EP2855445B1 - Salt of bicyclic aromatic anions for li-ion batteries - Google Patents

Salt of bicyclic aromatic anions for li-ion batteries Download PDF

Info

Publication number
EP2855445B1
EP2855445B1 EP13723888.7A EP13723888A EP2855445B1 EP 2855445 B1 EP2855445 B1 EP 2855445B1 EP 13723888 A EP13723888 A EP 13723888A EP 2855445 B1 EP2855445 B1 EP 2855445B1
Authority
EP
European Patent Office
Prior art keywords
group
formula
salt
acid
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13723888.7A
Other languages
German (de)
French (fr)
Other versions
EP2855445A1 (en
Inventor
Grégory Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP2855445A1 publication Critical patent/EP2855445A1/en
Application granted granted Critical
Publication of EP2855445B1 publication Critical patent/EP2855445B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to bicyclic imidazole compounds, and their salts, their manufacturing processes and their uses, in particular as an electrolyte component for batteries.
  • a lithium ion or sodium ion battery comprises at least one negative electrode, a positive electrode, a separator and an electrolyte.
  • the electrolyte consists of a lithium or sodium salt dissolved in a solvent which is usually a mixture of organic carbonates, in order to have a good compromise between the viscosity and the dielectric constant.
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • the prerequisites for having an electrolyte salt are a good chemical dissociation between the cation and the anion, which implies a negative charge on the anion delocalized or diminished by attracting effects.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • A represents a monovalent cation
  • X independently represents a carbon atom, an oxygen atom, a sulfur atom, a phosphorus atom or a nitrogen atom.
  • the substituents may be independently electron-withdrawing or electro-donor groups defined by a Hammett parameter (the Hammett parameter is a tabulated constant which is determined for a series of groups substituents by measuring the dissociation constant of the corresponding benzoic acids) between -0.7 and 1.0.
  • the substituents are chosen from a cyano group (CN), an R 1 group, an OR 1 type ether group, an N (R 1 ) 2 type amino group, and a CO 2 R 1 type ester group.
  • R 1 has the formula C n H m X ' p with n between 0 and 6, m between 0 and 13, X' is a halogen (F, Cl, Br and I) and p between 1 and 13.
  • the invention firstly relates to bicyclic imidazole compounds (IV) and their salts (V).
  • the invention relates secondly to the processes for producing bicyclic imidazole compounds (IV) and their salts (V).
  • the invention relates to the use of compounds of formula (V).
  • the salts of the bicyclic imidazole compounds (V) according to the present invention are represented by the above general formula wherein A represents a monovalent cation A, for example an alkali metal.
  • the preferred alkali metal is selected from lithium and sodium.
  • the salts (V) may be substituted.
  • the preferred substituents are electron-withdrawing or electro-donating groups, in particular those having a Hammett parameter between -0.7 and 1.
  • Particularly preferred electro-attracting and electro-donating groups are chosen from a cyano group (CN), a group R 1 , an ether group of type OR 1 , an amino group of type N (R 1 ) 2 , an ester group of type CO 2 R 1 , a sulfonyl group type SO 2 R 1 or a phosphonyl group type PO 2 R 1 .
  • R 1 has the formula C n H m X ' p with n between 0 and 6, m between 0 and 13, X' is a halogen (F, Cl, Br and I) and p is between 1 and 13.
  • the bicyclic imidazolates (V) can be prepared from the imidazole compounds (IV) by reacting it with an AZ base, with A having the same meaning as above and Z representing a hydride, hydroxide or carbonate anion.
  • AZ is selected from lithium hydride, lithium carbonate, lithium hydroxide, sodium hydride, sodium carbonate, sodium hydroxide and combinations thereof.
  • Compounds (IV) can be prepared from the condensation of an aromatic aldehyde of general formula (II) and DAMN (I).
  • the process for the preparation of the bicyclic imidazole compounds (IV) comprises (i) a reaction step of the DAMN of formula (I) with an aromatic aldehyde of general formula (II) at a temperature of between 0 and 80 ° C, preferably at 50 ° C, more preferably from 20 to 30 ° C, optionally in the presence of a solvent to give a compound of formula (III), followed (ii) a dehydrogenation step of the compound of formula (III).
  • Step (i) is preferably carried out in the presence of a solvent.
  • a solvent Any compound that solubilizes the reagent (s) can be used as a solvent.
  • the concentration of the DAMN in the reaction medium is preferably from 0.001 to 2 mol / l, more preferably from 0.1 mol / l to 1 mol / l.
  • the molar ratio of the compound (I) to the compound (II) is preferably from 0.25 to 1.5, more preferably from 0.5 to 1.25.
  • the duration of step (i) is preferably 1 to 12 hours, more preferably 1 to 5 hours, for example about 2 hours.
  • step (i) is carried out in the presence of an acidic catalyst, optionally by adding sulfuric acid or a carboxylic acid, such as trifluoroacetic acid, acetic acid or acid. benzoic acid in the reaction medium.
  • an acidic catalyst optionally by adding sulfuric acid or a carboxylic acid, such as trifluoroacetic acid, acetic acid or acid. benzoic acid in the reaction medium.
  • the temperature of the reaction can be constant throughout the first step.
  • the temperature is increasing throughout step (i).
  • Step (ii) can be carried out in the presence of a compound capable of reacting with hydrogen, such as oxygen, hydrogen peroxide and peroxides, N-chlorosuccinimide, N-bromosuccinimide, hydroxyl chloride, hydroxyl fluoride, quinone-type skeleton compounds
  • a compound capable of reacting with hydrogen such as oxygen, hydrogen peroxide and peroxides, N-chlorosuccinimide, N-bromosuccinimide, hydroxyl chloride, hydroxyl fluoride, quinone-type skeleton compounds
  • the bicyclic imidazole compound of formula (IV) is preferably isolated and purified.
  • the reaction medium can be evaporated and the imidazole (III) recrystallized from water and then recovered by filtration.
  • the solid obtained can be dissolved in an aqueous solution of AZ base, preferably lithiated or sodized with a concentration ranging from 10 -5 mol / l to the saturation concentration.
  • the compound salt of formula (IV) is formed the solution can undergo several treatments with activated carbon. The solution can then be evaporated to give the salt of formula (IV).
  • the compounds of formula (V) can be used for the preparation of an electrolyte, dissolving them in a suitable solvent.
  • the solvent may consist of at least one compound selected from carbonates, glymes, nitriles and sulfones.
  • carbonate there may be mentioned in particular ethylene carbonate, dimethylcarbonate, ethylmethylcarbonate, diethylcarbonate, propylene carbonate, glycerol carbonate.
  • ethylene glycol dimethyl ether diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether and diethylene glycol t-butyl methyl ether.
  • nitrites examples include acetonitrile, propionitrile, butyronitrile, methoxypropionitrile, isobutyronitrile and fluorinated compounds derived from the foregoing compounds.
  • sulfones examples include dimethylsulfone, sulfolane, ethylmethylsulfone, propylmethylsulfone, isopropylmethylsulfone, isopropylethylsulfone, tertbutylethylsulfone, tertbutylmethylsulfone and tertbutylpropylsulfone.
  • the solvent is preferably composed of a mixture of compounds, advantageously from 2 to 5, chosen from the carbonates and / or glymes and / or the sulphones mentioned above.
  • the proportions by weight of each of the compounds constituting the solvent are preferably between 1 and 10 with respect to the constituent in a smaller amount, more preferably between 1 and 8.
  • the concentration of compound of formula (V) in the electrolyte is preferably from 0.1 mol / l to 5 mol / l, more preferably from 0.2 mol / l to 2.5 mol / l.
  • the electrolyte consists of a mixture of at least two lithium salts selected from the imidazolate salt (IV), LiPF 6 , LiBF 4 , CF 3 COOLi, CF 3 SO 2 Li LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiFSI (lithium bis (fluorosulfonyl) imide), lithium LiTDI (lithium 1-trifluoromethyl-4,5-dicarbonitrile-imidazolate) and LiPDI (1-pentafluoroethyl).
  • each lithium salt present in the mixture can vary within wide limits and generally represents between 0.1 and 99.9% by weight relative to the total weight of the salts present in the mixture, and preferably between 1 and and 99% by weight.
  • the solution is filtered and extracted with 2 times 250 ml of ether.
  • the aqueous phase is then treated with activated carbon for 2 hours at 50 ° C.
  • the solution is filtered and then evaporated.
  • the residue is then taken up in acetonitrile, the insoluble part corresponding to the lithium carbonate is removed by filtration.
  • the filtrate is then evaporated to give a yellow solid which is the lithium salt of the following formula:
  • the salt (V-1) is then dissolved at different concentrations in a mixture of ethylene carbon and dimethyl carbonate with a mass ratio of 1.
  • the ionic conductivity of the different concentrations is then measured by impedance spectroscopy (FIG. 1).
  • the electrochemical stability of the salt (V-1) relative to Li + / Li is then determined by cyclic voltammetry of a solution of salt (V-1) at 1 mol / L in an ethylene carbonate and dimethyl carbonate mixture with a mass ratio of 1 ( figure 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

La présente invention concerne les composés imidazole bicycliques, et leurs sels, leurs procédés de fabrication ainsi que leurs utilisations, notamment comme composant d'électrolyte pour batteries.The present invention relates to bicyclic imidazole compounds, and their salts, their manufacturing processes and their uses, in particular as an electrolyte component for batteries.

ARRIERE-PLAN TECHNIQUETECHNICAL BACKGROUND

Une batterie lithium-ion ou sodium-ion comprend au moins une électrode négative, une électrode positive, un séparateur et un électrolyte. L'électrolyte est constitué d'un sel de lithium ou sodium dissous dans un solvant qui est généralement un mélange de carbonates organiques, afin d'avoir un bon compromis entre la viscosité et la constante diélectrique.A lithium ion or sodium ion battery comprises at least one negative electrode, a positive electrode, a separator and an electrolyte. The electrolyte consists of a lithium or sodium salt dissolved in a solvent which is usually a mixture of organic carbonates, in order to have a good compromise between the viscosity and the dielectric constant.

Parmi les sels les plus utilisés figure l'hexafluorophosphate de lithium (LiPF6), qui possède beaucoup des nombreuses qualités requises mais présente le désavantage de se dégrader sous forme de gaz d'acide fluorhydrique. Cela pose des problèmes de sécurité, notamment dans le contexte de l'utilisation prochaine des batteries lithium-ion pour les véhicules particuliers.Among the most used salts is lithium hexafluorophosphate (LiPF 6 ), which has many of the required qualities but has the disadvantage of degrading in the form of hydrofluoric acid gas. This poses safety problems, particularly in the context of the forthcoming use of lithium-ion batteries for private vehicles.

Les prérequis pour avoir un sel d'électrolyte sont une bonne dissociation chimique entre le cation et l'anion ce qui implique une charge négative sur l'anion délocalisée ou diminuée par des effets attracteurs.The prerequisites for having an electrolyte salt are a good chemical dissociation between the cation and the anion, which implies a negative charge on the anion delocalized or diminished by attracting effects.

Des sels basés sur l'effet attracteur ont donc été développés tels que le LiTFSI (bis(trifluoromethanesulfonyl)imidure de lithium) et le LiFSI (bis(fluorosulfonyl)imidure de lithium).Salts based on the attractor effect have therefore been developed such as LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (fluorosulfonyl) imide).

D'autres sels cette fois basés sur la délocalisation de la charge ont également été développés tels que le LiTDI (1-trifluorométhyl-4,5-dicarbonitrile-imidazolate de lithium), ainsi que cela est enseigné dans le document WO 2010/023413 . Mais ces derniers présentent des conductivités ioniques plus faibles que ceux précédemment cités.Other salts this time based on the delocalization of the filler have also been developed such as LiTDI (1-trifluoromethyl-4,5-dicarbonitrile-lithium imidazolate), as is taught in the document WO 2010/023413 . But these have lower ionic conductivities than those previously mentioned.

La demanderesse a découvert que la présence d'un second cycle aromatique permettrait d'augmenter la délocalisation de la charge négative et ainsi augmenter cette conductivité ionique.The applicant has discovered that the presence of a second aromatic ring would increase the delocalization of the negative charge and thus increase this ionic conductivity.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

Dans ce qui suit, on désigne par

  • DAMN : le diaminomaléonitrile et est représenté par la formule (I)
    Figure imgb0001
  • Les composés (II) sont représentés par les formules générales développées ci-dessous. Ils sont désignés sous (IIa) lorsque le cycle aromatique est à 6 atomes et sous (IIb) pour un cycle aromatique à 5 atomes
    Figure imgb0002
  • Les composés (III) sont représentés par les formules générales développées ci-dessous. Ils sont désignés sous (IIIa) lorsque le cycle aromatique est à 6 atomes et sous (IIIb) pour un cycle aromatique à 5 atomes
    Figure imgb0003
  • Les composés imidazole bicycliques (IV) sont représentés par les formules générales développées ci-dessous. Ils sont désignés sous (IVa) lorsque le cycle aromatique est à 6 atomes et sous (IVb) pour un cycle aromatique à 5 atomes
    Figure imgb0004
  • Les sels des composés imidazole bicycliques (V) sont représentés par les formules générales développées ci-dessous. Ils sont désignés sous (Va) lorsque le cycle aromatique est à 6 atomes et sous (Vb) pour un cycle aromatique à 5 atomes
    Figure imgb0005
In the following, we designate
  • DAMN: diaminomalonitrile and is represented by formula (I)
    Figure imgb0001
  • The compounds (II) are represented by the general formulas developed below. They are designated under (IIa) when the aromatic ring is 6 atoms and under (IIb) for a 5 atomic aromatic ring
    Figure imgb0002
  • The compounds (III) are represented by the general formulas developed below. They are designated under (IIIa) when the aromatic ring is 6 atoms and under (IIIb) for a 5 atomic aromatic ring
    Figure imgb0003
  • The bicyclic imidazole compounds (IV) are represented by the general formulas developed below. They are designated under (IVa) when the aromatic ring is 6 atoms and under (IVb) for a 5 atomic aromatic ring
    Figure imgb0004
  • The salts of the bicyclic imidazole compounds (V) are represented by the general formulas developed below. They are designated under (Va) when the aromatic ring is 6 atoms and under (Vb) for a 5 atomic aromatic ring
    Figure imgb0005

Dans les formules générales ci-dessus, A représente un cation monovalent, X représente indépendamment un atome de carbone, un atome d'oxygène, un atome de soufre, un atome de phosphore ou un atome d'azote.In the general formulas above, A represents a monovalent cation, X independently represents a carbon atom, an oxygen atom, a sulfur atom, a phosphorus atom or a nitrogen atom.

Lorsque X représente un atome de carbone, de phosphore ou azote, les substituants peuvent être indépendamment des groupements electro-attracteurs ou électro-donneurs définis par un paramètre de Hammett (le paramètre de Hammett est une constante tabulée qui est déterminée pour une série de groupes substituants en mesurant la constante de dissociation des acides benzoïques correspondants) compris entre -0,7 et 1,0. De préférence, les substituants sont choisis parmi un groupement cyano (CN), un groupement R1, un groupement éther de type OR1, un groupement amino de type N(R1)2, un groupement ester de type CO2R1, un groupement sulfonyle type SO2R1 ou un groupement phosphonyle type PO2R1, où R1 a pour formule CnHmX'p avec n compris entre 0 et 6, m compris entre 0 et 13, X' est un halogéne (F, CI, Br et I) et p compris entre 1 et 13.When X represents a carbon, phosphorus or nitrogen atom, the substituents may be independently electron-withdrawing or electro-donor groups defined by a Hammett parameter (the Hammett parameter is a tabulated constant which is determined for a series of groups substituents by measuring the dissociation constant of the corresponding benzoic acids) between -0.7 and 1.0. Preferably, the substituents are chosen from a cyano group (CN), an R 1 group, an OR 1 type ether group, an N (R 1 ) 2 type amino group, and a CO 2 R 1 type ester group. a sulfonyl group type SO 2 R 1 or a phosphonyl group type PO 2 R 1 , where R 1 has the formula C n H m X ' p with n between 0 and 6, m between 0 and 13, X' is a halogen (F, Cl, Br and I) and p between 1 and 13.

L'invention concerne en premier lieu les composés imidazole bicycliques (IV) et leurs sels (V).The invention firstly relates to bicyclic imidazole compounds (IV) and their salts (V).

L'invention concerne en deuxième lieu les procédés de fabrication de composés imidazole bicycliques (IV) et leurs sels (V).The invention relates secondly to the processes for producing bicyclic imidazole compounds (IV) and their salts (V).

L'invention concerne en troisième lieu l'utilisation des composés de formule (V).Thirdly, the invention relates to the use of compounds of formula (V).

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.The invention is now described in more detail and without limitation in the description which follows.

Les sels des composés imidazole bicycliques (V), selon la présente invention sont représentés par la formule générale ci-dessus dans laquelle A représente un cation monovalent A, par exemple un métal alcalin.The salts of the bicyclic imidazole compounds (V) according to the present invention are represented by the above general formula wherein A represents a monovalent cation A, for example an alkali metal.

Le métal alcalin préféré est choisi parmi le lithium et le sodium.The preferred alkali metal is selected from lithium and sodium.

Lorsque X dans la formule générale représente un atome de carbone, de phosphore ou d'azote, les sels (V) peuvent être substitués. Les substituants préférés sont des groupements électro-attracteurs ou électro-donneurs, en particulier ceux ayant un paramètre de Hammett compris entre -0,7 et 1.When X in the general formula represents a carbon, phosphorus or nitrogen atom, the salts (V) may be substituted. The preferred substituents are electron-withdrawing or electro-donating groups, in particular those having a Hammett parameter between -0.7 and 1.

Les groupements électro-attracteurs et électro-donneurs particulièrement préférés, sont choisis parmi un groupement cyano (CN), un groupement R1, un groupement éther de type OR1, un groupement amino de type N(R1)2, un groupement ester de type CO2R1, un groupement sulfonyle type SO2R1 ou un groupement phosphonyle type PO2R1. où R1 a pour formule CnHmX'p avec n compris entre 0 et 6, m compris entre 0 et 13, X' est un halogéne (F, CI, Br et I) et p compris entre 1 et 13.Particularly preferred electro-attracting and electro-donating groups are chosen from a cyano group (CN), a group R 1 , an ether group of type OR 1 , an amino group of type N (R 1 ) 2 , an ester group of type CO 2 R 1 , a sulfonyl group type SO 2 R 1 or a phosphonyl group type PO 2 R 1 . where R 1 has the formula C n H m X ' p with n between 0 and 6, m between 0 and 13, X' is a halogen (F, Cl, Br and I) and p is between 1 and 13.

Préparation des sels des composés d'imidazole bicycliques (imidazolates bicycliques) et des composés d'imidazole bicycliquesPreparation of salts of bicyclic imidazole compounds (bicyclic imidazolates) and bicyclic imidazole compounds

Les imidazolates bicycliques (V) peuvent être préparés à partir des composés imidazole (IV) en faisant réagir celui-ci avec une base AZ, avec A ayant la même signification que ci-dessus et Z représentant un anion hydrure, hydroxyde ou carbonate. De préférence AZ est choisi parmi l'hydrure de lithium, le carbonate de lithium, l'hydroxyde de lithium, l'hydrure de sodium, le carbonate de sodium, l'hydroxyde de sodium et les combinaisons de ceux-ci.

        IV + AZ → V + AH

The bicyclic imidazolates (V) can be prepared from the imidazole compounds (IV) by reacting it with an AZ base, with A having the same meaning as above and Z representing a hydride, hydroxide or carbonate anion. Preferably AZ is selected from lithium hydride, lithium carbonate, lithium hydroxide, sodium hydride, sodium carbonate, sodium hydroxide and combinations thereof.

IV + AZ → V + AH

Les composés (IV) peuvent être préparés à partir de la condensation d'un aldéhyde aromatique de formule générale (II) et du DAMN (I).Compounds (IV) can be prepared from the condensation of an aromatic aldehyde of general formula (II) and DAMN (I).

Le procédé de préparation des composés imidazole bicycliques (IV) comprend (i) une étape réactionnelle du DAMN de formule (I) avec un aldéhyde aromatique de formule générale (II) à une température comprise entre 0 et 80°C, de préférence de 10 à 50°C, plus préférentiellement de 20 à 30°C, en présence éventuellement d'un solvant pour donner un composé de formule (III), suivie (ii) d'une étape de deshydrogénation du composé de formule (III).

        DAMN + II → III + H2O     (i)

        III - H2 → IV     (ii)

The process for the preparation of the bicyclic imidazole compounds (IV) comprises (i) a reaction step of the DAMN of formula (I) with an aromatic aldehyde of general formula (II) at a temperature of between 0 and 80 ° C, preferably at 50 ° C, more preferably from 20 to 30 ° C, optionally in the presence of a solvent to give a compound of formula (III), followed (ii) a dehydrogenation step of the compound of formula (III).

DAMN + II → III + H 2 O (i)

III - H 2 → IV (ii)

L'étape (i) est de préférence mise en oeuvre en présence d'un solvant. Tout composé permettant de solubiliser le(s) réactif(s) peut être utilisé comme solvant. A titre indicatif, on peut citer le dioxane, l'acétonitrile, ou l'ethanol.Step (i) is preferably carried out in the presence of a solvent. Any compound that solubilizes the reagent (s) can be used as a solvent. As an indication, mention may be made of dioxane, acetonitrile or ethanol.

Lorsque l'étape (i) est mise en oeuvre en présence d'un solvant, la concentration du DAMN dans le milieu réactionnel est de préférence de 0,001 à 2 mol/l, plus préférentiellement de 0,1 mol/l à 1 mol/l. Le rapport molaire du composé (I) sur le composé (II) est de préférence de 0,25 à 1,5, plus préférentiellement de 0,5 à 1,25.When step (i) is carried out in the presence of a solvent, the concentration of the DAMN in the reaction medium is preferably from 0.001 to 2 mol / l, more preferably from 0.1 mol / l to 1 mol / l. The molar ratio of the compound (I) to the compound (II) is preferably from 0.25 to 1.5, more preferably from 0.5 to 1.25.

La durée de l'étape (i) est de préférence de 1 à 12 heures, plus particulièrement de 1 à 5 heures, par exemple d'environ 2 heures.The duration of step (i) is preferably 1 to 12 hours, more preferably 1 to 5 hours, for example about 2 hours.

De préférence, l'étape (i) est mise en oeuvre en présence d'un catalyseur acide, éventuellement par ajout d'acide sulfurique ou d'un acide carboxylique, tel que l'acide trifluoroacétique, l'acide acétique ou l'acide benzoïque dans le milieu réactionnel.Preferably, step (i) is carried out in the presence of an acidic catalyst, optionally by adding sulfuric acid or a carboxylic acid, such as trifluoroacetic acid, acetic acid or acid. benzoic acid in the reaction medium.

Selon un mode de réalisation de l'invention, la température de la réaction peut être constante tout au long de la première étape.According to one embodiment of the invention, the temperature of the reaction can be constant throughout the first step.

Selon un autre mode de réalisation de l'invention, la température est croissante tout au long de l'étape (i).According to another embodiment of the invention, the temperature is increasing throughout step (i).

L'etape (ii) peut être réalisée en présence de composé suceptible de réagir avec l'hydrogène, comme l'oxygène, l'eau oxygénée et les péroxydes, le N-chlorosuccinimide, le N-bromosuccinimide, le chlorure d'hydroxyle, le fluorure d'hydroxyle , les composés à squelette type quinoneStep (ii) can be carried out in the presence of a compound capable of reacting with hydrogen, such as oxygen, hydrogen peroxide and peroxides, N-chlorosuccinimide, N-bromosuccinimide, hydroxyl chloride, hydroxyl fluoride, quinone-type skeleton compounds

A l'issue de cette réaction, le composé imidazole bicyclique de formule (IV) est de préférence isolé et purifié.At the end of this reaction, the bicyclic imidazole compound of formula (IV) is preferably isolated and purified.

Ainsi, le milieu réactionnel peut être évaporé et l'imidazole (III) recristallisé dans de l'eau pour ensuite être récupéré par filtration. Le solide obtenu peut être dissous dans une solution aqueuse de base AZ, de préférence lithiée ou sodée avec une concentration allant de 10-5 mol/l à la concentration de saturation. Une fois le sel de composé de formule (IV) est formé la solution peut subir plusieurs traitements au charbon actif. La solution peut ensuite être évaporée pour donner le sel de formule (IV).Thus, the reaction medium can be evaporated and the imidazole (III) recrystallized from water and then recovered by filtration. The solid obtained can be dissolved in an aqueous solution of AZ base, preferably lithiated or sodized with a concentration ranging from 10 -5 mol / l to the saturation concentration. Once the compound salt of formula (IV) is formed the solution can undergo several treatments with activated carbon. The solution can then be evaporated to give the salt of formula (IV).

PréparationPreparation d'un électrolytean electrolyte

Les composés de formule (V) peuvent être utilisés pour la préparation d'un électrolyte, en les dissolvant dans un solvant approprié.The compounds of formula (V) can be used for the preparation of an electrolyte, dissolving them in a suitable solvent.

Le solvant peut être constitué d'au moins un composé choisi parmi les carbonates, les glymes, les nitriles et les sulfones.The solvent may consist of at least one compound selected from carbonates, glymes, nitriles and sulfones.

Comme carbonate, on peut citer notamment l'éthylene carbonate, le dimethylcarbonate, l'éthylméthylcarbonate, le diéthylcarbonate, le propylene carbonate, carbonate de glycerol.As carbonate, there may be mentioned in particular ethylene carbonate, dimethylcarbonate, ethylmethylcarbonate, diethylcarbonate, propylene carbonate, glycerol carbonate.

Comme glymes on peut citer notamment l'éthylène glycol diméthyléther, le diéthylène glycol diméthyléther, le dipropylène glycol diméthyléther, le diéthylène glycol diéthyléther, le triéthylène glycol diméthyléther, le diéthylène glycol dibutyléther, le tétraéthylène glycol diméthyléther et le diéthylène glycol t-buthylméthyléther.As glymes mention may be made in particular of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether and diethylene glycol t-butyl methyl ether.

Comme nitriles on peut citer notamment, l'acétonitrile, le propionitrile, le butyronitrile, le méthoxypropionitrile, l'isobutyronitrile et les composés fluorés dérivants des composés précédents.Examples of nitrites that may be mentioned include acetonitrile, propionitrile, butyronitrile, methoxypropionitrile, isobutyronitrile and fluorinated compounds derived from the foregoing compounds.

Comme sulfones on peut notamment citer le diméthylsulfone, le sulfolane, l'éthylméthylsulfone, le propylméthylsulfone, l'isopropylméthylsulfone, l'isopropyléthylsulfone, le tertbutyléthylsulfone, le tertbutylméthylsulfone et le tertbutylpropylsulfone.Examples of sulfones that may be mentioned include dimethylsulfone, sulfolane, ethylmethylsulfone, propylmethylsulfone, isopropylmethylsulfone, isopropylethylsulfone, tertbutylethylsulfone, tertbutylmethylsulfone and tertbutylpropylsulfone.

Le solvant est de préférence constitué d'un mélange de composés, avantageusement de 2 à 5 choisis parmi les carbonates et/ou glymes et/ou les sulfones précédemment cités.The solvent is preferably composed of a mixture of compounds, advantageously from 2 to 5, chosen from the carbonates and / or glymes and / or the sulphones mentioned above.

Les proportions en poids de chacun des composés constituant le solvant sont de préférence comprises entre 1 et 10 par rapport au constituant en plus faible quantité, plus préférentiellement entre 1 et 8.The proportions by weight of each of the compounds constituting the solvent are preferably between 1 and 10 with respect to the constituent in a smaller amount, more preferably between 1 and 8.

La concentration en composé de formule (V) dans l'électrolyte est de préférence de 0,1 mol/l à 5 mol/l, plus préférentiellement de 0,2 mol/l à 2,5 mol/l. De préférence, l'électrolyte est constitué d'un mélange d'au moins deux sels de lithium choisi parmi le sel d'imidazolate (IV), le LiPF6, le LiBF4, le CF3COOLi, le CF3SO2Li, le LiTFSI (bis(trifluoromethanesulfonyl)imidure de lithium), le LiFSI (bis(fluorosulfonyl)imidure de lithium), le LiTDI (1-trifluorométhyl-4,5-dicarbonitrile-imidazolate de lithium) et le LiPDI (1-pentafluoroéthyl-4,5-dicarbonitrile-imidazolate de lithium). La quantité de chaque sel de lithium présent dans le mélange peut varier dans de larges limites et représente en général, entre 0,1 et 99,9 % en poids par rapport au poids total des sels présents dans le mélange, et de préférence entre 1 et 99 % en poids.The concentration of compound of formula (V) in the electrolyte is preferably from 0.1 mol / l to 5 mol / l, more preferably from 0.2 mol / l to 2.5 mol / l. Preferably, the electrolyte consists of a mixture of at least two lithium salts selected from the imidazolate salt (IV), LiPF 6 , LiBF 4 , CF 3 COOLi, CF 3 SO 2 Li LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiFSI (lithium bis (fluorosulfonyl) imide), lithium LiTDI (lithium 1-trifluoromethyl-4,5-dicarbonitrile-imidazolate) and LiPDI (1-pentafluoroethyl). 4,5-dicarbonitrile-lithium imidazolate). The amount of each lithium salt present in the mixture can vary within wide limits and generally represents between 0.1 and 99.9% by weight relative to the total weight of the salts present in the mixture, and preferably between 1 and and 99% by weight.

EXEMPLEEXAMPLE

L'exemple suivant illustre l'invention sans la limiter.The following example illustrates the invention without limiting it.

On ajoute quelques gouttes d'acide sulfurique, dans 50 ml d'acétonitrile, contenant 1,19 g de DAMN préalablement dissous, et 1,47g de p-CN-benzaldéhyde .Un précipité jaune apparaît alors. La réaction est laissée sous agitation pendant 3 heures. La solution est filtrée et le solide est rincé avec de l'acétonitrile puis de l'éther. Le solide est ensuite séché sous vide à 110°C.A few drops of sulfuric acid are added in 50 ml of acetonitrile, containing 1.19 g of DMAM previously dissolved, and 1.47 g of p-CN-benzaldehyde. A yellow precipitate then appears. The reaction is stirred for 3 hours. The solution is filtered and the solid is rinsed with acetonitrile and then with ether. The solid is then dried under vacuum at 110 ° C.

Dans un ballon de 50 ml, 0,94 g de K2CO3 puis 0,90 g de N-chlorosuccinimide sont ajoutés à 1,0 g du solide précédemment obtenu dissous dans 25 mL de dimethylformamide. La solution est agitée à température ambiante pendant une nuit. 150 ml d'eau sont ajoutés en fin de réaction. La solution est acidifiée jusqu'à pH = 1 avec de l'acide sulfurique. La phase aqueuse est alors extraite avec 2 fois 100 mL d'acétate d'éthyle. Les phases organiques sont séchées puis évaporées. L'analyse RMN du résidu montre la présence du produit désiré. Le résidu est repris dans de l'eau en présence d'un excès de carbonate de lithium. La solution est agitée à température ambiante pendant 3 heures. La solution est filtrée puis extraite avec 2 fois 250 mL d'éther. La phase aqueuse est ensuite traitée au charbon actif pendant 2 heures à 50°C. La solution est filtrée puis évaporée. Le résidu est ensuite repris dans de l'acétonitrile, la partie insoluble correspondant au carbonate de lithium est éliminée par filtration. Le filtrat est alors évaporé et donne un solide jaune qui est le sel de lithium de formule suivante :

Figure imgb0006
In a 50 ml flask, 0.94 g of K 2 CO 3 and 0.90 g of N-chlorosuccinimide are added to 1.0 g of the previously obtained solid dissolved in 25 ml of dimethylformamide. The solution is stirred at room temperature overnight. 150 ml of water are added at the end of the reaction. The solution is acidified to pH = 1 with sulfuric acid. The aqueous phase is then extracted with 2 times 100 ml of ethyl acetate. The organic phases are dried and then evaporated. NMR analysis of the residue shows the presence of the desired product. The residue is taken up in water in the presence of an excess of lithium carbonate. The solution is stirred at ambient temperature for 3 hours. The solution is filtered and extracted with 2 times 250 ml of ether. The aqueous phase is then treated with activated carbon for 2 hours at 50 ° C. The solution is filtered and then evaporated. The residue is then taken up in acetonitrile, the insoluble part corresponding to the lithium carbonate is removed by filtration. The filtrate is then evaporated to give a yellow solid which is the lithium salt of the following formula:
Figure imgb0006

Le sel (V-1) est ensuite dissous à différentes concentrations dans un mélange d'éthylène carbone et de diméthylcarbonate avec un rapport massique de 1. La conductivité ionique des différentes concentrations est ensuite mesurée par spectroscopie d'impédance (figure 1). La stabilité électrochimique du sel (V-1) par rapport au Li+/Li est ensuite déterminée par voltamétrie cyclique d'une solution du sel (V-1) à 1 mol/L dans un mélange éthylène carbonate et diméthylcarbonate avec un rapport massique de 1 (figure 2).The salt (V-1) is then dissolved at different concentrations in a mixture of ethylene carbon and dimethyl carbonate with a mass ratio of 1. The ionic conductivity of the different concentrations is then measured by impedance spectroscopy (FIG. 1). The electrochemical stability of the salt (V-1) relative to Li + / Li is then determined by cyclic voltammetry of a solution of salt (V-1) at 1 mol / L in an ethylene carbonate and dimethyl carbonate mixture with a mass ratio of 1 ( figure 2 ).

Claims (13)

  1. A process for the preparation of a salt of the bicyclic imidazole compound (V) represented by the expanded general formulae below:
    Figure imgb0017
    in which A represents a monovalent cation and X independently represents a carbon atom, an oxygen atom, a sulfur atom, a phosphorus atom or a nitrogen atom, characterized in that an imidazole compound of formula (IV) represented by the expanded general formulae below:
    Figure imgb0018
    is reacted with a base AZ, with A having the same meaning as above and Z representing a hydride, hydroxide or carbonate anion.
  2. The process for the preparation of a salt as claimed in claim 1, characterized in that the monovalent cation A is an alkali metal, preferably chosen from lithium or sodium.
  3. The process for the preparation of a salt as claimed in claim 1 or 2, characterized in that X represents a carbon, phosphorus or nitrogen atom.
  4. The process for the preparation of a salt as claimed in claim 3, characterized in that said salt is substituted with an electron-withdrawing or an electron-donating group preferably chosen from a cyano (CN) group, an R1 group, an ether group of OR1 type, an amino group of N(R1)2 type, an ester group of CO2R1 type, a sulfonyl group of SO2R1 type or a phosphonyl group of PO2R1 type, where R1 has the formula CnHmX'p with n between 0 and 6, m between 0 and 13, X' a halogen (F, Cl, Br and I) and p between 1 and 13.
  5. The process for the preparation of a salt as claimed in claim 4, characterized in that the electron-withdrawing or electron-donating group is chosen from hydrogen, fluorine, the cyano (CN) group, the trifluoromethyl (CF3) group, the trifluoromethoxy (OCF3) group or the methoxy (OCH3) group.
  6. The process as claimed in any one of claims 1 to 5, characterized in that the base AZ is chosen from lithium hydride, lithium carbonate, lithium hydroxide, sodium hydride, sodium carbonate, sodium hydroxide and the combinations of these.
  7. The process as claimed in any one of claims 1 to 6, characterized in that the imidazole compounds (IV) are obtained by condensation of an aromatic aldehyde of general formula (II) represented by the expanded general formulae below:
    Figure imgb0019
    with DAMN (diaminomaleonitrile) represented by the formula (I) below:
    Figure imgb0020
    followed by dehydrogenation of the intermediate compound thus obtained of general formula (III) represented by the expanded general formulae below:
    Figure imgb0021
  8. The process as claimed in claim 7, comprising (i) a stage of reaction of DAMN of formula (I) with an aromatic aldehyde of several formula (II) at a temperature of between 0 and 80°C, preferably from 10 to 50°C, more preferably from 20 to 30°C, optionally in the presence of a solvent, to give a compound of formula (III), followed (ii) by a stage of dehydrogenation of said compound of formula (III).
  9. The process as claimed in claim 7 or claim 8, characterized in that stage (i) is carried out in the presence of a solvent.
  10. The process as claimed in claim 9, characterized in that the solvent is chosen from dioxane, acetonitrile or ethanol.
  11. The process as claimed in any one of claims 7 to 10, characterized in that stage (i) is carried out in the presence of an acid catalyst.
  12. The process as claimed in claim 11, characterized in that the acid catalyst is chosen from sulfuric acid, trifluoroacetic acid, acetic acid or benzoic acid.
  13. The process as claimed in any one of claims 7 to 12, characterized in that stage (ii) of dehydrogenation is carried out in the presence of an oxidizing agent, such as oxygen, hydrogen peroxide, peroxides, N-chlorosuccinimide, N-bromosuccinimide, hypochlorous acid, hypofluorous acid or compounds comprising a quinone-type backbone.
EP13723888.7A 2012-06-04 2013-04-26 Salt of bicyclic aromatic anions for li-ion batteries Not-in-force EP2855445B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255154A FR2991324B1 (en) 2012-06-04 2012-06-04 SALT OF AROMATIC BICYCLIC ANIONS FOR LI-ION BATTERIES
PCT/FR2013/050939 WO2013182768A1 (en) 2012-06-04 2013-04-26 Salt of bicyclic aromatic anions for li-ion batteries

Publications (2)

Publication Number Publication Date
EP2855445A1 EP2855445A1 (en) 2015-04-08
EP2855445B1 true EP2855445B1 (en) 2016-07-20

Family

ID=46754640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13723888.7A Not-in-force EP2855445B1 (en) 2012-06-04 2013-04-26 Salt of bicyclic aromatic anions for li-ion batteries

Country Status (10)

Country Link
US (1) US9550736B2 (en)
EP (1) EP2855445B1 (en)
JP (1) JP6190876B2 (en)
KR (1) KR20150028770A (en)
CN (1) CN104334539A (en)
CA (1) CA2871552A1 (en)
ES (1) ES2597756T3 (en)
FR (1) FR2991324B1 (en)
PL (1) PL2855445T3 (en)
WO (1) WO2013182768A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991323B1 (en) 2012-06-04 2014-06-13 Arkema France SALT OF AROMATIC BICYCLIC ANIONS FOR LI-ION BATTERIES
FR3064822B1 (en) * 2017-04-04 2019-06-07 Arkema France MIXTURE OF LITHIUM SALTS AND USES THEREOF AS BATTERY ELECTROLYTE
US10734677B2 (en) * 2017-06-26 2020-08-04 Robert Bosch Gmbh Substituted imidazole and benzimidazole lithium salts
FR3100539B1 (en) * 2019-09-06 2022-02-25 Arkema France IMIDAZOLE PURIFICATION PROCESS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU47834B (en) * 1989-08-10 1996-01-09 Schering Agrochemical Limited THE AZOLE PESTICIDE
KR100463181B1 (en) * 2002-07-12 2004-12-23 삼성에스디아이 주식회사 An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
FR2935382B1 (en) 2008-08-29 2010-10-08 Centre Nat Rech Scient SALT OF PENTACYLIC ANION AND ITS USE AS ELECTROLYTE
JP2011019508A (en) 2009-12-21 2011-02-03 Ito En Ltd Method for removing oxalic acid in aqueous liquid, method for producing tea beverage by using the same, tea-extract composition, and tea beverage
JP2011198508A (en) 2010-03-17 2011-10-06 Sony Corp Lithium secondary battery, electrolyte for lithium secondary battery, power tool, electric vehicle, and power storage system
FR2991323B1 (en) * 2012-06-04 2014-06-13 Arkema France SALT OF AROMATIC BICYCLIC ANIONS FOR LI-ION BATTERIES

Also Published As

Publication number Publication date
CA2871552A1 (en) 2013-12-12
FR2991324A1 (en) 2013-12-06
ES2597756T3 (en) 2017-01-20
PL2855445T3 (en) 2017-01-31
JP6190876B2 (en) 2017-08-30
KR20150028770A (en) 2015-03-16
US20150126746A1 (en) 2015-05-07
CN104334539A (en) 2015-02-04
FR2991324B1 (en) 2014-06-13
EP2855445A1 (en) 2015-04-08
JP2015521196A (en) 2015-07-27
WO2013182768A1 (en) 2013-12-12
US9550736B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
EP2855444B1 (en) Salt of bicyclic aromatic anions for li-ion batteries
EP2334831B1 (en) Pentacyclic anion salt and use thereof as an electrolyte
CA2833821C (en) Method for producing lithium or sodium bis(fluorosulfonyl)imidide
EP0096629B1 (en) Bis-perhalogenacyl or sulfonyl imides of alkali metals, their solid solutions with plastic material and their use in the production of conducting elements for electrochemical generators
EP1626041B1 (en) New materials useful as electolytic solutes
EP3733596B1 (en) Alkali metal salt of fluorosulfonyl imide
EP2789042B1 (en) Use of mixtures of lithium salts as electrolytes of lithium ion batteries
KR102488908B1 (en) Electrolytes containing 6-membered ring cyclic sulfates
WO2018072024A1 (en) Sulphamic acid derivatives and production methods thereof
EP2855445B1 (en) Salt of bicyclic aromatic anions for li-ion batteries
KR20010067251A (en) Fluorinated sulfonamides as low-flammability solvents for use in electrochemical cells
EP0779671A2 (en) Bis(phenylsulfonyl)imides, process for their preparation and ion conductive materials containing them
FR2903691A1 (en) AROMATIC SULPHONATES AND THEIR PREPARATION.
EP3019469A1 (en) Specific fluorinated compounds used as an organic solvent for lithium salts
EP3972932A1 (en) Process for preparing ammonium salt containing a fluorosulfonyl group
WO2013174697A1 (en) Use of fluorinated 2 -methoxymalonic acid esters in electrolyte or solvent compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, GREGORY

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 813976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013009603

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 813976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160720

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2597756

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013009603

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

26N No opposition filed

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190313

Year of fee payment: 7

Ref country code: PL

Payment date: 20190320

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190315

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190416

Year of fee payment: 7

Ref country code: IT

Payment date: 20190419

Year of fee payment: 7

Ref country code: ES

Payment date: 20190503

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190416

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013009603

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200426

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200426