EP2872851B1 - Schmal zulaufendes hochfestes polymerbasiertes magazingehäuse für platz- und unterschallmunition - Google Patents

Schmal zulaufendes hochfestes polymerbasiertes magazingehäuse für platz- und unterschallmunition Download PDF

Info

Publication number
EP2872851B1
EP2872851B1 EP13828955.8A EP13828955A EP2872851B1 EP 2872851 B1 EP2872851 B1 EP 2872851B1 EP 13828955 A EP13828955 A EP 13828955A EP 2872851 B1 EP2872851 B1 EP 2872851B1
Authority
EP
European Patent Office
Prior art keywords
wall
slope
component
blank
bullet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13828955.8A
Other languages
English (en)
French (fr)
Other versions
EP2872851A2 (de
Inventor
Charles PADGETT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PCP Tactical LLC
Original Assignee
PCP Tactical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/549,351 external-priority patent/US8763535B2/en
Application filed by PCP Tactical LLC filed Critical PCP Tactical LLC
Publication of EP2872851A2 publication Critical patent/EP2872851A2/de
Application granted granted Critical
Publication of EP2872851B1 publication Critical patent/EP2872851B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • F42B5/307Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • F42B5/307Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
    • F42B5/313Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements all elements made of plastics

Definitions

  • the present subject matter relates to techniques and equipment to make ammunition articles and, more particularly, to ammunition articles with plastic components such as cartridge casing bodies and bases for at least blank and subsonic ammunition.
  • Conventional ammunition typically includes four basic components, that is, the bullet, the cartridge case holding the bullet therein, a propellant used to push the bullet down the barrel at predetermined velocities, and a primer, which provides the spark needed to ignite the powder which sets the bullet in motion down the barrel.
  • the cartridge case is typically formed from brass and is configured to hold the bullet therein to create a predetermined resistance, which is known in the industry as bullet pull.
  • the cartridge case is also designed to contain the propellant media as well as the primer.
  • the bullet is configured to fit within an open end or mouth of the cartridge case and conventionally includes a groove (hereinafter referred to as a cannelure) formed in the mid section of the bullet to accept a crimping action imparted to the metallic cartridge case therein.
  • a bullet pull value is provided representing a predetermined tension at which the cartridge case holds the bullet. The bullet pull value, in effect, assists imparting a regulated pressure and velocity to the bullet when the bullet leaves the cartridge case and travels down the barrel of a gun.
  • the bullet is typically manufactured from a soft material, such as, for example only, lead, wherein the bullet accepts the mouth of the cartridge being crimped to any portion of the bullet to hold the bullet in place in the cartridge case, even though the cartridge case is crimped to the cannelure of the bullet.
  • a soft material such as, for example only, lead
  • the propellant is typically a solid chemical compound in powder form commonly referred to as smokeless powder.
  • Propellants are selected such that when confined within the cartridge case, the propellant bums at a known and predictably rapid rate to produce the desired expanding gases.
  • the expanding gases of the propellant provide the energy force that launches the bullet from the grasp of the cartridge case and propels the bullet down the barrel of the gun at a known and relatively high velocity.
  • the primer is the smallest of the four basic components used to form conventional ammunition. As discussed above, primers provide the spark needed to ignite the powder that sets the bullet in motion down the barrel.
  • the primer includes a relatively small metal cup containing a priming mixture, foil paper, and relatively small metal post, commonly referred to as an anvil.
  • the primer mixture is an explosive lead styphnate blended with non-corrosive fuels and oxidizers which bums through a flash hole formed in the rear area of the cartridge case and ignites the propellant stored in the cartridge case.
  • the primer produces an initial pressure to support the burning propellant and seals the rear of the cartridge case to prevent high-pressure gases from escaping rearward. It should be noted that it is well known in the industry to manufacture primers in several different sizes and from different mixtures, each of which affects ignition differently.
  • the cartridge case which is typically metallic, acts as a payload delivery vessel and can have several body shapes and head configurations, depending on the caliber of the ammunition. Despite the different body shapes and head configurations, all cartridge cases have a feature used to guide the cartridge case, with a bullet held therein, into the chamber of the gun or firearm.
  • the primary objective of the cartridge case is to hold the bullet, primer, and propellant therein until the gun is fired.
  • the cartridge case Upon firing of the gun, the cartridge case seals the chamber to prevent the hot gases from escaping the chamber in a rearward direction and harming the shooter.
  • the empty cartridge case is extracted manually or with the assistance of gas or recoil from the chamber once the gun is fired.
  • a bottleneck cartridge case 10 has a body 11 formed with a shoulder 12 that tapers into a neck 13 having a mouth at a first end.
  • a primer holding chamber 15 is formed at a second end of the body opposite the first end.
  • a divider 16 separates a main cartridge case holding chamber 17, which contains a propellant, from the primer holding chamber 15, which communicate with each other via a flash hole channel 18 formed in the web area 16.
  • An exterior circumferential region of the rear end of the cartridge case includes an extraction groove 19a and a rim 19b.
  • Prior art patents in this area include U.S. Patent No. 4,147,107 to Ringdal , U.S. Patent No. 6,845,716 to Husseini et al. , U.S. Patent No. 7,213,519 to Wiley et al. , and U.S. Patent No. 7,610,858 to Chung .
  • the four patents are directed to an ammunition cartridge suitable for rifles or guns and including a cartridge case made of at least a plastics material. However, each have their own drawbacks.
  • brass cartridges for blank or subsonic ammunition can be problematic.
  • To reduce the velocity of the bullet exiting the cartridge typically less propellant is used in comparison to when the bullet is traveling at its top velocity.
  • the same size cartridge needs to be used so the bullet can be fired from a standard firearm.
  • An empty space is left inside a blank or subsonic cartridge where the propellant would normally reside.
  • wadding typically cotton
  • This wadding can cause problems with the use of the round, including jamming the firearm and fouling silencers and/or suppressors attached to the firearm.
  • a further improvement is polymer casings that are capable of production in a more conventional and cost effective manner, i.e. by using standard loading presses.
  • the cartridge can provide increased performance for blank and subsonic rounds by reducing the capacity of the cartridge, but still use standard weight bullets.
  • US3990366 discloses a high strenght polymer-based cartridge casing according to the preamble of claim 1.
  • a high strength polymer-based cartridge casing includes an upper component of polymer, a bullet of a standard weight, a lower component of polymer, and an insert.
  • the upper component has a shoulder portion and an upper component inner wall has a first slope extending from the shoulder.
  • the lower component has a lower component inner wall having a second slope.
  • the upper and lower component inner walls form a propellant chamber; and the first and second slopes reduce a volume of the propellant chamber.
  • the reduced volume of the propellant chamber permits only enough propellant to propel a bullet engaged in the cartridge casing at subsonic speeds.
  • the standard weight of the bullet is less than one of 125%, 120%, 115%, 110%, and 105% of a maximum weight of the bullet at a particular caliber.
  • the first slope equals the second slope. In another example, the first slope does not equal the second slope. Further, according to the invention, the first slope and the second slope narrow the propellant chamber as the first and second slopes progress toward the insert.
  • the high strength polymer-based cartridge casing can also have a first diameter of the upper component inner wall, and a second diameter of the lower component inner wall.
  • the first diameter is greater than the second diameter.
  • the first diameter is less than the second diameter.
  • a light weight, high strength cartridge case can be formed using standard brass cartridge loading equipment.
  • the present invention can be adapted to any type of cartridge, caliber, powder load, or primer. Calibers can range at least between .22 and 30 mm and accept any type of bullet that can be loaded in a typical brass cartridge.
  • the polymer used can be of any known polymer and additives, but the present invention uses a nylon polymer with glass fibers.
  • the portion of the cartridge that engages the extractor of the firearm can be made from heat strengthened steel for normal loads and can be a continuous molded polymer piece of the lower component for either subsonic or blank ammunition.
  • the present invention provides a cartridge case body strong enough to withstand gas pressures that equal or surpass the strength of brass cartridge cases under certain conditions, e.g. for both storage and handling.
  • FIG. 2 illustrates an example of a cartridge case 100 not forming part of the present invention.
  • the cartridge case 100 includes an upper component 200, a lower component 300, and an insert 400.
  • the upper component 200 and the lower component 300 are made of a polymer
  • insert 400 is made from a metal, an alloy of metals, or an alloy of a metal and a non-metal. Regardless of materials, the outer dimensions of the cartridge case 100 are within the acceptable tolerances for whatever caliber firearm it will be loaded into.
  • the polymer used is lighter than brass.
  • a glass-filled high impact polymer can be used where the glass content is between 0%-50%, preferably between 5% and 50%. In another example the glass content can be 10%.
  • An example of a high impact polymer without the glass content is BASF's Capron ® BU50I.
  • the insert 400 can be made of steel, and, in an example, heat treated carbon steel, 4140.
  • the 4140 steel is further heat treated to a Rockwell "C" scale (“RC") hardness of about 20 to about 50.
  • RC Rockwell "C" scale
  • any carbon steel with similar properties, other metals, metal alloys or metal/non-metal alloys can be used to form the insert. Heat treating a lower cost steel alloy to improve its strength is a point of distinction from the prior art, which have typically opted for more expensive alloys to deal with the strength and ductility needed for a cartridge casing application.
  • the combination of the upper component 200 and the lower component 300 are made of 10% glass-filled high impact polymer combined with the insert 400 made of heat treated 4140 steel results in a cartridge that is approximately 50% lighter than a brass formed counterpart.
  • This weight savings in the unloaded cartridge produces a loaded cartridge of between 25%-30% lighter than the loaded brass cartridge depending on the load used, i.e. which bullet, how much powder, and type of powder used.
  • the upper component 200 includes a body 202 which transitions into a shoulder 204 that tapers into a neck 206 having a mouth 208 at a first end 210.
  • the upper component 200 joins the lower component 300 at an opposite, second end 212.
  • the lower component 300 joins the upper component 200 at a lower component first end 302 (see FIG. 6 ).
  • the upper 200 and lower 300 components are adhered by an ultraviolet (UV) light or heat cured resin, a spin weld, a laser weld or an ultrasonic weld.
  • UV ultraviolet
  • the lower component 300 is joined to the insert 400.
  • the upper component 200 and the lower component 300 are molded in separate molds. When the lower component 300 is molded, it is molded over the insert 400. This is a partial molding over, since the lower component 300 does not completely cover the insert 400.
  • a back end 402 of the insert 400 is also the rear end of the casing 100.
  • the insert 400 is formed with an extraction groove 404 and a rim 406.
  • the groove 404 and rim 406 are dimensioned to the specific size as dictated by the caliber of the ammunition.
  • the insert 400 can be formed by turning down bar stock to the specific dimensions or can be cold formed.
  • FIG. 3 a cross-section of the upper component 200 is illustrated. Because of the nature of the polymer, and the design of the neck 206 and mouth 208, the neck 206 expands uniformly under the gas pressures formed during firing. This concentric expansion provides a smoother release of the projectile into the barrel of the firearm. The smoother release allows for a more stable flight of the projectile, providing greater accuracy and distance with the same amount of powder.
  • a sleeve 230 begins.
  • the sleeve 230 in this example, extends approximately to the second end 212.
  • the sleeve 230 can be an additional thickness to a wall 218 as is normally required for a standard cartridge, or a separately manufactured and adhered to the wall 218.
  • the sleeve 230 provides additional strength relative to the wall 218 of the body 202 alone. This strengthening, which is in the lateral direction, reduces bending of the upper component 200 of the cartridge case 100.
  • the sleeve 230 helps to keep the cartridge 100 as concentric as possible, and as noted above, concentricity is a key to accuracy.
  • the case wall 218 can have a thickness T
  • the sleeve 230 can have a thickness T+, as illustrated in FIG. 4 .
  • the total thickness of the cartridge at the point where there is the wall 218 and sleeve 230 is the sum of T and T+.
  • the upper portion 220 of the sleeve 230 can begin in or near the neck 206 and extend over the shoulder 204.
  • the upper portion 220 of the sleeve 230 ends against a bullet 50 (see FIG. 1B ) providing additional material, and thus strength, to help retain and align the bullet 50.
  • This thickened upper portion 220 can act like an extension of the neck 206 farther down into the shoulder.
  • the upper portion 220 is an advantage over a brass cartridge, since brass cannot be formed in this way. Thus, the upper portion 220 can act to sit and secure the bullet in the same place in the cartridge every time.
  • the sleeve 230 in the illustrated example of FIGs. 3 , 4 and 5 , extends almost the entire length of the body 202.
  • the sleeve 230 stops at an overlap potion 222 of the upper component 200.
  • the overlap portion 222 is the portion of the upper component 200 that engages the lower component 300.
  • the overlap portion 222 has a thinner wall thickness t, or a second thickness, at the second end 212 than the thickness T of the wall 218 (or T and T+) before the overlap portion 222.
  • the second thickness t tapers toward the outside of the upper component 200 so an outer diameter 224 of the wall 218 remains constant while an inner diameter 226 of the wall 218 increases.
  • cartridge 100 to maintain a constant outer diameter from below the shoulder 204 to the insert 400.
  • the bottom end 228 of the sleeve 230 is approximately squared off to provide a square shoulder to keep the upper 200 and lower 300 components concentric during assembly.
  • FIGs. 6-8 illustrate that the lower component 300 has a tapered portion 306 starting at the lower component first end 302 and ending at a collar 308.
  • the slope of the tapered portion 306 approximately matches the slope of the overlap portion 222 so the two can slide over each other to engage the upper 200 and lower 300 components.
  • the tapered portion 306 ends in a flat seat 307.
  • the seat 307 can have a thickness Ts which is about equal to the thickness of the wall and/or sleeve. This allows the bottom end 228 of the sleeve to sit on the seat 307 when the upper 200 and lower 300 components engage. This prevents the bottom end 228 of the sleeve 230 from being exposed. This could allow the gases to exert pressure on the bottom end 228 that can separate the upper 200 from the lower 300 component.
  • a width of the collar 308 matches the second thickness t, so that the outer diameter of the cartridge 100 remains constant past the transition point between the upper 200 and lower 300 components.
  • a thickness of the tapered portion 306 is such that at any point the sum of it with the thickness of the overlap portion 222 is approximately equal to the thickness T of the wall 218 or the thicknesses of the wall 218 and sleeve 230 (T and T+). As noted above, the tapered portion 306 and the overlap portion 222 are bonded together to join the upper 200 and lower 300 components.
  • An inner wall 310 of the lower component 300 can be formed straight.
  • the inner wall 310 forms a bowl shape with a hole 312 at the bottom.
  • the hole 312 is formed as a function of the interface between the lower component 300 and the insert 400, and its formation is discussed below.
  • the gap 318 that is formed between the inner bowl 314 and the outer sheath 316 is the space where a portion of the insert 400 engages the lower component 300.
  • the lower component 300 is molded over a portion of the insert 400 to join the two parts.
  • the insert 400 includes an overmolded area 408, where the outer sheath 316 engages the insert 400 in the gap 318.
  • the overmolded area 408 has one or more ridges 410.
  • the ridges 410 allow the polymer from the outer sheath 316, during molding, to forms bands 320 (see, FIG. 8 ) in the gap 318.
  • the combination of the ridges 410 and bands 320 aid in resisting separation between the insert 400 and the lower component 300. The resistance is most important during the extraction of the cartridge from the firearm by an extractor (not illustrated).
  • the overmolded area 408 also includes one or more keys 412.
  • the keys 412 are flat surfaces on the ridges 410. These keys 412 prevent the insert 400 and the lower portion 300 from rotating in relation to one another, i.e. the insert 400 twisting around in the lower portion 300.
  • a self reinforced area 414 is below the overmolded area 408, toward the back end 402, below the overmolded area 408, toward the back end 402, a self reinforced area 414. This portion extends to the back end 402 of the insert 400 and includes the extraction groove 404 and rim 406.
  • the self reinforced area 414 must, solely by the strength of its materials, withstand the forces exerted by the pressures generated by the gasses when firing the bullet and the forces generated by the extractor. In the present example, the self reinforced area 414 withstands these forces because it is made of a heat treated metal or a metal/non-metal alloy.
  • FIGs. 10 and 11 illustrate an example of the inside of the insert 400.
  • Open along a portion of the back end 402 and continuing partially toward the overmolded area 408 is a primer pocket 416.
  • the primer pocket 416 is dimensioned according to the standards for caliber of the cartridge case and intended use.
  • a primer (not illustrated) is seated in the primer pocket 416, and, as described above, when stricken causes an explosive force that ignites the powder (not illustrated) present in the upper 200 and lower 300 components.
  • a flash hole 418 Forward of the primer pocket 416 is a flash hole 418.
  • the flash hole 418 is dimensioned according to the standards for the caliber of the cartridge case and intended use.
  • the flash hole 418 allows the explosive force of the primer, seated in the primer pocket 416, to communicate with the upper 200 and lower 300 components.
  • basin 420 Forward of the primer pocket 416 and inside the overmolded area 408 is basin 420.
  • the basin 420 is adjacent to and outside of the inner bowl 314 of the lower component 300.
  • the basin 420 is bowl shaped, wherein the walls curve inwards toward the bottom.
  • the bottom of the basin 420 is interrupted by a ring 422.
  • the ring 422 surrounds the flash hole 418 and extends into the basin 420. It is the presence of the ring 422 that forms the hole 312 in the inner bowl 314 of the lower component 300.
  • FIG. 12 illustrates a "small upper" embodiment with a bullet 50 in the mouth 208 of the cartridge 120.
  • the features of the upper 200 and lower 300 component are almost identical to the example discussed above, and the insert 400 can be identical.
  • FIG. 12 also illustrates the engagement between a lip 214 and the cannelure 55.
  • the lip 214 is a section of the neck 206 approximate to the mouth 208 that has a thicker cross section or, said differently, a portion having a smaller inner diameter than the remainder of the neck 206.
  • the lip 214 is square or rectangular shaped, no angles or curves in the longitudinal direction.
  • the upper component 200 is not formed with a lip 214.
  • the lip 214 engages the cannelure 55 formed along an outer circumferential surface of the bullet 50 when it is fitted into the mouth 208 of the cartridge casing 100.
  • FIG. 13 shows that the neck 206 and the shoulder 204 are formed similar, but in this example, the body 202 is much shorter. Further, instead of an overlap portion 222, there is an underskirt portion 240 that starts very close to the shoulder 204. The underskirt portion 240 tapers to the inside of the cartridge when it engages the lower component 300.
  • the lower component 300 in this further example is now much longer and comprises most of the propellant chamber 340.
  • the tapered portion is now replaced with an outer tapered portion 342.
  • the outer tapered portion 342 slides over the underskirt portion 240 so the two can be joined together as noted above.
  • the thickness of the underskirt portion 240 and the outer tapered portion 342 is approximate to the wall thickness or wall thickness and sleeve thickness.
  • the inner wall 310 is now substantially longer, can include a sleeve, but still ends in the inner bowl 314.
  • the engagement between the second end 304 of the lower component 300 and the insert 400 remains the same.
  • either the "small upper” or “long upper” can be used to form blank or subsonic ammunition.
  • the walls are made thicker with the sleeve, shrinking the size of the propellant chamber 340. Less powder can be used, but the powder is packed similarly as tight as it is for a live round because of the smaller chamber 340. This can prevent the Secondary Explosive Effect (SEE) (below).
  • SEE Secondary Explosive Effect
  • a large upper component 200 having a thicker overlap 222 portion, with a thickness t+ and an integral thickening of the wall, and/or a sleeve 230 with a thickness T+, as disclosed above.
  • the total thickness of the wall 218 can be the sum of T+ and t+.
  • the sleeve 230 can run the length of the upper component 200 from the mouth 208 to the start of the overlap portion 222.
  • the lower component 300 of a subsonic cartridge 140 can be thickened as well.
  • the subsonic cartridge 140 can be made with the insert 400, or the lower component 300 can be molded in one piece from polymer with the features of the insert 400.
  • the insert can also be high-strength polymer instead of the metal alloys discussed above.
  • the lower component and the insert can be formed as one piece, and the upper component 200 can be placed on top.
  • the upper component 200 can be made differently.
  • an extension 242 can be molded to extend from the neck 206.
  • the extension 242 has a star-shaped cap 244 to seal off the cartridge.
  • the cap 244 is formed partially of radially spaced fingers 246 that deform outwards during firing.
  • the mouth 208 is molded partially shut to contain a majority of the pressures and expand open and outwards.
  • the fingers 246 are designed, in one example, to be bend elastically and are not frangible. The object is to contain the majority of the pressures and expel anything that can act as a projectile out the barrel of the firearm.
  • the lower component 300 can be filled with the powder and the small upper component can act as a cap to the cartridge, sealing in the powder.
  • FIG. 16 illustrates an example of a straight wall cartridge 500.
  • the straight wall cartridge 500 is a one-piece design of all polymer.
  • the cartridge 500 has a body 502 and a mouth 508 at a first end 510.
  • the walls 518 of the cartridge casing can also have a sleeve 530 along a majority of its length.
  • the sleeve 230, 530 is dimensioned and shaped pursuant to the requirements of each cartridge based on blank or subsonic and the particular caliber. To that end, the sleeve 530 begins set back from the first end 510 based on the depth the rear of the bullet sits in the cartridge. Further, in this example, as the walls transition into a lower bowl 514, the sleeve 530 may extend into the bowl. This aids in the strength of a back end 512 of the cartridge 500, since this example lacks a hardened metal insert.
  • the lower bowl 514 curves downward toward a flash hole 517 which then opens to a primer pocket 519. Both are similar to the features described above. Further, the back end is molded to form a rim 506.
  • FIG. 17 illustrates a cross-section of all three elements engaged together to illustrate how they interface with each other.
  • the specific outer dimensions of the three elements and certain inner dimensions are dictated by the caliber and type of the firearm and type of ammunition.
  • the cartridge casing 100 of the present invention is designed to be used for any and all types of firearms and calibers, including pistols, rifles, manual, semi-automatic, and automatic firearms.
  • an exemplary construction of the upper component 200 also aids in withstanding the pressures generated.
  • the sleeve 230 increases the strength of the wall 218 of the upper component 200.
  • the upper component 200 accounts for anywhere from 70% to 90% of the length of the cartridge casing 100.
  • FIG. 18 shows a lower narrowed cartridge 1000.
  • the lower narrowed cartridge 1000 includes an upper component 1200 of the lower narrowed cartridge, a lower component 1300 of the lower narrowed cartridge and an insert 1400 for the lower narrowed cartridge.
  • the upper, lower, and insert 1200, 1300, 1400 are generally formed as above, except as described further below.
  • the upper component 1200 has a mouth 1208 in which a bullet 1050 is inserted.
  • the mouth 1208 is an opening in the neck 1206 of the upper component 1200 and can also contain a lip 1214.
  • the lip 1214 can engage a cannelure 1055 in the bullet 1050.
  • At least one the lip 1214 and the cannelure 1055 can be replaced with an adhesive (not illustrated).
  • the adhesive can seal the bullet 1050 in the neck 1206 and provide a waterproofing feature, to prevent moisture from entering between the bullet 1050 and the neck 1206.
  • the adhesive also provides for a control for the amount of force required to project the bullet 1050 out of the cartridge 1000. Controlling this exit force, in certain examples, can be important, since the bullet for sub-sonic ammunition is already "under powered" in relation to a standard round.
  • the bullet 1050 is a standard weight bullet for its particular caliber.
  • the "standard weight" or common weight for a projectile varies slightly.
  • Some examples of standard weights can include at .223 (5.56) caliber weights between 52 and 90 grains; at .308 and .300 Winchester Magnum calibers weights between 125 and 250 grains; and for .338 Lapua ® Magnum caliber weights between 215 and 300 grains. This can also include standards weights for .50 caliber between 606 and 822 grains.
  • the bullet 1050 can be less than 125% of maximum standard weight for a particular caliber. Further, the bullet can be less than 120%, 115%, 110% and 105% of the caliber's maximum standard weight.
  • the upper component 1200 also includes a shoulder 1204.
  • the shoulder 1204 slopes outward from the neck 1206 and then straightens out to form the upper component outer wall 1217.
  • the upper component 2100 can join the lower component 1300 as described above, and the lower component 1300 also can have a lower component outer wall 1317.
  • the upper and lower component outer walls 1217, 1317 can form the outer shape of the cartridge and are shaped as such to fit a standard chamber for the particular caliber.
  • Both the upper and lower components 1200, 1300 have inner walls 1219, 1319, respectively.
  • the inner walls 1219, 1319 can form the propellant chamber 1340, which contains the powder or other propellant to discharge the bullet 1050 from the weapon (not illustrated).
  • the inner walls 1219, 1319 are angled to form a constant slope toward the insert 1400. This narrows, or tapers, the propellant chamber 1340 so the diameter D1 in the upper component 1200 is greater than the diameter D2 closer to the insert 1400.
  • a diameter D1 approximate the shoulder 1204 can be greater than the diameter D2 (in the lower component 1300) approximate a flash hole 1418 of the insert 1400.
  • diameter D2 can equal a diameter D3 of the flash hole 1418.
  • FIG. 19 illustrates another example of a narrowed propellant chamber 1340 not forming part of the present invention.
  • the propellant chamber 1340 narrows toward the upper component 1200.
  • a diameter D4 of the upper component 1200 is less than a diameter D5 of the lower component 1300.
  • the diameter of the lower component D5 can be greater than the diameter D3 of the flash hole 1418.
  • the diameter D4 of the upper component 1200 is greater than or equal to a diameter D6 of a back of the bullet 1050.
  • the cartridge 1000 is described in a three-piece design (upper 1200, lower 1300, and insert 1400). Note that the cartridge 1000 can be fabricated in one-piece, all of polymer as described above, or two pieces, a polymer section and the overmolded insert 1400. Additionally, the flash hole 1418 can also be sloped to match the slope of the inner walls 1217, 1317. Further, while the above examples are described with a constant slope from the upper component 1200 to the lower component 1300, other examples can have differing slopes between the two components 1200, 1300 such that one slope is steeper than the other slope. Further, FIGs. 18 and 19 illustrate cartridges wherein the upper component 1200 is smaller than the lower component 1300. The relative sizes of the two components 1200, 1300, can be alternated or they can be equated.
  • the slope of the upper component inner wall 1219 can differ from the upper component outer wall 1217.
  • the same can be true for the lower component inner wall 1319 differing in slope from the lower component outer wall 1317.
  • the polymer construction of the cartridge case also provides a feature of reduced friction between the cartridge and chamber of the firearm. Reduced friction leads to reduced wear on the chamber, further extending its service life.
  • Subsonic ammunition can be manufactured using the above illustrated examples.
  • Subsonic ammunition is designed to keep the bullet from breaking the speed of sound (approximately 340 m/s at sea level or less than 1,100 fps). Breaking the speed of sound results in the loud "crack" of a sonic boom, thus subsonic ammunition is much quieter than is standard counterpart.
  • Typical subsonic ammunition uses less powder, to produce less energy, in the same cartridge case as standard ammunition. The remaining space is packed with wadding/filler to keep the powder near the flash hole so it can be ignited by the primer.
  • increasing the wall thickness eliminates the need for wadding.
  • a brass cartridge wall can be 0.0389" thick
  • the polymer wall and sleeve can have a total thickness of 0.0879" for the identical caliber.
  • the reduced capacity allows for a more efficient ignition of the powder and a higher load density with less powder.
  • Low load density (roughly below 30-40%) is one of the main contributors to the Secondary Explosive Effect (SEE).
  • SEE can destroy the strongest rifle action and it can happen on the first shot or the tenth.
  • SEE is the result of slow or incomplete ignition of small amounts of smokeless powder.
  • the powder smolders and releases explosive gases which, when finally ignited, detonate in a high order explosion.
  • the better sealing effect is also important here because standard brass does not seal the chamber well at the lower pressures created during subsonic shooting.

Claims (15)

  1. Hochfestes polymerbasiertes Patronengehäuse (1000) für mindestens eine der Blank- oder Unterschallmunition, umfassend:
    eine obere Komponente (1200), geformt aus Polymer, umfassend:
    ein erstes Ende (210), aufweisend einen Mund (1208), einen Schulterabschnitt (1204);
    mindestens eine obere Innenwand (218, 1219) zwischen dem ersten und einem zweiten Ende (212) der oberen Komponente (1200), gegenständig angeordnet zum ersten Ende (210); und
    mindestens einen von einem überlappenden Abschnitt und einem Unterschnittabschnitt (222), der sich von der Wand (218, 1219) in der Nähe des zweiten Endes (212) erstreckt;
    eine untere Komponente (1300), geformt aus Polymer, umfassend:
    mindestens einen von einem sich verjüngenden Abschnitt und einem äußeren sich verjüngenden Abschnitt (306), der mit mindestens entweder dem überlappenden Abschnitt oder dem Unterschnittabschnitt (222) jeweils in Eingriff gelangt, um die obere und die untere Komponente zu verbinden; und
    mindestens eine untere Innenwand (310, 1319) zwischen der oberen Komponente (200) und einem Zündkanal (418);
    einen Einsatz (1400), im Eingriff mit der unteren Komponente;
    wobei die obere Innenwand eine erste Neigung aufweist, die sich von der Schulter (1204) erstreckt und zur unteren Komponente (1300) gerichtet ist und wobei die untere Innenwand (1319) eine zweite Neigung aufweist, die sich von der oberen Komponente zum Einsatz (1400) erstreckt;
    dadurch gekennzeichnet, dass die obere Innenwand und die untere Innenwand neigen, um das Volumen von einer Treibmittelkammer (1340) zu reduzieren, die von der oberen und der unteren inneren Wände gebildet ist und dadurch gekennzeichnet, dass die erste Neigung und die zweite Neigung die Treibmittelkammer verschmälern, indem sie in Richtung des Einsatzes verlaufen.
  2. Hochfestes polymerbasiertes Patronengehäuse nach Anspruch 1, wobei das reduzierte Volumen der Treibmittelkammer nur so viel Treibmittel ermöglicht, dass ein Geschoss (1050), das im Patronengehäuse im Eingriff ist, bei Unterschallgeschwindigkeit vorangetrieben wird.
  3. Hochfestes polymerbasiertes Patronengehäuse nach Anspruch 1, wobei die obere Komponente zudem umfasst:
    eine Ausdehnung, die am Mund im Eingriff ist, und
    eine Kappe (244), die an einem Ende der Ausdehnung im Eingriff ist, gegenständig zum Mund angeordnet;
    wobei sich die Kappe elastisch verformt, wenn die Patrone abgefeuert wird.
  4. Hochfestes polymerbasiertes Patronengehäuse nach Anspruch 1, wobei die Länge der oberen Komponente größer als die Länge der unteren Komponente ist.
  5. Hochfestes polymerbasiertes Patronengehäuse nach Anspruch 1, wobei die Länge der unteren Komponente größer als die Länge der oberen Komponente ist.
  6. Blank- oder Ultraschallmunition, umfassend:
    Ein hochfestes polymerbasiertes Patronengehäuse nach einem der Ansprüche 1 bis 5;
    ein Geschoss (1050), das ein Standardgewicht aufweist, das in der oberen Komponente abnehmbar im Eingriff ist.
  7. Blank- oder Ultraschallmunition nach Anspruch 6, wobei das reduzierte Volumen der Treibmittelkammer nur so viel Treibmittel ermöglicht, dass das Geschoss bei Unterschallgeschwindigkeit vorangetrieben wird.
  8. Blank- oder Ultraschallmunition nach Anspruch 6, wobei das Standardgewicht des Geschosses kleiner als 125%, 120% 115%, 110% und 105% eines maximalen Gewichts des Geschosses bei einem bestimmten Kaliber ist.
  9. Blank- oder Ultraschallmunition nach Anspruch 6, wobei die erste Neigung der zweiten Neigung entspricht.
  10. Blank- oder Ultraschallmunition nach Anspruch 6, wobei die erste Neigung der zweiten Neigung nicht entspricht.
  11. Blank- oder Ultraschallmunition nach Anspruch 6, wobei die erste Neigung und die zweite Neigung die Treibmittelkammer verschmälern, da die erste und die zweite Neigung in Richtung des Einsatzes verlaufen.
  12. Blank- oder Ultraschallmunition nach Anspruch 6, wobei die erste Neigung und die zweite Neigung die Treibmittelkammer verschmälern, da die erste und die zweite Neigung in Richtung der Schulter verlaufen.
  13. Blank- oder Ultraschallmunition nach Anspruch 6, zudem umfassend:
    einen ersten Durchmesser der oberen Innenwand der Komponente; und
    einen zweiten Durchmesser der unteren Innenwand der Komponente;
    wobei der erste Durchmesser größer als der zweite Durchmesser ist.
  14. Blank- oder Ultraschallmunition nach Anspruch 6, zudem umfassend:
    einen ersten Durchmesser (D1) der oberen Innenwand der Komponente; und
    einen zweiten Durchmesser (D2) der unteren Innenwand der Komponente; und
    wobei der erste Durchmesser kleiner als der zweite Durchmesser ist.
  15. Blank- oder Ultraschallmunition nach Anspruch 6, zudem umfassend einen Aufkleber, der zwischen dem Geschoss und der oberen Komponente angeordnet ist.
EP13828955.8A 2012-07-13 2013-07-12 Schmal zulaufendes hochfestes polymerbasiertes magazingehäuse für platz- und unterschallmunition Active EP2872851B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/549,351 US8763535B2 (en) 2011-01-14 2012-07-13 Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition
PCT/US2013/050358 WO2014062256A2 (en) 2012-07-13 2013-07-12 Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition

Publications (2)

Publication Number Publication Date
EP2872851A2 EP2872851A2 (de) 2015-05-20
EP2872851B1 true EP2872851B1 (de) 2017-05-24

Family

ID=50071696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13828955.8A Active EP2872851B1 (de) 2012-07-13 2013-07-12 Schmal zulaufendes hochfestes polymerbasiertes magazingehäuse für platz- und unterschallmunition

Country Status (3)

Country Link
EP (1) EP2872851B1 (de)
IL (9) IL308266A (de)
WO (1) WO2014062256A2 (de)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10591260B2 (en) 2010-11-10 2020-03-17 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11118875B1 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Color coded polymer ammunition cartridge
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US9644930B1 (en) 2010-11-10 2017-05-09 True Velocity, Inc. Method of making polymer ammunition having a primer diffuser
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US9885551B2 (en) 2010-11-10 2018-02-06 True Velocity, Inc. Subsonic polymeric ammunition
US11047663B1 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US10352670B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US8561543B2 (en) 2010-11-10 2013-10-22 True Velocity, Inc. Lightweight polymer ammunition cartridge casings
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
USD781393S1 (en) 2015-04-28 2017-03-14 True Velocity, Inc. Notched cartridge base insert
USD779021S1 (en) 2015-04-28 2017-02-14 True Velocity, Inc. Cylindrically square cartridge base insert
USD778391S1 (en) 2015-04-28 2017-02-07 True Velocity, Inc. Notched cartridge base insert
USD780283S1 (en) 2015-06-05 2017-02-28 True Velocity, Inc. Primer diverter cup used in polymer ammunition
USD779624S1 (en) 2015-08-07 2017-02-21 True Velocity, Inc. Projectile aperture wicking pattern
USD779023S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD779022S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD778394S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD778393S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD779024S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD778395S1 (en) 2015-08-11 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
US9587918B1 (en) 2015-09-24 2017-03-07 True Velocity, Inc. Ammunition having a projectile made by metal injection molding
US9869536B2 (en) 2016-03-09 2018-01-16 True Velocity, Inc. Method of making a two-piece primer insert
US9551557B1 (en) 2016-03-09 2017-01-24 True Velocity, Inc. Polymer ammunition having a two-piece primer insert
US9835427B2 (en) 2016-03-09 2017-12-05 True Velocity, Inc. Two-piece primer insert for polymer ammunition
US9523563B1 (en) 2016-03-09 2016-12-20 True Velocity, Inc. Method of making ammunition having a two-piece primer insert
US9506735B1 (en) 2016-03-09 2016-11-29 True Velocity, Inc. Method of making polymer ammunition cartridges having a two-piece primer insert
US9518810B1 (en) 2016-03-09 2016-12-13 True Velocity, Inc. Polymer ammunition cartridge having a two-piece primer insert
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881328S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881326S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881325S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881323S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881327S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881324S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
US11435171B2 (en) 2018-02-14 2022-09-06 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
AU2019299431B2 (en) 2018-07-06 2023-06-15 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
WO2020010096A1 (en) 2018-07-06 2020-01-09 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
US11340053B2 (en) 2019-03-19 2022-05-24 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
WO2021040903A2 (en) 2019-07-16 2021-03-04 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same
CN114264198A (zh) * 2021-09-23 2022-04-01 深圳市德力塑化工科技有限公司 一种亚音速弹药用弹壳
US20230143951A1 (en) * 2021-11-11 2023-05-11 True Velocity Ip Holdings, Llc Firearm barrel having a cartridge chamber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL95014C (de) * 1953-06-27
US3990366A (en) * 1975-02-06 1976-11-09 Remington Arms Company, Inc. Composite ammunition casing with forward metallic portion
US4147107A (en) * 1976-02-17 1979-04-03 Kupag Kunststoff-Patent-Verwaltungs Ag Ammunition cartridge
US20030019385A1 (en) * 1997-01-27 2003-01-30 Leasure John D. Subsonic cartridge for gas-operated automatic and semiautomatic weapons
US7610858B2 (en) * 2005-12-27 2009-11-03 Chung Sengshiu Lightweight polymer cased ammunition

Also Published As

Publication number Publication date
IL273518A (en) 2020-05-31
IL243594B (en) 2020-04-30
IL236703A0 (en) 2015-02-26
IL291152A (en) 2022-05-01
WO2014062256A3 (en) 2014-10-30
IL243593A (en) 2017-06-29
WO2014062256A2 (en) 2014-04-24
IL273518B (en) 2020-11-30
IL284984B (en) 2022-04-01
IL278145A (en) 2020-11-30
IL300891B1 (en) 2023-12-01
IL291152B2 (en) 2023-07-01
IL236703A (en) 2016-03-31
IL300891A (en) 2023-04-01
IL308266A (en) 2024-01-01
IL291152B1 (en) 2023-03-01
IL284984A (en) 2021-08-31
IL243594A0 (en) 2016-02-29
EP2872851A2 (de) 2015-05-20
IL278145B (en) 2021-08-31

Similar Documents

Publication Publication Date Title
US11353299B2 (en) Polymer-based cartridge casing for subsonic ammunition
US9995561B2 (en) Narrowing high strength polymer-based cartridge for blank and subsonic ammunition
EP2872851B1 (de) Schmal zulaufendes hochfestes polymerbasiertes magazingehäuse für platz- und unterschallmunition
EP2663831B1 (de) Hochfestes polymerbasiertes kassettengehäuse für übungs- und unterschallmunition
US20150241183A1 (en) Overmolded high strength polymer-based cartridge casing for blank and subsonic ammunition
AU2019203278B2 (en) High strength polymer-based cartridge casing and manufacturing method
US8869702B2 (en) Variable inside shoulder polymer cartridge
US20180292186A1 (en) Two-piece insert and/or flash tube for polymer ammunition cartridges
US20220099418A1 (en) Two-piece insert and/or flash tube for polymer ammunition cartridges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 896232

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013021567

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170524

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170524

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 896232

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RAPISARDI INTELLECTUAL PROPERTY SA, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170924

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013021567

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230725

Year of fee payment: 11

Ref country code: IE

Payment date: 20230725

Year of fee payment: 11

Ref country code: GB

Payment date: 20230713

Year of fee payment: 11

Ref country code: CH

Payment date: 20230801

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 11

Ref country code: DE

Payment date: 20230712

Year of fee payment: 11