EP2857750B1 - Shaped refractory brick - Google Patents
Shaped refractory brick Download PDFInfo
- Publication number
- EP2857750B1 EP2857750B1 EP14186916.4A EP14186916A EP2857750B1 EP 2857750 B1 EP2857750 B1 EP 2857750B1 EP 14186916 A EP14186916 A EP 14186916A EP 2857750 B1 EP2857750 B1 EP 2857750B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- face
- brick
- refractory brick
- hot face
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011449 brick Substances 0.000 title claims description 156
- 238000002485 combustion reaction Methods 0.000 claims description 35
- 239000003517 fume Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000013529 heat transfer fluid Substances 0.000 claims 2
- 239000000126 substance Substances 0.000 description 14
- 230000002441 reversible effect Effects 0.000 description 10
- 230000002427 irreversible effect Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000826860 Trapezium Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
- F23M5/02—Casings; Linings; Walls characterised by the shape of the bricks or blocks used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/10—Water tubes; Accessories therefor
- F22B37/107—Protection of water tubes
- F22B37/108—Protection of water tube walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2900/00—Special features of, or arrangements for combustion chambers
- F23M2900/05002—Means for accommodate thermal expansion of the wall liner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2900/00—Special features of, or arrangements for combustion chambers
- F23M2900/05004—Special materials for walls or lining
Definitions
- the present invention relates to the field of refractory bricks, also called tiles or shaped parts, for combustion chamber wall.
- Combustion chamber means indistinctly an oven or boiler. Concisely, we will describe here only the example of bricks for boiler.
- bricks are only subjected to reversible thermal deformation.
- An example of bricks for rotary kilns is known from the document US2010 / 0180806 , which proposes a design of part and joints between the bricks for cylindrical furnaces allowing the maintenance of the bricks and the waterproofness of the wall taking into account this reversible thermal expansion.
- Another example of bricks for rotary kilns is known from the document EP 0 103 365 A1 , which offers a refractory brick tolerant of thermal expansion.
- the document EP 2,302,315 proposes a protection plate of pipes, called anticorrosion body.
- the document EP 0 281 863 proposes, for its part, a screen protection device for boilers to prevent the progressive destruction by oxidation of poorly cooled metal parts.
- the aim here is the bricks for static combustion chamber, in which the bricks are subjected to both a reversible thermal deformation at the temperatures of use, and to a non-reversible chemical deformation.
- a boiler comprises a combustion chamber. At least one wall of the combustion chamber is equipped with an assembly of at least one tube.
- the combustion is carried out in the combustion chamber and a fluid flows inside the set of tubes.
- the heat of combustion is transmitted through the tubes to the coolant circulating there.
- the fluid makes it possible to value the heat energy transferred typically in the form of heat and / or electricity.
- combustion generally generates corrosive fumes that degrade the tubes, the corrosion being a function of the fuel used, the flue gas temperature and the temperature of the tubes.
- Bricks are therefore on the one hand thermal conductors that transfer heat from a combustion made in a boiler combustion chamber to a set of tubes in which a fluid transits; and secondly they exert a protective function of said tubes against corrosion generated by combustion fumes.
- the bricks are affixed next to each other and fixed to the boiler tube wall by means of metal fastening systems in which the bricks equipped with blind housing are inserted.
- metal fastening systems in which the bricks equipped with blind housing are inserted.
- fastening systems associated with blind housing of corresponding design.
- a seal is affixed around each brick to connect two adjacent bricks together, so as to form a sealed wall impervious to the passage of combustion fumes to the boiler tubes.
- the bricks are subjected to high temperatures (typically 1200 ° C. to 950 ° C. in flue gas temperature) and to aggressive atmospheres, for example based on alkalis, sulfur or chlorine, typically during heating. incineration of certain wastes or biomass.
- high temperatures typically 1200 ° C. to 950 ° C. in flue gas temperature
- aggressive atmospheres for example based on alkalis, sulfur or chlorine, typically during heating. incineration of certain wastes or biomass.
- the object of the present invention is to remedy these drawbacks by proposing, according to a first of its objects, a refractory brick comprising the characteristics mentioned in claim 1.
- the brick in a first embodiment, can be part of a solid having as bases two equal and parallel polygons, the sides of which are united by polygons, in particular of which at least two opposite sides are inscribed. each in an isosceles trapezoid.
- the brick in a second embodiment, can be part of a prism, that is to say a solid based on two equal and parallel polygons, whose sides are united by parallelograms.
- the bricks according to the invention have at least one plane of symmetry passing through the center thereof.
- a cross section (perpendicular to the plane of the hot face and the plane of the cold face) of the brick according to the invention is in a trapezium, in particular isosceles.
- the brick comprises a material based on silicon carbide.
- the bricks are of oxide-bonded silicon carbide.
- the bricks are nitride-bonded silicon carbide or oxy-nitride.
- the cold face (CF) has at least one recess (102, 202) configured to conform to the shape of said at least one tube.
- the depth (D_p) of the brick at its periphery is less than or equal to the depth (D_h) of the brick in its heart.
- the hot face (HF) is substantially flat.
- the plane in which at least part of the cold face (CF) is inscribed is parallel to the hot face (HF).
- At least two opposite lateral faces have a bevel with an angle ⁇ .
- the invention relates to a furnace or a static combustion chamber capable of being subjected to corrosive atmospheres which may comprise a plurality of refractory bricks (100, 200) according to the invention.
- the furnace or combustion chamber comprises a set of identical refractory bricks.
- the present invention makes it possible to produce a form of brick that makes it possible to anticipate irreversible deformations of chemical origin of the latter during its use, by providing inclinations and withdrawals of material at the places known to undergo the strongest deformations. and which, in their absence, would generate by these deformations additional mechanical stresses on the adjacent bricks, and which could further refer to the fastening system.
- the refractory bricks according to the invention find particular utility in a furnace or a static combustion chamber, typically a boiler. They are therefore intended for this use, indistinctly suitable for this use or are configured for this use.
- a first embodiment of firebrick is illustrated in figure 1 to 3 described below.
- a second embodiment of firebrick is illustrated in figure 4 to 6 described below.
- the brick is intended to cover a combustion chamber wall.
- the combustion chamber comprises an assembly of at least one tube for the flow of a coolant.
- the combustion chamber also includes a fastening system comprising a set of individual fasteners, each individual device being configured to hang an individual brick.
- An individual brick is intended to be near or in contact with at least one tube.
- the brick has a hot face HF and a cold face CF.
- the hot face HF is intended to be exposed to combustion fumes from the combustion chamber.
- the cold face CF is intended to be near or in contact with at least one tube; it is also equipped with a blind housing for fixing the brick to an individual fixing device.
- the hot face is flat or has a large radius of curvature, which simplifies their manufacture, the cleaning of the combustion chamber and limits the risk of corrosion by channeling fumes better.
- the brick fits for example in a polyhedron.
- the bricks are intended to be affixed to each other, they advantageously have, at least in cross section, a shape that fits in a rectangle.
- the hot face HF has a width W_h and a length L_h.
- the cold face CF is opposite to the hot face and has a width W_c and a length L_c.
- the incineration of waste or the combustion of biomass produces chemical species that penetrate the bricks and generates chemical reactions within them which can cause them to swell by thermal expansion coupled with chemical reactions.
- the cold face there is no deformation or deformation is negligible compared to that of the hot face.
- the cold face may have at least one recess configured to conform to the shape of at least one tube, this recess is not deformed.
- the bricks initially have a shape in a rectangular parallelepiped. After deformation, it has been observed that they have a shape curved (oval) in hot face in the direction of the length and width of the brick.
- the present invention aims to solve this problem of bricks capable of deforming by cleverly modifying the shape of existing bricks, so as to anticipate the possible deformation they could undergo.
- the bricks being subjected to a temperature gradient between the face exposed to the fumes and the face in contact with the wall of a boiler tube, a thermal expansion gradient is created within the brick, and this is then subject to a reversible deformation.
- the temperature gradient then acts as a driving force for the penetration of these chemical species, which then fill the porosities and react with the materials of the brick, thus forming new metallurgical phases (by allotropic transformation) whose molar volume can be more important than that of the initial phases.
- the chemical deformation ( ⁇ L_chemical) is then a function of the progress of chemical reactions of oxidation of the material of the brick or the formation of new expansive phases.
- the elastic ⁇ _L_elastic deformation can be neglected, and on the other hand, the large dimensional variations in the hot face generate high stresses within the brick and are partly accommodated by a deformation in front of the brick. cold.
- the width W_h of the hot face HF is less than the width W_c of the cold face CF.
- the length L_h of the hot face is less than the length L_c of the cold face.
- the deformation is essentially in the hot face and in the plane thereof, the dimensions of the hot face lower than those of the cold face, in case of expansion of the hot face, to limit the risk of stall.
- the value of the difference between the width W_h of the hot face and the width W_c of the cold face is greater than or equal to the value of the deformation of the hot face in the direction of said width in the conditions of use of said brick.
- the value of the difference between the length L_h of the hot face and the length L_c of the cold face is greater than or equal to the value of the deformation of the hot face in the direction of said length in the conditions of use of said brick.
- the width W_h_f of the hot face HF after deformation is at most equal to the width W_c of the cold face CF; and the length L_h_f of the hot face after deformation is at most equal to the length L_c of the cold face.
- the brick after deformation fits in a rectangular parallelepiped and the deformation of a brick does not exert stress on an adjacent brick, but only on the joint which connects them.
- figure 9 is illustrated a longitudinal section of two adjacent bricks according to a first embodiment described later, identical to each other, under conditions of normal use, before possible deformation.
- a first brick 100a is attached to a first individual fastener 1000a, and a second brick 100b is attached to a second individual fastener 1000b.
- the initial distance D_CFi separating the two cold faces CF is smaller than the initial distance D_HFi separating the two hot faces HF.
- the free space E initially reserved on the cold face CF between the brick and the tubular wall TUB makes it possible to accommodate the deformation of the tile in the hot face HF by limiting the support on the wall and therefore the constraints on the fastening system.
- this free space E can disappear and the cold face can then be in contact but without constraint with the wall.
- the final distance D_HFf (not shown) separating the two hot faces HF, is comparable in size to the initial distance D_CFi separating the two cold faces CF, since it is almost invariable.
- one way of illustrating the invention consists, for example, in considering that at least two opposite lateral faces have a bevel with an angle ⁇ .
- the lateral faces are inclined at an angle ⁇ ranging for example from 0 to 20 °, which increases the initial space between two hot faces of two adjacent bricks and delay or avoid the brick-to-brick contacts during deformation.
- the hot face before possible deformation is flat and parallel to the tubes TUB.
- the angle ⁇ can be determined with reference to a plane P perpendicular to the plane of the hot face.
- the deformation evoked in the direction of the length and in the direction of the width of a brick can induce a deformation in the direction of the depth and lead to generate constraints by support between the brick CF and the tubes.
- the depth of the brick D_p at its periphery is less than or equal to the depth D_h of the brick in its heart.
- D_c at least in cross-section
- depth D_h of the brick in its heart we mean the maximum thickness of the brick, regardless of the thickness of the blind housing.
- the brick feet that is to say the depth of the brick D_p at its periphery, are shorter than the maximum height of the brick between the tubes so as to compensate for the horizontal cleavage generated by the swelling of the brick. hot face.
- a first embodiment of brick is illustrated on the Figures 1 to 3 , in which the brick is inscribed in a polyhedron which is a rectangular parallelepiped.
- this brick is configured to be arranged against vertical pipes.
- the figure 1 is a cross section of the brick shown in figure 2
- the figure 3 is a longitudinal section of the brick illustrated in figure 2 .
- the figure 3 illustrates, in top view, the lower face DW or the upper face UP of the brick 100, equipped with a groove 101 for a joint between adjacent bricks.
- the brick 100 has a longitudinal plane of symmetry (AA section of the figure 2 ).
- the brick comprises at least one recess 102 configured to conform to the shape of at least one tube, as well as a blind housing 103 for fixing the brick to an individual fixing device (in dashed line on the figure 2 ).
- the present cold face CF is at least partially in a PP plane.
- the brick 100 has plane recesses at the periphery which, in longitudinal section ( figure 3 ), are beveled angle ⁇ with respect to the plane PP.
- the bevels of angle ⁇ are symmetrical.
- the cold face (rear) in contact with the tubes have two plane inclined at an angle ⁇ , symmetrical on two opposite faces, the value of the angle ⁇ is for example between 0 to 15 °, so as to compensate the vertical cleavage generated by swelling in the hot face and limit the stresses exerted by the shaped part on the exchanger tubes.
- the upper face UP like the lower face DW, preferably has at least one plane portion whose angle is at least 90 ° relative to a hot face HF plane.
- the upper face UP and the lower face DW both have a flat part (not referenced) substantially perpendicular to the hot face HF and the cold face CF, a grouting groove 101 and a flat part whose angle is greater than 90 ° with respect to the hot face HF, so as to create an angle bevel ⁇ .
- the bevel angle ⁇ illustrated in cross section ( figure 1 ) is the same as the angle bevel ⁇ shown in longitudinal section ( figure 3 ). It is assumed that the deformation of the brick is the same in the direction of the length and in the direction of the width (with equal thickness).
- the brick comprises a first plane of symmetry: the plane cut AA of the figure 2 .
- the brick Excluding the blind housing 103, the brick includes a second plane of symmetry: the plane cuts BB of the figure 2 .
- a second embodiment of brick is illustrated on the Figures 4 to 6 , in which the brick is inscribed in a polyhedron which is a non-rectangular parallelepiped, in this case a non-right prism.
- this brick 200 is configured to be disposed against vertical pipes.
- the brick 200 has a longitudinal plane of symmetry (AA section of the figure 5 ).
- the brick comprises at least one recess 202 configured to conform to the shape of at least one tube, as well as a blind housing 203 for securing the brick to an individual fixture (dashed on the figure 5 ).
- the present cold face CF is at least partially in a PP plane.
- Brick 200 has peripheral recesses which, in longitudinal section ( figure 6 ), are beveled angle ⁇ with respect to the plane PP.
- the periphery of the brick 200 is defined for example as between the end thereof and the point of inflection between the angle bevel ⁇ with respect to the plane PP and the upper face UP (see figure 6 ).
- the seal groove 201 has two 45 ° struts which facilitates demolding of the brick during its manufacture.
- the brick comprises a plane of symmetry: the plane cut AA of the figure 5 .
- At least a portion of the cold face CF is in a plane, which facilitates for example the manufacture of bricks.
- the plane in which at least part of the cold face is part is parallel to the hot face, which facilitates for example the manufacture and transport of bricks.
- the invention is not limited to the previously described embodiments.
- provision may be made to use silicon carbide bricks with a nitride or oxy-nitride bond; knowing that these deform less than those with oxide bond.
- the hot face has a relief, for example corrugations (in cross-section) or a shape that conforms to the shape of at least one tube in the cold face and in the hot face, so that the thickness of the brick is substantially constant (regardless of the thickness of the blind housing).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
La présente invention concerne le domaine des briques réfractaires, appelées également tuiles ou pièces de forme, pour paroi de chambre de combustion.The present invention relates to the field of refractory bricks, also called tiles or shaped parts, for combustion chamber wall.
Par chambre de combustion, on entend indistinctement un four ou une chaudière. Par concision, on ne décrira ici que l'exemple de briques pour chaudière.Combustion chamber means indistinctly an oven or boiler. Concisely, we will describe here only the example of bricks for boiler.
Il existe globalement deux types de fours : les fours statiques et les fours rotatifs.There are generally two types of ovens: static ovens and rotary ovens.
Dans une chambre de combustion de four rotatif, les briques ne sont soumises qu'à une déformation thermique réversible. Un exemple de briques pour fours rotatifs est connu du document
Au contraire, ici, on vise ici les briques pour chambre de combustion statique, dans lesquelles les briques sont soumises à la fois à une déformation thermique réversible aux températures d'utilisation, et à une déformation chimique non réversible.On the contrary, here, the aim here is the bricks for static combustion chamber, in which the bricks are subjected to both a reversible thermal deformation at the temperatures of use, and to a non-reversible chemical deformation.
Schématiquement, une chaudière comprend une chambre de combustion. Au moins une paroi de la chambre de combustion est équipée d'un ensemble d'au moins un tube. En fonctionnement, la combustion est réalisée dans la chambre de combustion et un fluide circule à l'intérieur de l'ensemble de tubes. La chaleur de la combustion est transmise à travers les tubes au fluide caloporteur qui y circule. Le fluide permet de valoriser l'énergie thermique transférée typiquement sous forme de chaleur et /ou d'électricité.Schematically, a boiler comprises a combustion chamber. At least one wall of the combustion chamber is equipped with an assembly of at least one tube. In operation, the combustion is carried out in the combustion chamber and a fluid flows inside the set of tubes. The heat of combustion is transmitted through the tubes to the coolant circulating there. The fluid makes it possible to value the heat energy transferred typically in the form of heat and / or electricity.
Cependant, la combustion génère généralement des fumées corrosives qui dégradent les tubes, la corrosion étant fonction du combustible utilisé, de la température des fumées et de la température des tubes.However, combustion generally generates corrosive fumes that degrade the tubes, the corrosion being a function of the fuel used, the flue gas temperature and the temperature of the tubes.
On prévoit donc de protéger les tubes de la corrosion par un ensemble de briques réfractaires qui, en outre, transmettent la chaleur de la combustion aux tubes.It is therefore expected to protect the tubes from corrosion by a set of refractory bricks which, in addition, transmit the heat of combustion to the tubes.
Les briques sont donc d'une part des conducteurs thermiques qui permettent de transférer la chaleur d'une combustion réalisée dans une chambre de combustion de chaudière à un ensemble de tubes dans lesquels un fluide transite ; et d'autre part elles exercent une fonction de protection desdits tubes contre la corrosion générée par les fumées de combustion.Bricks are therefore on the one hand thermal conductors that transfer heat from a combustion made in a boiler combustion chamber to a set of tubes in which a fluid transits; and secondly they exert a protective function of said tubes against corrosion generated by combustion fumes.
Dans une chambre de combustion, les briques sont apposées les unes à côté des autres et fixées à la paroi de tube chaudière grâce des systèmes de fixation métallique dans lesquels les briques équipées de logement borgne viennent s'insérer. Il existe différents modèles de systèmes de fixation associées à des logements borgne de design correspondant. Un joint est apposé autour de chaque brique pour relier deux briques adjacentes entre elles, de sorte à constituer une paroi étanche, imperméable au passage des fumées de combustion vers les tubes chaudières.In a combustion chamber, the bricks are affixed next to each other and fixed to the boiler tube wall by means of metal fastening systems in which the bricks equipped with blind housing are inserted. There are different models of fastening systems associated with blind housing of corresponding design. A seal is affixed around each brick to connect two adjacent bricks together, so as to form a sealed wall impervious to the passage of combustion fumes to the boiler tubes.
En fonctionnement, les briques sont soumises à des hautes températures (typiquement 1200°C à 950°C en température de fumées) et à des atmosphères agressives, par exemple à base d'alcalins, de soufre ou de chlore, typiquement lors de l'incinération de certains déchets ou de biomasse.In operation, the bricks are subjected to high temperatures (typically 1200 ° C. to 950 ° C. in flue gas temperature) and to aggressive atmospheres, for example based on alkalis, sulfur or chlorine, typically during heating. incineration of certain wastes or biomass.
Dans ces conditions, la déformation chimique et la déformation thermique ont pour effet que les briques se déforment sous forme de banane, c'est-à-dire que la déformation est plus importante en face chaude qu'en face froide. En conséquence, il arrive parfois que certaines briques se décrochent, voire cassent, ce qui expose alors les tubes aux fumées corrosives et nécessite des interventions de maintenance de la chaudière qui en pénalisent l'exploitation.Under these conditions, the chemical deformation and the thermal deformation have the effect that the bricks deform in the form of banana, that is to say that the deformation is more important in hot face than in cold face. As a result, it sometimes happens that some bricks unhook or break, which exposes the tubes to corrosive fumes and requires maintenance interventions of the boiler that penalize the operation.
La présente invention a pour but de remédier à ces inconvénients en proposant, selon un premier de ses objets, une brique réfractaire comprenant les caractéristiques ennoncées dans la revendication 1.The object of the present invention is to remedy these drawbacks by proposing, according to a first of its objects, a refractory brick comprising the characteristics mentioned in
Grâce à ces caractéristiques, dans un premier mode de réalisation, la brique peut s'inscrire dans un solide ayant pour bases deux polygones égaux et parallèles, dont les côtés sont unis par des polygones, en particulier dont au moins deux côtés opposés s'inscrivent chacun dans un trapèze isocèle. Dans un deuxième mode de réalisation, la brique peut s'inscrire dans un prisme, c'est à dire un solide ayant pour bases deux polygones égaux et parallèles, dont les côtés sont unis par des parallélogrammes.Thanks to these characteristics, in a first embodiment, the brick can be part of a solid having as bases two equal and parallel polygons, the sides of which are united by polygons, in particular of which at least two opposite sides are inscribed. each in an isosceles trapezoid. In a second embodiment, the brick can be part of a prism, that is to say a solid based on two equal and parallel polygons, whose sides are united by parallelograms.
Avantageusement, les briques selon l'invention présentent au moins un plan de symétrie passant par le centre de celles-ci. Avantageusement, une coupe transversale (perpendiculaire au plan de la face chaude et au plan de la face froide) de la brique selon l'invention s'inscrit dans un trapèze, en particulier isocèle.Advantageously, the bricks according to the invention have at least one plane of symmetry passing through the center thereof. Advantageously, a cross section (perpendicular to the plane of the hot face and the plane of the cold face) of the brick according to the invention is in a trapezium, in particular isosceles.
De préférence :
- la valeur de l'écart entre la largeur (W_h) de la face chaude et la largeur (W_c) de la face froide est supérieure ou égale à la valeur de la déformation de la face chaude (HF) dans le sens de ladite largeur dans les conditions d'utilisation de ladite brique, et
- la valeur de l'écart entre la longueur (L_h) de la face chaude et la longueur (L_c) de la face froide est supérieure ou égale à la valeur de la déformation de la face chaude (HF) dans le sens de ladite longueur dans les conditions d'utilisation de ladite brique.
- the value of the difference between the width (W_h) of the hot face and the width (W_c) of the cold face is greater than or equal to the value of the deformation of the hot face (HF) in the sense of said width in the conditions of use of said brick, and
- the value of the difference between the length (L_h) of the hot face and the length (L_c) of the cold face is greater than or equal to the value of the deformation of the hot face (HF) in the direction of said length in the conditions of use of said brick.
De préférence, la brique comprend un matériau à base de carbure de silicium.Preferably, the brick comprises a material based on silicon carbide.
En particulier, les briques sont en carbure de silicium à liaison oxyde.In particular, the bricks are of oxide-bonded silicon carbide.
On peut prévoir que les briques sont en carbure de silicium à liaison nitrure ou oxy-nitrure.It can be provided that the bricks are nitride-bonded silicon carbide or oxy-nitride.
On peut prévoir que la face froide (CF) présente au moins un évidement (102, 202) configuré pour épouser la forme dudit au moins un tube.It can be provided that the cold face (CF) has at least one recess (102, 202) configured to conform to the shape of said at least one tube.
On peut prévoir que la profondeur (D_p) de la brique en sa périphérie est inférieure ou égale à la profondeur (D_h) de la brique en son coeur.It can be expected that the depth (D_p) of the brick at its periphery is less than or equal to the depth (D_h) of the brick in its heart.
On peut prévoir que la face chaude (HF) est sensiblement plane.It can be expected that the hot face (HF) is substantially flat.
On peut prévoir qu'au moins une partie de la face froide (CF) s'inscrit dans un plan.It can be expected that at least a portion of the cold face (CF) fits in a plane.
De préférence, le plan dans lequel s'inscrit au moins une partie de la face froide (CF) est parallèle à la face chaude (HF) .Preferably, the plane in which at least part of the cold face (CF) is inscribed is parallel to the hot face (HF).
Selon l'invention, au moins deux faces latérales opposées présentent un biseau d'angle θ.According to the invention, at least two opposite lateral faces have a bevel with an angle θ.
Selon un autre de ses objets, l'invention concerne un four ou une chambre de combustion statique susceptible d'être soumise à des atmosphères corrosives pouvant comprendre une pluralité de briques réfractaires (100, 200) selon l'invention. De préférence, le four ou la chambre de combustion comprend un ensemble de briques réfractaires identiques.According to another of its objects, the invention relates to a furnace or a static combustion chamber capable of being subjected to corrosive atmospheres which may comprise a plurality of refractory bricks (100, 200) according to the invention. Preferably, the furnace or combustion chamber comprises a set of identical refractory bricks.
La présente invention permet de produire une forme de brique qui permet d'anticiper des déformations irréversibles d'origine chimique de celle-ci lors de son utilisation, en prévoyant des inclinaisons et retraits de matière aux endroits connus pour subir les déformations les plus fortes, et qui, en leur absence, généreraient par ces déformations des contraintes mécaniques supplémentaires sur les briques adjacentes, et qui pourraient en outre se reporter sur le système de fixation.The present invention makes it possible to produce a form of brick that makes it possible to anticipate irreversible deformations of chemical origin of the latter during its use, by providing inclinations and withdrawals of material at the places known to undergo the strongest deformations. and which, in their absence, would generate by these deformations additional mechanical stresses on the adjacent bricks, and which could further refer to the fastening system.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :
- La
figure 1 illustre une coupe transversale d'un premier mode de réalisation de la brique, selon l'axe B-B de lafigure 3 , incluant le logement borgne. - La
figure 2 illustre une coupe transversale du premier mode de réalisation de la brique, excluant le logement borgne. - La
figure 3 illustre une coupe longitudinale du premier mode de réalisation de la brique, selon l'axe A-A de lafigure 2 . - La
figure 4 illustre une coupe transversale d'un deuxième mode de réalisation de la brique, selon l'axe B-B de lafigure 6 , incluant le logement borgne. - La
figure 5 illustre une coupe transversale du deuxième mode de réalisation de la brique, excluant le logement borgne. - La
figure 6 illustre une coupe longitudinale du premier mode de réalisation de la brique, selon l'axe A-A de lafigure 5 . - La
figure 7 illustre une vue de dessus, par la face chaude, du premier mode de réalisation de la brique dans lequel la face chaude est centrée par rapport à la face froide. - La
figure 8 illustre une vue de dessus, par la face chaude, du deuxième mode de réalisation de la brique. - La
figure 9 illustre en coupe longitudinale, deux briques selon le premier mode de réalisation accrochées sur un dispositif individuel de fixation respectif. - La
figure 10 illustre l'évolution des différents types de déformation d'une brique en fonction du temps d'exposition de la brique à une atmosphère corrosive, pour une pluralité de températures.
- The
figure 1 illustrates a cross section of a first embodiment of the brick, along the axis BB of thefigure 3 , including blind housing. - The
figure 2 illustrates a cross-section of the first embodiment of the brick, excluding the blind housing. - The
figure 3 illustrates a longitudinal section of the first embodiment of the brick, along the axis AA of thefigure 2 . - The
figure 4 illustrates a cross-section of a second embodiment of the brick, along the axis BB of thefigure 6 , including blind housing. - The
figure 5 illustrates a cross-section of the second embodiment of the brick, excluding the blind housing. - The
figure 6 illustrates a longitudinal section of the first embodiment of the brick, along the axis AA of thefigure 5 . - The
figure 7 illustrates a view from above, by the hot face, of the first embodiment of the brick in which the hot face is centered with respect to the cold face. - The
figure 8 illustrates a top view, by the hot face, of the second embodiment of the brick. - The
figure 9 illustrates in longitudinal section, two bricks according to the first embodiment hooked on a respective individual fastening device. - The
figure 10 illustrates the evolution of the different types of deformation of a brick as a function of the time of exposure of the brick to a corrosive atmosphere, for a plurality of temperatures.
Les briques réfractaires selon l'invention trouvent une utilité particulière dans un four ou une chambre de combustion statique, typiquement une chaudière. Elles sont donc destinées à cette utilisation, indistinctement conviennent à cette utilisation ou sont configurées pour cette utilisation.The refractory bricks according to the invention find particular utility in a furnace or a static combustion chamber, typically a boiler. They are therefore intended for this use, indistinctly suitable for this use or are configured for this use.
Un premier mode de réalisation de brique réfractaire est illustré en
Un deuxième mode de réalisation de brique réfractaire est illustré en
Dans chacun de ces deux exemples, la brique est destinée à couvrir une paroi de chambre de combustion.In each of these two examples, the brick is intended to cover a combustion chamber wall.
La chambre de combustion comprend un ensemble d'au moins un tube destiné à l'écoulement d'un fluide caloporteur. La chambre de combustion comprend également un système de fixation comprenant un ensemble de dispositifs individuels de fixation, chaque dispositif individuel étant configuré pour pouvoir accrocher une brique individuelle. Une brique individuelle est destinée à être à proximité ou au contact d'au moins un tube.The combustion chamber comprises an assembly of at least one tube for the flow of a coolant. The combustion chamber also includes a fastening system comprising a set of individual fasteners, each individual device being configured to hang an individual brick. An individual brick is intended to be near or in contact with at least one tube.
La brique comprend une face chaude HF et une face froide CF. La face chaude HF est destinée à être exposée aux fumées de combustion de la chambre de combustion. La face froide CF est destinée à être à proximité ou au contact d'au moins un tube ; elle est également équipée d'un logement borgne pour fixer la brique à un dispositif de fixation individuel.The brick has a hot face HF and a cold face CF. The hot face HF is intended to be exposed to combustion fumes from the combustion chamber. The cold face CF is intended to be near or in contact with at least one tube; it is also equipped with a blind housing for fixing the brick to an individual fixing device.
De préférence, la face chaude est plane ou présente un grand rayon de courbure, ce qui simplifie leur fabrication, le nettoyage de la chambre de combustion et limite les risques de corrosion en canalisant mieux les fumées.Preferably, the hot face is flat or has a large radius of curvature, which simplifies their manufacture, the cleaning of the combustion chamber and limits the risk of corrosion by channeling fumes better.
La brique s'inscrit par exemple dans un polyèdre. Comme les briques sont destinées à être apposées les unes aux autres, elles présentent avantageusement, au moins en coupe transversale, une forme qui s'inscrit dans un rectangle.The brick fits for example in a polyhedron. As the bricks are intended to be affixed to each other, they advantageously have, at least in cross section, a shape that fits in a rectangle.
La face chaude HF présente une largeur W_h et une longueur L_h.The hot face HF has a width W_h and a length L_h.
La face froide CF est opposée à la face chaude et présente une largeur W_c et une longueur L_c.The cold face CF is opposite to the hot face and has a width W_c and a length L_c.
Face au problème de décrochage ou de casse des briques, des études ont été menées par le déposant, dont il résulte que ces casses ou chutes sont dues à des déformations irréversibles des briques sous l'effet conjugué de la température et des espèces chimiques présentes dans les fumées de combustion. Ces déformations entrainent des contraintes mécaniques fortes au niveau de la fixation des briques et entre les briques elles-mêmes qui tendent à se repousser, malgré les joints entre elles, et tendent ainsi à s'éloigner du mur de la chambre de combustion contre lequel elles sont placées.Faced with the problem of stall or breakage of bricks, studies have been conducted by the applicant, which results that these breaks or falls are due to irreversible deformations of the bricks under the combined effect of temperature and chemical species present in combustion fumes. These deformations cause strong mechanical stresses in the fixing of the bricks and between the bricks themselves which tend to repel each other, despite the joints between them, and thus tend to move away from the wall of the combustion chamber against which they are placed.
En particulier, l'incinération de déchets ou la combustion de biomasse produit des espèces chimiques qui pénètrent dans les briques et génère des réactions chimiques à l'intérieur de celles-ci ce qui peut provoquer un gonflement de celles-ci par dilatation thermique couplée aux réactions chimiques.In particular, the incineration of waste or the combustion of biomass produces chemical species that penetrate the bricks and generates chemical reactions within them which can cause them to swell by thermal expansion coupled with chemical reactions.
Dans le cas des briques à carbure de silicium, en particulier à liaison oxyde, celles-ci sont poreuses. Le phénomène de déformation a lieu essentiellement en face chaude, à une température de fumées supérieure à 650 °C.In the case of silicon carbide bricks, in particular with an oxide bond, these are porous. The deformation phenomenon takes place essentially in the hot face, at a flue gas temperature above 650 ° C.
En face froide, il n'y a pas de déformation ou la déformation est négligeable par rapport à celle de la face chaude. Ce qui permet avantageusement que la face froide peut présenter au moins un évidement configuré pour épouser la forme d'au moins un tube, cet évidement n'est pas déformé.In cold face, there is no deformation or deformation is negligible compared to that of the hot face. This advantageously allows that the cold face may have at least one recess configured to conform to the shape of at least one tube, this recess is not deformed.
A l'état neuf, les briques présentent initialement une forme s'inscrivant dans un parallélépipède rectangle. Après déformation, il a été observé qu'elles présentent une forme bombée (ovalisée) en face chaude dans le sens de la longueur et de la largeur de la brique.In new condition, the bricks initially have a shape in a rectangular parallelepiped. After deformation, it has been observed that they have a shape curved (oval) in hot face in the direction of the length and width of the brick.
Or, si la dilatation thermique des briques est réversible, en revanche, la déformation chimique qu'elles subissent est irréversible et génère une contrainte mécanique en face froide, vers le dispositif individuel de fixation de chacune d'entre elles.However, if the thermal expansion of the bricks is reversible, however, the chemical deformation they undergo is irreversible and generates a mechanical stress in the cold face, to the individual device for fixing each of them.
Aussi, pour répondre au couplage thermique, chimique et mécanique que subissent certaines briques, et lutter contre le phénomène de déformation, on peut chercher à augmenter la taille des joints entre les briques. Toutefois, cette solution pénalise les échanges thermiques entre les fumées et le fluide caloporteur des tubes et augmente fortement le risque de corrosion des tubes. On peut également chercher à modifier la physico-chimie de la combustion, ce qui n'est pas toujours possible en milieu industriel ; ou chercher à remplacer les briques en carbure de silicium par d'autres matériaux moins assujettis aux déformations, mais au risque d'être plus coûteux.Also, to respond to the thermal, chemical and mechanical coupling that certain bricks undergo, and to fight against the phenomenon of deformation, one can seek to increase the size of the joints between the bricks. However, this solution penalizes the heat exchange between the flue gases and the coolant of the tubes and greatly increases the risk of corrosion of the tubes. One can also seek to modify the physico-chemistry of combustion, which is not always possible in an industrial environment; or seek to replace silicon carbide bricks with other materials that are less subject to deformation, but at the risk of being more expensive.
La présente invention vise à résoudre ce problème de briques susceptibles de se déformer en modifiant astucieusement la forme de briques existantes, de sorte à anticiper la déformation éventuelle qu'elles pourraient subir.The present invention aims to solve this problem of bricks capable of deforming by cleverly modifying the shape of existing bricks, so as to anticipate the possible deformation they could undergo.
En effet, lors de la montée en température du four, les matériaux des briques subissent une dilatation thermique qui dépend de la nature du matériau et qui est directement proportionnelle à la température locale.Indeed, during the temperature rise of the furnace, the materials of the bricks undergo a thermal expansion which depends on the nature of the material and which is directly proportional to the local temperature.
Pour une brique composée de matériaux isotropes, la variation de longueur de la face chaude (la face froide subissant moins de dilation thermique elle se déforme moins que la face chaude, d'où une déformation de type « en banane ») entre une température initiale T0 et une température finale T s'exprime de la manière suivante :
Avec
- ΔL_Thermique : la variation de longueur en m ;
- α un coefficient de dilatation linéaire en K-1 ;
- L0 la longueur initiale en m de la brique à température initiale T0; et
- ΔT = T-T0 la variation de température en degrés K ou C.
- ΔL_Thermic: the variation of length in m;
- α linear coefficient of expansion in K -1 ;
- L0 the initial length in m of the brick at initial temperature T0; and
- ΔT = T-T0 the temperature variation in degrees K or C.
Les briques étant soumises à un gradient de température entre la face exposée aux fumées et la face en contact avec la paroi d'un tube de chaudière, un gradient de dilatation thermique se crée au sein de la brique, et celle-ci est alors soumise à une déformation réversible.The bricks being subjected to a temperature gradient between the face exposed to the fumes and the face in contact with the wall of a boiler tube, a thermal expansion gradient is created within the brick, and this is then subject to a reversible deformation.
En présence d'un environnement corrosif de type scorification ou gazeux, les espèces corrosives pénètrent ou diffusent au sein de la brique via les porosités de celle-ci.In the presence of a corrosive environment of slag or gaseous type, the corrosive species penetrate or diffuse within the brick via the porosities thereof.
Le gradient de température joue alors le rôle de force motrice pour la pénétration de ces espèces chimiques, qui remplissent alors les porosités et réagissent avec les matériaux de la brique en formant alors de nouvelles phases métallurgiques (par transformation allotropique) dont le volume molaire peut être plus important que celui des phases initiales.The temperature gradient then acts as a driving force for the penetration of these chemical species, which then fill the porosities and react with the materials of the brick, thus forming new metallurgical phases (by allotropic transformation) whose molar volume can be more important than that of the initial phases.
En outre, la réactivité chimique est thermiquement activée. Par conséquent, aux températures d'utilisation d'un four, un gradient d'expansion volumique se créée au sein de la brique et se traduit par une déformation irréversible d'origine chimique.In addition, the chemical reactivity is thermally activated. Consequently, at the operating temperatures of a furnace, a volume expansion gradient is created within the brick and results in irreversible deformation of chemical origin.
La déformation chimique (ΔL_chimique) est alors fonction de l'état d'avancement des réactions chimiques d'oxydation du matériau de la brique ou de la formation de nouvelles phases expansives.The chemical deformation (ΔL_chemical) is then a function of the progress of chemical reactions of oxidation of the material of the brick or the formation of new expansive phases.
La déformation globale de la brique s'exprime alors de la manière suivante
Avec :
- Δ_L_élastique, la déformation réversible d'une brique soumise des forces extérieures,
- ΔL_thermique, la déformation réversible d'une brique sous l'effet de la température évoquée précédemment, et
- ΔL_chimique, la déformation irréversible d'une brique sous l'effet de variation de volume associée à sa dégradation chimique.
- Δ_L_elastic, the reversible deformation of a brick subjected to external forces,
- ΔL_thermique, the reversible deformation of a brick under the effect of the temperature mentioned above, and
- ΔL_chemical, the irreversible deformation of a brick under the effect of volume variation associated with its chemical degradation.
L'expérience montre qu'en présence d'atmosphères corrosives, la contribution de la déformation chimique (de l'ordre de 10%) est beaucoup plus importante que les contributions réversibles de la déformation élastique ou thermique (de l'ordre du %).The experiment shows that in the presence of corrosive atmospheres, the contribution of the chemical deformation (of the order of 10%) is much more important than the reversible contributions of the elastic or thermal deformation (of the order of the%) .
Comme illustré
Il en résulte d'une part que la déformation élastique Δ_L_élastique peut être négligée, et d'autre part, que les variations de dimension importantes en face chaude génèrent de fortes contraintes au sein de la brique et sont en partie accommodées par une déformation en face froide.As a result, on the one hand, the elastic Δ_L_elastic deformation can be neglected, and on the other hand, the large dimensional variations in the hot face generate high stresses within the brick and are partly accommodated by a deformation in front of the brick. cold.
Cette déformation en face froide fait alors apparaitre de nouvelles contraintes mécaniques entre la briques et la paroi de tube chaudière et entre le système d'accrochage et la briques.This deformation in cold face then makes appear new mechanical stresses between the brick and the wall of the boiler tube and between the fastening system and the bricks.
Dans ce contexte, on prévoit que la largeur W_h de la face chaude HF est inférieure à la largeur W_c de la face froide CF.In this context, it is expected that the width W_h of the hot face HF is less than the width W_c of the cold face CF.
On peut prévoir en combinaison que la longueur L_h de la face chaude est inférieure à la longueur L_c de la face froide.It can be provided in combination that the length L_h of the hot face is less than the length L_c of the cold face.
Comme la déformation est essentiellement en face chaude et dans le plan de celle-ci, les dimensions de la face chaude inférieures à celles de la face froide permettent, en cas de d'expansion de la face chaude, de limiter les risques de décrochage.As the deformation is essentially in the hot face and in the plane thereof, the dimensions of the hot face lower than those of the cold face, in case of expansion of the hot face, to limit the risk of stall.
De préférence, on prévoit que la valeur de l'écart entre la largeur W_h de la face chaude et la largeur W_c de la face froide est supérieure ou égale à la valeur de la déformation de la face chaude dans le sens de ladite largeur dans les conditions d'utilisation de ladite brique.Preferably, it is expected that the value of the difference between the width W_h of the hot face and the width W_c of the cold face is greater than or equal to the value of the deformation of the hot face in the direction of said width in the conditions of use of said brick.
De même, on prévoit de préférence que la valeur de l'écart entre la longueur L_h de la face chaude et la longueur L_c de la face froide est supérieure ou égale à la valeur de la déformation de la face chaude dans le sens de ladite longueur dans les conditions d'utilisation de ladite brique.Similarly, it is preferably provided that the value of the difference between the length L_h of the hot face and the length L_c of the cold face is greater than or equal to the value of the deformation of the hot face in the direction of said length in the conditions of use of said brick.
Ainsi, la largeur W_h_f de la face chaude HF après déformation est au maximum égale à la largeur W_c de la face froide CF ; et la longueur L_h_f de la face chaude après déformation est au maximum égale à la longueur L_c de la face froide.Thus, the width W_h_f of the hot face HF after deformation is at most equal to the width W_c of the cold face CF; and the length L_h_f of the hot face after deformation is at most equal to the length L_c of the cold face.
Avec de telles dimensions initiales, si la brique subit une déformation maximale en conditions d'utilisation, la largeur finale après déformation W_h_f de la face chaude devient au pire égale à la largeur W_c de la face froide ; et la longueur finale après déformation L_h_f de la face chaude devient au pire égale à la longueur L_c de la face froide. Dans ces conditions, la brique après déformation s'inscrit dans un parallélépipède rectangle et la déformation d'une brique n'exerce pas de contrainte sur une brique adjacente, mais seulement sur le joint qui les relie.With such initial dimensions, if the brick undergoes maximum deformation under conditions of use, the final width after deformation W_h_f of the hot face becomes at worst equal to the width W_c of the cold face; and the final length after deformation L_h_f of the hot face becomes at worst equal to the length L_c of the cold face. Under these conditions, the brick after deformation fits in a rectangular parallelepiped and the deformation of a brick does not exert stress on an adjacent brick, but only on the joint which connects them.
En
Une première brique 100a est accrochée sur un premier dispositif de fixation individuel 1000a, et une deuxième brique 100b est accrochée sur un deuxième dispositif de fixation individuel 1000b.A
Dans ce cas, la distance initiale D_CFi séparant les deux faces froides CF est inférieure à la distance initiale D_HFi séparant les deux faces chaudes HF.In this case, the initial distance D_CFi separating the two cold faces CF is smaller than the initial distance D_HFi separating the two hot faces HF.
Si ces briques subissent une déformation, l'espace libre E initialement réservé en face froide CF entre la brique et la paroi tubulaire TUB permet d'accommoder la déformation de la tuile en face chaude HF en limitant l'appui sur la paroi et donc les contraintes sur le système de fixation.If these bricks undergo a deformation, the free space E initially reserved on the cold face CF between the brick and the tubular wall TUB makes it possible to accommodate the deformation of the tile in the hot face HF by limiting the support on the wall and therefore the constraints on the fastening system.
Une fois la déformation maximale de la brique atteinte, cet espace libre E peut disparaître et la face froide peut alors se retrouver en contact mais sans contrainte avec la paroi. En outre, la distance finale D_HFf (non illustrée) séparant les deux faces chaudes HF, est de dimension comparable à la distance initiale D_CFi séparant les deux faces froides CF, puisque celle-ci est quasiment invariable.Once the maximum deformation of the brick reached, this free space E can disappear and the cold face can then be in contact but without constraint with the wall. In addition, the final distance D_HFf (not shown) separating the two hot faces HF, is comparable in size to the initial distance D_CFi separating the two cold faces CF, since it is almost invariable.
Par rapport à un parallélépipède rectangle illustré en pointillés sur la
Ainsi, les faces latérales sont inclinées d'un angle θ allant par exemple de 0 à 20°, ce qui permet d'augmenter l'espace initial entre deux faces chaudes de deux briques adjacente et retarder ou éviter les contacts brique à brique au cours de la déformation.Thus, the lateral faces are inclined at an angle θ ranging for example from 0 to 20 °, which increases the initial space between two hot faces of two adjacent bricks and delay or avoid the brick-to-brick contacts during deformation.
Comme illustré
La déformation évoquée dans le sens de la longueur et dans le sens de la largeur d'une brique peut induire une déformation dans le sens de la profondeur et conduire à générer des contraintes par appui entre la brique CF et les tubes.The deformation evoked in the direction of the length and in the direction of the width of a brick can induce a deformation in the direction of the depth and lead to generate constraints by support between the brick CF and the tubes.
A cet effet, on peut prévoir que la profondeur de la brique D_p en sa périphérie est inférieure ou égale à la profondeur D_h de la brique en son coeur. Il existe donc un évidement d'épaisseur D_c en périphérie de la brique, telle que D_h = D_p + D_c. sur la
Par profondeur D_h de la brique en son coeur, on entend l'épaisseur maximale de la brique, indépendamment de l'épaisseur du logement borgne.By depth D_h of the brick in its heart, we mean the maximum thickness of the brick, regardless of the thickness of the blind housing.
Ainsi, les pieds de briques, c'est-à-dire la profondeur de la brique D_p en sa périphérie, sont plus courts que la hauteur maximale de la brique entre les tubes de manière à compenser le clivage horizontal généré par le gonflement de la face chaude.Thus, the brick feet, that is to say the depth of the brick D_p at its periphery, are shorter than the maximum height of the brick between the tubes so as to compensate for the horizontal cleavage generated by the swelling of the brick. hot face.
Un premier mode de réalisation de brique est illustré sur les
Par convention, et pour simplifier la présente description, on considère que cette brique est configurée pour être disposée contre des tuyaux verticaux.By convention, and to simplify the present description, it is considered that this brick is configured to be arranged against vertical pipes.
La
La
De préférence, la brique 100 présente un plan longitudinal de symétrie (coupe AA de la
La brique comprend au moins un évidement 102 configuré pour épouser la forme d'au moins un tube, ainsi qu'un logement borgne 103 pour fixer la brique à un dispositif de fixation individuel (en pointillés sur la
La face froide CF présente s'inscrit au moins partiellement dans un plan PP. La brique 100 présente des évidements plans en périphérie qui, en coupe longitudinale (
Ainsi, la face froide (arrière) en contact avec les tubes présentent deux plans inclinés d'un angle α, symétriques sur deux faces opposées, dont la valeur de l'angle α est par exemple comprise entre 0 à 15°, de manière à compenser le clivage vertical généré par le gonflement en face chaude et limiter les contraintes exercées par la pièce de forme sur les tubes d'échangeurs.Thus, the cold face (rear) in contact with the tubes have two plane inclined at an angle α, symmetrical on two opposite faces, the value of the angle α is for example between 0 to 15 °, so as to compensate the vertical cleavage generated by swelling in the hot face and limit the stresses exerted by the shaped part on the exchanger tubes.
La face supérieure UP, comme la face inférieure DW, présente de préférence au moins une partie plane dont l'angle est au minimum de 90° par rapport à une face chaude HF plane. En l'espèce, voir
Dans ce premier mode de réalisation, la brique comprend un premier plan de symétrie : le plan coupe AA de la
Un deuxième mode de réalisation de brique est illustré sur les
Par convention, et pour simplifier la présente description, on considère que cette brique 200 est configurée pour être disposée contre des tuyaux verticaux.By convention, and to simplify the present description, it is considered that this
Elle est équipée d'une gorge 201 pour un joint entre briques adjacentes.It is equipped with a
De préférence, la brique 200 présente un plan longitudinal de symétrie (coupe AA de la
La brique comprend au moins un évidement 202 configuré pour épouser la forme d'au moins un tube, ainsi qu'un logement borgne 203 pour fixer la brique à un dispositif de fixation individuel (en pointillés sur la
La face froide CF présente s'inscrit au moins partiellement dans un plan PP. La brique 200 présente des évidements en périphérie qui, en coupe longitudinale (
Dans le deuxième mode de réalisation, la périphérie de la brique 200 est définie par exemple comme comprise entre l'extrémité de celle-ci et le point d'inflexion entre le biseau d'angle α par rapport au plan PP et la face supérieure UP (voir
Par rapport au premier mode de réalisation, le plan dans lequel s'inscrit la face supérieure UP est également parallèle au plan dans lequel s'inscrit la face inférieure DW mais en coupe longitudinale, aucun de ces plans n'est perpendiculaire à la face chaude HF ou la face froide CF.With respect to the first embodiment, the plane in which the upper face UP is also parallel to the plane in which the lower face DW is inscribed, but in longitudinal section, none of these planes is perpendicular to the hot face. HF or cold face CF.
De préférence, la gorge de joint 201, présente deux dépouilles à 45° ce qui facilite le démoulage de la brique lors de sa fabrication.Preferably, the
Dans ce deuxième mode de réalisation, la brique comprend un plan de symétrie : le plan coupe AA de la
D'un point de vue général, de préférence au moins une partie de la face froide CF s'inscrit dans un plan, ce qui facilite par exemple la fabrication des briques.From a general point of view, preferably at least a portion of the cold face CF is in a plane, which facilitates for example the manufacture of bricks.
On peut prévoir que le plan dans lequel s'inscrit au moins une partie de la face froide est parallèle à la face chaude, ce qui facilite par exemple la fabrication et le transport des briques.It can be provided that the plane in which at least part of the cold face is part is parallel to the hot face, which facilitates for example the manufacture and transport of bricks.
L'invention n'est pas limitée aux modes de réalisation précédemment décrits. Par exemple, on peut prévoir de mettre en oeuvre des briques en carbure de silicium à liaison nitrure ou oxy-nitrure ; sachant que celles-ci se déforment moins que celles à liaison oxyde.The invention is not limited to the previously described embodiments. For example, provision may be made to use silicon carbide bricks with a nitride or oxy-nitride bond; knowing that these deform less than those with oxide bond.
On a illustré une face chaude sensiblement plane, ce qui facilite l'écoulement des fumées le long de cette face. Cependant on peut prévoir que la face chaude présente un relief, par exemple des ondulations (en coupe transversale) ou une forme qui épouse la forme d'au moins un tube en face froide et en face chaude, de sorte que l'épaisseur de la brique soit sensiblement constante (indépendamment de l'épaisseur du logement borgne).There is illustrated a substantially flat hot face, which facilitates the flow of fumes along this face. However, it can be provided that the hot face has a relief, for example corrugations (in cross-section) or a shape that conforms to the shape of at least one tube in the cold face and in the hot face, so that the thickness of the brick is substantially constant (regardless of the thickness of the blind housing).
Claims (8)
- Refractory brick (100, 200) for a wall of a static combustion chamber subjected to corrosive atmospheres, the refractory brick comprising:- a hot face (HF) having a width (W_h) and a length (L_h) and intended to be exposed to combustion fumes; and- a cold face (CF), opposite the hot face (HF), having a width (W_c) and a length (L_c), and intended to be in the vicinity of or in contact with at least one tube intended for the flow of a heat transfer fluid;the length (L_h) of the hot face being less than the length (L_c) of the cold face, in such a way that at least two opposite lateral faces have a bevel of angle θ,
characterised in that the width (W_h) of the hot face is less than the width (W_c) of the cold face,
in that the cold face (CF) is provided with a blind housing (103, 203) in order to fasten the refractory brick to a device for fastening the wall,
and in that the cold face (CF) has two symmetrical planes each inclined by an angle α with respect to a plane (PP) in which said cold face (CF) is inscribed at least partially. - Refractory brick according to claim 1, characterised in that the hot face (HF) is undulated.
- Refractory brick according to claim 1, characterised in that the cold face (CF) has at least one recess (102, 202) configured to hug the shape of said at least one tube, and
in that the hot face (HF) has a shape that also hugs said at least one tube, in such a way that the thickness of the refractory brick is substantially constant independently of a thickness of the blind housing (103, 203). - Refractory brick according to any preceding claim, characterised in that the value of the difference between the width (W_h) of the hot face and the width (W_c) of the cold face is greater than or equal to the value of the deformation of the hot face (HF) in the direction of said width in the conditions of use of said refractory brick, and
in that the value of the difference between the length (L_h) of the hot face and the length (L_c) of the cold face is greater than or equal to the value of the deformation of the hot face (HF) in the direction of said length in the conditions of use of said refractory brick. - Refractory brick according to any preceding claim, characterised in that it comprises a material with a silicon carbide base, and
in that the silicon carbide is an oxide, nitride or oxy-nitride bond. - Refractory brick according to any preceding claim, characterised in that the depth (D_p) of the refractory brick at its periphery is less than or equal to the depth (D_h) of the refractory brick at its core.
- Static combustion chamber or oven able to be subjected to corrosive atmospheres, comprising a plurality of refractory bricks (100, 200) according to any of claims 1 to 6.
- Use of a set of refractory bricks (100, 200) according to any of claims 1 to 6 to form a wall in a static combustion chamber or oven according to claim 7, said static combustion chamber or oven able to be subjected to a corrosive atmosphere due to the combustion fumes and comprising at least one tube intended for the flow of a heat transfer fluid, said wall having a hot face subjected to said corrosive atmosphere and a cold face, opposite said hot face, located in the vicinity of or in contact with said tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14186916T PL2857750T3 (en) | 2013-10-04 | 2014-09-29 | Shaped refractory brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1359673A FR3011618B1 (en) | 2013-10-04 | 2013-10-04 | REFRACTORY SHAPE BRICK |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2857750A1 EP2857750A1 (en) | 2015-04-08 |
EP2857750B1 true EP2857750B1 (en) | 2019-04-03 |
Family
ID=49949852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14186916.4A Active EP2857750B1 (en) | 2013-10-04 | 2014-09-29 | Shaped refractory brick |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2857750B1 (en) |
ES (1) | ES2725602T3 (en) |
FR (1) | FR3011618B1 (en) |
PL (1) | PL2857750T3 (en) |
PT (1) | PT2857750T (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201918A (en) * | 2020-11-10 | 2021-01-08 | 中国电子科技集团公司第二十研究所 | Liquid cooling plate for active phased array radar antenna array surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0103365A1 (en) * | 1982-08-18 | 1984-03-21 | NATIONAL REFRACTORIES & MINERALS CORPORATION | Refractory brick with expansion allowance |
EP2302315A1 (en) * | 2009-08-31 | 2011-03-30 | Saint-Gobain Industriekeramik Düsseldorf GmbH | Anti-corrosion body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2611864B1 (en) * | 1987-02-27 | 1989-05-05 | Stein Industrie | DEVICE FOR PROTECTING BOILER SCREENS, PARTICULARLY FOR GARBAGE INCINERATION FURNACES, AND METHOD FOR MANUFACTURING THE SAME |
US8176859B2 (en) * | 2009-01-22 | 2012-05-15 | General Electric Company | Refractory brick and tapered mortar joint |
-
2013
- 2013-10-04 FR FR1359673A patent/FR3011618B1/en active Active
-
2014
- 2014-09-29 ES ES14186916T patent/ES2725602T3/en active Active
- 2014-09-29 PT PT14186916T patent/PT2857750T/en unknown
- 2014-09-29 PL PL14186916T patent/PL2857750T3/en unknown
- 2014-09-29 EP EP14186916.4A patent/EP2857750B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0103365A1 (en) * | 1982-08-18 | 1984-03-21 | NATIONAL REFRACTORIES & MINERALS CORPORATION | Refractory brick with expansion allowance |
EP2302315A1 (en) * | 2009-08-31 | 2011-03-30 | Saint-Gobain Industriekeramik Düsseldorf GmbH | Anti-corrosion body |
Also Published As
Publication number | Publication date |
---|---|
EP2857750A1 (en) | 2015-04-08 |
PL2857750T3 (en) | 2019-09-30 |
ES2725602T3 (en) | 2019-09-25 |
FR3011618B1 (en) | 2015-10-23 |
FR3011618A1 (en) | 2015-04-10 |
PT2857750T (en) | 2019-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2394735B1 (en) | Reactor-exchanger with bayonet tubes and fire tubes suspended from the upper vault of the reactor | |
EP2857750B1 (en) | Shaped refractory brick | |
JP5473228B2 (en) | Refractory support structure | |
US7204061B2 (en) | Fireproof structure and installation method for protecting water pipes | |
EP1312882B1 (en) | Installation method of fireproof structure for protecting water pipes | |
CA2600228A1 (en) | Refractory tile, in particular for gasifier | |
JP2013019553A (en) | Brick support structure for vertical furnace | |
EP3201529B1 (en) | Refractory system for lining the interior walls of high-temperature furnaces or boilers and method of protection | |
JP3881984B2 (en) | Mounting structure of fireproof tile for water pipe protection and fireproof structure for water pipe protection | |
FR2738328A1 (en) | REFRACTORY PROTECTIVE BLOCKS AND BOILER PROTECTIVE WALL STRUCTURE USING THE SAME | |
EP2715244B1 (en) | Longer life solar power plant receiver | |
JP5134393B2 (en) | Marine boiler | |
CN220119865U (en) | Copper water jacket device at furnace top of reverberatory furnace | |
JP6362971B2 (en) | Tube temperature measuring device and method for manufacturing tube temperature measuring device | |
FR2906343A1 (en) | Expansion bellows for installation e.g. oil and gas installations, has inner and outer radial walls provided with respect to main axis of bellows, and thermal insulation layers placed and sandwiched between walls | |
JPH0894051A (en) | High-temperature corrosion resistant air heater | |
KR102226326B1 (en) | Cross-fire tube for MS6001 Gas turbine | |
KR20020005620A (en) | Refractory tile system for boiler tube/heat exchanger protection | |
JP5990628B2 (en) | Heat exchanger | |
JP4414578B2 (en) | Air heater | |
JP2002295802A (en) | Fixing structure for fire proofing tile | |
WO2021116169A1 (en) | Radiant heating element with free end | |
SU697788A1 (en) | Rotary furnace heat-exchanger | |
JP2010091219A (en) | Heat exchanger for corrosive gas | |
JP2001324104A (en) | Furnace water pipe protective structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140929 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20151005 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160801 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ETABLISSEMENTS HAASSER PRODUITS REFRACTAIRES (SOCI Owner name: VEOLIA PROPRETE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181114 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VEOLIA PROPRETE Owner name: HAASSER PRODUITS REFRACTAIRES |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1116202 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014043920 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2857750 Country of ref document: PT Date of ref document: 20190530 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20190509 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1116202 Country of ref document: AT Kind code of ref document: T Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2725602 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014043920 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
26N | No opposition filed |
Effective date: 20200106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190929 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140929 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230921 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230915 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231019 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240919 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240923 Year of fee payment: 11 Ref country code: PT Payment date: 20240919 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240920 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240917 Year of fee payment: 11 |