EP2863155B1 - Heat pump with dewing protection - Google Patents

Heat pump with dewing protection Download PDF

Info

Publication number
EP2863155B1
EP2863155B1 EP14186541.0A EP14186541A EP2863155B1 EP 2863155 B1 EP2863155 B1 EP 2863155B1 EP 14186541 A EP14186541 A EP 14186541A EP 2863155 B1 EP2863155 B1 EP 2863155B1
Authority
EP
European Patent Office
Prior art keywords
power output
output stage
heat pump
control unit
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14186541.0A
Other languages
German (de)
French (fr)
Other versions
EP2863155A1 (en
Inventor
Bernd KILAST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2863155A1 publication Critical patent/EP2863155A1/en
Application granted granted Critical
Publication of EP2863155B1 publication Critical patent/EP2863155B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21153Temperatures of a compressor or the drive means therefor of electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost

Definitions

  • the invention relates to a heat pump with a compressor.
  • the heat pump also has an electronically commutated electric motor connected to the compressor.
  • the heat pump also has a power output stage connected to the electric motor, in particular an inverter, the power output stage being designed to energize the electric motor in order to generate a rotating magnetic field.
  • the heat pump also has a refrigerant circuit, which is connected in a heat-conducting manner to the power output stage, so that heat loss generated by the power output stage can be released to the refrigerant circuit.
  • a heat pump according to the preamble of claim 1 in which a cooling device for condensing moisture is provided in the area of a housing wall.
  • the heat pump of the type mentioned at the outset has at least one temperature sensor which is arranged to detect a temperature of the power output stage and to generate a temperature signal representing the temperature.
  • the heat pump has a control unit connected to the temperature sensor, which is designed to control the power output stage as a function of the temperature signal in such a way that heat loss can be generated in the power output stage by means of a leakage current flowing through the power output stage. It is thus advantageously possible to counteract subcooling and thus condensation on the power output stage and the electronic components of the heat pump thermally coupled to the power output stage by means of the heat loss generated by the leakage current.
  • the electric motor is decoupled from the leakage current.
  • the electric motor is further preferably decoupled from the leakage current in such a way that the leakage current cannot contribute to the torque formation of the electric motor.
  • the electric motor is further preferably decoupled from the leakage current generated in the power output stage in such a way that no leakage current flows through the motor from the power output stage.
  • the heat pump has at least one intermediate circuit choke connected to the power output stage.
  • the power output stage has at least one semiconductor switch half-bridge, the control unit being designed to generate a switch-through control pulse as a function of the temperature signal for each of the semiconductor switches of the half-bridge and to transmit it to the semiconductor switch and thus to switch the semiconductor switch of the semiconductor switch half-bridge during a switch-through Switching the time interval on simultaneously.
  • This switching state of both semiconductor switches of a half-bridge in particular comprising a high-side semiconductor switch and a low-side semiconductor switch, is called cross conduction, or shoot-through, in English.
  • the semiconductor switch half-bridge is also called half-bridge in the following.
  • the at least one intermediate circuit choke is preferably designed to limit a current increase in the leakage current flowing through the half-bridge during the switching time interval.
  • the leakage current can advantageously be generated in a targeted manner in the power output stage, in order to specifically heat the power output stage and electronics connected to the power output stage in a heat-conducting manner.
  • the electric motor does not need to be energized during the generation of the heat loss, so that no additional losses are generated in the electric motor that cannot contribute to the heating of the electronics.
  • the electric motor is preferably formed by a stator comprising stator coils and a rotor, in particular a permanent magnet rotor.
  • control unit is designed to only partially control the semiconductor switches, so that a leakage current flowing through the semiconductor switches is limited.
  • a leakage current flowing through the semiconductor switches is limited.
  • an excessive increase in the leakage current during the switching time interval can advantageously be prevented.
  • the power output stage has at least two semiconductor switch half-bridges, the control unit being designed to switch the semiconductor switch half-bridges in succession in the on-state for generating the leakage current.
  • a power loss generated in the power output stage can advantageously be divided between the semiconductor switch half bridges of the power output stage, as a result of which a uniform heat distribution of the heat loss in the power output stage, and thus in the electronics, can be brought about.
  • the control unit is preferably designed to generate an overlap time interval and to simultaneously control at least two of the semiconductor switch half-bridges into the on-state during the overlap time interval. In this way, the heat loss power generated in the power output stage can advantageously be changed, preferably as a function of the temperature signal.
  • control unit is designed to generate a chronological sequence of switching control pulses for at least one semiconductor switch half-bridge.
  • switch-through state can advantageously be generated by a pulse-width modulator of the control unit during the switch-through time interval, the pulse-width modulator being designed to control the power output stage for generating the aforementioned magnetic rotating field by means of pulse-width-modulated control pulses or block commutation.
  • control unit is designed to detect the leakage current during the switch-through time interval and to generate the switch-through time interval, in particular a time period or a switch-off time of the switch-through time interval, as a function of the leakage current.
  • a current regulation in particular a current-limiting regulation of the leakage current, can advantageously be formed.
  • the heat pump has an ambient temperature sensor connected to the control unit, which is designed and arranged to detect an ambient temperature of the power output stage and to generate an ambient temperature signal representing the ambient temperature.
  • the control unit is designed to determine a temperature difference from the temperature signals, in particular the aforementioned temperature signal and the ambient temperature signal, and to generate the switching control pulse and the electric motor as a function of the temperature difference, in particular when the electronics temperature falls below a predetermined temperature difference compared to the ambient temperature - preferably to be switched off or not yet switched on during a switching interval in which the electronics are heated or preheated.
  • the control unit is preferably designed as a function of a predetermined temperature difference, in particular when the predetermined temperature difference is reached, to switch on the electric motor and thus activate the refrigeration cycle.
  • condensation on the power output stage more preferably on electronics additionally connected to the power output stage in a heat-conducting manner, can advantageously be prevented by preheating the electronics during the switching time interval before the compressor starts up.
  • the temperature sensor and / or the ambient temperature sensor is formed, for example, by at least one NTC resistor.
  • the temperature sensor is integrated, for example, in an integrated circuit, in particular the control unit or the power output stage, and is designed to detect the temperature of the integrated circuit, and thus also electronic components of the heat pump, in particular the power output stage, which are thermally coupled to the integrated circuit.
  • the heat pump in particular the control unit, has a phase correction unit.
  • the phase correction unit is designed to at least partially or completely compensate for a reactive power generated by the electric motor, and for this purpose to set a phase shift between a current drawn by the electric motor and a voltage supplying the electric motor to a supply network connected to the electric motor.
  • the control unit is designed to switch the phase correction unit on and off during the switching time interval.
  • the power loss can be modulated, in particular pulse-width-modulated, by the phase correction unit during the switching time interval, more preferably while the at least one half-bridge is switched to the switching state by means of the switching control pulses.
  • the phase correction unit which is designed, for example, as an integrated circuit, in particular a microcontroller or microprocessor, can even generate heat loss during operation as a result of switching losses during the modulation of the switching signal, which causes the control unit to condense in addition to that in the power output stage can prevent heat loss generated. It was recognized that by switching the phase correction unit on and off quickly by switching losses during the switching, waste heat can be generated, which can contribute to the heat loss of the power output stage.
  • the heat pump preferably has a moisture sensor connected to the control unit, which is designed to detect a relative air humidity surrounding the control unit, in particular capacitively or resistively, and to generate a moisture signal representing the air humidity.
  • the control unit is preferably designed to control the power output stage as a function of the moisture signal in such a way that heat loss can be generated in the power output stage by means of a leakage current flowing through the power output stage.
  • the control unit is preferably designed to generate the switching signal as a function of the moisture signal.
  • a risk of condensation on the control unit can advantageously be detected independently or in addition to the temperature sensor, and the leakage current can be generated if a predetermined humidity value of the relative air humidity is exceeded.
  • the invention also relates to a method for preventing thawing of a control unit of a heat pump with an electric motor driving a refrigerant circuit of the heat pump.
  • the control unit is coupled to the refrigerant circuit of the heat pump in a heat-conducting manner. Furthermore, in the method, a temperature of the control unit is detected and a corresponding temperature signal is generated and, depending on the temperature signal, a switching control pulse is generated for two semiconductor switches forming a half-bridge of a power output stage of the heat pump connected to the electric motor. The half bridge is switched on depending on the switch-through control pulse and thus generates heat loss.
  • FIG. 1 shows an embodiment of a heat pump 1.
  • the heat pump 1 has a compressor 2 with an electric motor 3.
  • the electric motor 3 has a rotor 4, in this exemplary embodiment a permanent magnet rotor 4.
  • the rotor 4 is connected to a compressor 5 via a rotor shaft.
  • the compressor 5 is designed - driven by the electric motor 3 - to compress a refrigerant of a refrigerant circuit 6.
  • the refrigerant is, for example, a refrigerant comprising difluoromethane and pentafluoroethane, in particular R410a, or tetrafluoroethane, also called R134a or tetrafluoropropene, also called R1234yf.
  • the refrigerant circuit 6 comprises, for example, a heat exchanger to which heat pumped by the compressor 2 can be given off.
  • the compressor 5 is connected on the output side to the refrigerant circuit 6 by means of a fluid line 13.
  • the refrigerant circuit 6 is connected on the output side to a cooling element 23 by means of a fluid line 14.
  • the cooling element 23 is connected on the output side to the compressor 5 of the compressor 2 by means of a fluid line 15.
  • the heat pump 1 also has a power output stage 7 for energizing the electric motor 3.
  • the output stage 7 is connected on the output side via an electrical connection 19 to the electric motor 3, and there to stator coils of a stator of the electric motor 3.
  • the heat pump 1 also has a control unit 8, which is connected on the input side to an ambient temperature sensor 9 and to a temperature sensor 10.
  • the temperature sensor 10 is connected to the power output stage 7 and is designed to record a temperature of the power output stage 7 and to generate and output a temperature signal representing the recorded temperature.
  • the temperature sensor 10 is connected to the control unit 8 via a connecting line 21.
  • the ambient temperature sensor 9 is at least indirectly connected to the control unit 8, in this exemplary embodiment via a connecting line 20 to the control unit 8. In contrast to the connection line 20, the ambient temperature sensor can be indirectly connected to the control unit 8 via a data bus or a field bus.
  • the heat pump 1, in particular the control unit 8 has an intermediate circuit element 11.
  • the intermediate circuit element 11 comprises at least one choke and at least one intermediate circuit capacitor.
  • the power output stage 7 is connected to the cooling element 23 in a heat-conducting manner via a heat-conducting connection 16.
  • the power output stage 7 has, for example, semiconductor switch half bridges, in particular three semiconductor switch half bridges.
  • the semiconductor switches of the semiconductor switch half-bridges are formed, for example, by a field effect transistor, in particular a MOS-FET, or by transistors, for example IGBT transistors.
  • the control unit 8 is connected to the cooling element 23 via a heat-conducting connection 17.
  • the heat-conducting connections 16 and 17 are formed, for example, by housing parts of the control unit 8 or the power output stage 7, which are thermally conductively connected to the cooling element 23, for example formed by a metal block, in particular an aluminum block, designed to conduct fluid, by means of a heat-conducting agent, for example a silicone paste.
  • the control unit 8 is designed to control control connections of the semiconductor switches of the power output stage 7 via the electrical connection 18 such that the power output stage 7 can energize the electric motor 3 via the electrical connection 19 to generate a magnetic rotating field for rotating the rotor 4.
  • control unit 8 and the power output stage 7, which each have electronic components which are designed to generate heat loss during operation. This heat loss can be dissipated during operation of the compressor two via the refrigerant circuit 6 and the cooling element 23 connected to the refrigerant circuit 6, via the heat-conducting connections 16 and 17.
  • the heat pump 1 can prevent condensation on the control unit 8, and in this exemplary embodiment also on the power output stage 7, as follows:
  • the control unit 8 is designed to apply a switch-through signal to at least a portion of the semiconductor switch half-bridges of the power output stage 7 and thus the semiconductor switch of the at least one before starting to control the power output stage 7 to move the rotor 4 of the electric motor 3 to activate the refrigerant circuit 6 To control the half bridge jointly.
  • the power output stage 7 or additionally the phase correction unit can then generate heat loss without energizing the motor 3.
  • the power output stage 7 or additionally the phase correction unit can then conduct the heat loss via the heat-conducting connection 16 to the control unit 8 and to the cooling element 23.
  • the heat-conducting connection 16 between the power output stage 7 and the control unit 8 is formed, for example, by a common sheet metal housing or a common heat-conducting plate, the control unit 8 and the power output stage 7 each being coupled in a heat-conducting manner to the heat-conductive plate.
  • the control unit 8 is designed to generate the switching signal for controlling the at least one half bridge of the power output stage 7 as a function of the temperature sensor 10 or additionally as a function of the temperature signal generated by the ambient temperature sensor 9.
  • the control unit 8 is designed, for example, to form a difference from the temperature signal of the ambient temperature sensor 9 and the temperature signal of the temperature sensor 10 and to generate a temperature difference signal representing the difference.
  • the control unit 8 is further developed to compare the temperature difference signal with a predetermined value for a predetermined temperature difference and, in the event of a deviating temperature difference, represented by the temperature difference signal, in particular less than the predetermined temperature difference value above the ambient temperature, to generate the switching signal and on the output side to send the connection 18 to the power output stage 7.
  • control unit 8 can have a discriminator 50 which is connected on the input side to the connecting lines 20 and 21 of the temperature sensor 10 and the ambient temperature sensor 9, respectively.
  • the discriminator 50 is connected to a memory 51 of the control unit 8, a data record 52 which represents the aforementioned predetermined temperature difference value being held in the memory 51.
  • the temperature difference value represented by data set 52 represents, for example, a temperature difference of five degrees Kelvin, by which the temperature of the power output stage should be greater than the ambient temperature, so that condensation on the control unit and / or the power output stage 7 can be prevented when the compressor 2 starts up.
  • the data record can represent a temperature map - for example in the form of a look-up table - in which a predetermined temperature difference is assigned for each ambient temperature.
  • the temperature differences from the ambient temperatures are, for example, different from one another, lower ambient temperatures being associated with a larger temperature difference and higher ambient temperatures being associated with a smaller temperature difference.
  • the heat pump 1 shown can have a phase correction unit 12 in addition to the components described so far.
  • the phase correction unit 12 can be part of the control unit 8, for example.
  • the phase correction unit can be formed by a microcontroller which is accommodated in a housing of the control unit together with a processing unit which is designed to control the power output stage in a block-commutated or pulse-width-modulated manner and thus to produce a magnetic rotating field for rotating the rotor.
  • the control unit 8 together with the phase correction unit 12, is designed to control the power output stage 7 for rotating the rotor 4 of the electric motor 3 in such a way that the phase angle between a motor current and a motor voltage - in particular towards a supply network - is as small as possible.
  • the at least one half bridge in the on state can advantageously be activated by the phase correction unit 12, as will be explained below with reference to FIG Figures 2 and 3rd is described.
  • control unit 8 can be connected to a humidity sensor 74, which is designed to detect a relative humidity surrounding the control unit 8 and to generate a humidity signal representing the humidity.
  • the control unit 8 is preferably designed to generate the switch-through signal as a function of the moisture signal, in particular when a humidity value represented by the moisture signal is exceeded.
  • Figure 2 shows an embodiment of a schematically illustrated circuit arrangement, comprising the in Figure 1 Power output stage 7 already shown, the electric motor 3, in particular the stator coils of the electric motor 3, the intermediate circuit element 11 and the phase correction unit 12.
  • the intermediate circuit element 11 comprises an intermediate circuit capacitor 29 and two intermediate circuit reactors 27 and 28.
  • the intermediate circuit reactor 27 is in a positive branch Power supply of the power output stage 7 connected in series and the intermediate circuit choke 28 is connected in series in a negative power supply branch of the power output stage 7 with the power output stage 7.
  • the power output stage 7 comprises three semiconductor switch half bridges, which are connected together in a B6 arrangement.
  • the power output stage 7 has two semiconductor switches 31 and 32, which together form a first semiconductor switch half-bridge.
  • the power output stage 7 also has two further semiconductor switches 33 and 34, which together form a second semiconductor switch half-bridge and two further semiconductor switches 35 and 36, which together form a third semiconductor switch half-bridge.
  • the phase correction unit 12 shown is represented by an equivalent circuit diagram comprising an AC direct voltage source 24, a switch 26 and a diode 25.
  • the voltage source 24 is designed with an adjustable output voltage
  • the diode 25 represents a freewheeling diode to the intermediate circuit chokes 27 and 28.
  • the control unit 8 shown can, for example, conductively conduct the semiconductor switch half-bridge comprising the transistors 31 and 32.
  • the switch 26 is still open at the time of the control in the on-state.
  • the switch 26 can then be closed to generate a switch-through time interval, controlled by the control unit 8.
  • the power loss which is generated by means of the half-bridge comprising the transistors 31 and 32 in the power output stage 7 can thus be modulated, in particular pulse-width-modulated, by means of the phase correction unit 12.
  • the switch-through time interval that is, the time interval during which at least one semiconductor switch half-bridge of the power output stage 7 is switched into the switch-through state, can be generated by the control unit 8 and by directly actuating the semiconductor switch that into the switch-through state half bridge to be switched are generated.
  • the diagram 37 in Figure 3 has a time axis 38 as the abscissa and an amplitude axis 39 as the ordinate.
  • the amplitude axis 39 represents an amount of the power loss generating the power loss, which flows through the half-bridge switched to the on state.
  • a curve 40 is also shown, which represents the leakage current.
  • the diagram 37 also has a further ordinate 44, which in this exemplary embodiment is represented by the switch 26 in Figure 2 modulated switching state of the at least one half bridge, for example the half bridge comprising the transistors 31 and 32 in Figure 2 , represents.
  • a curve with control pulses 41, 42 and 43 which shows the time course of the switching state, in the example of Figure 2 , of the switch 26 represents the switching element modulating the half-bridge.
  • a leakage current can flow through the half-bridge.
  • a switch-through time interval 70 is shown, during which in the power output stage 7 in Figure 2 a power loss for raising the temperature of the power output stage 7 and the control unit 8 is generated.
  • a control pulse time interval 45 no current flows through the power output stage 7.
  • the switch 26 in Figure 2 is opened.
  • the control unit 8 in then controls Figure 1 - Switched at least one of the half bridges of the power output stage 7 into the on-state.
  • the phase correction unit 12 is activated by closing the switch 26, so that a control pulse 41 is generated with the control pulse duration 45.
  • the current generating the power loss represented by the curve 40, increases steeply during the control pulse time interval 45, starting from a current value of zero amperes - limited by the intermediate circuit choke 27 - up to a current value at approximately 19 amperes, at the switch-off time of the control pulse 41 at the end of the Control pulse time interval 45.
  • the control pulse duration 45 of the control pulse 41 is one millisecond in this exemplary embodiment.
  • the intermediate circuit current can drop again, one in the intermediate circuit choke 27 stored energy can be reduced again via the freewheeling diode 25 and the transistors 31 and 32.
  • the control unit 8 When the intermediate circuit current has reached a predetermined minimum current value, in this exemplary embodiment the minimum value is ten amperes, the control unit 8 generates a further control pulse 42 for closing the switch 26 of the phase correction unit 12.
  • a control pulse duration 46 of the control pulse 42 is half a millisecond.
  • the aforementioned intermediate circuit current can be detected, for example, by means of a current sensor, in particular a shunt resistor, and a current signal representing the intermediate circuit current can be generated.
  • the control unit 8 is designed to generate the pulse pause time interval 53 as a function of the current signal.
  • the control pulse 42 is followed by a further pulse pause with a pulse pause time interval 54 and then another control pulse 43 with a control pulse duration 46.
  • the control unit 8 is designed, for example, to have a control pulse duration 46 of the control pulses 41, 42 and 43, depending on the aforementioned current signal, for example at Reaching a predetermined current peak value.
  • the switching time interval 70 comprises, by way of example, three control pulses 41, 42 and 43 for generating the switching state of the half bridges of the power output stage 7 in Figure 1 .
  • the temperature of the power output stage is 7 in Figure 1 by the value of the temperature difference represented by data set 52 in Figure 1 , greater than the ambient temperature, detected by the ambient temperature sensor 9.
  • the power output stage 7, the control unit 8 and the cooling element 23 then have stored enough thermal energy so that during the subsequent operation of the electric motor 3 to activate the refrigerant circuit 6, the temperature of the control unit 8 and the power output stage 7 cannot fall below or not significantly below the ambient temperature, so that there is no risk of thawing the control unit 8 and the power output stage 7.
  • the switching time interval 70 is followed by an operating time interval 48 during which the electric motor 3 in - for example after a predetermined pause interval when the intermediate circuit current has dropped sufficiently Figure 1 can be energized to operate the heat pump 1.
  • Figure 4 shows a diagram 47, in which a switching pattern is shown, with which the power output stage 7 can be energized to generate the power loss.
  • the diagram 47 comprises an abscissa 38, which represents a time axis and an ordinate 39, which represents an amplitude axis. This is also shown in Figure 3 Switching-through time interval 70 already shown, during which the phase correction unit 12 is activated by means of the control pulses 41, 42 and 43.
  • the diagram 47 shows a curve 55 which shows a switching state on or off of the transistor 31 in Figure 2 represents a curve 56 which represents a switching state of the transistor 32, a curve 57 which represents a switching state of the transistor 33, a curve 58 which represents a switching state of the transistor 34, a curve 59 which represents a switching state of the transistor 35 and a curve 60, which represents a switching state of the transistor 36.
  • the transistors 31, 33 and 35 each form a high-side transistor of the respective half-bridge, the transistors 32, 34 and 36 each form a low-side transistor of the respective half-bridge.
  • the half bridges of the power output stage 7 are activated chronologically one after the other by means of a switching control pulse during the switching time interval 70.
  • the half bridge 71 is comprehensive the transistors 31 and 32 for generating the leakage current are switched to the on-state by means of a switch-through control pulse 81 for the semiconductor switch 31 and a switch-through control pulse 82 for the semiconductor switch 32.
  • the remaining half-bridges 72 and 73 comprising the transistors 33 and 34 or 35 and 36, are switched off during the activation of the half-bridge 71, comprising the transistors 31 and 32.
  • the half bridge 72 comprising the transistors 33 and 34, is controlled by the control unit 8 in Figure 1 switched into the on-state by means of a switch-through control pulse 83 for the semiconductor switch 33, and a switch-through control pulse 84 for the semiconductor switch 34, -.
  • the control unit 8 switches the half-bridge 73, comprising the transistors 35 and 36, by means of a switch-through control pulse 85 for the semiconductor switch 35 and a switch-through control pulse 86 for the semiconductor switch 36 , switched through.
  • the control unit 8 in Figure 1 is designed to switch the half bridges 71, 72 and 73 of the power output stage 7 one after the other into the on-state to generate the power loss, so that the power loss to be generated can be divided among the half bridges.
  • the half bridges of the power output stage 7 are thus subjected to uniform wear.
  • Figure 5 shows an embodiment in which the control unit 8 in Figure 1 is designed to switch the half bridges of the power output stage 7 overlapping one another in the on-state.
  • Figure 5 shows a diagram 67 which, like diagram 47 in FIG Figure 4 has a time axis 38 and an amplitude axis 49. Shown are a curve 61 which shows a switching state of the transistor 31 of the power output stage 7 in Figure 1 represents a curve 62, which represents a switching state of the transistor 32, a curve 63 and a curve 64, each representing a switching state of the half-bridge, comprising the transistors 33 and 34, respectively, and a curve 65 and a curve 66, each of which represents a switching state of the transistors 35 and 36 represent the third half-bridge of the power output stage 7.
  • a curve 61 which shows a switching state of the transistor 31 of the power output stage 7 in Figure 1 represents a curve 62, which represents a switching state of the transistor 32, a curve 63 and a curve 64, each representing a switching state of the half-bridge, comprising the transistors 33 and 34, respectively
  • a curve 65 and a curve 66 each of which represents a switching state of the transistors
  • the control unit 8 in Figure 1 is designed to switch the half bridges of the power output stage 7 on and off one after the other, the further half bridge, for example the half bridge comprising the transistors 33 and 34, being switched on before the first half bridge comprising the transistors 31 and 32 is switched off.
  • the current flow in the intermediate circuit can be safely continued and voltage peaks caused by a possible interruption of the intermediate circuit current can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Wärmepumpe mit einem Kompressor. Die Wärmepumpe weist auch einen mit dem Kompressor verbundenen elektronisch kommutierten Elektromotor auf. Die Wärmepumpe weist auch eine mit dem Elektromotor verbundene Leistungsendstufe, insbesondere einen Inverter auf, wobei die Leistungsendstufe ausgebildet ist, den Elektromotor zum Erzeugen eines magnetischen Drehfeldes zu bestromen. Die Wärmepumpe weist auch einen Kältemittelkreislauf auf, welcher mit der Leistungsendstufe wärmeleitend verbunden ist, sodass von der Leistungsendstufe erzeugte Verlustwärme an den Kältemittelkreislauf abgegeben werden kann.The invention relates to a heat pump with a compressor. The heat pump also has an electronically commutated electric motor connected to the compressor. The heat pump also has a power output stage connected to the electric motor, in particular an inverter, the power output stage being designed to energize the electric motor in order to generate a rotating magnetic field. The heat pump also has a refrigerant circuit, which is connected in a heat-conducting manner to the power output stage, so that heat loss generated by the power output stage can be released to the refrigerant circuit.

Bei aus dem Stand der Technik bekannten Wärmepumpen mit der eingangs genannten Anbindung der Leistungsendstufe an den Kältemittelkreislauf besteht das Problem, dass die Leistungsendstufe beim Anlaufen des Kompressors noch nicht hinreichend eigene Verlustwärme erzeugt und so stark gekühlt werden kann, dass Feuchtigkeit einer Umgebungsluft an einer Elektronik der Leistungsendstufe kondensiert. Diese kondensierende Feuchtigkeit kann die Funktion der Leistungsendstufe, insbesondere der Elektronik, beeinträchtigen.In heat pumps known from the prior art with the aforementioned connection of the power output stage to the refrigerant circuit, there is the problem that the power output stage does not yet generate its own sufficient heat loss when the compressor starts up and can be cooled to such an extent that moisture in the ambient air can be found in the electronics of the Power output stage condensed. This condensing moisture can impair the function of the power output stage, especially the electronics.

Aus der DE 10 2011 121926 A1 ist eine Wärmepumpe gemäß dem Oberbegriff von Anspruch 1 bekannt, bei der im Bereich einer Gehäusewandung eine Kühleinrichtung zum Kondensieren von Feuchtigkeit vorgesehen ist.From the DE 10 2011 121926 A1 a heat pump according to the preamble of claim 1 is known, in which a cooling device for condensing moisture is provided in the area of a housing wall.

Aus der WO 2013 113 308 A1 ist eine Verdichter-Wärmetauschereinheit mit zwei Fluidkreisläufen bekannt.From the WO 2013 113 308 A1 a compressor heat exchanger unit with two fluid circuits is known.

Aus der WO 2011 067905 A1 ist eine Kühlvorrichtung für einen Computer bekannt.From the WO 2011 067905 A1 a cooling device for a computer is known.

Offenbarung der ErfindungDisclosure of the invention

Gemäß der vorliegenden Erfindung wird eine Wärmepumpe mit den Merkmale von Anspruch 1 offenbart.According to the present invention, a heat pump having the features of claim 1 is disclosed.

Erfindungsgemäß weist die Wärmepumpe der eingangs genannten Art wenigstens einen Temperatursensor auf, welcher angeordnet ist, eine Temperatur der Leistungsendstufe zu erfassen und ein die Temperatur repräsentierendes Temperatursignal zu erzeugen. Die Wärmepumpe weist eine mit dem Temperatursensor verbundene Steuereinheit auf, welche ausgebildet ist, die Leistungsendstufe in Abhängigkeit des Temperatursignals derart anzusteuern, dass in der Leistungsendstufe mittels eines durch die Leistungsendstufe fließenden Verluststromes Verlustwärme erzeugt werden kann. So kann vorteilhaft mittels der durch den Verluststrom erzeugten Verlustwärme einer Unterkühlung und so einer Betauung der Leistungsendstufe und der mit der Leistungsendstufe thermisch gekoppelten elektronischen Bauteile der Wärmepumpe entgegengewirkt werden.According to the invention, the heat pump of the type mentioned at the outset has at least one temperature sensor which is arranged to detect a temperature of the power output stage and to generate a temperature signal representing the temperature. The heat pump has a control unit connected to the temperature sensor, which is designed to control the power output stage as a function of the temperature signal in such a way that heat loss can be generated in the power output stage by means of a leakage current flowing through the power output stage. It is thus advantageously possible to counteract subcooling and thus condensation on the power output stage and the electronic components of the heat pump thermally coupled to the power output stage by means of the heat loss generated by the leakage current.

In einer bevorzugten Ausführungsform ist der Elektromotor vom Verluststrom entkoppelt. Weiter bevorzugt ist der Elektromotor vom Verluststrom derart entkoppelt, dass der Verluststrom zur Drehmomentbildung des Elektromotors nicht beitragen kann. Weiter bevorzugt ist der Elektromotor von dem in der Leistungsendstufe erzeugten Verluststrom derart entkoppelt, dass kein Verluststrom von der Leistungsendstufe durch den Motor fließt. So kann vorteilhaft - beispielsweise vor einem Betrieb des Elektromotors, und somit vor einem Anlaufen des Kompressors - die Leistungsendstufe mittels der zuvor erwähnten Ansteuerung in Abhängigkeit des Temperatursignals gezielt vorgewärmt werden, wobei in dem Elektromotor während des Vorwärmens keine Verlustleistung erzeugt wird.In a preferred embodiment, the electric motor is decoupled from the leakage current. The electric motor is further preferably decoupled from the leakage current in such a way that the leakage current cannot contribute to the torque formation of the electric motor. The electric motor is further preferably decoupled from the leakage current generated in the power output stage in such a way that no leakage current flows through the motor from the power output stage. Thus, advantageously - for example before operating the electric motor, and thus before starting the compressor - the power output stage can be preheated in a targeted manner as a function of the temperature signal, with no power loss being generated in the electric motor during preheating.

Gemäss der Erfindung weist die Wärmepumpe wenigstens eine mit der Leistungsendstufe verbundene Zwischenkreisdrossel auf. Die Leistungsendstufe weist wenigstens eine Halbleiterschalter-Halbbrücke auf, wobei die Steuereinheit ausgebildet ist, in Abhängigkeit des Temperatursignals für jeden der Halbleiterschalter der Halbbrücke einen Durchschalt-Steuerpuls zu erzeugen und an die Halbleiterschalter zu senden und so die Halbleiterschalter der Halbleiterschalter-Halbbrücke während eines Durchschalt-Zeitintervalls gleichzeitig leitend zu schalten. Dieser Schaltzustand beider Halbleiterschalter einer Halbbrücke, insbesondere umfassend einen High-Side-Halbleiterschalter und einen Low-Side-Halbleiterschalter, wird im Englischen cross conduction, oder Shoot-Through genannt. Die Halbleiterschalter-Halbbrücke wird im Folgenden auch Halbbrücke genannt.According to the invention, the heat pump has at least one intermediate circuit choke connected to the power output stage. The power output stage has at least one semiconductor switch half-bridge, the control unit being designed to generate a switch-through control pulse as a function of the temperature signal for each of the semiconductor switches of the half-bridge and to transmit it to the semiconductor switch and thus to switch the semiconductor switch of the semiconductor switch half-bridge during a switch-through Switching the time interval on simultaneously. This switching state of both semiconductor switches of a half-bridge, in particular comprising a high-side semiconductor switch and a low-side semiconductor switch, is called cross conduction, or shoot-through, in English. The semiconductor switch half-bridge is also called half-bridge in the following.

Bevorzugt ist die wenigstens eine Zwischenkreisdrossel ausgebildet, einen Stromanstieg des durch die Halbbrücke während des Durchschalt-Zeitintervalls fließenden Verluststromes zu begrenzen.The at least one intermediate circuit choke is preferably designed to limit a current increase in the leakage current flowing through the half-bridge during the switching time interval.

Mittels der so gebildeten Durchschalt-Ansteuerung der Leistungsendstufe zum Erzeugen des Verluststromes kann der Verluststrom vorteilhaft gezielt in der Leistungsendstufe erzeugt werden, um so die Leistungsendstufe und eine mit der Leistungsendstufe wärmeleitend verbundene Elektronik gezielt zu erwärmen. Vorteilhaft braucht der Elektromotor während des Erzeugens der Verlustwärme nicht bestromt werden, so dass im Elektromotor keine zusätzlichen Verluste erzeugt werden, die zur Erwärmung der Elektronik nicht beitragen können.By means of the switch-through control of the power output stage for generating the leakage current, the leakage current can advantageously be generated in a targeted manner in the power output stage, in order to specifically heat the power output stage and electronics connected to the power output stage in a heat-conducting manner. Advantageously, the electric motor does not need to be energized during the generation of the heat loss, so that no additional losses are generated in the electric motor that cannot contribute to the heating of the electronics.

Der Elektromotor ist bevorzugt durch einen Stator umfassend Statorspulen und einen Rotor, insbesondere einen permanentmagnetisch ausgebildeten Rotor, gebildet.The electric motor is preferably formed by a stator comprising stator coils and a rotor, in particular a permanent magnet rotor.

In einer bevorzugten Ausführungsform ist die Steuereinheit ausgebildet, die Halbleiterschalter nur teilweise durchzusteuern, sodass ein durch die Halbleiterschalter fließender Verluststrom begrenzt ist. So kann vorteilhaft zusätzlich zur Strombegrenzung der Zwischenkreisdrossel, oder unabhängig von einer Strombegrenzung des Verluststromes durch die Zwischenkreisdrossel, ein zu starker Anstieg des Verluststromes während des Durchschalt-Zeitintervalls verhindert werden.In a preferred embodiment, the control unit is designed to only partially control the semiconductor switches, so that a leakage current flowing through the semiconductor switches is limited. In addition to the current limitation of the intermediate circuit choke or independently of a current limitation of the leakage current by the intermediate circuit choke, an excessive increase in the leakage current during the switching time interval can advantageously be prevented.

In einer bevorzugten Ausführungsform weist die Leistungsendstufe wenigstens zwei Halbleiterschalter-Halbbrücken auf, wobei die Steuereinheit ausgebildet ist, die Halbleiterschalter-Halbbrücken zum Erzeugen des Verluststromes zeitlich aufeinanderfolgend in dem Durchschalt-Zustand zu schalten. So kann vorteilhaft eine in der Leistungsendstufe erzeugte Verlustleistung zwischen den Halbleiterschalter-Halbbrücken der Leistungsendstufe aufgeteilt werden, wodurch eine gleichmäßige Wärmeverteilung der Verlustwärme in der Leistungsendstufe, und so in der Elektronik bewirkt werden kann.In a preferred embodiment, the power output stage has at least two semiconductor switch half-bridges, the control unit being designed to switch the semiconductor switch half-bridges in succession in the on-state for generating the leakage current. Thus, a power loss generated in the power output stage can advantageously be divided between the semiconductor switch half bridges of the power output stage, as a result of which a uniform heat distribution of the heat loss in the power output stage, and thus in the electronics, can be brought about.

Bevorzugt ist die Steuereinheit ausgebildet, ein Überlappungszeitintervall zu erzeugen und wenigstens zwei der Halbleiterschalter-Halbbrücken während des Überlappungszeitintervalls gleichzeitig in den Durchschalt-Zustand durchzusteuern. So kann die in der Leistungsendstufe erzeugte Verlustwärme Leistung vorteilhaft - bevorzugt in Abhängigkeit des Temperatursignals - geändert werden.The control unit is preferably designed to generate an overlap time interval and to simultaneously control at least two of the semiconductor switch half-bridges into the on-state during the overlap time interval. In this way, the heat loss power generated in the power output stage can advantageously be changed, preferably as a function of the temperature signal.

In einer bevorzugten Ausführungsform ist die Steuereinheit ausgebildet, eine zeitliche Folge von Durchschalt-Steuerpulsen für wenigstens eine Halbleiterschalter-Halbbrücke zu erzeugen. So kann der Durchschalt-Zustand während des Durchschalt-Zeitintervalls vorteilhaft von einem Pulsweitenmodulator der Steuereinheit erzeugt werden, wobei der Pulsweitenmodulator ausgebildet ist, die Leistungsendstufe zum Erzeugen des zuvor erwähnten magnetischen Drehfeldes mittels pulsweitenmodulierten Steuerpulsen oder Blockkommutierung anzusteuern.In a preferred embodiment, the control unit is designed to generate a chronological sequence of switching control pulses for at least one semiconductor switch half-bridge. For example, the switch-through state can advantageously be generated by a pulse-width modulator of the control unit during the switch-through time interval, the pulse-width modulator being designed to control the power output stage for generating the aforementioned magnetic rotating field by means of pulse-width-modulated control pulses or block commutation.

In einer bevorzugten Ausführungsform der Wärmepumpe ist die Steuereinheit ausgebildet, während des Durchschalt-Zeitintervalls den Verluststrom zu erfassen und das Durchschalt-Zeitintervall, insbesondere eine Zeitdauer oder einen Abschaltzeitpunkt des Durchschalt-Zeitintervalls, in Abhängigkeit des Verluststromes zu erzeugen. So kann vorteilhaft eine Stromregelung, insbesondere eine Strombegrenzende Regelung des Verluststromes, gebildet sein.In a preferred embodiment of the heat pump, the control unit is designed to detect the leakage current during the switch-through time interval and to generate the switch-through time interval, in particular a time period or a switch-off time of the switch-through time interval, as a function of the leakage current. A current regulation, in particular a current-limiting regulation of the leakage current, can advantageously be formed.

In einer bevorzugten Ausführungsform weist die Wärmepumpe einen mit der Steuereinheit verbundenen Umgebungstemperatursensor auf, welcher ausgebildet und angeordnet ist, eine Umgebungstemperatur der Leistungsendstufe zu erfassen und ein die Umgebungstemperatur repräsentierendes Umgebungstemperatursignal zu erzeugen. Die Steuereinheit ist ausgebildet, eine Temperaturdifferenz aus den Temperatursignalen, insbesondere dem zuvor erwähnten Temperatursignal und dem Umgebungstemperatursignal, zu ermitteln und in Anhängigkeit der Temperaturdifferenz, insbesondere bei Unterschreiten eines vorbestimmten Temperaturunterschiedes der Elektronik im Vergleich zur Umgebungstemperatur, den Durchschalt-Steuerpuls zu erzeugen und den Elektromotor - bevorzugt während eines Durchschalt-Intervalls, in dem die Elektronik aufgeheizt oder vorgeheizt wird - abzuschalten beziehungsweise noch nicht einzuschalten. Bevorzugt ist die Steuereinheit ausgebildet, in Abhängigkeit einer vorbestimmten Temperaturdifferenz, insbesondere bei Erreichen der vorbestimmten Temperaturdifferenz, den Elektromotor einzuschalten und den Kältekreislauf so zu aktivieren.In a preferred embodiment, the heat pump has an ambient temperature sensor connected to the control unit, which is designed and arranged to detect an ambient temperature of the power output stage and to generate an ambient temperature signal representing the ambient temperature. The control unit is designed to determine a temperature difference from the temperature signals, in particular the aforementioned temperature signal and the ambient temperature signal, and to generate the switching control pulse and the electric motor as a function of the temperature difference, in particular when the electronics temperature falls below a predetermined temperature difference compared to the ambient temperature - preferably to be switched off or not yet switched on during a switching interval in which the electronics are heated or preheated. The control unit is preferably designed as a function of a predetermined temperature difference, in particular when the predetermined temperature difference is reached, to switch on the electric motor and thus activate the refrigeration cycle.

So kann vorteilhaft eine Betauung der Leistungsendstufe, weiter bevorzugt einer zusätzlich mit der Leistungsendstufe wärmeleitend verbundenen Elektronik, durch ein Vorheizen der Elektronik während des Durchschalt-Zeitintervalls vor einem Anlaufen des Kompressors verhindert werden.For example, condensation on the power output stage, more preferably on electronics additionally connected to the power output stage in a heat-conducting manner, can advantageously be prevented by preheating the electronics during the switching time interval before the compressor starts up.

Der Temperatursensor und/oder der Umgebungstemperatursensor ist beispielsweise durch wenigstens einen NTC-Widerstand gebildet.The temperature sensor and / or the ambient temperature sensor is formed, for example, by at least one NTC resistor.

Der Temperatursensor ist beispielsweise in einem integrierten Schaltkreis, insbesondere der Steuereinheit oder der Leistungsendstufe integriert und ist ausgebildet, die Temperatur des integrierten Schaltkreises, und so auch mit dem integrierten Schaltkreis thermisch gekoppelte elektronische Komponenten der Wärmepumpe, insbesondere der Leistungsendstufe zu erfassen.The temperature sensor is integrated, for example, in an integrated circuit, in particular the control unit or the power output stage, and is designed to detect the temperature of the integrated circuit, and thus also electronic components of the heat pump, in particular the power output stage, which are thermally coupled to the integrated circuit.

In einer bevorzugten Ausführungsform weist die Wärmepumpe, insbesondere die Steuereinheit, eine Phasenkorrektureinheit auf. Die Phasenkorrektureinheit ist ausgebildet, eine durch den Elektromotor erzeugte Blindleistung wenigstens teilweise oder vollständig zu kompensieren, und dazu eine Phasenverschiebung zwischen einem vom Elektromotor aufgenommenen Strom und einer den Elektromotor versorgenden Spannung zu einem mit dem Elektromotor verbundenen Versorgungsnetz hin einzustellen.In a preferred embodiment, the heat pump, in particular the control unit, has a phase correction unit. The phase correction unit is designed to at least partially or completely compensate for a reactive power generated by the electric motor, and for this purpose to set a phase shift between a current drawn by the electric motor and a voltage supplying the electric motor to a supply network connected to the electric motor.

Die Steuereinheit ist ausgebildet, die Phasenkorrektureinheit während des Durchschalt-Zeitintervalls ein- und auszuschalten. Dadurch kann die Verlustleistung während des Durchschalt-Zeitintervalls, weiter bevorzugt während die wenigstes eine Halbbrücke mittels der Durchschalt-Steuerpulse in den Durchschalt-Zustand geschaltet ist, durch die Phasenkorrektureinheit moduliert, insbesondere pulsweitenmoduliert werden. Weiter vorteilhaft kann durch die Phasenkorrektureinheit, welche beispielsweise als integrierter Schaltkreis, insbesondere Mikrocontroller oder Mikroprozessor ausgebildet ist, selbst Verlustwärme beim Betrieb durch Schaltverluste während des Modulierens des Durchschalt-Signals erzeugt werden, welche ein Betauen der Steuereinheit zusätzlich zu der in der Leistungsendstufe erzeugten Verlustwärme verhindern kann. Es wurde erkannt, dass durch ein schnell getaktetes Ein- und Ausschalten der Phasenkorrektureinheit durch Schaltverluste während des Schaltens Verlustwärme erzeugt werden kann, die zur Verlustwärme der Leistungsendstufe hinzuwirken kann.The control unit is designed to switch the phase correction unit on and off during the switching time interval. As a result, the power loss can be modulated, in particular pulse-width-modulated, by the phase correction unit during the switching time interval, more preferably while the at least one half-bridge is switched to the switching state by means of the switching control pulses. Further advantageously, the phase correction unit, which is designed, for example, as an integrated circuit, in particular a microcontroller or microprocessor, can even generate heat loss during operation as a result of switching losses during the modulation of the switching signal, which causes the control unit to condense in addition to that in the power output stage can prevent heat loss generated. It was recognized that by switching the phase correction unit on and off quickly by switching losses during the switching, waste heat can be generated, which can contribute to the heat loss of the power output stage.

Bevorzugt weist die Wärmepumpe zusätzlich oder unabhängig von dem Temperatursensor einen mit der Steuereinheit verbundenen Feuchtigkeitssensor auf, welcher ausgebildet ist, eine die Steuereinheit umgebende relative Luftfeuchtigkeit insbesondere kapazitiv oder resistiv zu erfassen und ein die Luftfeuchtigkeit repräsentierendes Feuchtigkeitssignal zu erzeugen. Die Steuereinheit ist bevorzugt ausgebildet, die Leistungsendstufe in Abhängigkeit des Feuchtigkeitssignals derart anzusteuern, dass in der Leistungsendstufe mittels eines durch die Leistungsendstufe fließenden Verluststromes Verlustwärme erzeugt werden kann. Bevorzugt ist die Steuereinheit ausgebildet, das Durchschalt-Signal in Abhängigkeit des Feuchtigkeitssignals zu erzeugen.In addition or independently of the temperature sensor, the heat pump preferably has a moisture sensor connected to the control unit, which is designed to detect a relative air humidity surrounding the control unit, in particular capacitively or resistively, and to generate a moisture signal representing the air humidity. The control unit is preferably designed to control the power output stage as a function of the moisture signal in such a way that heat loss can be generated in the power output stage by means of a leakage current flowing through the power output stage. The control unit is preferably designed to generate the switching signal as a function of the moisture signal.

Mittels des Feuchtigkeitssensors kann vorteilhaft unabhängig oder zusätzlich zu dem Temperatursensor eine Gefahr einer Betauung der Steuereinheit erfasst werden, und so bei überschreiten eines vorbestimmten Feuchtigkeitswertes der relativen Luftfeuchte der Verluststrom erzeugt werden.By means of the moisture sensor, a risk of condensation on the control unit can advantageously be detected independently or in addition to the temperature sensor, and the leakage current can be generated if a predetermined humidity value of the relative air humidity is exceeded.

Die Erfindung betrifft auch ein Verfahren zum Verhindern eines Betauens einer Steuereinheit einer Wärmepumpe mit einem einen Kältemittelkreislauf der Wärmepumpe treibenden Elektromotor. Bei dem Verfahren ist die Steuereinheit an den Kältemittelkreislauf der Wärmepumpe wärmeleitend gekoppelt. Weiter wird bei dem Verfahren eine Temperatur der Steuereinheit erfasst und ein entsprechendes Temperatursignal erzeugt und in Abhängigkeit des Temperatursignals jeweils einen Durchschalt-Steuerpuls für zwei eine Halbbrücke bildende Halbleiterschalter einer mit dem Elektromotor verbundenen Leistungsendstufe der Wärmepumpe erzeugt. Die Halbbrücke wird in Abhängigkeit des Durchschalt-Steuerpulses leitend geschaltet und so Verlustwärme erzeugt.The invention also relates to a method for preventing thawing of a control unit of a heat pump with an electric motor driving a refrigerant circuit of the heat pump. In the method, the control unit is coupled to the refrigerant circuit of the heat pump in a heat-conducting manner. Furthermore, in the method, a temperature of the control unit is detected and a corresponding temperature signal is generated and, depending on the temperature signal, a switching control pulse is generated for two semiconductor switches forming a half-bridge of a power output stage of the heat pump connected to the electric motor. The half bridge is switched on depending on the switch-through control pulse and thus generates heat loss.

Die Erfindung wird nun im Folgenden anhand von Figuren beschrieben. Weitere vorteilhafte Ausführungsvarianten ergeben sich aus den in den Figuren und den abhängigen Ansprüchen beschriebenen Merkmalen.

  • Figur 1 zeigt ein Ausführungsbeispiel für eine Wärmepumpe mit einem Betauungsschutz, welcher durch von zwei Temperatursensoren erzeugte Temperatursignale gesteuert wird;
  • Figur 2 zeigt die in Figur 1 dargestellte Leistungsendstufe im Detail zusammen mit einem Ersatzschaltbild für die in Figur 1 gezeigte Phasenkorrektureinheit;
  • Figur 3 zeigt ein Diagramm in dem von der Steuereinheit 8 in Figur 1 erzeugte Steuerpulse dargestellt sind;
  • Figur 4 zeigt ein Beispiel für Durchschalt-Signale, welche von der Steuereinheit der in Figur 1 gezeigten Wärmepumpe erzeugt worden sind;
  • Figur 5 zeigt ein Beispiel für Durchschalt-Signale, welche von der Steuereinheit der in Figur 1 gezeigten Wärmepumpe erzeugt worden sind, bei denen die Halbleiterschalter-Halbbrücken der Leistungsendstufe zeitlich nacheinander und einander überlappend in den Durchschalt-Zustand geschaltet werden.
The invention will now be described below with reference to figures. Further advantageous design variants result from the features described in the figures and the dependent claims.
  • Figure 1 shows an embodiment of a heat pump with a condensation protection, which is controlled by temperature signals generated by two temperature sensors;
  • Figure 2 shows the in Figure 1 Power output stage shown in detail together with an equivalent circuit diagram for the in Figure 1 phase correction unit shown;
  • Figure 3 shows a diagram in that of the control unit 8 in Figure 1 generated control pulses are shown;
  • Figure 4 shows an example of switching signals, which from the control unit of in Figure 1 heat pump shown have been generated;
  • Figure 5 shows an example of switching signals, which from the control unit of in Figure 1 Heat pump shown have been generated in which the semiconductor switch half-bridges of the power output stage are switched sequentially and overlapping one another in the on-state.

Figur 1 zeigt ein Ausführungsbeispiel für eine Wärmepumpe 1. Die Wärmepumpe 1 weist einen Kompressor 2 mit einem Elektromotor 3 auf. Der Elektromotor 3 weist einen Rotor 4, in diesem Ausführungsbeispiel einen permanentmagnetisch ausgebildeten Rotor 4, auf. Der Rotor 4 ist über eine Rotorwelle mit einem Verdichter 5 verbunden. Figure 1 shows an embodiment of a heat pump 1. The heat pump 1 has a compressor 2 with an electric motor 3. The electric motor 3 has a rotor 4, in this exemplary embodiment a permanent magnet rotor 4. The rotor 4 is connected to a compressor 5 via a rotor shaft.

Der Verdichter 5 ist ausgebildet - angetrieben durch den Elektromotor 3 -, ein Kältemittel eines Kältemittelkreislaufs 6 zu verdichten. Das Kältemittel ist beispielsweise ein Kältemittel umfassend Difluormethan und Pentafluorethan, insbesondere R410a, oder Tetrafluorethan, auch R134a genannt oder Tetrafluorpropen, auch R1234yf genannt.The compressor 5 is designed - driven by the electric motor 3 - to compress a refrigerant of a refrigerant circuit 6. The refrigerant is, for example, a refrigerant comprising difluoromethane and pentafluoroethane, in particular R410a, or tetrafluoroethane, also called R134a or tetrafluoropropene, also called R1234yf.

Der Kältemittelkreislauf 6 umfasst beispielsweise einen Wärmetauscher, an dem von dem Kompressor 2 gepumpte Wärme abgegeben werden kann. Der Verdichter 5 ist in diesem Ausführungsbeispiel ausgangsseitig mittels einer Fluidleitung 13 mit dem Kältemittelkreislauf 6 verbunden. Der Kältemittelkreislauf 6 ist ausgangsseitig mittels einer Fluidleitung 14 mit einem Kühlelement 23 verbunden. Das Kühlelement 23 ist ausgangsseitig mittels einer Fluidleitung 15 mit dem Verdichter 5 des Kompressors 2 verbunden.The refrigerant circuit 6 comprises, for example, a heat exchanger to which heat pumped by the compressor 2 can be given off. In this exemplary embodiment, the compressor 5 is connected on the output side to the refrigerant circuit 6 by means of a fluid line 13. The refrigerant circuit 6 is connected on the output side to a cooling element 23 by means of a fluid line 14. The cooling element 23 is connected on the output side to the compressor 5 of the compressor 2 by means of a fluid line 15.

Die Wärmepumpe 1 weist auch eine Leistungsendstufe 7 zum Bestromen des Elektromotors 3 auf. Die Leistungsendstufe 7 ist ausgangsseitig über eine elektrische Verbindung 19 mit dem Elektromotor 3, und dort mit Statorspulen eines Stators des Elektromotors 3, verbunden.The heat pump 1 also has a power output stage 7 for energizing the electric motor 3. The output stage 7 is connected on the output side via an electrical connection 19 to the electric motor 3, and there to stator coils of a stator of the electric motor 3.

Die Wärmepumpe 1 weist auch eine Steuereinheit 8 auf, welche eingangsseitig mit einem Umgebungstemperatursensor 9 und mit einem Temperatursensor 10 verbunden ist. Der Temperatursensor 10 ist in diesem Ausführungsbeispiel mit der Leistungsendstufe 7 verbunden und ist ausgebildet, eine Temperatur der Leistungsendstufe 7 zu erfassen und ein die erfasste Temperatur repräsentierendes Temperatursignal zu erzeugen und ausgangsseitig auszugeben. Der Temperatursensor 10 ist über eine Verbindungsleitung 21 mit der Steuereinheit 8 verbunden. Der Umgebungstemperatursensor 9 ist mit der Steuereinheit 8 mindestens mittelbar, in diesem Ausführungsbeispiel über eine Verbindungsleitung 20 mit der Steuereinheit 8 verbunden. Anders als über die Verbindungsleitung 20 kann der Umgebungstemperatursensor über einen Datenbus oder einen Feldbus mit der Steuereinheit 8 mittelbar verbunden sein.The heat pump 1 also has a control unit 8, which is connected on the input side to an ambient temperature sensor 9 and to a temperature sensor 10. In this exemplary embodiment, the temperature sensor 10 is connected to the power output stage 7 and is designed to record a temperature of the power output stage 7 and to generate and output a temperature signal representing the recorded temperature. The temperature sensor 10 is connected to the control unit 8 via a connecting line 21. The ambient temperature sensor 9 is at least indirectly connected to the control unit 8, in this exemplary embodiment via a connecting line 20 to the control unit 8. In contrast to the connection line 20, the ambient temperature sensor can be indirectly connected to the control unit 8 via a data bus or a field bus.

Die Wärmepumpe 1, insbesondere die Steuereinheit 8, weist in diesem Ausführungsbeispiel ein Zwischenkreisglied 11 auf. Das Zwischenkreisglied 11 umfasst in diesem Ausführungsbeispiel wenigstens eine Drossel und wenigstens einen Zwischenkreiskondensator.In this exemplary embodiment, the heat pump 1, in particular the control unit 8, has an intermediate circuit element 11. In this exemplary embodiment, the intermediate circuit element 11 comprises at least one choke and at least one intermediate circuit capacitor.

Die Leistungsendstufe 7 ist über eine wärmeleitende Verbindung 16 mit dem Kühlelement 23 wärmeleitend verbunden. Die Leistungsendstufe 7 weist beispielsweise Halbleiterschalter-Halbbrücken, insbesondere drei Halbleiterschalter-Halbbrücken auf. Die Halbleiterschalter der Halbleiterschalter-Halbbrücken sind beispielsweise durch einen Feldeffekttransistor, insbesondere einen MOS-FET, gebildet oder durch Transistoren, beispielsweise IGBT-Transistoren.The power output stage 7 is connected to the cooling element 23 in a heat-conducting manner via a heat-conducting connection 16. The power output stage 7 has, for example, semiconductor switch half bridges, in particular three semiconductor switch half bridges. The semiconductor switches of the semiconductor switch half-bridges are formed, for example, by a field effect transistor, in particular a MOS-FET, or by transistors, for example IGBT transistors.

Die Steuereinheit 8 ist über eine wärmeleitende Verbindung 17 mit dem Kühlelement 23 verbunden. Die wärmeleitenden Verbindungen 16 und 17 sind beispielsweise durch Gehäuseteile der Steuereinheit 8, beziehungsweise der Leistungsendstufe 7 gebildet, welche mit dem Kühlelement 23, beispielsweise gebildet durch einen zum Fluidführen ausgebildeten Metallblock, insbesondere Aluminiumblock, mittels eines Wärmeleitmittels, beispielsweise einer Silikonpaste, wärmeleitend verbunden sind.The control unit 8 is connected to the cooling element 23 via a heat-conducting connection 17. The heat-conducting connections 16 and 17 are formed, for example, by housing parts of the control unit 8 or the power output stage 7, which are thermally conductively connected to the cooling element 23, for example formed by a metal block, in particular an aluminum block, designed to conduct fluid, by means of a heat-conducting agent, for example a silicone paste.

Die Steuereinheit 8 ist ausgebildet, Steueranschlüsse der Halbleiterschalter der Leistungsendstufe 7 über die elektrische Verbindung 18 derart anzusteuern, dass die Leistungsendstufe 7 den Elektromotor 3 über die elektrische Verbindung 19 zum Erzeugen eines magnetischen Drehfeldes zum Drehbewegen des Rotors 4 bestromen kann.The control unit 8 is designed to control control connections of the semiconductor switches of the power output stage 7 via the electrical connection 18 such that the power output stage 7 can energize the electric motor 3 via the electrical connection 19 to generate a magnetic rotating field for rotating the rotor 4.

Die Steuereinheit 8 und die Leistungsendstufe 7, welche jeweils elektronische Bauelemente aufweisen, welche ausgebildet sind, beim Betrieb eine Verlustwärme zu erzeugen. Diese Verlustwärme kann beim Betrieb des Kompressors zwei über den Kältemittelkreislauf 6 und das mit dem Kältemittelkreislauf 6 verbundene Kühlelement 23, über die wärmeleitenden Verbindungen 16 und 17 abgeführt werden.The control unit 8 and the power output stage 7, which each have electronic components which are designed to generate heat loss during operation. This heat loss can be dissipated during operation of the compressor two via the refrigerant circuit 6 and the cooling element 23 connected to the refrigerant circuit 6, via the heat-conducting connections 16 and 17.

Die Wärmepumpe 1 kann beim Anlaufen des Kompressors 2 eine Betauung der Steuereinheit 8, und in diesem Ausführungsbeispiel zusätzlich der Leistungsendstufe 7, wie folgt verhindern:
Die Steuereinheit 8 ist ausgebildet, vor Beginn eines Ansteuerns der Leistungsendstufe 7 zum Drehbewegen des Rotors 4 des Elektromotors 3 zum Aktivieren des Kältemittelkreislaufs 6 wenigstens einen Teil der Halbleiterschalter-Halbbrücken der Leistungsendstufe 7 mit einem Durchschalt-Signal zu beaufschlagen und so die Halbleiterschalter der wenigstens einen Halbbrücke gemeinsam leitend durchzusteuern. Die Leistungsendstufe 7 oder zusätzlich die Phasenkorrektureinheit kann dann eine Verlustwärme erzeugen, ohne den Motor 3 zu bestromen. Die Leistungsendstufe 7 oder zusätzlich die Phasenkorrektureinheit kann dann die Verlustwärme über die wärmeleitende Verbindung 16 zur Steuereinheit 8 und zum Kühlelement 23 leiten. Die wärmeleitende Verbindung 16 zwischen der Leistungsendstufe 7 und der Steuereinheit 8 ist beispielsweise durch ein gemeinsames Blechgehäuse oder ein gemeinsames Wärmeleitblech gebildet, wobei die Steuereinheit 8 und die Leistungsendstufe 7 jeweils an das wärmeleitfähige Blech wärmeleitend gekoppelt sind.
When the compressor 2 starts up, the heat pump 1 can prevent condensation on the control unit 8, and in this exemplary embodiment also on the power output stage 7, as follows:
The control unit 8 is designed to apply a switch-through signal to at least a portion of the semiconductor switch half-bridges of the power output stage 7 and thus the semiconductor switch of the at least one before starting to control the power output stage 7 to move the rotor 4 of the electric motor 3 to activate the refrigerant circuit 6 To control the half bridge jointly. The power output stage 7 or additionally the phase correction unit can then generate heat loss without energizing the motor 3. The power output stage 7 or additionally the phase correction unit can then conduct the heat loss via the heat-conducting connection 16 to the control unit 8 and to the cooling element 23. The heat-conducting connection 16 between the power output stage 7 and the control unit 8 is formed, for example, by a common sheet metal housing or a common heat-conducting plate, the control unit 8 and the power output stage 7 each being coupled in a heat-conducting manner to the heat-conductive plate.

Die Steuereinheit 8 ist ausgebildet, das Durchschalt-Signal zum Durchsteuern der wenigstens einen Halbbrücke der Leistungsendstufe 7 in Abhängigkeit des von dem Temperatursensor 10 oder zusätzlich in Abhängigkeit des von dem Umgebungstemperatursensor 9 erzeugten Temperatursignals zu erzeugen. Die Steuereinheit 8 ist beispielsweise ausgebildet, aus dem Temperatursignal des Umgebungstemperatursensors 9 und dem Temperatursignal des Temperatursensors 10 eine Differenz zu bilden und ein die Differenz repräsentierendes Temperaturdifferenzsignal zu erzeugen. Die Steuereinheit 8 ist weiter ausgebildet, das Temperaturdifferenzsignal mit einem vorbestimmten Wert für eine vorbestimmte Temperaturdifferenz zu vergleichen und im Falle einer abweichenden Temperaturdifferenz, repräsentiert durch das Temperaturdifferenzsignal, insbesondere kleiner als des vorbestimmten Temperaturdifferenzwertes über der Umgebungstemperatur, das Durchschalt-Signal zu erzeugen und ausgangsseitig über die Verbindung 18 an die Leistungsendstufe 7 zu senden.The control unit 8 is designed to generate the switching signal for controlling the at least one half bridge of the power output stage 7 as a function of the temperature sensor 10 or additionally as a function of the temperature signal generated by the ambient temperature sensor 9. The control unit 8 is designed, for example, to form a difference from the temperature signal of the ambient temperature sensor 9 and the temperature signal of the temperature sensor 10 and to generate a temperature difference signal representing the difference. The control unit 8 is further developed to compare the temperature difference signal with a predetermined value for a predetermined temperature difference and, in the event of a deviating temperature difference, represented by the temperature difference signal, in particular less than the predetermined temperature difference value above the ambient temperature, to generate the switching signal and on the output side to send the connection 18 to the power output stage 7.

Die Steuereinheit 8 kann zum Durchführen des zuvor beschriebenen Vergleichs des Temperaturdifferenzsignals einen Diskriminator 50 aufweisen, welcher eingangsseitig mit den Verbindungsleitungen 20 und 21 des Temperatursensors 10 beziehungsweise des Umgebungstemperatursensors 9 verbunden ist.To carry out the previously described comparison of the temperature difference signal, the control unit 8 can have a discriminator 50 which is connected on the input side to the connecting lines 20 and 21 of the temperature sensor 10 and the ambient temperature sensor 9, respectively.

Der Diskriminator 50 ist mit einem Speicher 51 der Steuereinheit 8 verbunden, wobei in dem Speicher 51 ein Datensatz 52 vorrätig gehalten ist, welcher den zuvor erwähnten vorbestimmten Temperaturdifferenzwert repräsentiert.The discriminator 50 is connected to a memory 51 of the control unit 8, a data record 52 which represents the aforementioned predetermined temperature difference value being held in the memory 51.

Der durch den Datensatz 52 repräsentierte Temperaturdifferenzwert repräsentiert beispielsweise eine Temperaturdifferenz von fünf Grad Kelvin, um die die Temperatur der Leistungsendstufe größer sein soll als die Umgebungstemperatur, damit eine Betauung der Steuereinheit und/oder der Leistungsendstufe 7 beim Anlaufen des Kompressors 2 verhindert werden kann.The temperature difference value represented by data set 52 represents, for example, a temperature difference of five degrees Kelvin, by which the temperature of the power output stage should be greater than the ambient temperature, so that condensation on the control unit and / or the power output stage 7 can be prevented when the compressor 2 starts up.

Anstelle des Temperaturdifferenzwertes kann der Datensatz ein Temperaturkennfeld - beispielsweise in Form einer Look-Up-Tabelle - repräsentieren, in dem für jede Umgebungstemperatur eine vorbestimmte Temperaturdifferenz zugeordnet ist. Die Temperaturdifferenzen zu den Umgebungstemperaturen sind beispielsweise zueinander verschieden, wobei niedrigen Umgebungstemperaturen eine größere Temperaturdifferenz zugeordnet ist, und höheren Umgebungstemperaturen eine kleinere Temperaturdifferenz zugeordnet ist.Instead of the temperature difference value, the data record can represent a temperature map - for example in the form of a look-up table - in which a predetermined temperature difference is assigned for each ambient temperature. The temperature differences from the ambient temperatures are, for example, different from one another, lower ambient temperatures being associated with a larger temperature difference and higher ambient temperatures being associated with a smaller temperature difference.

Die in Figur 1 dargestellte Wärmepumpe 1 kann in einer anderen Ausführungsform zusätzlich zu den bisher beschriebenen Komponenten eine Phasenkorrektureinheit 12 aufweisen. Die Phasenkorrektureinheit 12 kann beispielsweise Bestandteil der Steuereinheit 8 sein. Beispielsweise kann die Phasenkorrektureinheit durch einen Mikrocontroller gebildet sein, welcher in einem Gehäuse der Steuereinheit gemeinsam mit einer Verarbeitungseinheit aufgenommen ist, welche ausgebildet ist, die Leistungsendstufe blockkommutiert oder pulsweitenmoduliert anzusteuern und so ein magnetisches Drehfeld zum Drehbewegen des Rotors zu erwirken. Die Verarbeitungseinheit ist beispielsweise durch einen Mikrocontroller, Mikroprozessor, ein ASIC (ASIC = Application-Specific-Integrated-Circuit) oder ein FPGA (FPGA = Field-Programmable-Gate-Array) gebildet. Dadurch kann durch die Phasenkorrektureinheit vorteilhaft zusätzliche Verlustwärme erzeugt werden. Die Steuereinheit 8 ist zusammen mit der Phasenkorrektureinheit 12 ausgebildet, die Leistungsendstufe 7 zum Drehbewegen des Rotors 4 des Elektromotors 3 derart anzusteuern, dass der Phasenwinkel zwischen einem Motorstrom und einer Motorspannung - insbesondere zu einem Versorgungsnetz hin - möglichst klein ist.In the Figure 1 In another embodiment, the heat pump 1 shown can have a phase correction unit 12 in addition to the components described so far. The phase correction unit 12 can be part of the control unit 8, for example. For example, the phase correction unit can be formed by a microcontroller which is accommodated in a housing of the control unit together with a processing unit which is designed to control the power output stage in a block-commutated or pulse-width-modulated manner and thus to produce a magnetic rotating field for rotating the rotor. The processing unit is formed, for example, by a microcontroller, microprocessor, an ASIC (ASIC = Application-Specific-Integrated-Circuit) or an FPGA (FPGA = Field-Programmable-Gate-Array). As a result, additional heat loss can advantageously be generated by the phase correction unit. The control unit 8, together with the phase correction unit 12, is designed to control the power output stage 7 for rotating the rotor 4 of the electric motor 3 in such a way that the phase angle between a motor current and a motor voltage - in particular towards a supply network - is as small as possible.

Das Aktivieren der wenigstens einen Halbbrücke im Durchschalt-Zustand kann vorteilhaft durch die Phasenkorrektureinheit 12 erfolgen, wie im Folgenden anhand der Figuren 2 und 3 beschrieben wird.The at least one half bridge in the on state can advantageously be activated by the phase correction unit 12, as will be explained below with reference to FIG Figures 2 and 3rd is described.

Zusätzlich oder unabhängig von dem Umgebungstemperatursensor 9 kann die Steuereinheit 8 mit einem Feuchtigkeitssensor 74 verbunden sein, welcher ausgebildet ist, eine die Steuereinheit 8 umgebende relative Luftfeuchtigkeit zu erfassen und ein die Luftfeuchtigkeit repräsentierendes Feuchtigkeitssignal zu erzeugen. Die Steuereinheit 8 ist bevorzugt ausgebildet, das Durchschalt-Signal in Abhängigkeit des Feuchtigkeitssignals, insbesondere bei überschreiten eines durch das Feuchtigkeitssignal repräsentierten Luftfeuchtigkeitswertes, zu erzeugen.In addition or independently of the ambient temperature sensor 9, the control unit 8 can be connected to a humidity sensor 74, which is designed to detect a relative humidity surrounding the control unit 8 and to generate a humidity signal representing the humidity. The control unit 8 is preferably designed to generate the switch-through signal as a function of the moisture signal, in particular when a humidity value represented by the moisture signal is exceeded.

Figur 2 zeigt ein Ausführungsbeispiel für eine schematisch dargestellte Schaltungsanordnung, umfassend die in Figur 1 bereits dargestellte Leistungsendstufe 7, den Elektromotor 3, insbesondere die Statorspulen des Elektromotors 3, das Zwischenkreisglied 11 und die Phasenkorrektureinheit 12. Das Zwischenkreisglied 11 umfasst in diesem Ausführungsbeispiel einen Zwischenkreiskondensator 29 und zwei Zwischenkreisdrosseln 27 und 28. Die Zwischenkreisdrossel 27 ist in einem positiven Zweig der Stromversorgung der Leistungsendstufe 7 in Reihe geschaltet und die Zwischenkreisdrossel 28 ist in einem negativen Stromversorgungszweig der Leistungsendstufe 7 mit der Leistungsendstufe 7 in Reihe geschaltet. Die Leistungsendstufe 7 umfasst in diesem Ausführungsbeispiel drei Halbleiterschalter-Halbbrücken, welche zusammen in einer B6-Anordnung geschaltet sind. Die Leistungsendstufe 7 weist dazu zwei Halbleiterschalter 31 und 32 auf, welche gemeinsam eine erste Halbleiterschalter-Halbbrücke bilden. Die Leistungsendstufe 7 weist auch zwei weitere Halbleiterschalter 33 und 34 auf, welche gemeinsam eine zweite Halbleiterschalter-Halbbrücke bilden und zwei weitere Halbleiterschalter 35 und 36, welche gemeinsam eine dritte Halbleiterschalter-Halbbrücke bilden. Die Halbleiterschalter sind in diesem Ausführungsbeispiel jeweils durch einen IGBT-Transistor (IGBT = Insulated-Gate-BipolarTransistor) gebildet. Figure 2 shows an embodiment of a schematically illustrated circuit arrangement, comprising the in Figure 1 Power output stage 7 already shown, the electric motor 3, in particular the stator coils of the electric motor 3, the intermediate circuit element 11 and the phase correction unit 12. In this exemplary embodiment, the intermediate circuit element 11 comprises an intermediate circuit capacitor 29 and two intermediate circuit reactors 27 and 28. The intermediate circuit reactor 27 is in a positive branch Power supply of the power output stage 7 connected in series and the intermediate circuit choke 28 is connected in series in a negative power supply branch of the power output stage 7 with the power output stage 7. In this exemplary embodiment, the power output stage 7 comprises three semiconductor switch half bridges, which are connected together in a B6 arrangement. For this purpose, the power output stage 7 has two semiconductor switches 31 and 32, which together form a first semiconductor switch half-bridge. The power output stage 7 also has two further semiconductor switches 33 and 34, which together form a second semiconductor switch half-bridge and two further semiconductor switches 35 and 36, which together form a third semiconductor switch half-bridge. In this exemplary embodiment, the semiconductor switches are each formed by an IGBT transistor (IGBT = Insulated Gate Bipolar Transistor).

Die in Figur 2 dargestellte Phasenkorrektureinheit 12 ist durch ein Ersatzschaltbild, umfassend eine Wechsel-Gleichspannungsquelle 24, einen Schalter 26 und eine Diode 25, dargestellt. Die Spannungsquelle 24 ist in diesem Ausführungsbeispiel mit einer einstellbaren Ausgangsspannung ausgebildet, die Diode 25 repräsentiert eine Freilaufdiode zu den Zwischenkreisdrosseln 27 und 28.In the Figure 2 The phase correction unit 12 shown is represented by an equivalent circuit diagram comprising an AC direct voltage source 24, a switch 26 and a diode 25. In this exemplary embodiment, the voltage source 24 is designed with an adjustable output voltage, the diode 25 represents a freewheeling diode to the intermediate circuit chokes 27 and 28.

Die in Figur 1 dargestellte Steuereinheit 8 kann beispielsweise die Halbleiterschalter-Halbbrücke umfassend die Transistoren 31 und 32 leitend durchsteuern. Der Schalter 26 ist zu diesem Zeitpunkt des Durchsteuerns in dem Durchschalt-Zustand noch geöffnet. Der Schalter 26 kann dann zum Erzeugen eines Durchschalt-Zeitintervalls, gesteuert durch die Steuereinheit 8, geschlossen werden. Die Verlustleistung, die mittels der Halbbrücke umfassend die Transistoren 31 und 32 in der Leistungsendstufe 7 erzeugt wird, kann so mittels der Phasenkorrektureinheit 12 moduliert, insbesondere pulsweitenmoduliert werden.In the Figure 1 The control unit 8 shown can, for example, conductively conduct the semiconductor switch half-bridge comprising the transistors 31 and 32. The switch 26 is still open at the time of the control in the on-state. The switch 26 can then be closed to generate a switch-through time interval, controlled by the control unit 8. The power loss which is generated by means of the half-bridge comprising the transistors 31 and 32 in the power output stage 7 can thus be modulated, in particular pulse-width-modulated, by means of the phase correction unit 12.

Bei einer Wärmepumpe 1 ohne die in Figur 1 dargestellte Phasenkorrektureinheit 12 kann das Durchschalt-Zeitintervall, das heißt das Zeitintervall, während dem wenigstens eine Halbleiterschalter-Halbbrücke der Leistungsendstufe 7 in den Durchschalt-Zustand geschaltet ist, von der Steuereinheit 8 erzeugt werden und durch direktes Ansteuern der Halbleiterschalter der in den Durchschalt-Zustand zu schaltenden Halbbrücke erzeugt werden.With a heat pump 1 without the in Figure 1 shown phase correction unit 12, the switch-through time interval, that is, the time interval during which at least one semiconductor switch half-bridge of the power output stage 7 is switched into the switch-through state, can be generated by the control unit 8 and by directly actuating the semiconductor switch that into the switch-through state half bridge to be switched are generated.

Im Falle einer Steuereinheit 8 mit der Phasenkorrektureinheit 12 würde jedoch in einem solchen Fall bei aktivierter Phasenkorrektureinheit 12 eine Zwischenkreisspannung des Zwischenkreises, welche über dem in Figur 2 dargestellten Kondensator 29 anliegt, gesteuert durch die Phasenkorrektureinheit 12, stark ansteigen. Vorteilhaft kann so mittels des Modulierens des die Verlustleistung erzeugenden Stromes, welcher durch die in den Durchschalt geschalteten Halbbrücke fließt, das zuvor erwähnte Ansteigen der Zwischenkreisspannung verhindert werden. Nach einem Stromflussbeginn des die Verlustleistung erzeugenden Stromes durch die Halbbrücke, umfassend die Transistoren 31 und 32, wird der die Verlustleistung erzeugende Strom zeitlich durch die Zwischenkreisdrosseln 27 und 28 begrenzt. Das ist im Folgenden in dem in Figur 3 dargestellten Diagramm 37 näher dargestellt.In the case of a control unit 8 with the phase correction unit 12, however, in such a case, with the phase correction unit 12 activated, an intermediate circuit voltage of the intermediate circuit, which is higher than that in FIG Figure 2 shown capacitor 29 is present, controlled by the phase correction unit 12, rise sharply. Advantageously, the aforementioned rise in the intermediate circuit voltage can thus be prevented by modulating the current which generates the power loss and flows through the half-bridge connected in the through circuit. After the start of the current flow of the power generating the power through the half-bridge, comprising the transistors 31 and 32, the power generating the power is limited in time by the intermediate circuit chokes 27 and 28. This is in the following in the Figure 3 shown diagram 37 shown in more detail.

Das Diagramm 37 in Figur 3 weist eine Zeitachse 38 als Abszisse und eine Amplitudenachse 39 als Ordinate auf. Die Amplitudenachse 39 repräsentiert dabei einen Betrag des die Verlustleistung erzeugenden Verluststromes, der durch die in den Durchschalt-Zustand geschaltete Halbbrücke fließt. Dargestellt ist auch eine Kurve 40, welche den Verluststrom repräsentiert. Das Diagramm 37 weist auch eine weitere Ordinate 44 auf, welche einen in diesem Ausführungsbeispiel durch den Schalter 26 in Figur 2 modulierten Schaltzustand der wenigstens einen Halbbrücke, beispielsweise der Halbbrücke umfassend die Transistoren 31 und 32 in Figur 2, repräsentiert. Dargestellt ist auch eine Kurve mit Steuerpulsen 41, 42 und 43, welche den zeitlichen Verlauf des Schaltzustandes, im Beispiel der Figur 2, des Schalters 26 als die Halbbrücke modulierendes Schaltglied repräsentiert. Während eines Steuerpulses 41, 42 oder 43 kann ein Verluststrom durch die Halbbrücke fließen.The diagram 37 in Figure 3 has a time axis 38 as the abscissa and an amplitude axis 39 as the ordinate. The amplitude axis 39 represents an amount of the power loss generating the power loss, which flows through the half-bridge switched to the on state. A curve 40 is also shown, which represents the leakage current. The diagram 37 also has a further ordinate 44, which in this exemplary embodiment is represented by the switch 26 in Figure 2 modulated switching state of the at least one half bridge, for example the half bridge comprising the transistors 31 and 32 in Figure 2 , represents. Also shown is a curve with control pulses 41, 42 and 43, which shows the time course of the switching state, in the example of Figure 2 , of the switch 26 represents the switching element modulating the half-bridge. During a control pulse 41, 42 or 43, a leakage current can flow through the half-bridge.

Dargestellt ist ein Durchschalt-Zeitintervall 70, während dem in der Leistungsendstufe 7 in Figur 2 eine Verlustleistung zum Anheben der Temperatur der Leistungsendstufe 7 und der Steuereinheit 8 erzeugt wird. Während eines Anfangszustandes, zum Beginn eines Steuerpulszeitintervalls 45, fließt noch kein Strom durch die Leistungsendstufe 7. Der Schalter 26 in Figur 2 ist geöffnet. Zu Beginn des Durchschalt-Zeitintervalls 70 wird dann - gesteuert durch die Steuereinheit 8 in Figur 1 - wenigstens eine der Halbbrücken der Leistungsendstufe 7 in den Durchschalt-Zustand geschaltet. Zeitgleich oder später wird dann - gesteuert durch die Steuereinheit 8 in Figur 1 - die Phasenkorrektureinheit 12 durch Schließen des Schalters 26 aktiviert, sodass dadurch ein Steuerpuls 41 mit der Steuerpulsdauer 45 erzeugt wird. Der die Verlustleistung erzeugende Strom, repräsentiert durch die Kurve 40, steigt während des Steuerpulszeitintervalls 45 beginnend von einem Stromwert null Ampere - begrenzt durch die Zwischenkreisdrossel 27 - steil an, bis zu einem Stromwert bei etwa 19 Ampere, zum Abschaltzeitpunkt des Steuerpulses 41 am Ende des Steuerpulszeitintervalls 45. Die Steuerpulszeitdauer 45 des Steuerpulses 41 beträgt in diesem Ausführungsbeispiel eine Millisekunde.A switch-through time interval 70 is shown, during which in the power output stage 7 in Figure 2 a power loss for raising the temperature of the power output stage 7 and the control unit 8 is generated. During an initial state, at the beginning of a control pulse time interval 45, no current flows through the power output stage 7. The switch 26 in Figure 2 is opened. At the beginning of the switching time interval 70, the control unit 8 in then controls Figure 1 - Switched at least one of the half bridges of the power output stage 7 into the on-state. At the same time or later is then - controlled by the control unit 8 in Figure 1 - The phase correction unit 12 is activated by closing the switch 26, so that a control pulse 41 is generated with the control pulse duration 45. The current generating the power loss, represented by the curve 40, increases steeply during the control pulse time interval 45, starting from a current value of zero amperes - limited by the intermediate circuit choke 27 - up to a current value at approximately 19 amperes, at the switch-off time of the control pulse 41 at the end of the Control pulse time interval 45. The control pulse duration 45 of the control pulse 41 is one millisecond in this exemplary embodiment.

Während eines an das Steuerpulszeitintervall 45 anschließenden Pulspausenintervalls 53 kann der Zwischenkreisstrom wieder abfallen, eine in der Zwischenkreisdrossel 27 gespeicherte Energie kann über die Freilaufdiode 25 und die Transistoren 31 und 32, wieder abgebaut werden. Wenn der Zwischenkreisstrom einen vorbestimmten minimalen Stromwert erreicht hat, in diesem Ausführungsbeispiel beträgt der Minimalwert zehn Ampere, wird von der Steuereinheit 8 ein weiterer Steuerpuls 42 zum Schließen des Schalters 26 der Phasenkorrektureinheit 12 erzeugt. Eine Steuerpulsdauer 46 des Steuerpulses 42 beträgt in diesem Ausführungsbeispiel eine halbe Millisekunde. Der zuvor erwähnte Zwischenkreisstrom kann beispielsweise mittels eines Stromsensors, insbesondere eines Shunt-Widerstandes, erfasst werden und ein den Zwischenkreisstrom repräsentierendes Stromsignal erzeugt werden. Die Steuereinheit 8 ist ausgebildet, das Pulspausenzeitintervall 53 in Abhängigkeit des Stromsignals zu erzeugen.During a pulse pause interval 53 following the control pulse time interval 45, the intermediate circuit current can drop again, one in the intermediate circuit choke 27 stored energy can be reduced again via the freewheeling diode 25 and the transistors 31 and 32. When the intermediate circuit current has reached a predetermined minimum current value, in this exemplary embodiment the minimum value is ten amperes, the control unit 8 generates a further control pulse 42 for closing the switch 26 of the phase correction unit 12. In this exemplary embodiment, a control pulse duration 46 of the control pulse 42 is half a millisecond. The aforementioned intermediate circuit current can be detected, for example, by means of a current sensor, in particular a shunt resistor, and a current signal representing the intermediate circuit current can be generated. The control unit 8 is designed to generate the pulse pause time interval 53 as a function of the current signal.

Auf den Steuerpuls 42 folgt eine weitere Pulspause mit einem Pulspausenzeitintervall 54 und darauf ein weiterer Steuerpuls 43 mit einer Steuerpulsdauer 46. Die Steuereinheit 8 ist beispielsweise ausgebildet, eine Steuerpulsdauer 46 der Steuerpulse 41, 42 und 43, in Abhängigkeit des zuvor erwähnten Stromsignals, beispielsweise bei Erreichen eines vorbestimmten Stromscheitelwertes, zu erzeugen.The control pulse 42 is followed by a further pulse pause with a pulse pause time interval 54 and then another control pulse 43 with a control pulse duration 46. The control unit 8 is designed, for example, to have a control pulse duration 46 of the control pulses 41, 42 and 43, depending on the aforementioned current signal, for example at Reaching a predetermined current peak value.

Das Durchschalt-Zeitintervall 70 umfasst in diesem Ausführungsbeispiel beispielhaft drei Steuerpulse 41, 42 und 43 zum Erzeugen des Durchschalt-Zustandes der Halbbrücken der Leistungsendstufe 7 in Figur 1.In this exemplary embodiment, the switching time interval 70 comprises, by way of example, three control pulses 41, 42 and 43 for generating the switching state of the half bridges of the power output stage 7 in Figure 1 .

Zum Ende des Durchschalt-Zeitintervalls 70 ist die Temperatur der Leistungsendstufe 7 in Figur 1 um den Wert der Temperaturdifferenz, repräsentiert durch den Datensatz 52 in Figur 1, größer als die Umgebungstemperatur, erfasst durch den Umgebungstemperatursensor 9.At the end of the switching time interval 70, the temperature of the power output stage is 7 in Figure 1 by the value of the temperature difference represented by data set 52 in Figure 1 , greater than the ambient temperature, detected by the ambient temperature sensor 9.

Die Leistungsendstufe 7, die Steuereinheit 8 und das Kühlelement 23 haben dann genügend Wärmeenergie gespeichert, sodass beim darauffolgenden Betrieb des Elektromotors 3 zum Aktivieren des Kältemittelkreislaufs 6 die Temperatur der Steuereinheit 8 und der Leistungsendstufe 7 nicht unter oder nicht wesentlich unter die Umgebungstemperatur fallen kann, sodass keine Gefahr eines Betauens der Steuereinheit 8 und der Leistungsendstufe 7 besteht.The power output stage 7, the control unit 8 and the cooling element 23 then have stored enough thermal energy so that during the subsequent operation of the electric motor 3 to activate the refrigerant circuit 6, the temperature of the control unit 8 and the power output stage 7 cannot fall below or not significantly below the ambient temperature, so that there is no risk of thawing the control unit 8 and the power output stage 7.

An das Durchschalt-Zeitintervall 70 schließt ein Betriebszeitintervall 48 an, während dem - beispielsweise nach einem vorbestimmten Pausenintervall, wenn der Zwischenkreisstrom hinreichend abgefallen ist - der Elektromotor 3 in Figur 1 zum Betrieb der Wärmepumpe 1 bestromt werden kann.The switching time interval 70 is followed by an operating time interval 48 during which the electric motor 3 in - for example after a predetermined pause interval when the intermediate circuit current has dropped sufficiently Figure 1 can be energized to operate the heat pump 1.

Figur 4 zeigt ein Diagramm 47, in welchem ein Schaltmuster dargestellt ist, mit dem die Leistungsendstufe 7 zum Erzeugen der Verlustleistung bestromt werden kann. Figure 4 shows a diagram 47, in which a switching pattern is shown, with which the power output stage 7 can be energized to generate the power loss.

Das Diagramm 47 umfasst eine Abszisse 38, welche eine Zeitachse repräsentiert und eine Ordinate 39, welche eine Amplitudenachse repräsentiert. Dargestellt ist auch das in Figur 3 bereits dargestellte Durchschalt-Zeitintervall 70, während dem die Phasenkorrektureinheit 12 mittels der Steuerpulse 41, 42 und 43 aktiviert wird.The diagram 47 comprises an abscissa 38, which represents a time axis and an ordinate 39, which represents an amplitude axis. This is also shown in Figure 3 Switching-through time interval 70 already shown, during which the phase correction unit 12 is activated by means of the control pulses 41, 42 and 43.

Das Diagramm 47 zeigt eine Kurve 55, welche einen Schaltzustand Ein oder Aus des Transistors 31 in Figur 2 repräsentiert, eine Kurve 56, welche einen Schaltzustand des Transistors 32 repräsentiert, eine Kurve 57, welche einen Schaltzustand des Transistors 33 repräsentiert, eine Kurve 58, welche einen Schaltzustand des Transistors 34 repräsentiert, eine Kurve 59, welche einen Schaltzustand des Transistors 35 repräsentiert und eine Kurve 60, welche einen Schaltzustand des Transistors 36 repräsentiert.The diagram 47 shows a curve 55 which shows a switching state on or off of the transistor 31 in Figure 2 represents a curve 56 which represents a switching state of the transistor 32, a curve 57 which represents a switching state of the transistor 33, a curve 58 which represents a switching state of the transistor 34, a curve 59 which represents a switching state of the transistor 35 and a curve 60, which represents a switching state of the transistor 36.

Die Transistoren 31, 33 und 35 bilden jeweils einen High-Side-Transistor der jeweiligen Halbbrücke, die Transistoren 32, 34 und 36 bilden jeweils einen Low-Side-Transistor der jeweiligen Halbbrücke.The transistors 31, 33 and 35 each form a high-side transistor of the respective half-bridge, the transistors 32, 34 and 36 each form a low-side transistor of the respective half-bridge.

Während des Durchschalt-Zeitintervalls 70 sind gemäß dem Schaltmuster in Figur 4, die Halbbrücken der Leistungsendstufe 7 zeitlich nacheinander mittels eines Durchschalt-Steuerpulses aktiviert. Während des Steuerpulszeitintervalls 45, welches einer Steuerpulsdauer des Steuerpulses 41 entspricht, und während des darauf anschließenden Pulspausenintervalls 53, ist die Halbbrücke 71 umfassend die Transistoren 31 und 32 zum Erzeugen des Verluststromes mittels eines Durchschalt-Steuerpulses 81 für den Halbleiterschalter 31, und eines Durchschalt-Steuerpulses 82 für den Halbleiterschalter 32, in den Durchschalt-Zustand geschaltet.According to the switching pattern in FIG. 4, the half bridges of the power output stage 7 are activated chronologically one after the other by means of a switching control pulse during the switching time interval 70. During the control pulse time interval 45, which corresponds to a control pulse duration of the control pulse 41, and during the subsequent pulse pause interval 53, the half bridge 71 is comprehensive the transistors 31 and 32 for generating the leakage current are switched to the on-state by means of a switch-through control pulse 81 for the semiconductor switch 31 and a switch-through control pulse 82 for the semiconductor switch 32.

Die übrigen Halbbrücken 72 und 73, umfassend die Transistoren 33 und 34 beziehungsweise 35 und 36, sind während der Aktivierung der Halbbrücke 71, umfassend die Transistoren 31 und 32, ausgeschaltet. Während der Steuerpulsdauer 46 des Steuerpulses 42 in Figur 3 und während des darauf anschließenden Pulspausenintervalls 54, wird die Halbbrücke 72, umfassend die Transistoren 33 und 34 - gesteuert durch die Steuereinheit 8 in Figur 1 mittels eines Durchschalt-Steuerpulses 83 für den Halbleiterschalter 33, und eines Durchschalt-Steuerpulses 84 für den Halbleiterschalter 34, -, in den Durchschalt-Zustand geschaltet.The remaining half-bridges 72 and 73, comprising the transistors 33 and 34 or 35 and 36, are switched off during the activation of the half-bridge 71, comprising the transistors 31 and 32. During the control pulse duration 46 of the control pulse 42 in Figure 3 and during the subsequent pulse pause interval 54, the half bridge 72, comprising the transistors 33 and 34, is controlled by the control unit 8 in Figure 1 switched into the on-state by means of a switch-through control pulse 83 for the semiconductor switch 33, and a switch-through control pulse 84 for the semiconductor switch 34, -.

Während des darauf folgenden Steuerpulses 43 und eines darauf anschließenden Pulspausenzeitintervalls 49, wird von der Steuereinheit 8 die Halbbrücke 73, umfassend die Transistoren 35 und 36, mittels eines Durchschalt-Steuerpulses 85 für den Halbleiterschalter 35, und eines Durchschalt-Steuerpulses 86 für den Halbleiterschalter 36, in den Durchschalt-Zustand geschaltet.During the subsequent control pulse 43 and a subsequent pulse pause time interval 49, the control unit 8 switches the half-bridge 73, comprising the transistors 35 and 36, by means of a switch-through control pulse 85 for the semiconductor switch 35 and a switch-through control pulse 86 for the semiconductor switch 36 , switched through.

Die Steuereinheit 8 in Figur 1 ist so ausgebildet, zum Erzeugen der Verlustleistung die Halbbrücken 71, 72 und 73 der Leistungsendstufe 7 zeitlich nacheinander in den Durchschalt-Zustand zu schalten, sodass die zu erzeugende Verlustleistung unter den Halbbrücken aufgeteilt werden kann.The control unit 8 in Figure 1 is designed to switch the half bridges 71, 72 and 73 of the power output stage 7 one after the other into the on-state to generate the power loss, so that the power loss to be generated can be divided among the half bridges.

Die Halbbrücken der Leistungsendstufe 7 sind so einem gleichmäßigen Verschleiß unterworfen.The half bridges of the power output stage 7 are thus subjected to uniform wear.

Figur 5 zeigt ein Ausführungsbeispiel, bei dem die Steuereinheit 8 in Figur 1 ausgebildet ist, die Halbbrücken der Leistungsendstufe 7 zeitlich einander überlappend in den Durchschalt-Zustand zu schalten. Figure 5 shows an embodiment in which the control unit 8 in Figure 1 is designed to switch the half bridges of the power output stage 7 overlapping one another in the on-state.

Figur 5 zeigt dazu ein Diagramm 67, welches wie das Diagramm 47 in Figur 4 eine Zeitachse 38 und eine Amplitudenachse 49 aufweist. Dargestellt sind eine Kurve 61, welche einen Schaltzustand des Transistors 31 der Leistungsendstufe 7 in Figur 1 repräsentiert, eine Kurve 62, welche einen Schaltzustand des Transistors 32 repräsentiert, eine Kurve 63 und eine Kurve 64, welche jeweils einen Schaltzustand der Halbbrücke, umfassend die Transistoren 33 beziehungsweise 34, repräsentieren und eine Kurve 65 und eine Kurve 66, welche jeweils einen Schaltzustand der Transistoren 35 beziehungsweise 36 der dritten Halbbrücke der Leistungsendstufe 7 repräsentieren. Figure 5 shows a diagram 67 which, like diagram 47 in FIG Figure 4 has a time axis 38 and an amplitude axis 49. Shown are a curve 61 which shows a switching state of the transistor 31 of the power output stage 7 in Figure 1 represents a curve 62, which represents a switching state of the transistor 32, a curve 63 and a curve 64, each representing a switching state of the half-bridge, comprising the transistors 33 and 34, respectively, and a curve 65 and a curve 66, each of which represents a switching state of the transistors 35 and 36 represent the third half-bridge of the power output stage 7.

Die Steuereinheit 8 in Figur 1 ist ausgebildet, die Halbbrücken der Leistungsendstufe 7 zeitlich nacheinander ein- und auszuschalten, wobei ein Einschalten der weiteren Halbbrücke, beispielsweise der Halbbrücke, umfassend die Transistoren 33 und 34, noch vor einem Ausschalten der ersten Halbbrücke, umfassend die Transistoren 31 und 32, erfolgt. Dadurch ergibt sich ein Überlappungszeitintervall 68, bei dem die Halbbrücke, umfassend die Transistoren 31 und 32, und die Halbbrücke, umfassend die Transistoren 33 und 34, gleichzeitig aktiviert sind und ein Überlappungszeitintervall 69, bei dem die zweite Halbbrücke, umfassend die Transistoren 33 und 34, und die dritte Halbbrücke, umfassend die Transistoren 35 und 36, gleichzeitig in den Durchschalt-Zustand geschaltet sind.The control unit 8 in Figure 1 is designed to switch the half bridges of the power output stage 7 on and off one after the other, the further half bridge, for example the half bridge comprising the transistors 33 and 34, being switched on before the first half bridge comprising the transistors 31 and 32 is switched off. This results in an overlap time interval 68, in which the half bridge, comprising the transistors 31 and 32, and the half bridge, comprising the transistors 33 and 34, are activated at the same time, and an overlap time interval 69, in which the second half bridge, comprising the transistors 33 and 34 , and the third half-bridge, comprising the transistors 35 and 36, are simultaneously switched to the on state.

So kann vorteilhaft mittels des überlappenden Weiterschaltens des Durchschalt-Zustandes innerhalb des Durchschalt-Zeitintervalls, der Stromfluss im Zwischenkreis sicher fortgeführt werden und so weiter vorteilhaft Spannungsspitzen, verursacht durch eine eventuelle Unterbrechung des Zwischenkreisstromes, vermieden werden.Thus, by means of the overlapping switching of the switching state within the switching time interval, the current flow in the intermediate circuit can be safely continued and voltage peaks caused by a possible interruption of the intermediate circuit current can be avoided.

Claims (12)

  1. Heat pump (1) comprising a compressor (2), and an electronically commutated electric motor connect to the compressor, wherein the electric motor is connected to a power output stage configured to energize the electric motor for generating a rotating magnetic field, and the power output stage (7) is thermally conductively connected to a refrigerant circuit (6) of the heat pump (1), such that heat loss generated by the power output stage (7) can be dissipated to the refrigerant circuit (6),
    characterized in that
    the heat pump (1) has at least one temperature sensor (10) arranged to detect a temperature of the power output stage (7) and to generate a temperature signal representing the temperature, and the heat pump has a control unit (8), which is connected to the temperature sensor (10) and is configured to drive the power output stage (7) depending on the temperature signal in such a way that heat loss can be generated in the power output stage (7) by means of a leakage current (40) flowing through the power output stage (7),
    wherein the heat pump (1) has at least one link circuit inductor (27, 28) connected to the power output stage, and the power output stage (7) has at least one semiconductor switch half-bridge (71, 72, 73), wherein the control unit (8) is configured to generate a turn-on control pulse (81, 82, 83, 84, 85, 86) depending on the temperature signal for each of the semiconductor switches (31, 32, 33, 34, 35, 36) of the semiconductor switch half-bridge and to transmit said turn-on control pulse to the semiconductor switches (31, 32, 33, 34, 35, 36), and thus to turn on the semiconductor switches (31, 32, 33, 34, 35, 36) of the semiconductor switch half-bridge (71, 72, 73) simultaneously during a turn-on time interval (70), wherein the at least one link circuit inductor (27, 28) is configured to limit a current rise of the leakage current (40) flowing through the semiconductor switch half-bridge (71, 72, 73) .
  2. Heat pump (1) according to Claim 1,
    characterized in that
    the electric motor (3) is decoupled from the leakage current (40).
  3. Heat pump (1) according to either of the preceding claims,
    characterized in that
    the power output stage can be preheated in a targeted manner depending on the temperature signal before operation of the electric motor, and thus before start-up of the compressor, wherein no power loss is generated in the electric motor during the preheating.
  4. Heat pump according to any of the preceding claims,
    characterized in that
    the control unit (8) is configured to turn on the semiconductor switches (31, 32, 33, 34, 35, 36) only partly, such that a leakage current (40) flowing through the semiconductor switches (31, 32, 33, 34, 35, 36) is limited.
  5. Heat pump (1) according to any of the preceding claims,
    characterized in that
    the power output stage (7) has at least two semiconductor switch half-bridges (71, 72, 73), and the control unit (8) is configured to switch the semiconductor switch half-bridges into the on state temporally successively in order to generate the leakage current (40).
  6. Heat pump (1) according to Claim 5,
    characterized in that
    the control unit (8) is configured to generate an overlap time interval (68, 69) and to turn on at least two of the half-bridges simultaneously during the overlap time interval (68, 69).
  7. Heat pump according to any of the preceding claims,
    characterized in that
    the control unit is configured to generate a temporal sequence of turn-on control pulses (81, 82, 83, 84, 85, 86) for at least one half-bridge (71, 72, 73).
  8. Heat pump (1) according to any of the preceding claims,
    characterized in that
    the control unit (8) is configured to detect the leakage current during the turn-on time interval (70) and to generate the turn-on time interval (70) depending on the leakage current (40).
  9. Heat pump (1) according to any of the preceding claims,
    characterized in that
    the heat pump (1) has at least one ambient temperature sensor (9) connected to the control unit (8) and configured to detect an ambient temperature, and the control unit (8) is configured to determine a temperature difference from the temperature signals and to switch the at least one half-bridge into the on state depending on the temperature difference.
  10. Heat pump (1) according to any of the preceding claims,
    characterized in that
    the heat pump (1) has a moisture sensor (73) connected to the control unit (8) and configured to detect an air humidity surrounding the control unit (8) and to generate a moisture signal representing the air humidity, wherein the control unit is configured to drive the power output stage depending on the moisture signal in such a way that heat loss can be generated in the power output stage (7) by means of a leakage current flowing through the power output stage (7).
  11. Heat pump (1) according to any of the preceding claims,
    characterized in that
    the heat pump (1), in particular the control unit (8), has a phase correction unit (12), and the control unit is configured to switch the phase correction unit (12) on and off during the turn-on time interval (70).
  12. Method for preventing condensation from forming on a control unit (8) of a heat pump (1) comprising an electric motor, which drives a refrigerant circuit (6) of the heat pump (1), wherein the control unit (8) is thermally conductively coupled to the refrigerant circuit (6) of the heat pump (1), in which method a temperature of the control unit (8) is detected and a corresponding temperature signal is generated and, depending on the temperature signal, a respective turn-on control pulse (81, 82, 83, 84, 85, 86) is generated for two semiconductor switches - forming a half-bridge (71, 72, 73) - of a power output stage (7) of the heat pump (1), said power output stage being connected to the electric motor (3), and the half-bridge (71, 72, 73) is turned on depending on the turn-on control pulse (81, 82, 83, 84, 85, 86) and generates heat loss.
EP14186541.0A 2013-10-15 2014-09-26 Heat pump with dewing protection Active EP2863155B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310220897 DE102013220897A1 (en) 2013-10-15 2013-10-15 Heat pump with a condensation protection

Publications (2)

Publication Number Publication Date
EP2863155A1 EP2863155A1 (en) 2015-04-22
EP2863155B1 true EP2863155B1 (en) 2020-08-05

Family

ID=51619036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14186541.0A Active EP2863155B1 (en) 2013-10-15 2014-09-26 Heat pump with dewing protection

Country Status (3)

Country Link
EP (1) EP2863155B1 (en)
DE (1) DE102013220897A1 (en)
ES (1) ES2828529T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019001632A1 (en) 2019-03-08 2020-09-10 Stiebel Eltron Gmbh & Co. Kg Heat pump equipment, heating and / or water heating system and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113308A1 (en) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Compressor-heat exchanger unit for a heating-cooling module for a motor vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960002564B1 (en) * 1992-04-30 1996-02-22 삼성전자주식회사 Compressor drive system
MY122977A (en) * 1995-03-14 2006-05-31 Panasonic Corp Refrigerating apparatus, and refrigerator control and brushless motor starter used in same
KR100268262B1 (en) * 1997-09-29 2000-10-16 윤종용 Compressor Chiller and Control Method
FR2817300B1 (en) * 2000-11-24 2005-09-23 Valeo Climatisation COMPRESSOR FOR A CLIMATE SYSTEM FOR THE COCKPIT OF A MOTOR VEHICLE
JP2004228126A (en) * 2003-01-20 2004-08-12 Denso Corp Housing for electronic circuit
JP4633761B2 (en) * 2007-05-25 2011-02-16 トヨタ自動車株式会社 Drive mechanism
IT1395987B1 (en) * 2009-10-16 2012-11-09 Delphi Italia Automotive Systems S R L MOTOR-COMPRESSOR GROUP FOR A VEHICLE REFRIGERATION AND / OR CONDITIONING SYSTEM
JP2011117677A (en) * 2009-12-04 2011-06-16 Daikin Industries Ltd Outdoor unit for air conditioning device
US8777591B2 (en) * 2010-02-16 2014-07-15 Heng Sheng Precision Tech. Co., Ltd. Electrically driven compressor system for vehicles
US8755945B2 (en) * 2010-08-04 2014-06-17 Powerquest Llc Efficient computer cooling methods and apparatus
DE102011121926B4 (en) * 2011-12-22 2013-07-18 Robert Bosch Gmbh Device housing with cooling device for incoming air

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113308A1 (en) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Compressor-heat exchanger unit for a heating-cooling module for a motor vehicle

Also Published As

Publication number Publication date
ES2828529T3 (en) 2021-05-26
EP2863155A1 (en) 2015-04-22
DE102013220897A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
EP2158673B1 (en) Method for the operation of a single-phase electronically commutated motor on a direct current source, and motor for performing such a method
DE112014006489T5 (en) Control device and control method for a brushless motor
DE19963154B4 (en) Method for specifying the current through an inductive component
EP3417672A1 (en) Electric device, in particular heater, and device and method for actuating an electric device
DE10156939B4 (en) Circuit arrangement for operating an electrical machine
DE102012213908A1 (en) Control unit for an electric machine
EP2315493A1 (en) Heating device, in particular for a motor vehicle air conditioning device
DE112014000364B4 (en) Operating method and variable frequency drive system to avoid overheating
EP2863155B1 (en) Heat pump with dewing protection
WO2016045920A1 (en) Method for operating a circuit assembly
DE102014219474B4 (en) Process for operating power semiconductors
DE102007031548A1 (en) Electric motor commutator and method for driving an electric motor commutator
WO2018041971A1 (en) Controlling a semiconductor switch in a switched mode
DE19625868C1 (en) Method of controlling heating device for electric trams to maintain room temp. over defined period
DE102016001474A1 (en) Drive comprising an electric motor, in particular a three-phase motor, which can be fed by a converter, and a method for operating a drive
EP2384537B1 (en) Method for operating a brushless dc motor
DE10323445B4 (en) Direct commutation between power components
DE10047222A1 (en) Internal combustion engine with generator has warm-up device with power semiconductors operated with high power losses transferred by heat transfer devices to coolant circuit
DE102019001632A1 (en) Heat pump equipment, heating and / or water heating system and methods
WO2012045506A1 (en) Method for operating an electrical machine
EP0395589B1 (en) Method and device for limiting the peak load
DE102010028506A1 (en) Circuit and method for controlling a linear compressor
DE102021003587A1 (en) Method for operating a battery electric vehicle
DE10318878B4 (en) Method for emergency run control for blowers
DE102021128931A1 (en) Inverter circuit, vehicle electrical system and method for operating an inverter circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151022

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014014554

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0049020000

Ipc: F25B0030060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 47/00 20060101ALI20200320BHEP

Ipc: F25B 30/06 20060101AFI20200320BHEP

Ipc: F25B 49/02 20060101ALI20200320BHEP

INTG Intention to grant announced

Effective date: 20200417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1299279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014554

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014554

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2828529

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210930

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1299279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211019

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 10

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 10