplex electrical discharge machining
US7510367B2 (en) * 2006-08-24 2009-03-31 Siemens Energy, Inc. Turbine airfoil with endwall horseshoe cooling slot
EP1905950A1 (en) * 2006-09-21 2008-04-02 Siemens Aktiengesellschaft Turbine blade
US8197184B2 (en) * 2006-10-18 2012-06-12 United Technologies Corporation Vane with enhanced heat transfer
US7621718B1 (en) * 2007-03-28 2009-11-24 Florida Turbine Technologies, Inc. Turbine vane with leading edge fillet region impingement cooling
US7921654B1 (en) * 2007-09-07 2011-04-12 Florida Turbine Technologies, Inc. Cooled turbine stator vane
US8167557B2 (en) * 2008-08-07 2012-05-01 Honeywell International Inc. Gas turbine engine assemblies with vortex suppression and cooling film replenishment
US20120167389A1 (en) * 2011-01-04 2012-07-05 General Electric Company Method for providing a film cooled article

Also Published As

Publication number Publication date
RU2015106136A (en) 2016-09-20
JP2015528876A (en) 2015-10-01
DE102012213017A1 (en) 2014-01-30
IN2015DN00258A (en) 2015-06-12
US20150198048A1 (en) 2015-07-16
WO2014016149A1 (en) 2014-01-30
CN104487657A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
EP3191244B1 (en) Method for manufacturing a rotor blade and blade obtained thereby
CH702553B1 (en) Turbine nozzle.
DE102008017844A1 (en) Turbomachine with fluid injector assembly
EP2881541A1 (en) Tip cooling of a turbine rotor blade of a gas turbine
EP2877702A1 (en) Method for producing a guide vane and guide vane
CH697922A2 (en) Air-cooled blade for a turbine.
EP2084368B1 (en) Turbine blade
EP1808508A1 (en) Component located in the flow channel of a turbomachine and spraying process for generating a coating.
DE102011056619A1 (en) Apparatus and method for cooling turbine blade platform sections
EP2559854A1 (en) Internally cooled component for a gas turbine with at least one cooling channel
EP2411631A1 (en) Sealing plate and rotor blade system
EP2999854A1 (en) Turbine blade having heat sinks that have the shape of an aerofoil profile
EP3029269A1 (en) Turbine rotor blade, corresponding rotor and turbomachine
EP2823154B1 (en) Coolant bridging line, corresponding turbine vane, gas turbine and power plant
EP1510653A2 (en) Cooled turbine blade
EP3274561B1 (en) Rotor blade for a gas turbine, manufacturing process and post production process
DE102013213115A1 (en) Rotor for a turbine
EP3023191A1 (en) Turbine blade made of two parts
WO2016087337A1 (en) Method for producing a vibration damper for a turbine blade by means of laser generation
WO2008049456A1 (en) Coating optimization process using a coupon and component comprising a coupon
EP2999853B1 (en) Turbine blade
EP3088673B1 (en) Blade for gas turbine, corresponding rotor, gas turbine and engine
EP1508399B1 (en) Blade for a turbine engine and method to prevent the crack propagation in a blade for a turbine engine
EP2863020A1 (en) Turbine vane, shroud segment, corresponding turbine vane assembly, stator, rotor, turbine and power plant
EP1674193A1 (en) Method of the fabrication of a hole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180201