EP2867598B1 - Cooling device for beverages - Google Patents
Cooling device for beverages Download PDFInfo
- Publication number
- EP2867598B1 EP2867598B1 EP13720751.0A EP13720751A EP2867598B1 EP 2867598 B1 EP2867598 B1 EP 2867598B1 EP 13720751 A EP13720751 A EP 13720751A EP 2867598 B1 EP2867598 B1 EP 2867598B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- chamber
- volume
- beverage container
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 153
- 235000013361 beverage Nutrition 0.000 title claims description 68
- 239000000110 cooling liquid Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000002826 coolant Substances 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000012546 transfer Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000014101 wine Nutrition 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 241000183024 Populus tremula Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- BWSQKOKULIALEW-UHFFFAOYSA-N 2-[2-[4-fluoro-3-(trifluoromethyl)phenyl]-3-[2-(piperidin-3-ylamino)pyrimidin-4-yl]imidazol-4-yl]acetonitrile Chemical compound FC1=C(C=C(C=C1)C=1N(C(=CN=1)CC#N)C1=NC(=NC=C1)NC1CNCCC1)C(F)(F)F BWSQKOKULIALEW-UHFFFAOYSA-N 0.000 description 1
- 208000012260 Accidental injury Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 235000019993 champagne Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 235000015040 sparkling wine Nutrition 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D31/00—Other cooling or freezing apparatus
- F25D31/006—Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D31/00—Other cooling or freezing apparatus
- F25D31/006—Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
- F25D31/007—Bottles or cans
Definitions
- the invention relates to a cooling device for drinks in beverage containers comprising a preferably cylindrical chamber for receiving a beverage container and at least one cooling element, wherein the chamber is designed as a pool for a cooling bath, wherein the level of the cooling liquid of the cooling bath when setting a circular cylindrical test body with a diameter of 49.9 mm or 79.9 mm or 109.9 mm or 139.9 mm or 169.9 mm or 199.9 mm into a cooling bath of any volume of at least 1.5 times, preferably at least 3 times, particularly preferably at least 4 times increases.
- a cooling device for a plurality of mutually fluidly connected chambers for cooling fluid is in the US 2010/0293970 A1 described, with containers to be cooled can be set in the chambers.
- Cooling devices for drinks are essentially used in two different types.
- cooling devices with relatively low cooling capacity which are used to slowly cool the drinks to a temperature of eg 6 - 10 ° C and to keep at this temperature.
- These include, for example, commercial household refrigerators.
- cooling devices that serve to bring drinks surfaces in the shortest possible time to a desired serving temperature This group of refrigeration devices includes so-called rapid coolers for the catering industry, which are able to cool drinks in beverage bottles from room temperature to, for example, 10 ° C. within a few minutes.
- a major problem with this type of chiller is the long pre-cooling time (up to 3 hours) that the machine takes to get up and running.
- the present invention relates primarily to blast chillers.
- the prior art blast chillers operate by a variety of methods, e.g. with air cooling, water cooling, water with ice cooling or using circulating water in an ice bath, ice packs (cool packs) or compression refrigerators.
- the present invention therefore seeks to provide an instant cooler for drinks in beverage containers which minimizes both the pre-cooling time and minimizes the cooling of drinks in containers and makes this technology accessible through suitable household and catering construction makes.
- it should be possible to cool a .751 bottle of wine from ambient temperature to serving temperature (8 ° C.) in less than 1 minute.
- the device should be much more compact than conventional refrigerators or freezers.
- the invention provides a cooling device according to claim 1.
- the chamber contains a cooling liquid.
- the beverage container is thus placed in the cooling bath for cooling, so that the cooling medium, namely the cooling liquid of the cooling bath immediately comes into contact with the beverage container.
- the amount of cooling liquid contained in the chamber is dimensioned so that the beverage container immersed in setting in the chamber to at least 30%, preferably least 80% of its height in the cooling bath.
- An overflow of the chamber can be advantageously avoided by the fact that the chamber has a widened cross section section.
- the widened portion is provided in particular in a central portion or in the upper portion of the chamber. It can also be a kind of communicating vessels are formed, which prevent overflowing. Alternatively, the widened portion may be formed as an edge portion adjoining the opening of the chamber with an inner surface which widens conically up to the opening of the chamber, so that cooling fluid, when being stripped off through the grommet, runs back into the bath.
- a particularly efficient cooling succeeds according to the invention in that the at least one cooling element in the chamber is arranged, that is arranged in operation in the cooling liquid of the cooling bath or immersed in this.
- the at least one cooling element may in this case be arranged on the wall of the chamber, so that the space available for receiving the beverage container is reduced as little as possible.
- a particularly short pre-cooling time time until the cooling bath reaches the desired temperature after switching on the cooling device is achieved by minimizing the amount of the cooling liquid of the bath, the amount should be matched to the geometry of the respective cooling tank and the cooling bath.
- the cooling device for beverage containers is designed with such a size that when setting the beverage container in the chamber, only a small annular gap of 0.1mm - 3 cm, preferably 0.1mm - 2cm, between the wall of the beverage container and preferably on the wall the chamber arranged cooling element remains. If the beverage container is not cylindrical, then the above-mentioned annular gap at the narrowest point to measure.
- a particularly space-saving design which at the same time presents a large surface for the heat exchange with the cooling bath, is preferably achieved in that the cooling element is formed by a cooling coil.
- the cooling element, in particular the cooling coil is preferably formed such that it circumferentially surrounds the beverage container to be adjusted.
- the cooling element, in particular the cooling coil additionally comprises an area which is arranged below the beverage container to be adjusted in order to be able to move to enable rapid pre-cooling of the cooling liquid and to cool it quickly after adjusting the container.
- the volume of the chamber, the volume of the cooling liquid present in the cooling bath and the diameter or the volume of the beverage container are coordinated such that the level of the cooling liquid when setting the beverage container in the cooling bath to at least 1.5 times, preferably on which increases at least 3 times, more preferably at least 4 times.
- the level when setting the beverage container for example, from 5cm to at least 7.5cm, preferably increases to at least 15cm, more preferably at least 20cm.
- the larger the increase of the filling level the greater the ratio of the surface area available for the heat exchange between the cooling element and the cooling liquid and between the cooling liquid and the beverage container to the volume of cooling liquid, and thus the pre-cooling time of the device is shorter with a short cooling time of the beverage ,
- the volume of the chamber, the volume of the cooling liquid present in the cooling bath and the diameter or the volume of the beverage container are coordinated such that between the wall of the beverage container and the wall of the chamber or preferably arranged on the chamber wall cooling element along the circumference uniform annular gap of a maximum of 3cm, preferably a maximum of 2cm remains. If the beverage container and / or the chamber wall is not cylindrical, then the above-mentioned annular gap is to be measured at the narrowest point, ie at the narrowest point of the annular gap is a maximum of 3cm, preferably a maximum of 2cm.
- the can cooler according to the invention is designed so that the resulting when setting a can annular gap is bounded on the outside by an element having an inner diameter of 50mm-145mm, preferably 50mm-105mm.
- the outer boundary of the annular gap is formed, for example, by the chamber wall or by the inner circumference of the cooling element.
- the bottle cooling device according to the invention is designed so that the resulting in setting a bottle annular gap is bounded on the outside by an element having an inner diameter of 50mm-220mm, preferably 50mm-140mm.
- the volume of the chamber with cooling element eg cooling coil
- the volume of cooling liquid present in the cooling bath and the diameter of the beverage container are matched to one another such that the filling level of the cooling liquid when setting the beverage container in the cooling bath at least rises to the top of the cooling element.
- Test configuration In order to determine whether the cooling device satisfies the preferred criteria with regard to gap width and / or level rise, irrespective of the concrete use of the cooling device by the user, one is Test configuration provided.
- the training according to the invention is such that the level of the coolant when setting a circular cylindrical test body with a diameter of 49.9mm, 79.9mm, 109.9mm, 139.9mm, 169.9mm or 199.9mm in a choice of one Cooling bath of any volume to at least 1.5 times, preferably at least 3 times, more preferably at least 4 times increases.
- the test body should have a height that corresponds at least to the bath height after setting the container. To carry out the test, the test body is placed on the floor of the chamber.
- the invention is not limited to a cylindrical chamber. So it is possible, for example, the chamber is not cylindrical, but perform as a square or as a polygon. Furthermore, the chamber may also have a cylindrical shape that varies in diameter along the height (e.g., cones).
- the chamber consists of a plurality of sub-chambers which are fluidly connected to each other (communicating vessels).
- the individual sub-chambers can be cylindrical, so that in each sub-chamber a single bottle or a single box is added.
- each partial chamber in the diameter is preferably adapted to the can or bottle to be adjusted in diameter, so that when setting the can or bottle only a small annular gap around the container remains around, in particular an annular gap with a width of less than 3cm, in particular less than 2cm.
- the sub-chambers have the previously indicated diameters to, in adaptation to whether the respective sub-chamber is provided for setting a can or a bottle. It is also possible to arrange different vessels with different cooling coils in one device (eg 5 can coolers in one device).
- the cooling element is integrated into a coolant circuit.
- the coolant circuit may in this case be designed, for example, as a circuit of a compression refrigeration machine.
- the compression chiller is a chiller that uses the physical effect of the heat of vaporization when changing the state of matter from liquid to gaseous.
- a refrigerant which is moved in a closed circuit, experiences successively different states of aggregation.
- the gaseous refrigerant is first compressed by a compressor.
- heat exchanger condenses (liquefies) the refrigerant with heat release.
- the liquid refrigerant due to the pressure change over a throttle, for example, an expansion valve or a capillary tube, relaxed.
- the refrigerant evaporates while absorbing heat at low temperature (boiling cooling).
- the cycle can now start over.
- the process must be kept on the outside by supplying mechanical work (drive power) via the compressor.
- the refrigerant absorbs a heat output at a low temperature level (for example -30 ° C cold cooling bath) and releases it to the environment at a higher temperature level (for example, 35 ° C.) while supplying technical work.
- the housing of the radiator may be acoustically isolated, e.g. using sound insulation panels to minimize any existing compressor noise.
- the at least one cooling element is designed as a Joule-Thomson cooler or mixed-Joule-Thomson cooler.
- High-speed mini-compressors are preferably provided for micro-instant chillers (e.g., Aspen 14-12 and 14-24 series mini compressors from Aspen Compressor LLC).
- the heat transfer between the cooling bath and the cooling element on the one hand and the cooling bath and the beverage bottle on the other hand is advantageously maximized by the fact that means are provided for circulating the cooling bath.
- the circulation of the cooling bath leads to a homogenization of the temperature within the cooling bath, whereby the temperature gradient available for the heat transfer is constantly maximized. Furthermore, it minimizes thermodynamic edge effects that would reduce heat transfer.
- the means for circulating the cooling bath comprise a rotor arranged in the chamber, an ultrasonic membrane, a pump or the like.
- the wall of the chamber is surrounded by a thermal insulation.
- the insulation is advantageously designed as a vacuum insulation.
- the cooling time may have temperatures of 0 ° C to -160 ° C, so that too long setting the beverage bottle in the cooling device within a very short time leads to a freezing of the beverage.
- the regulation of the temperature of the cooling bath is preferably carried out in that a heating element is provided for heating the cooling bath.
- the heating element is preferably arranged in the chamber and designed as an electrical resistance heater.
- the heating element can be advantageously designed as arranged on the wall of the chamber heating coil.
- the turns of the heating coil can be arranged between the turns of the cooling coil.
- An evaporation valve for power and temperature control would also be conceivable.
- the temperature control is preferably carried out in that a temperature sensor is provided for detecting the bath temperature, which is connected to a control circuit.
- the control circuit is expediently connected via control lines to the cooling element and optionally to the heating element in order to control the cooling and / or heating power as a function of measured values of the temperature sensor.
- an additional measurement with the aid of an infrared measuring device would be conceivable, which determines the temperature of the beverage in the beverage container by suitable measures, wherein the measured values can be supplied to the control circuit, in order to enable a precise control.
- a cooling device is shown, with which by a cooling circuit, consisting of the cooling lines 7 and the associated cooling source 10, the cooling of a cooling liquid 4 of a cooling bath is ensured.
- This cooling circuit can either be formed by thermoelectric elements or designed as a compression refrigeration system. For cooling, cooling temperatures of 20 ° C to -100 ° C are preferably used.
- the cooling circuit as in Fig. 1 illustrated, designed as a compression refrigeration system the cooling lines 7 as shown executed.
- Reference numeral 11 symbolizes a control circuit with associated user display and control.
- the cooling bath in which the drink located in a beverage container is brought to serving temperature, is delimited by an envelope wall 5 and a surrounding the enveloping wall 5 thermally insulating sheath 3 from the environment.
- the enveloping wall 5 may be constructed of metal, plastic or other suitable material.
- the thermally insulating sheath 3 may be formed by foamed polystyrene or by a vacuum insulation. Of course, other materials would be suitable for insulation.
- the enveloping wall 5 together with the associated shell 3 can have a broadened region lying in the middle region of the cooling device, which allows the cooling liquid 4 to escape into the widened region, which prevents the cooling liquid 4 from spilling over when a beverage container is introduced into the cooling device.
- the device according to the invention also provides different sized adapters ready to ensure even fluid displacement and cooling.
- the cooling bath and the cooling device is geometrically adapted so that only a very small cooling bath liquid is needed in order to surround the beverage container with as much cooling liquid 4 as possible.
- the cooling liquid is displaced and the effective cold transfer surface between cooling coil (cooling bath wall) - cooling bath - beverage surface maximum.
- heating elements 2 may be mounted, which are operated by the control lines 8 and the control circuit 11 accordingly.
- the heating elements 2 allow, after a cooling process, a rapid warming up of the bath temperature to the desired drinking temperature of the beverage to prevent further cooling or freezing of the beverage. This makes the device according to the invention also for longer-term tempering of drinks available.
- the bursting of e.g. Glass bottles are avoided due to the freezing content.
- a mechanism for "ejecting" the beverage bottle would also be conceivable instead of the heating elements 2.
- the cooling liquid 4 can be set in motion by a rotor 13 or a different kind of construction. Due to the resulting turbulent flow, the heat transfer is additionally optimized.
- the temperature sensor 6 allows the constant control of the temperature of the cooling liquid 4 and an associated control of the cooling circuit and the heating elements 2 via a control circuit 11.
- the temperature sensor 6 is connected via the line 12 to the control circuit.
- An additional sensory element 9, such as a level gauge or a temperature measuring device would be conceivable.
- grommets 14 prevents the evaporation of the cooling liquid 4, the contamination of the cooling liquid 4 and the accidental injury to persons by contact with the cooling liquid 4 located in the cooling bath and the resulting hypothermia thereof. Furthermore, this allows the stripping of the cooling liquid 4 from the beverage container.
- the grommet also provides odor protection.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Devices For Dispensing Beverages (AREA)
Description
Die Erfindung betrifft eine Kühlvorrichtung für Getränke in Getränkebehältern umfassend eine vorzugsweise zylindrische Kammer zur Aufnahme eines Getränkebehälters und wenigstens ein Kühlelement, wobei die Kammer als Becken für ein Kühlbad ausgebildet ist, wobei der Füllstand der Kühlflüssigkeit des Kühlbads beim Einstellen eines kreiszylindrischen Testkörpers mit einem Durchmesser von 49,9mm oder 79,9mm oder 109,9mm oder 139,9mm oder 169,9mm oder 199,9mm in ein Kühlbad beliebigen Volumens auf das wenigstens 1,5-fache, bevorzugt auf das wenigstens 3-fache, besonders bevorzugt auf das wenigstens 4-fache ansteigt.The invention relates to a cooling device for drinks in beverage containers comprising a preferably cylindrical chamber for receiving a beverage container and at least one cooling element, wherein the chamber is designed as a pool for a cooling bath, wherein the level of the cooling liquid of the cooling bath when setting a circular cylindrical test body with a diameter of 49.9 mm or 79.9 mm or 109.9 mm or 139.9 mm or 169.9 mm or 199.9 mm into a cooling bath of any volume of at least 1.5 times, preferably at least 3 times, particularly preferably at least 4 times increases.
Eine Kühlvorrichtung für eine Vielzahl von untereinander fluidisch verbundenen Kammern für Kühlflüssigkeit ist in der
Kühlvorrichtungen für Getränke sind im Wesentlichen in zwei unterschiedlichen Typen im Einsatz. Einerseits gibt es Kühlvorrichtungen mit relativ geringer Kühlleistung, die dazu verwendet werden, die Getränke langsam auf eine Temperatur von z.B. 6 - 10°C abzukühlen und auf dieser Temperatur zu halten. Dazu zählen beispielsweise handelsübliche Haushaltskühlschränke. Andererseits gibt es Kühlvorrichtungen, die dazu dienen, Getränkeflachen in möglichst kurzer Zeit auf eine gewünschte Trinktemperatur zu bringen. Zu dieser Gruppe von Kühlvorrichtungen gehören sogenannte Schnellkühler für die Gastronomie, die in der Lage sind, Getränke in Getränkeflaschen innerhalb von wenigen Minuten von Raumtemperatur auf beispielsweise 10°C abzukühlen. Ein wesentliches Problem bei dieser Art von Kühlern besteht in der langen Vorkühlzeit (bis zu 3 Stunden), die das Gerät benötigt um betriebsbereit zu sein.Cooling devices for drinks are essentially used in two different types. On the one hand, there are cooling devices with relatively low cooling capacity, which are used to slowly cool the drinks to a temperature of eg 6 - 10 ° C and to keep at this temperature. These include, for example, commercial household refrigerators. On the other hand, there are cooling devices that serve to bring drinks surfaces in the shortest possible time to a desired serving temperature. This group of refrigeration devices includes so-called rapid coolers for the catering industry, which are able to cool drinks in beverage bottles from room temperature to, for example, 10 ° C. within a few minutes. A major problem with this type of chiller is the long pre-cooling time (up to 3 hours) that the machine takes to get up and running.
Die vorliegende Erfindung bezieht sich in erster Linie auf Kühlvorrichtungen des Typs Schnellkühler.The present invention relates primarily to blast chillers.
Die Schnellkühler gemäß dem Stand der Technik arbeiten nach den verschiedensten Verfahren, z.B. mit Luftkühlung, Wasserkühlung, Wasser mit Eis Kühlung oder unter Verwendung von zirkulierendem Wasser im Eisbad, Eisbeuteln (Coolpacks) oder Kompressionskältemaschinen.The prior art blast chillers operate by a variety of methods, e.g. with air cooling, water cooling, water with ice cooling or using circulating water in an ice bath, ice packs (cool packs) or compression refrigerators.
Die folgenden Faktoren sind für das rasche Abkühlen von Getränken in geschlossenen Getränkebehältern von Bedeutung.
- 1. Getränke bestehen aus einem hohen Anteil Wasser. Die spezifische Wärmekapazität von Wasser beträgt ca. 4,2 kJ/kgK und die von Ethanol (konsumierbarem Alkohol) ca. 2,4 kJ/kgK. Daraus ist ersichtlich, dass das Abkühlen von 11 Wasser von Raumtemperatur (ca. 23°C) auf 10°C eines Energieentzugs von 54,6 kJ bedarf. Bei einer Kühlleistung von 500 W ist der Abkühlvorgang auf 10°C in ca. 2 Minuten abgeschlossen. Diese Kühlleistung ist für kompakte Geräte unter Verwendung von Kühlflüssigkeiten mit der erforderlichen tiefen Verdampfungstemperatur (z.B. -40°C) nicht einfach zu bewerkstelligen.
- 2. Die Wand des Getränkebehälters besteht in der Regel aus einem thermisch schlecht leitenden Material (z.B. Glas). Um mit der oben genannten Leistung von z.B. 500 W die Flüssigkeit überhaupt kühlen zu können, muss ein ausreichend hoher Temperaturgradient erzeugt werden. Dazu muss ein entsprechend tiefes Temperaturniveau erzeugt werden.
Die Wärmeleitfähigkeit von Glas beträgt 1 W/mK. Die Wärmeleitfähigkeit von Aluminium beträgt 200 W/mK. Die Wärmeleitfähigkeit von Polyethylenterphtalat (Grundmaterial PET-Flasche) beträgt 0,25 W/mK.
Je dünner dabei die Wandstärke und je höher die Wärmeleitfähigkeit ist, desto niedriger kann der Temperaturgradient sein, um die gewünschte Kühlleistung an die Flüssigkeit zu übertragen. Da Wein, Sekt, Champagner ect. zumeist in Flaschen abgefüllt sind und die Glasdicke aufgrund des Überdrucks in der Flasche entsprechend dimensioniert sein muss, ist der erforderliche Wärmestrom durch die Flasche nur mittels Temperaturen von weit unter dem Gefrierpunkt von Wasser zu realisieren. Kühlvorrichtungen, die mit Eis oder Temperaturen um 0°C arbeiten, sind daher nur bedingt für rasche Abkühlvorgänge geeignet. - 3. Ein weiterer entscheidender Faktor ist der Wärmeübertrag vom Kühlmedium auf die Behälterwand (z.B. Außenseite einer Glasflasche). Aus der Thermodynamik bzw. Strömungslehre ist bekannt, dass der Wärmeübertrag durch Wärmeleitung, Wärmestrahlung und/oder Konvektion erfolgen kann. Kommerziell erhältliche Schnellkühler aus der Gastronomie nützen den Effekt der Wärmeleitung durch Kontakt eines geeignet gekühlten "Coolpacks" oder einer gekühlten, die Getränkeflasche umgebenden Glycol-Manschette. Der thermische Kontakt zwischen der Kühlmanschette und der Getränkeflache ist jedoch auf Grund des mangelnden Anpressdrucks der Manschette an die Flasche und weil die Manschette nicht die gesamte Flaschenoberfläche umgibt ungenügend.
Der Wärmeübertrag vom Kühlmedium auf den Getränkebehälter kann durch die Erzeugung einer laminaren bzw. turbulenten Luftströmung in einer den Getränkebehälter aufnehmenden "Frostkammer" verbessert werden. Da die Wärmekapazität von Luft gering ist, sind allerdings dementsprechend hohe Luftdurchsätze nötig. Dies ist für kompakte Kleinkühler technisch schwer zu realisieren. Weitere Probleme entstehen durch Gefrieren der Luftfeuchtigkeit am Kondensator im Innenraum und die Bildung von Kondenswasser.
- 1. Beverages consist of a high proportion of water. The specific heat capacity of water is about 4.2 kJ / kgK and that of ethanol (consumable alcohol) about 2.4 kJ / kgK. It can be seen that the cooling of 11 water from room temperature (about 23 ° C) to 10 ° C requires an energy withdrawal of 54.6 kJ. At a cooling capacity of 500 W, the cooling process is completed at 10 ° C in approx. 2 minutes. This cooling performance is not easy to accomplish for compact devices using coolants with the required low evaporation temperature (eg -40 ° C).
- 2. The wall of the beverage container is usually made of a thermally poorly conductive material (eg glass). In order to be able to cool the liquid with the above-mentioned power of, for example, 500 W, a sufficiently high temperature gradient must be generated. For this purpose, a correspondingly low temperature level must be generated.
The thermal conductivity of glass is 1 W / mK. The thermal conductivity of aluminum is 200 W / mK. The thermal conductivity of polyethylene terephthalate (base material PET bottle) is 0.25 W / mK.
The thinner the wall thickness and the higher the thermal conductivity, the lower the temperature gradient can be to transfer the desired cooling capacity to the liquid. As wine, sparkling wine, champagne ect. Mostly bottled and the glass thickness must be sized accordingly due to the pressure in the bottle, the required heat flow through the bottle can only be realized by means of temperatures well below freezing point of water. Cooling devices that work with ice or temperatures around 0 ° C are therefore only conditionally suitable for rapid cooling. - 3. Another decisive factor is the heat transfer from the cooling medium to the container wall (eg outside of a glass bottle). From thermodynamics or fluid mechanics is known that the heat transfer can be done by heat conduction, heat radiation and / or convection. Commercially available refrigerators from the catering industry use the effect of heat conduction by contact of a suitably cooled "cool pack" or a cooled, the beverage bottle surrounding glycol cuff. However, the thermal contact between the cooling sleeve and the beverage surface is insufficient due to the lack of pressure of the cuff on the bottle and because the cuff does not surround the entire bottle surface.
The heat transfer from the cooling medium to the beverage container can be improved by the generation of a laminar or turbulent air flow in a beverage container receiving "frost chamber". Since the heat capacity of air is low, however, correspondingly high air flow rates are necessary. This is technically difficult to realize for compact small coolers. Further problems arise due to freezing of the humidity on the condenser in the interior and the formation of condensation.
Schnellkühler aus dem Stand der Technik sind aufgrund ihrer typisch langen Vorkühlzeit schlecht geeignet, Getränke binnen weniger Minuten nach Einschalten des Gerätes auf Trinktemperatur zu kühlen.Due to their typically long precooling time, prior art blast choppers are poorly suited for cooling drinks to drinking temperature within a few minutes after switching on the appliance.
Die vorliegende Erfindung zielt daher darauf ab, einen Instant-Kühler für Getränke in Getränkebehältern zu schaffen, der sowohl die Vorkühlzeit minimiert als auch den Abkühlvorgang für Getränke in Behältnissen auf ein Minimum reduziert und diese Technologie durch eine geeignete Konstruktion für den Haushalt und die Gastronomie zugänglich macht. Insbesondere soll es gelingen, eine 0,751 Weinflasche in weniger als 1 Minute von Umgebungstemperatur auf Trinktemperatur (8°C) abzukühlen. Des weiteren soll das Gerät weitaus kompakter sein als herkömmliche Kühl- oder Eisschränke.The present invention therefore seeks to provide an instant cooler for drinks in beverage containers which minimizes both the pre-cooling time and minimizes the cooling of drinks in containers and makes this technology accessible through suitable household and catering construction makes. In particular, it should be possible to cool a .751 bottle of wine from ambient temperature to serving temperature (8 ° C.) in less than 1 minute. Furthermore, the device should be much more compact than conventional refrigerators or freezers.
Zur Lösung dieser Aufgabe sieht die Erfindung eine Kühlvorrichtung gemäß Anspruch 1 vor. Im Betrieb enthält die Kammer eine Kühlflüssigkeit. Der Getränkebehälter wird zum Kühlen somit in das Kühlbad gestellt, sodass das Kühlmedium, nämlich die Kühlflüssigkeit des Kühlbades unmittelbar mit dem Getränkebehälter in Berührung kommt. Dadurch gelingt es, die Oberfläche, über welche die Kühlflüssigkeit mit dem Getränkebehälter in Kontakt gebracht wird, zu erhöhen und so den Wärmeübertrag vom Kühlmedium auf die Behälterwand zu verbessern. Bevorzugt ist hierbei vorgesehen, dass die Menge der in der Kammer enthaltenen Kühlflüssigkeit so bemessen ist, dass der Getränkebehälter beim Einstellen in die Kammer zu wenigstens 30%, bevorzugt wenigstes 80 % seiner Höhe in das Kühlbad eintaucht. Ein Überlaufen der Kammer kann mit Vorteil dadurch vermieden werden, dass die Kammer einen im Querschnitt verbreiterten Abschnitt aufweist. Der verbreiterte Abschnitt ist insbesondere in einem mittleren Abschnitt oder im oberen Abschnitt der Kammer vorgesehen. Es kann auch eine Art von kommunizierenden Gefäßen gebildet werden, die ein Überlaufen verhindern. Alternativ kann der verbreiterte Abschnitt als an die Öffnung der Kammer angrenzender Randabschnitt mit sich bis zur Öffnung der Kammer konisch erweiternder Innenfläche ausgebildet sein, sodass Kühlflüssigkeit beim Abstreifen durch die Durchführungsdichtung wieder zurück in das Bad läuft.To solve this problem, the invention provides a cooling device according to claim 1. In operation, the chamber contains a cooling liquid. The beverage container is thus placed in the cooling bath for cooling, so that the cooling medium, namely the cooling liquid of the cooling bath immediately comes into contact with the beverage container. This makes it possible to increase the surface over which the cooling liquid is brought into contact with the beverage container, and thus to improve the heat transfer from the cooling medium to the container wall. Preferably, it is provided that the amount of cooling liquid contained in the chamber is dimensioned so that the beverage container immersed in setting in the chamber to at least 30%, preferably least 80% of its height in the cooling bath. An overflow of the chamber can be advantageously avoided by the fact that the chamber has a widened cross section section. The widened portion is provided in particular in a central portion or in the upper portion of the chamber. It can also be a kind of communicating vessels are formed, which prevent overflowing. Alternatively, the widened portion may be formed as an edge portion adjoining the opening of the chamber with an inner surface which widens conically up to the opening of the chamber, so that cooling fluid, when being stripped off through the grommet, runs back into the bath.
Mit der durch die Erfindung ermöglichten hohen Kühlgeschwindigkeit ist insofern auch ein positiver ökologischer und ökonomischer Effekt verbunden, als Getränke nicht mehr auf unbestimmte Zeit in Kühlschränken oder Weinkühlern gelagert werden müssen, sondern bei Bedarf gekühlt werden können. Es entfällt somit die für das Vorrätighalten des gekühlten Getränks erforderliche Energie.With the high cooling rate made possible by the invention, a positive ecological and economic effect is connected insofar as beverages no longer have to be stored indefinitely in refrigerators or wine coolers, but can be cooled if necessary. It thus eliminates the energy required for keeping the chilled beverage in stock.
Eine besonders effiziente Kühlung gelingt erfindungsgemäß dadurch, dass das wenigstens eine Kühlelement in der Kammer angeordnet ist, d.h. im Betrieb in der Kühlflüssigkeit des Kühlbades angeordnet ist oder in diese eintaucht. Insbesondere kann das wenigstens eine Kühlelement hierbei an der Wand der Kammer angeordnet sein, sodass der für die Aufnahme des Getränkebehälters zur Verfügung stehende Raum möglichst wenig verkleinert wird. Eine besonders kurze Vorkühlzeit (Zeit bis das Kühlbad nach dem Einschalten der Kühlvorrichtung die gewünschte Temperatur erreicht) wird hierbei dadurch erreicht, dass die Menge der Kühlflüssigkeit des Bades minimiert wird, wobei die Menge auf die Geometrie des jeweiligen Kühlbehälters und des Kühlbades abgestimmt sein sollte. Bevorzugt ist die Kühlvorrichtung für Getränkebehälter mit einer solchen Größe ausgelegt, dass beim Einstellen des Getränkebehälters in die Kammer lediglich ein geringer Ringspalt von 0,1mm - 3 cm, bevorzugt 0,1mm - 2cm, zwischen der Wand des Getränkebehälters und dem bevorzugt an der Wand der Kammer angeordneten Kühlelement verbleibt. Wenn der Getränkebehälter nicht zylindrisch ausgebildet ist, so ist der oben genannte Ringspalt an der engsten Stelle zu messen.A particularly efficient cooling succeeds according to the invention in that the at least one cooling element in the chamber is arranged, that is arranged in operation in the cooling liquid of the cooling bath or immersed in this. In particular, the at least one cooling element may in this case be arranged on the wall of the chamber, so that the space available for receiving the beverage container is reduced as little as possible. A particularly short pre-cooling time (time until the cooling bath reaches the desired temperature after switching on the cooling device) is achieved by minimizing the amount of the cooling liquid of the bath, the amount should be matched to the geometry of the respective cooling tank and the cooling bath. Preferably, the cooling device for beverage containers is designed with such a size that when setting the beverage container in the chamber, only a small annular gap of 0.1mm - 3 cm, preferably 0.1mm - 2cm, between the wall of the beverage container and preferably on the wall the chamber arranged cooling element remains. If the beverage container is not cylindrical, then the above-mentioned annular gap at the narrowest point to measure.
Eine besonders platzsparende Ausbildung, die gleichzeitig eine große Oberfläche für den Wärmeaustausch mit dem Kühlbad darbietet, wird bevorzugt dadurch erreicht, dass das Kühlelement von einer Kühlschlange gebildet ist. Das Kühlelement, insbesondere die Kühlschlange ist bevorzugt derart gebildet, dass es den einzustellenden Getränkebehälter umfangsmäßig umgibt. In einer bevorzugten Weiterbildung umfasst das Kühlelement, insbesondere die Kühlschlange zusätzlich einen Bereich, der unterhalb des einzustellenden Getränkebehälters angeordnet ist, um ein rasches Vorkühlen der Kühlflüssigkeit zu ermöglichen und nach Einstellen des Behälters diesen rasch zu kühlen.A particularly space-saving design, which at the same time presents a large surface for the heat exchange with the cooling bath, is preferably achieved in that the cooling element is formed by a cooling coil. The cooling element, in particular the cooling coil is preferably formed such that it circumferentially surrounds the beverage container to be adjusted. In a preferred refinement, the cooling element, in particular the cooling coil, additionally comprises an area which is arranged below the beverage container to be adjusted in order to be able to move to enable rapid pre-cooling of the cooling liquid and to cool it quickly after adjusting the container.
Bevorzugt sind das Volumen der Kammer, das Volumen der im Kühlbad vorliegenden Kühlflüssigkeit und der Durchmesser bzw. das Volumen des Getränkebehälters derart aufeinander abgestimmt, dass der Füllstand der Kühlflüssigkeit beim Einstellen des Getränkebehälters in das Kühlbad auf das wenigstens 1,5-fache, bevorzugt auf das wenigstens 3-fache, besonders bevorzugt auf das wenigstens 4-fache ansteigt. Dies bedeutet, dass der Füllstand beim Einstellen des Getränkebehälters beispielsweise von 5cm auf wenigstens 7,5cm, bevorzugt auf wenigstens 15cm, besonders bevorzugt auf wenigstens 20cm ansteigt. Je größer der Anstieg des Füllstandes ist, desto größer ist das Verhältnis der für den Wärmeaustausch zwischen dem Kühlelement und der Kühlflüssigkeit und zwischen der Kühlflüssigkeit und dem Getränkebehälter zur Verfügung stehenden Oberfläche zum Kühlflüssigkeitsvolumen und desto geringer sind demzufolge die Vorkühlzeit der Vorrichtung bei kurzer Abkühlzeit des Getränks.Preferably, the volume of the chamber, the volume of the cooling liquid present in the cooling bath and the diameter or the volume of the beverage container are coordinated such that the level of the cooling liquid when setting the beverage container in the cooling bath to at least 1.5 times, preferably on which increases at least 3 times, more preferably at least 4 times. This means that the level when setting the beverage container, for example, from 5cm to at least 7.5cm, preferably increases to at least 15cm, more preferably at least 20cm. The larger the increase of the filling level, the greater the ratio of the surface area available for the heat exchange between the cooling element and the cooling liquid and between the cooling liquid and the beverage container to the volume of cooling liquid, and thus the pre-cooling time of the device is shorter with a short cooling time of the beverage ,
Insbesondere sind das Volumen der Kammer, das Volumen der im Kühlbad vorliegenden Kühlflüssigkeit und der Durchmesser bzw. das Volumen des Getränkebehälters derart aufeinander abgestimmt, dass zwischen der Wand des Getränkebehälters und der Wand der Kammer oder dem bevorzugt an der Kammerwand angeordneten Kühlelement ein entlang des Umfangs gleichmäßiger Ringspalt von maximal 3cm, bevorzugt maximal 2cm verbleibt. Wenn der Getränkebehälter und/oder die Kammerwand nicht zylindrisch ausgebildet ist, so ist der oben genannte Ringspalt an der engsten Stelle zu messen, d.h. an der engsten Stelle beträgt der Ringspalt maximal 3cm, bevorzugt maximal 2cm.In particular, the volume of the chamber, the volume of the cooling liquid present in the cooling bath and the diameter or the volume of the beverage container are coordinated such that between the wall of the beverage container and the wall of the chamber or preferably arranged on the chamber wall cooling element along the circumference uniform annular gap of a maximum of 3cm, preferably a maximum of 2cm remains. If the beverage container and / or the chamber wall is not cylindrical, then the above-mentioned annular gap is to be measured at the narrowest point, ie at the narrowest point of the annular gap is a maximum of 3cm, preferably a maximum of 2cm.
Wenn man davon ausgeht, dass herkömmliche Getränkedosen einen Durchmesser von 50-85mm, bevorzugt 50-70mm aufweisen, ist die erfindungsgemäße Kühlvorrichtung für Dosen so ausgebildet, dass der sich beim Einstellen einer Dose ergebende Ringspalt außen von einem Element begrenzt ist, das einen Innendurchmesser von 50mm-145mm, bevorzugt 50mm-105mm aufweist. Die äußere Begrenzung des Ringspalts wird hierbei je nach Fall beispielsweise von der Kammerwand oder von dem Innenumfang des Kühlelements gebildet.Assuming that conventional beverage cans have a diameter of 50-85mm, preferably 50-70mm, the can cooler according to the invention is designed so that the resulting when setting a can annular gap is bounded on the outside by an element having an inner diameter of 50mm-145mm, preferably 50mm-105mm. Depending on the case, the outer boundary of the annular gap is formed, for example, by the chamber wall or by the inner circumference of the cooling element.
Wenn man davon ausgeht, dass herkömmliche Getränkeflaschen einen Durchmesser von 50-160mm, bevorzugt 50-100mm aufweisen, ist die erfindungsgemäße Kühlvorrichtung für Flaschen so ausgebildet, dass der sich beim Einstellen einer Flasche ergebende Ringspalt außen von einem Element begrenzt ist, das einen Innendurchmesser von 50mm-220mm, bevorzugt 50mm-140mm aufweist.Assuming that conventional beverage bottles have a diameter of 50-160 mm, preferably 50-100mm, the bottle cooling device according to the invention is designed so that the resulting in setting a bottle annular gap is bounded on the outside by an element having an inner diameter of 50mm-220mm, preferably 50mm-140mm.
Bevorzugt sind das Volumen der Kammer mit Kühlelement (z.B. Kühlspirale), das Volumen der im Kühlbad vorliegenden Kühlflüssigkeit und der Durchmesser des Getränkebehälters (bzw. das Volumen des Getränkebehälters) derart aufeinander abgestimmt, dass der Füllstand der Kühlflüssigkeit beim Einstellen des Getränkebehälters in das Kühlbad mindestens bis zur Oberkante des Kühlelements ansteigt.Preferably, the volume of the chamber with cooling element (eg cooling coil), the volume of cooling liquid present in the cooling bath and the diameter of the beverage container (or the volume of the beverage container) are matched to one another such that the filling level of the cooling liquid when setting the beverage container in the cooling bath at least rises to the top of the cooling element.
Um unabhängig von der konkreten Verwendung der Kühlvorrichtung durch den Benutzer festzustellen, ob die Kühlvorrichtung den bevorzugten Kriterien in Bezug auf Spaltbreite und/oder Füllstandsanstieg genügt, ist eine Testkonfiguration vorgesehen. Dabei ist die Ausbildung erfindungsgemäß derart getroffen, dass der Füllstand der Kühlflüssigkeit beim Einstellen eines kreiszylindrischen Testkörpers mit einem Durchmesser von je nach Wahl 49,9mm, 79,9mm, 109,9mm, 139,9mm, 169,9mm oder 199,9mm in ein Kühlbad beliebigen Volumens auf das wenigstens 1,5-fache, bevorzugt auf das wenigstens 3-fache, besonders bevorzugt auf das wenigstens 4-fache ansteigt. Der Testkörper sollte dabei eine Höhe aufweisen, die zumindest der Badhöhe nach Einstellen des Behälters entspricht. Zur Durchführung des Test ist der Testkörper auf den Boden der Kammer zu stellen.In order to determine whether the cooling device satisfies the preferred criteria with regard to gap width and / or level rise, irrespective of the concrete use of the cooling device by the user, one is Test configuration provided. The training according to the invention is such that the level of the coolant when setting a circular cylindrical test body with a diameter of 49.9mm, 79.9mm, 109.9mm, 139.9mm, 169.9mm or 199.9mm in a choice of one Cooling bath of any volume to at least 1.5 times, preferably at least 3 times, more preferably at least 4 times increases. The test body should have a height that corresponds at least to the bath height after setting the container. To carry out the test, the test body is placed on the floor of the chamber.
Grundsätzlich ist die Erfindung nicht auf eine zylindrische Kammer beschränkt. So ist es beispielsweise möglich die Kammer nicht zylindrisch, sondern als Viereck oder als Vieleck ausführen. Weiters kann die Kammer auch eine Zylinderform aufweisen, die sich entlang der Höhe im Durchmesser verändert (z.B. Kegel).Basically, the invention is not limited to a cylindrical chamber. So it is possible, for example, the chamber is not cylindrical, but perform as a square or as a polygon. Furthermore, the chamber may also have a cylindrical shape that varies in diameter along the height (e.g., cones).
Eine weitere Abwandlung der Erfindung ist dahingehend möglich, dass die Kammer aus einer Mehrzahl von Teilkammern besteht, die untereinander strömungsmäßig verbunden sind (kommunizierende Gefäße). Die einzelnen Teilkammern können zylinderförmig ausgeführt sein, sodass in jeder Teilkammer eine einzige Flasche oder eine einzige Dose aufgenommen ist. Dabei ist jede Teilkammer im Durchmesser bevorzugt an die einzustellende Dose bzw. Flasche im Durchmesser angepasst, sodass beim Einstellen der Dose bzw. Flasche nur ein geringer Ringspalt um den Behälter herum verbleibt, insbesondere ein Ringspalt mit einer Breite von weniger als 3cm, insbesondere weniger als 2cm. Besonders bevorzugt weisen die Teilkammern die zuvor angegebenen Durchmesser auf, und zwar in Anpassung daran, ob die jeweilige Teilkammer für das Einstellen einer Dose oder einer Flasche vorgesehen ist. Es können auch verschiedene Gefäße mit verschiedenen Kühlschlangen in einem Gerät angeordnet sein (z.B. 5 Dosenkühler in einem Gerät).A further modification of the invention is possible in that the chamber consists of a plurality of sub-chambers which are fluidly connected to each other (communicating vessels). The individual sub-chambers can be cylindrical, so that in each sub-chamber a single bottle or a single box is added. In this case, each partial chamber in the diameter is preferably adapted to the can or bottle to be adjusted in diameter, so that when setting the can or bottle only a small annular gap around the container remains around, in particular an annular gap with a width of less than 3cm, in particular less than 2cm. Particularly preferably, the sub-chambers have the previously indicated diameters to, in adaptation to whether the respective sub-chamber is provided for setting a can or a bottle. It is also possible to arrange different vessels with different cooling coils in one device (eg 5 can coolers in one device).
Bevorzugt ist das Kühlelement in einen Kühlmittelkreislauf eingebunden. Der Kühlmittelkreislauf kann hierbei beispielsweise als Kreislauf einer Kompressionskältemaschine ausgebildet sein. Die Kompressionskältemaschine ist eine Kältemaschine, die den physikalischen Effekt der Verdampfungswärme bei Wechsel des Aggregatzustandes von flüssig zu gasförmig nutzt. Ein Kältemittel, das in einem geschlossenen Kreislauf bewegt wird, erfährt nacheinander verschiedene Aggregatzustandsänderungen. Das gasförmige Kältemittel wird zunächst durch einen Kompressor verdichtet. Im folgenden Wärmeübertrager (Verflüssiger) kondensiert (verflüssigt) das Kältemittel unter Wärmeabgabe. Anschließend wird das flüssige Kältemittel aufgrund der Druckänderung über einer Drossel, zum Beispiel einem Expansionsventil oder einem Kapillarrohr, entspannt. Im nachgeschalteten zweiten Wärmeübertrager (Verdampfer) verdampft das Kältemittel unter Wärmeaufnahme bei niedriger Temperatur (Siedekühlung). Der Kreislauf kann nun von vorne beginnen. Der Prozess muss von außen durch Zufuhr von mechanischer Arbeit (Antriebsleistung) über den Kompressor in Gang gehalten werden. Dabei nimmt das Kältemittel eine Wärmeleistung auf einem niedrigen Temperaturniveau (zum Beispiel -30 °C kaltes Kühlbad) auf und gibt sie unter Zuführung von technischer Arbeit auf einem höheren Temperaturniveau an die Umgebung ab (zum Beispiel 35 °C).Preferably, the cooling element is integrated into a coolant circuit. The coolant circuit may in this case be designed, for example, as a circuit of a compression refrigeration machine. The compression chiller is a chiller that uses the physical effect of the heat of vaporization when changing the state of matter from liquid to gaseous. A refrigerant, which is moved in a closed circuit, experiences successively different states of aggregation. The gaseous refrigerant is first compressed by a compressor. In the following heat exchanger (condenser) condenses (liquefies) the refrigerant with heat release. Subsequently, the liquid refrigerant due to the pressure change over a throttle, for example, an expansion valve or a capillary tube, relaxed. In the downstream second heat exchanger (evaporator), the refrigerant evaporates while absorbing heat at low temperature (boiling cooling). The cycle can now start over. The process must be kept on the outside by supplying mechanical work (drive power) via the compressor. The refrigerant absorbs a heat output at a low temperature level (for example -30 ° C cold cooling bath) and releases it to the environment at a higher temperature level (for example, 35 ° C.) while supplying technical work.
Das Gehäuse des Kühlers kann akustisch isoliert sein, z.B. mittels Schalldämmplatten, um ein eventuell bestehendes Kompressorgeräusch zu minimieren.The housing of the radiator may be acoustically isolated, e.g. using sound insulation panels to minimize any existing compressor noise.
Erfindungsgemäß ist das wenigstens eine Kühlelement als Joule-Thomson-Kühler bzw. Mixed-Joule-Thomson-Kühler ausgebildet. Bevorzugt sind für Kleinst-Instant-Chiller hochdrehende Mini-Kompressoren vorgesehen (z.B. Mini-Kompressoren der Aspen 14-12 und 14-24 Serie der Fa. Aspen Compressor LLC).According to the invention, the at least one cooling element is designed as a Joule-Thomson cooler or mixed-Joule-Thomson cooler. High-speed mini-compressors are preferably provided for micro-instant chillers (e.g., Aspen 14-12 and 14-24 series mini compressors from Aspen Compressor LLC).
Die Wärmeübertragung zwischen dem Kühlbad und dem Kühlelement einerseits und dem Kühlbad und der Getränkeflasche andererseits wird mit Vorteil dadurch maximiert, dass Mittel zum Umwälzen des Kühlbades vorgesehen sind. Das Umwälzen des Kühlbades führt zu einer Vergleichmäßigung der Temperatur innerhalb des Kühlbades, wodurch der für die Wärmeübertragung zur Verfügung stehende Temperaturgradient ständig maximiert wird. Weiters werden dadurch thermodynamische Randeffekte minimiert, die den Wärmeübertrag reduzieren würden. Bevorzugt umfassen die Mittel zum Umwälzen des Kühlbades einen in der Kammer angeordneten Rotor, eine Ultraschallmembran, eine Pumpe oder dgl.The heat transfer between the cooling bath and the cooling element on the one hand and the cooling bath and the beverage bottle on the other hand is advantageously maximized by the fact that means are provided for circulating the cooling bath. The circulation of the cooling bath leads to a homogenization of the temperature within the cooling bath, whereby the temperature gradient available for the heat transfer is constantly maximized. Furthermore, it minimizes thermodynamic edge effects that would reduce heat transfer. Preferably, the means for circulating the cooling bath comprise a rotor arranged in the chamber, an ultrasonic membrane, a pump or the like.
Um Verlustleistungen möglichst zu minimieren, ist bevorzugt vorgesehen, dass die Wand der Kammer von einer thermischen Isolierung umgeben ist. Die Isolierung ist mit Vorteil als Vakuumisolierung ausgebildet.In order to minimize power losses as possible, it is preferably provided that the wall of the chamber is surrounded by a thermal insulation. The insulation is advantageously designed as a vacuum insulation.
Um zu verhindern, dass das Getränk friert, kann eine präzise Temperaturkontrolle erforderlich sein. Insbesondere muss berücksichtig werden, dass das Kühlbad zur Minimierung der Abkühlzeit Temperaturen von 0°C bis -160°C aufweisen kann, sodass ein zu langes Einstellen der Getränkeflasche in die Kühlvorrichtung innerhalb kürzester Zeit zu einem Gefrieren des Getränkes führt. Die Regelung der Temperatur des Kühlbades erfolgt bevorzugt dadurch, dass ein Heizelement zum Aufwärmen des Kühlbades vorgesehen ist. Das Heizelement ist bevorzugt in der Kammer angeordnet und als elektrische Widerstandsheizung ausgebildet. Das Heizelement kann mit Vorteil als an der Wand der Kammer angeordnete Heizschlange ausgebildet sein. Dabei können die Windungen der Heizschlange zwischen den Windungen der Kühlschlange angeordnet sein. Ein Verdampfungsventil zur Leistungs- und Temperaturregelung wäre ebenso denkbar.Precise temperature control may be required to prevent the drink from freezing. In particular, it must be taken into account that the cooling bath minimizes The cooling time may have temperatures of 0 ° C to -160 ° C, so that too long setting the beverage bottle in the cooling device within a very short time leads to a freezing of the beverage. The regulation of the temperature of the cooling bath is preferably carried out in that a heating element is provided for heating the cooling bath. The heating element is preferably arranged in the chamber and designed as an electrical resistance heater. The heating element can be advantageously designed as arranged on the wall of the chamber heating coil. The turns of the heating coil can be arranged between the turns of the cooling coil. An evaporation valve for power and temperature control would also be conceivable.
Die Temperaturreglung erfolgt bevorzugt dadurch, dass ein Temperatursensor zur Erfassung der Badtemperatur vorgesehen ist, der mit einer Steuerschaltung verbunden ist. Die Steuerschaltung ist zweckmäßigerweise über Steuerleitungen mit dem Kühlelement und ggf. dem Heizelement verbunden, um in Abhängigkeit von Messwerten des Temperatursensors die Kühl- und/oder Heizleistung zu steuern. Weiters wäre eine zusätzliche Messung mit Hilfe eines Infrarotmessgeräts denkbar, die durch geeignete Maßnahmen die Temperatur des Getränks im Getränkebehälter bestimmt, wobei die Messwerte der Steuerschaltung zugeführt sein können, um damit eine präzise Steuerung zu ermöglichen.The temperature control is preferably carried out in that a temperature sensor is provided for detecting the bath temperature, which is connected to a control circuit. The control circuit is expediently connected via control lines to the cooling element and optionally to the heating element in order to control the cooling and / or heating power as a function of measured values of the temperature sensor. Furthermore, an additional measurement with the aid of an infrared measuring device would be conceivable, which determines the temperature of the beverage in the beverage container by suitable measures, wherein the measured values can be supplied to the control circuit, in order to enable a precise control.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.The invention will be explained in more detail with reference to an embodiment schematically illustrated in the drawing.
In
Das Kühlbad, in welchem das in einem Getränkebehälter befindliche Getränk auf Trinktemperatur gebracht wird, wird durch eine Hüllwand 5 und eine die Hüllwand 5 umgebende thermisch isolierende Hülle 3 von der Umgebung abgegrenzt. Die Hüllwand 5 kann aus Metall, Kunststoff oder einem anderen geeigneten Material aufgebaut sein. Die thermisch isolierende Hülle 3 kann durch geschäumtes Polystyrol oder durch eine Vakuumisolation gebildet sein. Natürlich wären auch andere Materialien zur Isolierung geeignet. Weiters kann die Hüllwand 5 samt zugehöriger Hülle 3 einen im mittleren Bereich der Kühlvorrichtung liegenden verbreiterten Bereich aufweisen, der es der Kühlflüssigkeit 4 ermöglicht in den verbreiterten Bereich auszuweichen, was ein Überschwappen der Kühlflüssigkeit 4 verhindert, wenn ein Getränkebehälter in die Kühlvorrichtung eingeführt wird. Um auch die Kühlung von kleineren Getränkebehältern, wie z.B. Dosen, zu gewährleisten, stellt die erfindungsgemäße Vorrichtung auch verschieden große Adapter bereit, um eine gleichmäßige Flüssigkeitsverdrängung und Kühlung zu gewährleisten.The cooling bath, in which the drink located in a beverage container is brought to serving temperature, is delimited by an envelope wall 5 and a surrounding the enveloping wall 5 thermally insulating
Insbesondere ist das Kühlbad und die Kühlvorrichtung geometrisch so angepasst, dass nur eine sehr geringe Kühlbad-Flüssigkeit von Nöten ist, um den Getränkebehälter mit möglichst viel Kühlflüssigkeit 4 zu umgeben. Durch das Einstellen der Flasche wird die Kühlflüssigkeit verdrängt und die wirksame Kälteübertragungsfläche zwischen Kühlschlange (Kühlbadwand) - Kühlbad - Getränkeoberfläche maximal.In particular, the cooling bath and the cooling device is geometrically adapted so that only a very small cooling bath liquid is needed in order to surround the beverage container with as much cooling liquid 4 as possible. By adjusting the bottle, the cooling liquid is displaced and the effective cold transfer surface between cooling coil (cooling bath wall) - cooling bath - beverage surface maximum.
Zwischen den Kühlelementen 1 können Heizelemente 2 angebracht sein, die durch die Steuerleitungen 8 und die Regelungsschaltung 11 entsprechend betrieben werden. Die Heizelemente 2 ermöglichen nach einem Abkühlvorgang ein schnelles Aufwärmen der Kühlbadtemperatur auf die erwünschte Trinktemperatur des Getränks, um ein weiteres Abkühlen oder Gefrieren des Getränks zu verhindern. Dies macht die erfindungsgemäße Vorrichtung auch zum längerfristigen Temperieren von Getränken nutzbar. Mittels der erfindungsgemäßen Ausführung kann also das Bersten von z.B. Glasflaschen aufgrund des gefrierenden Inhalts vermieden werden. Ein Mechanismus zum "Auswerfen" der Getränkeflasche wäre anstatt der Heizelemente 2 ebenso denkbar.Between the cooling elements 1
Um den Wärmeübertrag zwischen der Kühlflüssigkeit 4 und der Gefäßwand des zu kühlenden Getränks zu erhöhen, kann die Kühlflüssigkeit 4 durch einen Rotor 13 oder eine anders geartete Konstruktion in Bewegung versetzt werden. Durch die daraus resultierende turbulente Strömung wird der Wärmeübertrag zusätzlich optimiert. Der Temperatursensor 6 ermöglicht die konstante Kontrolle der Temperatur der Kühlflüssigkeit 4 und eine damit verbundene Regelung des Kühlkreislaufes und der Heizelemente 2 über eine Regelungsschaltung 11. Der Temperatursensor 6 ist über die Leitung 12 mit der Regelungsschaltung verbunden. Ein zusätzliches sensorisches Element 9, wie z.B. ein Füllstandstandsmessgerät oder ein Temperaturmessgerät, wäre denkbar.In order to increase the heat transfer between the cooling liquid 4 and the vessel wall of the drink to be cooled, the cooling liquid 4 can be set in motion by a
Eine Anordnung von Durchführungsdichtungen 14 verhindert das Verdunsten der Kühlflüssigkeit 4, die Verschmutzung der Kühlflüssigkeit 4 und das unbeabsichtigte Verletzen von Personen durch Kontakt mit der im Kühlbad befindlichen Kühlflüssigkeit 4 und die daraus resultierenden Unterkühlung derselben. Weiters wird dadurch das Abstreifen der Kühlflüssigkeit 4 vom Getränkebehälter ermöglicht. Die Durchführungsdichtung bietet auch eine Geruchsschutz.An arrangement of
Claims (14)
- A cooling device for beverages in beverage containers, comprising a preferably cylindrical chamber for receiving a beverage container and at least one cooling element, whereby the chamber is constructed as a basin for a cooling bath, wherein the filling level of the cooling liquid (4) of the cooling bath rises to at least 1.5 times, preferably to at least 3 times, particularly preferably to at least 4 times when introducing a circular-cylindrical test body having a diameter of 49.9 mm or 79.9 mm or 109.9 mm or 139.9 mm or 169.9 mm or 199.9 mm into a cooling bath of any desired volume, characterized in that the at least one cooling element (1) is arranged in the chamber or on the wall (5) of the chamber and that the at least one cooling element is formed as Joule-Thomson cooler or mixed-Joule Thomson cooler.
- Cooling device according to claim 1, characterized in that the cooling element (1) is formed as a cooling coil.
- Cooling device according to claim 1 or 2, characterized in that the cooling element (1) is incorporated in a coolant circuit, which is designed in particular as a circuit of a compression refrigeration machine.
- Cooling device according to anyone of claims 1 to 3, characterized in that means for circulating the cooling bath are provided, which in particular comprise a rotor (13) arranged in the chamber, a circulating pump or a membrane (for example ultrasound membrane).
- Cooling device according to anyone of claims 1 to 4, characterized in that the wall (5) of the chamber is surrounded by a thermal insulation (3), in particular a vacuum insulation.
- Cooling device according to anyone of claims 1 to 5, characterized in that a heating element (2), which is particularly arranged in the chamber and designed as an electrical resistance heater, is provided for heating the cooling bath.
- Cooling device according to claim 6, characterized in that the heating element (2) is formed as a heating coil arranged on the wall (5) of the chamber.
- Cooling device according to anyone of claims 1 to 7, characterized in that the opening provided for the insertion of the beverage container into the chamber has one or more grommets (14).
- Cooling device according to anyone of claims 1 to 8, characterized in that a temperature sensor (6) is provided for detecting the bath temperature, which is connected to a control circuit (11), which is preferably connected via control lines (8) to the cooling element (1) and, if necessary, to the heating element (2), in order to control the cooling and/or heating power depending on the measured values of the temperature sensor (6).
- Cooling device according to one of claims 1 to 9, characterized in that the chamber has a widened cross-section portion, which is particularly formed as edge portion adjoining the opening of the chamber and having an inner surface conically expanding up to the opening of the chamber.
- Cooling device according to anyone of claims 1 to 10 for beverage cans or bottles, characterized in that the annular gap resulting from the introduction of the can is outwardly delimited by an element having an inner diameter an inner diameter of 50mm-145mm, preferably 50mm-105mm or the annular gap resulting from the the introduction of the bottle is outwardly delimited by an element having an inner diameter of 50mm-220mm, preferably 50mm-140mm.
- Use of a cooling device according to anyone of claims 1 to 11, the chamber of which is filled with a cooling liquid, for cooling beverages in beverage containers, wherein the volume of the chamber, the volume of the cooling liquid present in the cooling bath (4) and the diameter or the volume of the beverage container are preferably coordinated so that between the wall (5) of the beverage container and the wall of the chamber or the cooling element (1) being preferably arranged on the chamber wall (5) an annular gap of a maximum of 3cm, preferably a maximum of 2cm remains.
- Use according to claim 12, characterized in that the volume of the chamber, the volume of the cooling liquid (4) present in the cooling bath and the diameter or the volume of the beverage container are coordinated such that the filling level of the cooling liquid (4) rises to at least 1.5 times, preferably to at least 3 times, particularly preferably to at least 4 times when introducing the beverage container into the cooling bath, whereby the volume of the chamber, the volume of the cooling liquid present in the cooling bath (4) and the diameter or the volume of the beverage container are preferably coordinated so that between the wall (5) of the beverage container and the wall of the chamber or the cooling element (1) being preferably arranged on the chamber wall (5) an annular gap of a maximum of 3cm, preferably a maximum of 2cm remains.
- Use according to claim 12 or 13, characterized in that the volume of the chamber, the volume of the cooling liquid present in the cooling bath (4) and the diameter of the beverage container are coordinated such that the filling level of the cooling liquid (4) rises to at least up to the upper edge of the cooling element (1) when introducing the beverage container in the cooling bath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13720751T PL2867598T3 (en) | 2012-04-19 | 2013-04-19 | Cooling device for beverages |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA476/2012A AT512799B1 (en) | 2012-04-19 | 2012-04-19 | Cooling device for drinks |
PCT/AT2013/000078 WO2013155543A1 (en) | 2012-04-19 | 2013-04-19 | Cooling device for beverages |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2867598A1 EP2867598A1 (en) | 2015-05-06 |
EP2867598B1 true EP2867598B1 (en) | 2019-08-28 |
Family
ID=48325317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13720751.0A Active EP2867598B1 (en) | 2012-04-19 | 2013-04-19 | Cooling device for beverages |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150128619A1 (en) |
EP (1) | EP2867598B1 (en) |
AT (1) | AT512799B1 (en) |
ES (1) | ES2759000T3 (en) |
PL (1) | PL2867598T3 (en) |
WO (1) | WO2013155543A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130019918A1 (en) | 2011-07-18 | 2013-01-24 | The Regents Of The University Of Michigan | Thermoelectric devices, systems and methods |
US10426180B1 (en) | 2016-06-16 | 2019-10-01 | Sigma Phase, Corp. | System for providing a single serving of a frozen confection |
EP3471550A4 (en) | 2016-06-16 | 2020-02-26 | Sigma Phase, Corp. | System for providing a single serving of a frozen confection |
US10690405B2 (en) * | 2018-02-01 | 2020-06-23 | Messer Industries Usa, Inc. | Methods and apparatus for freezing a liquid |
US10612835B2 (en) | 2018-08-17 | 2020-04-07 | Sigma Phase, Corp. | Rapidly cooling food and drinks |
US10543978B1 (en) | 2018-08-17 | 2020-01-28 | Sigma Phase, Corp. | Rapidly cooling food and drinks |
US11470855B2 (en) | 2018-08-17 | 2022-10-18 | Coldsnap, Corp. | Providing single servings of cooled foods and drinks |
US11337438B2 (en) | 2020-01-15 | 2022-05-24 | Coldsnap, Corp. | Rapidly cooling food and drinks |
TW202202790A (en) | 2020-06-01 | 2022-01-16 | 美商寇德斯納普公司 | Refrigeration systems for rapidly cooling food and drinks |
US11827402B2 (en) | 2021-02-02 | 2023-11-28 | Coldsnap, Corp. | Filling aluminum cans aseptically |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5974808A (en) * | 1997-11-21 | 1999-11-02 | Raytheon Company | Cooling apparatus employing a pressure actuated Joule-Thomson cryostat flow controller |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2128784A (en) * | 1936-12-18 | 1938-08-30 | Westinghouse Electric & Mfg Co | Liquid cooler |
US2164656A (en) * | 1938-01-26 | 1939-07-04 | Kretschmer Emil William | Refrigerant coil |
US2163568A (en) * | 1938-03-28 | 1939-06-20 | Schlumbohm Peter | Bottle cooler |
US2958212A (en) * | 1958-01-27 | 1960-11-01 | Henry F Cohrt | Refrigeration apparatus |
US4566291A (en) * | 1983-02-14 | 1986-01-28 | General Pneumatics Corporation | Closed cycle cryogenic cooling apparatus |
EP0174170A3 (en) * | 1984-09-07 | 1988-06-08 | Castleton, Inc. | Method and apparatus for chilling and freezing articles |
US4669273A (en) * | 1986-05-07 | 1987-06-02 | Liquid Co2 Engineering Inc. | Self-cooling beverage container |
US5353602A (en) * | 1993-03-25 | 1994-10-11 | Calmac Manufacturing Corporation | Non-steady-state self-regulating intermittent flow thermodynamic system |
GB9814405D0 (en) * | 1998-07-02 | 1998-09-02 | Chilla Limited | Cooling apparatus |
JP3357944B2 (en) * | 1999-01-11 | 2002-12-16 | 株式会社シントー | Beverage bottle rapid cooling device |
US6571564B2 (en) * | 2001-10-23 | 2003-06-03 | Shashank Upadhye | Timed container warmer and cooler |
US6672091B1 (en) * | 2002-01-23 | 2004-01-06 | Randy Lefor | Atomization device for a refrigerant |
US7065980B1 (en) * | 2004-01-06 | 2006-06-27 | Knight Andrew F | Rechargeable portable cooling device and method |
CN2744258Y (en) * | 2004-11-29 | 2005-12-07 | 汕头市佳捷塑料制品有限公司 | A wine cooling and warming equipment |
US7347055B2 (en) * | 2005-11-07 | 2008-03-25 | Coors Global Properties, Inc. | Rapid chilling apparatus and method for a beverage-filled container |
WO2008109696A1 (en) * | 2007-03-05 | 2008-09-12 | Nanopore, Inc. | Method and apparatus for cooling a container |
NL2001054C2 (en) * | 2007-12-04 | 2009-06-08 | Heineken Supply Chain Bv | Cooler and method for cooling beverage containers such as bottles and cans. |
US8092673B2 (en) * | 2008-03-12 | 2012-01-10 | Omega Patents, L.L.C. | Treatment device for cooling and magnetically treating liquid within a container and associated methods |
-
2012
- 2012-04-19 AT ATA476/2012A patent/AT512799B1/en active
-
2013
- 2013-04-19 PL PL13720751T patent/PL2867598T3/en unknown
- 2013-04-19 US US14/395,773 patent/US20150128619A1/en not_active Abandoned
- 2013-04-19 EP EP13720751.0A patent/EP2867598B1/en active Active
- 2013-04-19 ES ES13720751T patent/ES2759000T3/en active Active
- 2013-04-19 WO PCT/AT2013/000078 patent/WO2013155543A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5974808A (en) * | 1997-11-21 | 1999-11-02 | Raytheon Company | Cooling apparatus employing a pressure actuated Joule-Thomson cryostat flow controller |
Also Published As
Publication number | Publication date |
---|---|
ES2759000T3 (en) | 2020-05-07 |
WO2013155543A1 (en) | 2013-10-24 |
US20150128619A1 (en) | 2015-05-14 |
AT512799A1 (en) | 2013-11-15 |
EP2867598A1 (en) | 2015-05-06 |
PL2867598T3 (en) | 2020-02-28 |
AT512799B1 (en) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2867598B1 (en) | Cooling device for beverages | |
DE102011078608B4 (en) | cryostat assembly | |
DE102005014742A1 (en) | Device for cooling food | |
DE1941062B2 (en) | Storage heat exchanger | |
EP2881690B1 (en) | Cooling device for removal of a heat flow | |
DE102005030362B3 (en) | Thermo-accumulator for cool or warm box, has temperature storage medium whose aggregate condition change is reverted from liquid to solid, where temperature range for change of condition lies between specified degree Celsius | |
CN104848625A (en) | Quick refrigerating system | |
US6131393A (en) | Cooling of stored water | |
DE69903657T2 (en) | THE PELTIEREFFEKT USING HOUSEHOLD REFRIGERATOR WITH HEAT STORES AND THERMOSIPHONES WITH EVAPORATION | |
DE102011115004B4 (en) | Portion cooler with thermoelectric element | |
EP2607821A2 (en) | Domestic cooling device with heat pump and a Peltier element | |
DE102014222113A1 (en) | Refrigeration device with a heat circulation system | |
WO2012034613A2 (en) | Refrigerator | |
EP2833091B1 (en) | Milk cooling device for use in or with a beverage preparing device | |
WO2008086838A2 (en) | Liquid cooler and method for operating said cooler | |
DE102008060792B4 (en) | Refrigerator and / or freezer | |
DE3739375A1 (en) | Method, with the associated devices, for cooling or heating liquids or gases using the Peltier effect | |
US20230143608A1 (en) | Device for Chilling Wine | |
Tung et al. | HEAT TRANSFER PERFORMANCE OF A SELFOSCILLATING HEAT PIPE USING PURE WATER AND EFFECT OF INCLINATION TO THIS PERFORMANCE | |
DE10317733B3 (en) | Voltage converter for HV applications using superconductive transformer within cryostat chamber held at increased pressure by pressure generator incorporated in cooling medium pipeline system | |
DE861101C (en) | Cooler for absorption refrigerators with pressure equalizing gas | |
DE19806403A1 (en) | Method for cooling bottled drinks in transportation | |
EP1487583B1 (en) | Device for cooling a sampler | |
DE1130457B (en) | Device for cold storage | |
DE102019000697A1 (en) | Cooling device and use of a cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150309 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171108 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190412 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1172925 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013013464 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: RENTSCH PARTNER AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191230 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191128 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191128 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191129 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2759000 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013013464 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200419 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240503 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240425 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240422 Year of fee payment: 12 Ref country code: FR Payment date: 20240425 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240418 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240418 Year of fee payment: 12 |