EP2864409B1 - Curable fluoroelastomer composition - Google Patents

Curable fluoroelastomer composition Download PDF

Info

Publication number
EP2864409B1
EP2864409B1 EP13737034.2A EP13737034A EP2864409B1 EP 2864409 B1 EP2864409 B1 EP 2864409B1 EP 13737034 A EP13737034 A EP 13737034A EP 2864409 B1 EP2864409 B1 EP 2864409B1
Authority
EP
European Patent Office
Prior art keywords
hydrazine
phenol
curable composition
complex
fluoroelastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13737034.2A
Other languages
German (de)
French (fr)
Other versions
EP2864409A1 (en
Inventor
Christopher J. Bish
Peter A. Morken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP2864409A1 publication Critical patent/EP2864409A1/en
Application granted granted Critical
Publication of EP2864409B1 publication Critical patent/EP2864409B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • This invention relates to curable fluoroelastomer compositions and more particularly to fluoroelastomer compositions containing certain phenol hydrazine complexes as curing agents.
  • Fluoroelastomers have achieved outstanding commercial success and are used in a wide variety of applications in which severe environments are encountered, in particular those end uses where exposure to high temperatures and aggressive chemicals occurs.
  • these polymers are often used in seals for aircraft engines, in oil-well drilling devices, and in sealing elements for industrial equipment that operates at high temperatures.
  • fluoroelastomers are largely attributable to the stability and inertness of the copolymerized fluorinated monomer units that make up the major portion of the polymer backbones in these compositions.
  • monomers include vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene and perfluoro(alkyl vinyl) ethers.
  • fluoroelastomers are typically crosslinked, i.e. vulcanized. To this end, a small percentage of cure site monomer is copolymerized with the fluorinated monomer units.
  • Cure site monomers containing at least one nitrile group for example perfluoro-8-cyano-5-methyl-3,6-dioxa-1-octene, are especially preferred.
  • Such compositions are described in U.S. Patents 4,281,092 ; 4,394,489 ; 5,789,489 ; 5,789,509 and in WO 2011084404 .
  • Bisamidoximes U.S. Patent 5,668,221
  • bisamidrazones U.S. Patents 5,605,973 ; 5,637,648
  • cures may be scorchy, i.e. crosslinking may begin before the final shaping of the composition.
  • curatives require complex, multistep syntheses from expensive starting materials.
  • Fluoropolymers having pendant amidrazone or amidoxime groups are also known ( U.S. Patent 7,300,985 B2 ). These polymers require an additional polymer modification step in order to form crosslinks.
  • the present invention is directed to curable fluoroelastomer compositions which comprise a fluoroelastomer having nitrile group cure sites and certain phenol hydrazine complex as curatives. More specifically, the present invention is directed to a curable composition comprising:
  • Another aspect of the present invention is a cured article made from the above composition.
  • the fluoroelastomer that may be employed in the composition of the invention may be partially fluorinated or perfluorinated.
  • Fluoroelastomers preferably contain between 25 and 70 weight percent, based on the total weight of the fluoroelastomer, of copolymerized units of a first monomer which may be vinylidene fluoride (VF 2 ) or tetrafluoroethylene (TFE).
  • the remaining units in the fluoroelastomers are comprised of one or more additional copolymerized monomers, different from said first monomer, selected from the group consisting of fluoromonomers, hydrocarbon olefins and mixtures thereof.
  • Fluoromonomers include fluorine-containing olefins and fluorine-containing vinyl ethers.
  • Fluorine-containing olefins which may be employed to make fluoroelastomers include, but are not limited to vinylidene fluoride (VF 2 ), hexafluoropropylene (HFP), tetrafluoroethylene (TFE), 1,2,3,3,3-pentafluoropropene (1-HPFP), 1,1,3,3,3-pentafluoropropene (2-HPFP), chlorotrifluoroethylene (CTFE) and vinyl fluoride.
  • VF 2 vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • 1,2,3,3,3-pentafluoropropene 1,2,3,3,3-pentafluoropropene
  • 2-HPFP 1,1,3,3,3-pentafluoropropene
  • CFE chlorotrifluoroethylene
  • Fluorine-containing vinyl ethers that may be employed to make fluoroelastomers include, but are not limited to perfluoro(alkyl vinyl) ethers.
  • a most preferred class of perfluoro(alkyl vinyl) ethers includes those ethers wherein n is 0 or 1 and R f contains 1-3 carbon atoms.
  • Examples of such perfluorinated ethers include perfluoro(methyl vinyl ether) (PMVE), perfluoro(ethyl vinyl ether) (PEVE) and perfluoro(propyl vinyl ether) (PPVE).
  • the PAVE content generally ranges from 25 to 75 weight percent, based on the total weight of the fluoroelastomer. If perfluoro(methyl vinyl ether) is used, then the fluoroelastomer preferably contains between 30 and 65 wt.% copolymerized PMVE units.
  • Hydrocarbon olefins useful in the fluoroelastomers employed in the invention include, but are not limited to ethylene and propylene. If copolymerized units of a hydrocarbon olefin are present in the fluoroelastomers, hydrocarbon olefin content is generally 4 to 30 weight percent.
  • the fluoroelastomer further contains copolymerized units of at least one cure site monomer, generally in amounts of from 0.1-5 mole percent. The range is preferably between 0.3-1.5 mole percent. Although more than one type of cure site monomer may be present, most commonly one cure site monomer is used and it contains at least one nitrile substituent group. Suitable cure site monomers include nitrile-containing fluorinated olefins and nitrile-containing fluorinated vinyl ethers. Useful nitrile-containing cure site monomers include those of the formulas shown below.
  • cure site monomers are perfluorinated polyethers having a nitrile group and a trifluorovinyl ether group.
  • a first aspect of this invention is a curable composition
  • a curable composition comprising A) a fluoroelastomer comprising copolymerized units of a nitrile group containing cure site monomer; and B) a phenol hydrazine complex.
  • the phenol hydrazine complex is a hydrogen bonded complex, rather than a salt.
  • the pKa of the phenol in water is generally between 5 and 13, preferably between 6 and 12 in order to ensure minimal, if any, salt formation with hydrazine.
  • Phenols useful in this invention may have more than one hydroxyl group attached to the aromatic ring. In fact, phenols having 2 or 3 hydroxyl groups are preferred. Other functional groups may optionally be attached to the phenol aromatic ring, e.g. hydrocarbon groups, halogens, nitriles, ethers, aromatic groups, amines, esters, nitro groups, heterocycles or sulfones.
  • Phenol hydrazine complexes may be made by dissolving the phenol in anhydrous methanol or ethanol and then introducing an equivalent amount of hydrazine ( U.S. Patent No. 4,180,405 ).
  • the phenol may optionally be a thiophenol. Hydrazine salts or complexes with phthalhydrazide are not included in the phenol hydrazine complexes of the invention.
  • phenol hydrazine complexes include, but are not limited to hydrazine cyanurate, hydrazine hydroquinone and the hydrazine complexes disclosed in U.S. Patent No. 4,180,405 . Hydrazine cyanurate and hydrazine hydroquinone are preferred.
  • these phenol hydrazine complexes act as curing agents by causing the dimerization of polymer chain bound nitrile groups to form 1,2,4-triazole rings, thus crosslinking the fluoroelastomer.
  • the phenol hydrazine complexes are less volatile than curatives such as hydrazine or t-butyl carbazate, making the phenol hydrazine complex curatives less likely to be fugitive during mixing and shaping processes.
  • the level of phenol hydrazine complex should be about 0.05 to 7 parts phenol hydrazine complex per 100 parts fluoroelastomer, preferably about 0.1 to 3 parts phenol hydrazine complex per 100 parts fluoroelastomer, most preferably about 0.5 to 2 parts phenol hydrazine complex per 100 parts fluoroelastomer.
  • parts refers to parts by weight, unless otherwise indicated.
  • An appropriate level of phenol hydrazine complex can be selected by considering cure properties, for example the time to develop maximum moving die rheometer (MDR) torque and minimum Mooney scorch of the curable compositions.
  • MDR moving die rheometer
  • the optimum level will depend on the particular combination of fluoroelastomer and phenol hydrazine complex.
  • a curative accelerator e.g. a compound that releases ammonia at curing temperatures
  • a phenol hydrazine complex curative examples include those disclosed in U.S. 6,281,296 B1 and U.S. 2011/0009569 .
  • curative commonly employed to crosslink fluoroelastomers having nitrile-group cure sites may be used in addition to the phenol hydrazine complex.
  • examples of such other curatives include, but are not limited to diaminobisphenol AF, 2,2-bis(3-amino-4-anilinophenyl)hexafluoropropane, mono- or bis-amidines, mono- or bisamidrazones, mono- or bis-amidoximes, or an organic peroxide plus coagent.
  • Additives such as carbon black, fluoropolymer micropowders, stabilizers, plasticizers, lubricants, fillers, and processing aids typically utilized in fluoroelastomer compounding can be incorporated into the compositions of the present invention, provided they have adequate stability for the intended service conditions.
  • the curable compositions of the invention may be prepared by mixing the fluoroelastomer, phenol hydrazine complex and other components using standard rubber compounding procedures.
  • the components may be mixed on a two roll rubber mill, in an internal mixer (e.g. a Banbury® internal mixer), or in an extruder.
  • the curable compositions may then be crosslinked (i.e. cured) by application of heat and/or pressure.
  • a press cure cycle is generally followed by a post cure cycle during which the press cured composition is heated at elevated temperatures in excess of 300°C for several hours.
  • the curable compositions of the present invention are useful in production of gaskets, tubing, and seals.
  • Such cured articles are generally produced by molding a compounded formulation of the curable composition with various additives under pressure, curing the part, and then subjecting it to a post cure cycle.
  • the cured compositions have excellent thermal stability, steam and chemical resistance. Volume swell (ASTM D1414) after exposure to 225°C water for at least 168 hours, preferably at least 336 hours, is less than 5%. Also compression set, 300°C, 70 hours, 15% compression (ASTM D395) is less than 70%.
  • the cured compositions are particularly useful in applications such as seals and gaskets for manufacturing semiconductor devices, and in seals for high temperature automotive uses.
  • fluoropolymers containing nitrile cure sites such as fluoroplastics may be substituted for fluoroelastomers in the compositions of the invention.
  • Test specimens were prepared from elastomer compounded with appropriate additives, as described in the formulations listed in the Examples below. Compounding was carried out on a rubber mill. The milled composition was formed into a sheet and a 10 g sample was die cut into a disk to form the test specimen.
  • Compression set of O-ring samples was determined in accordance with ASTM D395. Mean values are reported.
  • volume swell in water was measured at 225°C for the time indicated in the Tables in accordance with ASTM D1414.
  • FFKM - A terpolymer containing 61.8 mole percent units of TFE, 37.4 mole percent units of PMVE and 0.80 mole percent units of 8-CNVE was prepared according to the general process described in U.S. Patent No. 5,789,489 .
  • Curable compositions of the invention were compounded on a two-roll rubber mill in the proportions shown in Table I.
  • the compounded compositions are labeled Example 1 (hydrazine cyanurate, available from Aldrich) and Example 2 (hydroquinone-hydrazine complex, prepared according to the general procedure from F. Toda et. al. J. Chem. Soc. Chem. Commun. 1995 p.1531 ) in Table I. Cure characteristics of the compounded compositions are also shown in Table I.
  • O-rings were made by press curing the curable compositions at a temperature of 190°C for Tc90 plus 5 minutes, followed by a post cure in a nitrogen atmosphere at a temperature of 305°C for 26 hours after a slow temperature ramp up from room temperature. Compression set and volume swell values are also shown in Table I.
  • o-rings were made from a similar compound, but containing 0.25 phr urea as curative, rather than a phenol hydrazine complex. After only 168 hours of exposure to 225°C water, the urea cured o-rings exhibited a 15.7 % volume swell.
  • Example 1 Example 2 FFKM 100 100 Carbon Black MT N990 30 30 30 hydrazine cyanurate 1.22 hydroquinone-hydrazine complex 1.46 Cure Characteristics M L (dN ⁇ m) 3.61 2.78 M H (dN ⁇ m) 18.0 13.9 Tc90, minutes 17.2 4.86 Compression set , 300°C, 70 hours, 15% compression, % 29 33 Volume swell , 168 hours, % -0.1 0.6 1 Parts by weight per hundred parts by weight fluoroelastomer

Description

    FIELD OF THE INVENTION
  • This invention relates to curable fluoroelastomer compositions and more particularly to fluoroelastomer compositions containing certain phenol hydrazine complexes as curing agents.
  • BACKGROUND OF THE INVENTION
  • Fluoroelastomers have achieved outstanding commercial success and are used in a wide variety of applications in which severe environments are encountered, in particular those end uses where exposure to high temperatures and aggressive chemicals occurs. For example, these polymers are often used in seals for aircraft engines, in oil-well drilling devices, and in sealing elements for industrial equipment that operates at high temperatures.
  • The outstanding properties of fluoroelastomers are largely attributable to the stability and inertness of the copolymerized fluorinated monomer units that make up the major portion of the polymer backbones in these compositions. Such monomers include vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene and perfluoro(alkyl vinyl) ethers. In order to develop elastomeric properties fully, fluoroelastomers are typically crosslinked, i.e. vulcanized. To this end, a small percentage of cure site monomer is copolymerized with the fluorinated monomer units. Cure site monomers containing at least one nitrile group, for example perfluoro-8-cyano-5-methyl-3,6-dioxa-1-octene, are especially preferred. Such compositions are described in U.S. Patents 4,281,092 ; 4,394,489 ; 5,789,489 ; 5,789,509 and in WO 2011084404 .
  • Bisamidoximes ( U.S. Patent 5,668,221 ) and bisamidrazones ( U.S. Patents 5,605,973 ; 5,637,648 ) have been used as vulcanizing agents for fluoroelastomers having nitrile group cure sites. These cures may be scorchy, i.e. crosslinking may begin before the final shaping of the composition. Also, the curatives require complex, multistep syntheses from expensive starting materials.
  • Other nitrogen containing nucleophilic compounds have been employed to crosslink fluoroelastomers having nitrile group cure sites ( U.S. Patent 6,638,999 B2 ). Some of these curatives are scorchy while others are volatile at rubber milling temperatures.
  • Fluoropolymers having pendant amidrazone or amidoxime groups are also known ( U.S. Patent 7,300,985 B2 ). These polymers require an additional polymer modification step in order to form crosslinks.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to curable fluoroelastomer compositions which comprise a fluoroelastomer having nitrile group cure sites and certain phenol hydrazine complex as curatives. More specifically, the present invention is directed to a curable composition comprising:
    1. A) a fluoroelastomer comprising copolymerized units of a nitrile group-containing cure site monomer; and
    2. B) a phenol hydrazine complex.
  • Another aspect of the present invention is a cured article made from the above composition.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The fluoroelastomer that may be employed in the composition of the invention may be partially fluorinated or perfluorinated. Fluoroelastomers preferably contain between 25 and 70 weight percent, based on the total weight of the fluoroelastomer, of copolymerized units of a first monomer which may be vinylidene fluoride (VF2) or tetrafluoroethylene (TFE). The remaining units in the fluoroelastomers are comprised of one or more additional copolymerized monomers, different from said first monomer, selected from the group consisting of fluoromonomers, hydrocarbon olefins and mixtures thereof. Fluoromonomers include fluorine-containing olefins and fluorine-containing vinyl ethers.
  • Fluorine-containing olefins which may be employed to make fluoroelastomers include, but are not limited to vinylidene fluoride (VF2), hexafluoropropylene (HFP), tetrafluoroethylene (TFE), 1,2,3,3,3-pentafluoropropene (1-HPFP), 1,1,3,3,3-pentafluoropropene (2-HPFP), chlorotrifluoroethylene (CTFE) and vinyl fluoride.
  • Fluorine-containing vinyl ethers that may be employed to make fluoroelastomers include, but are not limited to perfluoro(alkyl vinyl) ethers. Perfluoro(alkyl vinyl) ethers (PAVE) suitable for use as monomers include those of the formula

            CF2=CFO(Rf'-O)n(Rf"O)mRf     (I)

    where Rf' and Rf" are different linear or branched perfluoroalkylene groups of 2-6 carbon atoms, m and n are independently 0-10, and Rf is a perfluoroalkyl group of 1-6 carbon atoms.
  • A preferred class of perfluoro(alkyl vinyl) ethers includes compositions of the formula

            CF2=CFO(CF2CFXO)nRf     (II)

    where X is F or CF3, n is 0-5, and Rf is a perfluoroalkyl group of 1-6 carbon atoms.
  • A most preferred class of perfluoro(alkyl vinyl) ethers includes those ethers wherein n is 0 or 1 and Rf contains 1-3 carbon atoms. Examples of such perfluorinated ethers include perfluoro(methyl vinyl ether) (PMVE), perfluoro(ethyl vinyl ether) (PEVE) and perfluoro(propyl vinyl ether) (PPVE). Other useful monomers include those of the formula

            CF2=CFO[(CF2)mCF2CFZO]nRf     (III)

    where Rf is a perfluoroalkyl group having 1-6 carbon atoms, m = 0 or 1, n = 0-5, and Z = F or CF3. Preferred members of this class are those in which Rf is C3F7, m = 0, and n = 1.
  • Additional perfluoro(alkyl vinyl) ether monomers include compounds of the formula

            CF2=CFO[(CF2CF{CF3}O)n(CF2CF2CF2O)m(CF2)p]CxF2x+1     (IV)

    where m and n independently = 0-10, p = 0-3, and x = 1-5. Preferred members of this class include compounds where n = 0-1, m = 0-1, and x = 1.
  • Other examples of useful perfluoro(alkyl vinyl ethers) include

            CF2=CFOCF2CF(CF3)O(CF2O)mCnF2n+1     (V)

    where n = 1-5, m = 1-3, and where, preferably, n = 1.
  • If copolymerized units of PAVE are present in fluoroelastomers employed in the invention, the PAVE content generally ranges from 25 to 75 weight percent, based on the total weight of the fluoroelastomer. If perfluoro(methyl vinyl ether) is used, then the fluoroelastomer preferably contains between 30 and 65 wt.% copolymerized PMVE units.
  • Hydrocarbon olefins useful in the fluoroelastomers employed in the invention include, but are not limited to ethylene and propylene. If copolymerized units of a hydrocarbon olefin are present in the fluoroelastomers, hydrocarbon olefin content is generally 4 to 30 weight percent.
  • The fluoroelastomer further contains copolymerized units of at least one cure site monomer, generally in amounts of from 0.1-5 mole percent. The range is preferably between 0.3-1.5 mole percent. Although more than one type of cure site monomer may be present, most commonly one cure site monomer is used and it contains at least one nitrile substituent group. Suitable cure site monomers include nitrile-containing fluorinated olefins and nitrile-containing fluorinated vinyl ethers. Useful nitrile-containing cure site monomers include those of the formulas shown below.

            CF2=CF-O(CF2)n-CN     (VI)

    where n = 2-12, preferably 2-6;

            CF2=CF-O[CF2-CFCF3-O]n-CF2-CFCF3-CN     (VII)

    where n= 0-4, preferably 0-2;

            CF2=CF-[OCF2CFCF3]x-O-(CF2)n-CN     (VIII)

    where x = 1-2, and n = 1-4; and

            CF2=CF-O-(CF2)n-O-CF(CF3)CN     (IX)

    where n = 2-4.
  • Those of formula (VIII) are preferred. Especially preferred cure site monomers are perfluorinated polyethers having a nitrile group and a trifluorovinyl ether group. A most preferred cure site monomer is

            CF2=CFOCF2CF(CF3)OCF2CF2CN     (X)

    i.e. perfluoro(8-cyano-5-methyl-3,6-dioxa-1-octene) or 8-CNVE.
  • A first aspect of this invention is a curable composition comprising A) a fluoroelastomer comprising copolymerized units of a nitrile group containing cure site monomer; and B) a phenol hydrazine complex.
  • The phenol hydrazine complex is a hydrogen bonded complex, rather than a salt. The pKa of the phenol in water is generally between 5 and 13, preferably between 6 and 12 in order to ensure minimal, if any, salt formation with hydrazine. Phenols useful in this invention may have more than one hydroxyl group attached to the aromatic ring. In fact, phenols having 2 or 3 hydroxyl groups are preferred. Other functional groups may optionally be attached to the phenol aromatic ring, e.g. hydrocarbon groups, halogens, nitriles, ethers, aromatic groups, amines, esters, nitro groups, heterocycles or sulfones. Phenol hydrazine complexes may be made by dissolving the phenol in anhydrous methanol or ethanol and then introducing an equivalent amount of hydrazine ( U.S. Patent No. 4,180,405 ). The phenol may optionally be a thiophenol. Hydrazine salts or complexes with phthalhydrazide are not included in the phenol hydrazine complexes of the invention.
  • Specific examples of phenol hydrazine complexes include, but are not limited to hydrazine cyanurate, hydrazine hydroquinone and the hydrazine complexes disclosed in U.S. Patent No. 4,180,405 . Hydrazine cyanurate and hydrazine hydroquinone are preferred.
  • It is theorized that these phenol hydrazine complexes act as curing agents by causing the dimerization of polymer chain bound nitrile groups to form 1,2,4-triazole rings, thus crosslinking the fluoroelastomer. The phenol hydrazine complexes are less volatile than curatives such as hydrazine or t-butyl carbazate, making the phenol hydrazine complex curatives less likely to be fugitive during mixing and shaping processes.
  • In order to be useful as either the major, or as the only curative for these fluoroelastomers, the level of phenol hydrazine complex should be about 0.05 to 7 parts phenol hydrazine complex per 100 parts fluoroelastomer, preferably about 0.1 to 3 parts phenol hydrazine complex per 100 parts fluoroelastomer, most preferably about 0.5 to 2 parts phenol hydrazine complex per 100 parts fluoroelastomer. As used herein, "parts" refers to parts by weight, unless otherwise indicated.
  • An appropriate level of phenol hydrazine complex can be selected by considering cure properties, for example the time to develop maximum moving die rheometer (MDR) torque and minimum Mooney scorch of the curable compositions. The optimum level will depend on the particular combination of fluoroelastomer and phenol hydrazine complex.
  • Optionally, a curative accelerator, e.g. a compound that releases ammonia at curing temperatures, may be used in combination with a phenol hydrazine complex curative. Examples of compounds that decompose to release ammonia at curing temperatures include those disclosed in U.S. 6,281,296 B1 and U.S. 2011/0009569 .
  • Optionally, another curative commonly employed to crosslink fluoroelastomers having nitrile-group cure sites may be used in addition to the phenol hydrazine complex. Examples of such other curatives include, but are not limited to diaminobisphenol AF, 2,2-bis(3-amino-4-anilinophenyl)hexafluoropropane, mono- or bis-amidines, mono- or bisamidrazones, mono- or bis-amidoximes, or an organic peroxide plus coagent.
  • Additives, such as carbon black, fluoropolymer micropowders, stabilizers, plasticizers, lubricants, fillers, and processing aids typically utilized in fluoroelastomer compounding can be incorporated into the compositions of the present invention, provided they have adequate stability for the intended service conditions.
  • The curable compositions of the invention may be prepared by mixing the fluoroelastomer, phenol hydrazine complex and other components using standard rubber compounding procedures. For example, the components may be mixed on a two roll rubber mill, in an internal mixer (e.g. a Banbury® internal mixer), or in an extruder. The curable compositions may then be crosslinked (i.e. cured) by application of heat and/or pressure. When compression molding is utilized, a press cure cycle is generally followed by a post cure cycle during which the press cured composition is heated at elevated temperatures in excess of 300°C for several hours.
  • The curable compositions of the present invention are useful in production of gaskets, tubing, and seals. Such cured articles are generally produced by molding a compounded formulation of the curable composition with various additives under pressure, curing the part, and then subjecting it to a post cure cycle. The cured compositions have excellent thermal stability, steam and chemical resistance. Volume swell (ASTM D1414) after exposure to 225°C water for at least 168 hours, preferably at least 336 hours, is less than 5%. Also compression set, 300°C, 70 hours, 15% compression (ASTM D395) is less than 70%. The cured compositions are particularly useful in applications such as seals and gaskets for manufacturing semiconductor devices, and in seals for high temperature automotive uses.
  • Other fluoropolymers containing nitrile cure sites, such as fluoroplastics may be substituted for fluoroelastomers in the compositions of the invention.
  • The invention is now illustrated by certain embodiments wherein all parts are by weight unless otherwise specified.
  • EXAMPLES TEST METHODS Cure Characteristics
  • Cure characteristics were measured using a Monsanto MDR 2000 instrument under the following conditions:
    • Moving die frequency: 1.66 Hz
    • Oscillation amplitude: ± 0.5 degrees
    • Temperature: 190°C, unless otherwise noted
    • Sample size: Disks having diameter of 1.5 inches (38 mm) Duration of test: 30 minutes
  • The following cure parameters were recorded:
    • MH: maximum torque level, in units of dN·m
    • ML: minimum torque level, in units of dN·m
    • Tc90: time to 90% of maximum torque, minutes
  • Test specimens were prepared from elastomer compounded with appropriate additives, as described in the formulations listed in the Examples below. Compounding was carried out on a rubber mill. The milled composition was formed into a sheet and a 10 g sample was die cut into a disk to form the test specimen.
  • Compression set of O-ring samples was determined in accordance with ASTM D395. Mean values are reported.
  • Volume swell in water was measured at 225°C for the time indicated in the Tables in accordance with ASTM D1414.
  • The following fluoroelastomer polymer was used in the Examples: FFKM - A terpolymer containing 61.8 mole percent units of TFE, 37.4 mole percent units of PMVE and 0.80 mole percent units of 8-CNVE was prepared according to the general process described in U.S. Patent No. 5,789,489 .
  • Examples 1-2
  • Curable compositions of the invention were compounded on a two-roll rubber mill in the proportions shown in Table I. The compounded compositions are labeled Example 1 (hydrazine cyanurate, available from Aldrich) and Example 2 (hydroquinone-hydrazine complex, prepared according to the general procedure from F. Toda et. al. J. Chem. Soc. Chem. Commun. 1995 p.1531) in Table I. Cure characteristics of the compounded compositions are also shown in Table I. O-rings were made by press curing the curable compositions at a temperature of 190°C for Tc90 plus 5 minutes, followed by a post cure in a nitrogen atmosphere at a temperature of 305°C for 26 hours after a slow temperature ramp up from room temperature. Compression set and volume swell values are also shown in Table I.
  • In order to compare volume swells of the compositions of the invention with a prior art composition, o-rings were made from a similar compound, but containing 0.25 phr urea as curative, rather than a phenol hydrazine complex. After only 168 hours of exposure to 225°C water, the urea cured o-rings exhibited a 15.7 % volume swell. TABLE I
    Formulation (phr 1 ) Example 1 Example 2
    FFKM 100 100
    Carbon Black MT N990 30 30
    hydrazine cyanurate 1.22
    hydroquinone-hydrazine complex 1.46
    Cure Characteristics
    ML (dN·m) 3.61 2.78
    MH (dN·m) 18.0 13.9
    Tc90, minutes 17.2 4.86
    Compression set, 300°C, 70 hours, 15% compression, % 29 33
    Volume swell, 168 hours, % -0.1 0.6
    1Parts by weight per hundred parts by weight fluoroelastomer

Claims (9)

  1. A curable composition comprising:
    A) a fluoroelastomer comprising copolymerized units of a nitrile group-containing cure site monomer; and
    B) a phenol hydrazine complex.
  2. A curable composition of claim 1 wherein said phenol hydrazine complex is selected from the group consisting of hydrazine cyanurate and hydrazine hydroquinone.
  3. A curable composition of claim 2 wherein said phenol hydrazine complex is hydrazine cyanurate.
  4. A curable composition of claim 2 wherein said phenol hydrazine complex is hydrazine hydroquinone.
  5. A curable composition of claim 1 wherein said phenol is a thiophenol.
  6. A curable composition of claim 1 further comprising a curative accelerator.
  7. A curable composition of claim 1 further comprising a curative in addition to said phenol hydrazine complex.
  8. A cured article made from the composition of claim 1.
  9. A cured article of claim 8 having a volume swell, measured according to ASTM D1414, after exposure to 225°C water for at least 168 hours of less than 5% and a compression set, 300°C, 70 hours, 15% compression, measured according to ASTM D395, of less than 70%.
EP13737034.2A 2012-06-25 2013-06-25 Curable fluoroelastomer composition Active EP2864409B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/531,713 US20130345365A1 (en) 2012-06-25 2012-06-25 Curable fluoroelastomer composition
PCT/US2013/047467 WO2014004422A1 (en) 2012-06-25 2013-06-25 Curable fluoroelastomer composition

Publications (2)

Publication Number Publication Date
EP2864409A1 EP2864409A1 (en) 2015-04-29
EP2864409B1 true EP2864409B1 (en) 2016-05-11

Family

ID=48790600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13737034.2A Active EP2864409B1 (en) 2012-06-25 2013-06-25 Curable fluoroelastomer composition

Country Status (6)

Country Link
US (1) US20130345365A1 (en)
EP (1) EP2864409B1 (en)
JP (1) JP5986311B2 (en)
KR (1) KR20150016596A (en)
CN (1) CN104379655A (en)
WO (1) WO2014004422A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704449B2 (en) 2015-10-29 2020-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Curable fluoroelastomer composition
EP3387054B1 (en) 2015-12-07 2020-02-26 E. I. du Pont de Nemours and Company Curing agents for fluorinated elastomers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502628A (en) * 1968-05-22 1970-03-24 Du Pont Vulcanization accelerators for fluorinated polymers and compositions thereof
US4180405A (en) 1977-02-25 1979-12-25 Graphic Controls Corporation Heat-sensitive recording composition with mixed color precursors
US4281092A (en) 1978-11-30 1981-07-28 E. I. Du Pont De Nemours And Company Vulcanizable fluorinated copolymers
US4394489A (en) 1982-02-25 1983-07-19 E. I. Du Pont De Nemours & Co. Fluoroelastomer curatives
US4512909A (en) * 1982-06-30 1985-04-23 Olin Corporation Use of a hydroquinone compound with hydrazine (1:1 molar ratio) as an oxygen-scavenging and a corrosion-inhibiting agent
JPH08104789A (en) * 1994-10-04 1996-04-23 Nippon Mektron Ltd Fluorine-containing elastomer composition
JP2850943B2 (en) 1994-10-21 1999-01-27 日本メクトロン株式会社 Vulcanizing agent for fluoroelastomer composed of bisamidrazone compound
JP2770769B2 (en) * 1995-02-16 1998-07-02 日本メクトロン株式会社 Bisamidoxime compound, process for producing the same, and fluorine-containing elastomer composition containing the same
JP2891294B2 (en) 1995-07-13 1999-05-17 日本メクトロン株式会社 Fluorine-containing elastomer composition
JP3082626B2 (en) 1995-07-19 2000-08-28 日本メクトロン株式会社 Fluorine-containing elastomer composition
EP0939778B1 (en) 1996-11-25 2003-05-28 E.I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US5877264A (en) 1996-11-25 1999-03-02 E. I. Du Pont De Nemours And Company Fast-curing perfluoroelastomer composition
US6281296B1 (en) 1998-08-10 2001-08-28 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition
US6638999B2 (en) 2000-02-08 2003-10-28 Dupont Dow Elastomers Llc. Curable perfluoroelastomer composition
WO2005000917A1 (en) * 2003-01-29 2005-01-06 Greene, Tweed Of Delaware, Inc. Bisaminopehnyl-based curatives curatives and amidine-based curatives and cure accelerators for perfluoroelastomeric compositions.
JP2004256573A (en) * 2003-02-24 2004-09-16 Japan Exlan Co Ltd Ultraviolet absorbing material
US7300985B2 (en) * 2004-12-21 2007-11-27 3M Innovative Properties Company Fluoropolymers having pendant amidoxime or amidrazone structures
US8604137B2 (en) 2008-02-29 2013-12-10 3M Innovative Properties Company Perfluoroelastomers with low carbonyl endgroup ratios
US20110152487A1 (en) 2009-12-17 2011-06-23 3M Innovative Properties Company Peroxide cured partially fluorinated elastomers
EP2649125B1 (en) * 2010-12-07 2019-09-04 Daikin Industries, Ltd. Curable composition, molded product and method for producing molded product
US8765875B2 (en) * 2011-03-31 2014-07-01 E I Du Pont De Nemours And Company Curable fluoroelastomer composition
US8338542B1 (en) * 2012-06-25 2012-12-25 E I Du Pont De Nemours And Company Curable fluoroelastomer composition

Also Published As

Publication number Publication date
JP2015521691A (en) 2015-07-30
WO2014004422A1 (en) 2014-01-03
KR20150016596A (en) 2015-02-12
EP2864409A1 (en) 2015-04-29
JP5986311B2 (en) 2016-09-06
US20130345365A1 (en) 2013-12-26
CN104379655A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
EP2691452B1 (en) Curable fluoroelastomer composition
US11174330B2 (en) Curable fluoroelastomer composition
EP2864416B1 (en) Curable fluoroelastomer composition
EP2864409B1 (en) Curable fluoroelastomer composition
EP2691454B1 (en) Curable fluoroelastomer composition
US9611383B2 (en) Curable fluoroelastomer composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013007460

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 798631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013007460

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160625

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160625

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013007460

Country of ref document: DE

Owner name: DUPONT POLYMERS INC., WILMINGTON, US

Free format text: FORMER OWNER: E.I. DU PONT DE NEMOURS AND CO., WILMINGTON, DEL., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013007460

Country of ref document: DE

Owner name: DUPONT SPECIALTY PRODUCTS USA, LLC, WILMINGTON, US

Free format text: FORMER OWNER: E.I. DU PONT DE NEMOURS AND CO., WILMINGTON, DEL., US

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20221027 AND 20221102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230504

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013007460

Country of ref document: DE

Owner name: DUPONT SPECIALTY PRODUCTS USA, LLC, WILMINGTON, US

Free format text: FORMER OWNER: DUPONT POLYMERS INC., WILMINGTON, DE, US