EP2854288B1 - A matching network for use with an amplifier - Google Patents
A matching network for use with an amplifier Download PDFInfo
- Publication number
- EP2854288B1 EP2854288B1 EP14191308.7A EP14191308A EP2854288B1 EP 2854288 B1 EP2854288 B1 EP 2854288B1 EP 14191308 A EP14191308 A EP 14191308A EP 2854288 B1 EP2854288 B1 EP 2854288B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactance
- amplifier circuit
- transistors
- power
- matching network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000003071 parasitic effect Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 29
- 239000007924 injection Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000006880 cross-coupling reaction Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 2
- 239000010753 BS 2869 Class E Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
- H03F1/523—Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2171—Class D power amplifiers; Switching amplifiers with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45188—Non-folded cascode stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/391—Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45318—Indexing scheme relating to differential amplifiers the AAC comprising a cross coupling circuit, e.g. two extra transistors cross coupled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45332—Indexing scheme relating to differential amplifiers the AAC comprising one or more capacitors as feedback circuit elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45396—Indexing scheme relating to differential amplifiers the AAC comprising one or more switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45631—Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45638—Indexing scheme relating to differential amplifiers the LC comprising one or more coils
Definitions
- the invention described herein generally relates to matching networks for amplifiers.
- a 1.9 GHz 1 W CMOS Class E Power Amplifier for Wireless Communications by K.C. Tsai and P.R. Gray (ESSCIRC, pp. 76-79, 1998 ), referred to herein as the Tsai solution
- a 29 dBm 70.7% PAE Injection-Locked CMOS Power Amplifier for PWM Digitized Polar Transmitter by J. Paek and S. Hong (Microwave and Wireless Components Letters, vol. 20, no. 11, pp. 637-639, 2010 ), referred to herein as the Paek solution
- Figs 6-8 of US2007/126505 show a transformation network, including various inductors and capacitors, which is designed to stabilize the power amplifier.
- the network may include an inductor and capacitors serially coupled between an output of the power amplifier and the load.
- a 2.4 GHz fully integrated CMOS power amplifier using capacitive cross coupling by J. Young Hong, D. Imanishi and K. Okada, A. Matsuzawa, (Wireless information technology and systems (ICWITS), IEEE International conference, August 28, 2010 pages 1-4 ) presents a power amplifier with a capacitive cross coupling to solve the voltage-stress issue.
- a fully digital multimode polar transmitter employing 17b RF DAC in 3G mode by Z. Boos, A.
- Razavi a limiting amplifier incorporating active feedback, inductive peaking and negative Miller capacitance to achieve a voltage gain of 50 dB, a bandwidth 9.4 GHz and a sensitivity of 4.6 mV pp for a bit error rate of 10 -12 while consuming 150 mW.
- "A novel LC T-structure filter integrated with CMOS mixer for image rejection" by A-T. Phan, C-W. Kim, M-S. Kang, Y-A. Shim and S-G. Lee presents an image rejection mixer in heterodyne architecture for 2 GHz band applicatations based on 0.18 ⁇ m CMOS technology.
- a matching network for matching an output impedance of an amplifier circuit to an external load resistor (R L ).
- the matching network comprises:
- the signal ground may correspond to the supply voltage.
- an arrangement comprising the matching network of the first aspect and the external load resistor (R L ).
- the power amplifier disclosed herein comprises a single-stage amplifier that utilizes a cross-coupled tapped cascode topology together with a technique of applying an RF injection current into a wideband node to provide a single-stage power amplifier.
- the power amplifier exhibits a 64% peak PAE, 29 dBm output power, and a 20.5 dB gain over a 2 GHz radio frequency band.
- Figure 1 shows a power amplifier circuit 100 configured to achieve these results.
- Amplifier circuit 100 comprises a cross-coupled cascode transistor unit 110 comprising a pair of cross-coupled cascode transistors 112, a cross-coupled switching transistor unit 120 comprising a pair of cross-coupled switching transistors 122, and an RF current generator 130.
- the RF current generator 130 generates a differential RF injection current based on a differential input signal.
- Switching transistor unit 120 amplifies the injection current to generate an amplified injection current at the wideband node of the amplifier circuit, i.e., the source nodes of the cascode transistors 112.
- Cascode transistor unit 110 further amplifies the injection current to generate the desired amplified signal at the output 220 of the amplifier circuit 100, e.g., at the drain nodes of the cascode transistors 112.
- the amplitude of the output signal generally depends on the differential injection current and the supply voltage V DD applied to the power amplifier circuit 100.
- a matching network 200 may be coupled to the output 220 of the amplifier circuit 100 to match the impedance of the amplifier circuit 100 to that of an external element, e.g., an antenna (not shown). While not required, it will be appreciated that the supply voltage V DD may be applied to the power amplifier circuit 100 via the matching network 200, as shown in Figure 1 .
- the transistors used to implement the power amplifier circuit 100 may comprise any known type of transistor, including but not limited to, NMOS, CMOS, BiCMOS, HBT, and III-V technology (including Bipolar and FET) transistors.
- the improved operation of the amplifier circuit 100 relies on the cross-coupled configurations of the transistor units 110, 120 and the tap capacitors 114 of the cascode transistor unit 110. As shown in Figure 2 and explained in more detail herein, this configuration causes a signal B at the source node of a cascode transistor 112 to have the same amplitude as, but be out-of-phase from, both a signal A at the gate node of the same cascode transistor 112 and a signal C at a drain node of the opposite switching transistor 122. To further explain the details of the power amplifier circuit 100, the following description considers each of the RF current generator 130, switching transistor unit 120, and cascode transistor unit 110 separately.
- RF current generator 130 generates a differential injection current I RF + , I RF- based on a differential input signal D + , D - .
- Figures 3-6 depict various exemplary RF current generators 130. It will be appreciated, however, that current generators other than those shown herein may also be used.
- the RF current generator 130 depicted in Figure 3 comprises a pair of injection transistors 132 configured to generate the RF differential injection current at the drain nodes from an input signal comprising an analog RF differential voltage signal applied to the gate nodes.
- the injection transistors 132 are configured to operate as voltage-to-current converters.
- the drain node of each injection transistor 132 couples to the drain node of the corresponding switching transistor 122 and to the source node of the corresponding cascode transistor 112.
- An alternative RF current generator 130 may comprise a mixer configured to generate the RF differential injection current from an RF local oscillator signal and an input signal comprising a baseband differential input signal.
- upconversion to RF takes place inside the amplifier circuit 100, which removes the need for any upconversion outside the amplifier circuit 100. It will be appreciated that implementing upconversion inside the amplifier circuit 100 provides a more linear result, with respect to both upconversion and power amplification. Further, such mixers advantageously eliminate the need for separate RF drivers and other RF circuitry, which generally have high dynamic range requirements.
- Figure 4 depicts an RF current generator 130 comprising a transconductance mixer configured to generate the RF differential injection current at the RF current generator outputs from an RF local oscillator signal (LO) and an input signal comprising a baseband differential input current (BB).
- the RF current generator 130 of Figure 4 comprises a first pair of baseband transistors 134, a second pair of baseband transistors 135, and a pair of local oscillator transistors 136, e.g., NMOS transistors 136.
- the drain node of one of the local oscillator transistors 136 couples to a source nodes of corresponding transistors of the first and second pairs of baseband transistors 134, 135, and the drain node of the other local oscillator transistor 136 couples to the source nodes of the other of the first and second pairs of baseband transistors 134, 135, as depicted in Figure 4 .
- the drains of the first pair of baseband transistors 134 also cross-couple with the drains of the second pair of baseband transistors 135.
- the positive and negative local oscillator signals are applied to the gate nodes of respective transistors of the local oscillator transistor pair 136.
- the differential baseband input signal is upconverted to the LO frequency to generate the RF differential injection current I RF + , I RF - at the drain nodes of the baseband transistors 134, 135.
- the RF current generator 130 comprises a differential Quadrature mixer comprising an In-phase mixing unit 138 and a Quadrature-phase mixing unit 140, as depicted in Figure 5 .
- the input signal comprises a baseband input signal having a differential In-phase portion BB I + , BB I - and a differential Quadrature-phase portion BB Q + , BB Q - , where the differential outputs from each mixing unit 138, 140 are cross-coupled to combine the In-phase and Quadrature-phase output portions to provide I RF + at one output and I RF - at the other output.
- In-phase mixing unit 138 mixes the differential In-phase portion BB I + , BB I - with the differential In-phase local oscillator signal to generate the RF differential In-phase current I RF _ I + , I RF_I - .
- Quadrature-phase mixing unit 140 mixes the differential Quadrature-phase portion BB Q + , BB Q - with the differential Quadrature-phase local oscillator signal to generate the RF differential Quadrature-phase current I RF _ Q + , I RF_Q - .
- the differential outputs from each mixing unit 138, 140 are cross-coupled to combine the output positive In-phase and Quadrature-phase portions, I RF _ I + and I RF_Q + , to provide I RF + at one output, and to combine the output negative In-phase and Quadrature-phase portions, I RF _ I - and I RF _ Q - , to provide I RF - at the other output.
- the RF current generator 130 comprises an RF digital-to-analog converter/mixer.
- the input signal comprises a digital baseband input signal
- the RF current generator 130 upconverts the bits of the digital baseband input signal based on the an RF local oscillator signal to generate the RF differential injection current I RF + , I RF - .
- One exemplary RF digital-to-analog converter is disclosed in "A fully Digital Multimode Polar Transmitter Employing 17b RF DAC in 3G Mode" by Boos et al., and published at ISSCC 2011, Session 21, Cellular 21.7 (978-1-61284-302-5/11), which is incorporated herein by reference.
- This exemplary RF digital-to-analog converter employs 10 thermometer and 4 binary-coded bits with a high oversampling, using a GHz range clock, and providing overall 17b DAC resolution in 3G mode, and 19b in EDGE mode. It will be appreciated that other RF digital-to-analog converters may also be used.
- Cascode transistor unit 110 comprises a pair of cascode transistors 112 cross-coupled between the drain nodes and a pair of tap capacitors C tap 114 at the gate nodes.
- the tap capacitors 114 are applied to the gate nodes to perform voltage division with the gate node capacitance (inherent in the gate node) to reduce the gate voltage swing.
- the tap capacitors 114 have a (matched) capacitance selected to control the signal from the cross-coupled drain nodes applied to the gate nodes, so that the amplitude of the gate node signal substantially equals the amplitude of the signal at the corresponding source node, or to differ from the amplitude of the source signal at the corresponding source node by no more than 50%.
- This voltage division protects the cascode transistors 112 from oxide overvoltage, reduces the capacitive loading of the matching network 200, and enables the desired amount of loop-gain to be provided for self-oscillation.
- the cross-coupling between the cascode transistors 112 flips the phase of the signals applied to the gate nodes, e.g., by 180°.
- the amplitudes at the gate and source nodes may be substantially equal, but the signals at these nodes are out of phase.
- this configuration reduces the signal swing and the impedance of the source nodes of the cascode transistors 112, which relaxes both voltage stress and output power requirements of the switching transistors 122.
- using a cross-coupled tapped cascode transistor structure ensures that the swing at the gate node of the cascode transistors 112 tracks the output at the drain nodes over the entire bandwidth.
- the switching transistor unit 120 comprises a pair of switching transistors 122 cross-coupled between the drain and gate nodes.
- the differential current output by the drain nodes of the cross-coupled switching transistors 122 increases the injection current I RF , which leads to a wider locking range at a wideband node of the power amplifier circuit 100, i.e., the source nodes of the cascode transistors 112.
- the switching transistors 122 are on (e.g., when the output power exceeds some threshold) the majority of the injection current conducts through the cascode transistors 112.
- the switching transistors 122 are off.
- the cross-coupled configuration of the switching transistors enables the size of the injection transistors 132 to be reduced as long as the injection transistors 132 remain large enough so that the switching transistors 122 maintain a switching mode of operation.
- the wideband impedance at the source node of the cascode transistors 112 combined with the switching properties of the switching transistors 122 (and in some cases, the injection transistors 132) provides square-wave current and voltage signals with steep edges at the source nodes of the cascode transistors 112. Because the voltage and current are not high simultaneously except during injection by the current generator 130, the resulting losses due to the switching transistor unit 120 and current generator 130 are dominated by the injection current output by RF current generator 130.
- the power amplifier circuit 100 may be coupled to a matching network 200 configured to match the output impedance of the amplifier circuit 100 to that of an external load (not shown).
- Figures 7-10 depict exemplary matching networks 200. It will be appreciated that the present invention is not limited to the depicted matching networks 200.
- Figure 7 depicts one exemplary matching network 200 coupling the load, represented by R L , C P , and L P , and the reactive components represented by L S , L D , and C S .
- L S and C S are connected as a series resonance circuit with the external load, which results in a negative (capacitive) reactance for low frequencies and a positive (inductive) reactance for high frequencies.
- L D comprises a current source. At low frequencies L D is a short, while at high frequencies, C par,d (in the amplifier circuit 100) is a short.
- reactive components L D and C par,d set the limit for of the bandwidth over which the power amplifier can be efficient using the matching network 200 of Figure 7 .
- the impedance may be desirable to provide generally constant impedance to the drain nodes of the cascode transistors across a wide range of frequencies.
- generally constant could mean actually constant, but it is more likely that the impedance has some variation, having for example no more than a 5% variation over the required or desired wideband frequency range. In other cases, a 1% might be required, while in still other cases 2%, 10%, 20%, or anything in between is acceptable.
- the acceptable variation might be affected by the specific components, values, or operating conditions of the circuit. Preferably, the limited variation applies over the entire required or desired wideband frequency range. Nevertheless, there may be frequency intervals where a larger variation is acceptable.
- FIG. 8 depicts an alternative higher order matching network 200 according to an embodiment configured to provide a generally constant impedance.
- the matching network 200 couples a load represented by R L , and reactive components represented by C S , L S , L D , , L D 2 , and C D .
- a first reactance unit comprises L D 1 and L D 2 , which are serially coupled between signal ground, which may, e.g., correspond to the supply voltage V DD , and each of the drain nodes of the cascode transistor unit 110.
- a second reactance unit comprises C S and L S serially coupled between a load resistor R L and each of the drain nodes of the cascode transistor unit 110.
- a third reactance unit comprises at least one capacitor C D coupled at one node between R L and C S , and at the other node between the inductors L D 1 and L D 2 of the first reactance unit.
- the inductors of the first reactance unit generate a first high positive reactance at low frequencies, which keeps the losses low, even for low frequencies, where a single inductor is considered to be a short, and a second positive reactance at high frequencies.
- the second reactance unit generates a negative reactance at low frequencies and third high positive reactance at high frequencies.
- C par,d in the amplifier circuit 100
- the effect of C par,d decreases (it is effectively cancelled).
- Such reactance properties yield higher impedances at the drains of the cascode transistors 112, and therefore, widen the bandwidth and efficiency with respect to frequency.
- FIGs 9 and 10 depict other exemplary matching networks 200 comprising a transformer 230.
- the transformer 230 is configured as a balun, where one side of the transformer is differentially connected to the power amplifier circuit 100 and the other side connects to the load R L in a single-ended manner.
- one side of the transformer is differentially connected to the power amplifier circuit 100 while the other side differentially connects to the load R L .
- the performance of the matching networks 200 in Figures 9 and 10 is generally the same, and is generally comparable to that of the matching networks 200 of Figures 7 and 8 .
- the matching network 200 of Figure 10 is not a balun, an additional balun would be needed before the antenna for this embodiment.
- Figures 11-16 depict various simulation results for exemplary cases of the power amplifier disclosed herein.
- Figures 11-14 depict parameter and performance results for a power amplifier configuration comprising the power amplifier circuit 100 of Figure 1 , the RF current generator 130 of Figure 3 , and the matching network 200 of Figure 7 .
- Figures 11A and 11B respectively show the supply voltage ( V DD ) and cascode bias voltage ( B cc ) with respect to input power.
- V DD supply voltage
- B cc cascode bias voltage
- the supply voltage was kept constant at 0.48 V.
- the supply voltage was increased to allow more headroom for the output signal.
- the supply voltage is 3.0 V at the peak input power.
- Figure 11B shows that the cascode bias voltage has similar characteristics to the supply voltage, except that the values go from 0.865 V for the linear mode of operation to a maximum bias of 1.9 V.
- Figure 12 depicts the output power, gain, and PAE results as a function of the input power at 2 GHz. As shown in Figure 12 , the output power tracks the input power linearly, which is also demonstrated by the flat gain response. The PAE peaks at 64%. When the input power is backed off by 16 dB, the PAE reduces to 37%. Considering the power range, Figure 12 demonstrates that the power amplifier operates over more than an 80 dB range, which satisfies WCDMA requirements.
- Figures 13A and 13B depict the frequency response for the output power and PAE for different input powers.
- Figure 13A demonstrates that the -3 dB bandwidth of the power amplifier circuit 100 is 1.2 GHz (between 1.4 and 2.6 GHz).
- Figure 13A further demonstrates that the bandwidth increases for lower input powers.
- Figure 13B demonstrates that the PAE at the peak output power is above 50% between 1.6 GHz and 2.6 GHz.
- the PAE is at a constant value of 20% for in band frequencies, and rolls off quickly outside the bandwidth.
- Figures 14A and 14B depict the linearity of the gain error and phase error, which was measured in a static fashion over the WCDMA output power range of approximately 80 dB.
- the power amplifier circuit 100 has a gain error of 0.2 dB over the entire range and linear gain during class AB operations.
- the AM-PM conversion Figure 14B
- the total error is 17° over the entire output power range.
- the total error (both AM-AM and AM-PM) in the power amplifier is within a range of pre-distortable values.
- Figures 15A and 15B depict linearity performance results for the power amplifier comprising the power amplifier circuit 100 of Figure 1 , the RF current generator 130 of Figure 4 , and the matching network 200 of Figure 7 .
- Figure 15A demonstrates that the gain error degrades slightly when the transconductance amplifier replaces the injection transistor embodiment of the RF current generator 130, but the total phase error improves to roughly 1° ( Figure 15B ). Again, the total error (both AM-AM and AM-PM) in the power amplifier is within pre-distortable values.
- Figures 16A and 16B depict the frequency response for the output power and PAE for the power amplifier comprising the power amplifier circuit 100 of Figure 1 , the RF current generator 130 of Figure 4 , and the matching network 200 of Figure 8 .
- Figure 16A demonstrates that the -3 dB bandwidth of the power amplifier circuit 100 is 2.0 GHz (between 0.6 and 3.6 GHz).
- Figure 16A further demonstrates that the bandwidth stays the same or increases for lower input powers.
- Figure 16B demonstrates that the PAE at the peak output power is above 50% between 0.6 GHz and 3.4 GHz. When the output power is backed off by 18 dB, the PAE is at a constant value of approximately 20% for frequencies between 0.7 and 2.5 GHz.
- the power amplifier circuit disclosed herein comprises an RF switched-mode power amplifier (SMPA).
- SMPA RF switched-mode power amplifier
- switching typically dominates the losses, e.g., from power dissipation due to charging and discharging capacitances between the supply and ground.
- a tuned circuit e.g., an LC-oscillator
- the reactive energy may alternate between capacitors and inductors in the matching network 200, rather than all of it being dissipated in the switch resistances every RF cycle.
- the capacitance may be minimized, resulting in a low tank Q when connected to the resistive output load, and a wide bandwidth.
- the losses can be reduced.
- the power amplifier circuit 100 disclosed herein may be implemented in the STMicroelectronics 65 nm CMOS process with eight metal layers and MIM capacitors.
- the cascode transistors 112 may be implemented using thick oxide 2.5 V I/O devices.
- all transistors are drawn in a common-centroid layout to minimize mismatch. Because the area of each individual transistor is also large, the resulting mismatch is small.
- the resulting chip has a chip area of 0.52x0.48 mm 2 , including pads.
- the power amplifier circuit 100 disclosed herein provides a single-stage amplifier solution using 65 nm CMOS to achieve, in one embodiment, a 2 GHz bandwidth, 29 dBm output power, 20.5 dB gain, and 64% PAE. Such performance results are as good as some past multiple stage solutions, and generally are better than most past amplifier solutions.
- the power amplifier 100 and matching network 200 disclosed herein may be used in a Hybrid-Envelope Elimination and Restoration (H-EER) system, such as shown in Figure 17 , where the amplifier operates as a Mixed-Mode Power Amplifier (MMPA).
- MMPA refers to the operation of the amplifier as a self-oscillating Switched-Mode Power Amplifier (SMPA) for high output power levels, and as a linear class AB power amplifier for low output power levels, e.g., when the power amplifier is not the main power consumer.
- SMPA Switched-Mode Power Amplifier
- linear class AB power amplifier for low output power levels
- the power amplifier circuit disclosed herein utilizes a cross-coupled tapped cascode topology together with a technique of applying an RF injection current into a wideband node to provide a single-stage power amplifier with improved PAE, output power, and gain over a wide radio frequency band. It will be appreciated that while the power amplifier disclosed herein may be used for wideband operations, the power amplifier also provides high efficiency, output power, and gain for narrower frequency band applications.
- the power amplifier circuit comprises a current generator, a pair of cross-coupled switching transistors, a pair of cross-coupled cascode transistors, and first and second tap capacitors.
- the current generator is configured to generate a radio frequency differential injection current at a differential current generator output based on an input signal.
- the input signal may comprise any one of an analog input voltage signal at the radio frequency, or a baseband input signal, e.g., an analog or digital baseband input signal.
- the switching transistors each include a source node, a gate node, and a drain node, and are cross-coupled such that the drain node of one switching transistor couples to the gate node of the other switching transistor. Further, the drain nodes of the switching transistors are coupled to the differential current generator output to receive the differential injection current.
- the cascode transistors each include a source node, a gate node, and a drain node, and are cross-coupled such that the drain node of one cascode transistor couples to the gate node of the other cascode transistor.
- the cross-coupled cascode transistors are configured to generate a differential amplified output signal at the drain nodes of the cascode transistors based on a supply voltage operatively coupled to the drain node of the cascode transistors and the differential injection current applied to the source node of the cascode transistors.
- the first and second tap capacitors couple to the respective gate nodes of the cascode transistors.
- the tap capacitors have a capacitance selected to control the amplitude of a gate signal at the gate nodes of the cascode transistors to substantially equal the amplitude of a source signal at the corresponding source nodes of the cascode transistors.
- substantially equal could mean equal, but more likely means that the amplitude of the gate signals at the gate nodes of the cascode transistors has some deviation, e.g., deviates within a certain range around the amplitude of the source signals at the corresponding source nodes of the cascode transistors. The deviation range might, for example, be 10%.
- the deviation range might be 5% in some cases, 2% in other cases, 20% in other cases, 50% in other cases, or any value in between, depending on the specific components values or operating conditions of the circuit.
- this deviation range is over the entire dynamic range of the amplifier circuit. Nevertheless, there may be intervals where the deviation range is larger. The total length of such intervals preferably makes up no more than 20% of the entire dynamic range, but in some cases, a total interval length of, e.g., 10% or 5% or 2% might be required.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Description
- The invention described herein generally relates to matching networks for amplifiers.
- Current wireless technology trends towards increasing numbers of wireless standards and radio frequency (RF) bands to support wireless communications have led to the development of multi-standard, multi-band cellular systems. Such efforts have produced well-performing wideband receivers and frequency synthesizers. However, power amplifiers having the desired performance, e.g., Power-Added Efficiency (PAE), output power, etc., across the multiple frequency bands remains a challenge for such cellular systems.
- While various groups have attempted to solve this problem, the results generally do not provide sufficient efficiency across a wide frequency band, undesirably require multiple amplifier stages, do not provide wideband operation, etc. For example, "A Polyphase Multipath Technique for Software-Defined Radio Transmitters" by R. Shrestha, E.A.M. Klumperink, E. Mensink, G.J.M. Wienk, and B. Nauta (IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2681-2692, 2006) provides a wideband solution, but the output power is insufficient and the efficiency across the wideband is low relative to single band amplifiers. "A 1.9 GHz 1 W CMOS Class E Power Amplifier for Wireless Communications" by K.C. Tsai and P.R. Gray (ESSCIRC, pp. 76-79, 1998), referred to herein as the Tsai solution, and "A 29 dBm 70.7% PAE Injection-Locked CMOS Power Amplifier for PWM Digitized Polar Transmitter" by J. Paek and S. Hong (Microwave and Wireless Components Letters, vol. 20, no. 11, pp. 637-639, 2010), referred to herein as the Paek solution, provide alternative solutions using injection-locked power amplifiers. These solutions, however, require multiple amplifier stages and have not shown wideband frequency operation. Another solution, "A 65 ), referred to herein as the Apostolidou solution, provides a wideband solution with improved PAE and output power, but requires multiple amplifier stages, which undesirably increases the chip area and power consumption of the amplifier.
US 2007/126505 discloses a method and apparatus for use in power amplifiers for reducing the peak voltage that resistors are subjected to.Figs 6-8 ofUS2007/126505 show a transformation network, including various inductors and capacitors, which is designed to stabilize the power amplifier. The network may include an inductor and capacitors serially coupled between an output of the power amplifier and the load. "A 2.4 GHz fully integrated CMOS power amplifier using capacitive cross coupling" by J. Young Hong, D. Imanishi and K. Okada, A. Matsuzawa, (Wireless information technology and systems (ICWITS), IEEE International conference, August 28, 2010 pages 1-4) presents a power amplifier with a capacitive cross coupling to solve the voltage-stress issue. In "A fully digital multimode polar transmitter employing 17b RF DAC in 3G mode" by Z. Boos, A. Menkhoff, F. Kuttner, M. Schimper, J. Moreira, H. Geltinger, P. Pfann, A. Belitzer and T. Bauernteind, (Solid-State cicuits conference digest of technical papers (ISSCC), IEEE International, February 20, 2011) a multimode multiband power amplifier is presented using digital polar transmission concept. In "10-Gb/s limiting amplifier and laser/modulator driver in 0.18-/spl ,u/m CMOS technology" by S. Galal and B. Razavi a limiting amplifier incorporating active feedback, inductive peaking and negative Miller capacitance to achieve a voltage gain of 50 dB, a bandwidth 9.4 GHz and a sensitivity of 4.6 mVpp for a bit error rate of 10-12 while consuming 150 mW. "A novel LC T-structure filter integrated with CMOS mixer for image rejection" by A-T. Phan, C-W. Kim, M-S. Kang, Y-A. Shim and S-G. Lee (Intelligent signal processing and communication systems, ISPACS Proceedings of 2004 international synopsium on Seoul, Korea, November 18-19, 2004) presents an image rejection mixer in heterodyne architecture for 2 GHz band applicatations based on 0.18 µm CMOS technology. - Thus, there remains a need for an improved power amplifier useful in wideband RF scenarios.
- According to a first aspect there is provided a matching network for matching an output impedance of an amplifier circuit to an external load resistor (RL). The matching network comprises:
- two first reactance units each comprising two inductors (LD1, LD2) serially couplable between a signal ground and respective first and second outputs of the amplifier circuit for generating a first positive reactance at low frequencies and a second positive reactance at high frequencies;
- two second reactance units each comprising at least one series capacitor (Cs) and at least one series inductor (Ls) serially couplable between a respective end of the external load resistor (RL) and the respective first and second outputs of the amplifier circuit, for generating a negative reactance at low frequencies and a third positive reactance at high frequencies; and
- two third reactance units each comprising at least one control capacitor (CD) couplable at one node between the respective end of the external load resistor (RL) and the respective end of the second reactance unit and at the other node between the inductors (LD1, LD2) of the respective first reactance unit, for generating a short at high frequencies so as to reduce a parasitic capacitance at the first and second outputs of the amplifier circuit at high frequencies,
- wherein a generally constant impedance is provided across a wideband frequency range.
- The signal ground may correspond to the supply voltage. According to a second aspect there is provided an arrangement comprising the matching network of the first aspect and the external load resistor (RL).
-
-
Figure 1 depicts a power amplifier circuit. -
Figure 2 depicts signal diagrams for the signals at selected points of the power amplifier circuit ofFigure 1 . -
Figure 3 depicts a circuit diagram for an RF current. -
Figure 4 depicts a circuit diagram for an RF current generator. -
Figure 5 depicts a circuit diagram for an RF current generator. -
Figure 6 depicts a circuit diagram for an RF current generator. -
Figure 7 depicts a circuit diagram for a matching. -
Figure 8 depicts a circuit diagram for a matching network according to an exemplary embodiment. -
Figure 9 depicts a circuit diagram for a matching. -
Figure 10 depicts a circuit diagram for a matching. -
Figures 11A and 11B respectively depict supply voltage and cascode bias vs. input power for the amplifier circuit comprising the components ofFigures 1 ,3 , and7 . -
Figure 12 depicts output power, power gain, and PAE vs. input power for the amplifier circuit comprising the components ofFigures 1 ,3 , and7 . -
Figures 13A and 13B respectively depict output power and PAE vs. frequency for the amplifier circuit comprising the components ofFigures 1 ,3 , and7 . -
Figures 14A and 14B respectively depict gain error and phase error vs. input power for the amplifier circuit comprising the components ofFigures 1 ,3 , and7 . -
Figures 15A and 15B respectively depict gain error and phase error vs. output power for the amplifier circuit comprising the components ofFigures 1 ,4 , and7 . -
Figures 16A and 16B respectively depict output power and PAE vs. frequency for the amplifier circuit comprising the components ofFigures 1 ,4 , and8 . -
Figure 17 depicts an exemplary transmitter application for the power amplifier disclosed herein. - The power amplifier disclosed herein comprises a single-stage amplifier that utilizes a cross-coupled tapped cascode topology together with a technique of applying an RF injection current into a wideband node to provide a single-stage power amplifier. In one embodiment, the power amplifier exhibits a 64% peak PAE, 29 dBm output power, and a 20.5 dB gain over a 2 GHz radio frequency band.
Figure 1 shows apower amplifier circuit 100 configured to achieve these results.Amplifier circuit 100 comprises a cross-coupledcascode transistor unit 110 comprising a pair ofcross-coupled cascode transistors 112, a cross-coupledswitching transistor unit 120 comprising a pair ofcross-coupled switching transistors 122, and an RFcurrent generator 130. Broadly, the RFcurrent generator 130 generates a differential RF injection current based on a differential input signal. Switchingtransistor unit 120 amplifies the injection current to generate an amplified injection current at the wideband node of the amplifier circuit, i.e., the source nodes of thecascode transistors 112.Cascode transistor unit 110 further amplifies the injection current to generate the desired amplified signal at the output 220 of theamplifier circuit 100, e.g., at the drain nodes of thecascode transistors 112. The amplitude of the output signal generally depends on the differential injection current and the supply voltage VDD applied to thepower amplifier circuit 100. As shown inFigure 1 , amatching network 200 may be coupled to the output 220 of theamplifier circuit 100 to match the impedance of theamplifier circuit 100 to that of an external element, e.g., an antenna (not shown). While not required, it will be appreciated that the supply voltage VDD may be applied to thepower amplifier circuit 100 via thematching network 200, as shown inFigure 1 . It will be appreciated that the transistors used to implement thepower amplifier circuit 100 may comprise any known type of transistor, including but not limited to, NMOS, CMOS, BiCMOS, HBT, and III-V technology (including Bipolar and FET) transistors. - The improved operation of the
amplifier circuit 100 relies on the cross-coupled configurations of thetransistor units tap capacitors 114 of thecascode transistor unit 110. As shown inFigure 2 and explained in more detail herein, this configuration causes a signal B at the source node of acascode transistor 112 to have the same amplitude as, but be out-of-phase from, both a signal A at the gate node of thesame cascode transistor 112 and a signal C at a drain node of theopposite switching transistor 122. To further explain the details of thepower amplifier circuit 100, the following description considers each of the RFcurrent generator 130, switchingtransistor unit 120, andcascode transistor unit 110 separately. - RF
current generator 130 generates a differential injection current I RF+, IRF- based on a differential input signal D +, D-.Figures 3-6 depict various exemplary RFcurrent generators 130. It will be appreciated, however, that current generators other than those shown herein may also be used. - The RF
current generator 130 depicted inFigure 3 comprises a pair ofinjection transistors 132 configured to generate the RF differential injection current at the drain nodes from an input signal comprising an analog RF differential voltage signal applied to the gate nodes. In this embodiment, theinjection transistors 132 are configured to operate as voltage-to-current converters. To provide the RF differential injection current to the rest of theamplifier circuit 100, the drain node of eachinjection transistor 132 couples to the drain node of thecorresponding switching transistor 122 and to the source node of thecorresponding cascode transistor 112. - An alternative RF
current generator 130 may comprise a mixer configured to generate the RF differential injection current from an RF local oscillator signal and an input signal comprising a baseband differential input signal. In such an embodiment, upconversion to RF takes place inside theamplifier circuit 100, which removes the need for any upconversion outside theamplifier circuit 100. It will be appreciated that implementing upconversion inside theamplifier circuit 100 provides a more linear result, with respect to both upconversion and power amplification. Further, such mixers advantageously eliminate the need for separate RF drivers and other RF circuitry, which generally have high dynamic range requirements. - For example,
Figure 4 depicts an RFcurrent generator 130 comprising a transconductance mixer configured to generate the RF differential injection current at the RF current generator outputs from an RF local oscillator signal (LO) and an input signal comprising a baseband differential input current (BB). The RFcurrent generator 130 ofFigure 4 comprises a first pair ofbaseband transistors 134, a second pair ofbaseband transistors 135, and a pair oflocal oscillator transistors 136, e.g.,NMOS transistors 136. The drain node of one of thelocal oscillator transistors 136 couples to a source nodes of corresponding transistors of the first and second pairs ofbaseband transistors local oscillator transistor 136 couples to the source nodes of the other of the first and second pairs ofbaseband transistors Figure 4 . The drains of the first pair ofbaseband transistors 134 also cross-couple with the drains of the second pair ofbaseband transistors 135. The positive input current signal D + = BB + is applied to the gate node of each of the first pair ofbaseband transistors 134 and the negative input current signal D - = BB- is applied to the gate node of each of the second pair ofbaseband transistors 135. The positive and negative local oscillator signals are applied to the gate nodes of respective transistors of the localoscillator transistor pair 136. As a result, the differential baseband input signal is upconverted to the LO frequency to generate the RF differential injection current I RF+, I RF- at the drain nodes of thebaseband transistors - In another mixer example, the RF
current generator 130 comprises a differential Quadrature mixer comprising an In-phase mixing unit 138 and a Quadrature-phase mixing unit 140, as depicted inFigure 5 . The input signal comprises a baseband input signal having a differential In-phase portion BB I+, BB I- and a differential Quadrature-phase portion BB Q+, BB Q-, where the differential outputs from each mixingunit phase mixing unit 138 mixes the differential In-phase portion BB I+, BB I- with the differential In-phase local oscillator signal to generate the RF differential In-phase current I RF_I+, I RF_I-. Quadrature-phase mixing unit 140 mixes the differential Quadrature-phase portion BB Q+, BB Q- with the differential Quadrature-phase local oscillator signal to generate the RF differential Quadrature-phase current I RF_Q+, I RF_Q-. The differential outputs from each mixingunit - In still another mixer example depicted in
Figure 6 , the RFcurrent generator 130 comprises an RF digital-to-analog converter/mixer. The input signal comprises a digital baseband input signal, and the RFcurrent generator 130 upconverts the bits of the digital baseband input signal based on the an RF local oscillator signal to generate the RF differential injection current I RF+, I RF- . One exemplary RF digital-to-analog converter is disclosed in "A fully Digital Multimode Polar Transmitter Employing 17b RF DAC in 3G Mode" by Boos et al., and published at ISSCC 2011, Session 21, Cellular 21.7 (978-1-61284-302-5/11), which is incorporated herein by reference. This exemplary RF digital-to-analog converter employs 10 thermometer and 4 binary-coded bits with a high oversampling, using a GHz range clock, and providing overall 17b DAC resolution in 3G mode, and 19b in EDGE mode. It will be appreciated that other RF digital-to-analog converters may also be used. - Referring back to
Figure 1 , thecascode transistor unit 110 and switchingtransistor unit 120 are described.Cascode transistor unit 110 comprises a pair ofcascode transistors 112 cross-coupled between the drain nodes and a pair oftap capacitors C tap 114 at the gate nodes. Thetap capacitors 114 are applied to the gate nodes to perform voltage division with the gate node capacitance (inherent in the gate node) to reduce the gate voltage swing. To that end, thetap capacitors 114 have a (matched) capacitance selected to control the signal from the cross-coupled drain nodes applied to the gate nodes, so that the amplitude of the gate node signal substantially equals the amplitude of the signal at the corresponding source node, or to differ from the amplitude of the source signal at the corresponding source node by no more than 50%. This voltage division protects thecascode transistors 112 from oxide overvoltage, reduces the capacitive loading of thematching network 200, and enables the desired amount of loop-gain to be provided for self-oscillation. The cross-coupling between thecascode transistors 112 flips the phase of the signals applied to the gate nodes, e.g., by 180°. As a result, the amplitudes at the gate and source nodes may be substantially equal, but the signals at these nodes are out of phase. This results in only half of the charges due to the parasitic capacitances Cpar,s being dissipated to ground, e.g., the signal ground, as compared to a classic cascode structure. Further, this configuration reduces the signal swing and the impedance of the source nodes of thecascode transistors 112, which relaxes both voltage stress and output power requirements of the switchingtransistors 122. Further still, using a cross-coupled tapped cascode transistor structure, as depicted inFigure 1 , ensures that the swing at the gate node of thecascode transistors 112 tracks the output at the drain nodes over the entire bandwidth. - The switching
transistor unit 120 comprises a pair of switchingtransistors 122 cross-coupled between the drain and gate nodes. The differential current output by the drain nodes of thecross-coupled switching transistors 122 increases the injection current IRF , which leads to a wider locking range at a wideband node of thepower amplifier circuit 100, i.e., the source nodes of thecascode transistors 112. Further, when the switchingtransistors 122 are on (e.g., when the output power exceeds some threshold) the majority of the injection current conducts through thecascode transistors 112. When the output power is low (e.g., below the threshold) the switchingtransistors 122 are off. When the RFcurrent generator 130 comprises theinjection transistors 132 ofFigure 3 , the cross-coupled configuration of the switching transistors enables the size of theinjection transistors 132 to be reduced as long as theinjection transistors 132 remain large enough so that the switchingtransistors 122 maintain a switching mode of operation. - The wideband impedance at the source node of the
cascode transistors 112 combined with the switching properties of the switching transistors 122 (and in some cases, the injection transistors 132) provides square-wave current and voltage signals with steep edges at the source nodes of thecascode transistors 112. Because the voltage and current are not high simultaneously except during injection by thecurrent generator 130, the resulting losses due to the switchingtransistor unit 120 andcurrent generator 130 are dominated by the injection current output by RFcurrent generator 130. - As shown in
Figure 1 , thepower amplifier circuit 100 may be coupled to amatching network 200 configured to match the output impedance of theamplifier circuit 100 to that of an external load (not shown).Figures 7-10 depictexemplary matching networks 200. It will be appreciated that the present invention is not limited to the depictedmatching networks 200. -
Figure 7 depicts oneexemplary matching network 200 coupling the load, represented by RL, CP, and LP, and the reactive components represented by LS, LD, and CS . LS and CS are connected as a series resonance circuit with the external load, which results in a negative (capacitive) reactance for low frequencies and a positive (inductive) reactance for high frequencies. LD comprises a current source. At low frequencies LD is a short, while at high frequencies, Cpar,d (in the amplifier circuit 100) is a short. Thus, reactive components LD and Cpar,d set the limit for of the bandwidth over which the power amplifier can be efficient using thematching network 200 ofFigure 7 . - In some cases, it may be desirable to provide generally constant impedance to the drain nodes of the cascode transistors across a wide range of frequencies. As used herein, generally constant could mean actually constant, but it is more likely that the impedance has some variation, having for example no more than a 5% variation over the required or desired wideband frequency range. In other cases, a 1% might be required, while in still
other cases 2%, 10%, 20%, or anything in between is acceptable. The acceptable variation might be affected by the specific components, values, or operating conditions of the circuit. Preferably, the limited variation applies over the entire required or desired wideband frequency range. Nevertheless, there may be frequency intervals where a larger variation is acceptable. The total length of such intervals preferably makes up no more than 20% of the required or desired wideband frequency range. In some cases, however, a total interval length relative to the wideband frequency range of 10%, 5%, 2%, 1%, or anything in between might be required.Figure 8 depicts an alternative higherorder matching network 200 according to an embodiment configured to provide a generally constant impedance. In this embodiment, thematching network 200 couples a load represented by RL, and reactive components represented by CS, LS, LD, , L D2, and CD. In thematching network 200 ofFigure 8 , a first reactance unit comprises L D1 and L D2, which are serially coupled between signal ground, which may, e.g., correspond to the supply voltage VDD, and each of the drain nodes of thecascode transistor unit 110. A second reactance unit comprises CS and LS serially coupled between a load resistor RL and each of the drain nodes of thecascode transistor unit 110. A third reactance unit comprises at least one capacitor CD coupled at one node between RL and CS , and at the other node between the inductors L D1 and L D2 of the first reactance unit. The inductors of the first reactance unit generate a first high positive reactance at low frequencies, which keeps the losses low, even for low frequencies, where a single inductor is considered to be a short, and a second positive reactance at high frequencies. The second reactance unit generates a negative reactance at low frequencies and third high positive reactance at high frequencies. As the operating frequency increases, Cpar,d (in the amplifier circuit 100) goes towards a short, which leads to increased power consumption. By decreasing the reactance between the drain nodes of thecascode transistors 112, e.g., by using the capacitor(s) CD of the third reactance unit, which short at higher frequencies, the effect of Cpar,d decreases (it is effectively cancelled). Such reactance properties yield higher impedances at the drains of thecascode transistors 112, and therefore, widen the bandwidth and efficiency with respect to frequency. -
Figures 9 and 10 depict otherexemplary matching networks 200 comprising atransformer 230. InFigure 9 , thetransformer 230 is configured as a balun, where one side of the transformer is differentially connected to thepower amplifier circuit 100 and the other side connects to the load RL in a single-ended manner. InFigure 10 , one side of the transformer is differentially connected to thepower amplifier circuit 100 while the other side differentially connects to the load RL . The performance of thematching networks 200 inFigures 9 and 10 is generally the same, and is generally comparable to that of thematching networks 200 ofFigures 7 and 8 . In addition, because thematching network 200 ofFigure 10 is not a balun, an additional balun would be needed before the antenna for this embodiment. -
Figures 11-16 depict various simulation results for exemplary cases of the power amplifier disclosed herein. For example,Figures 11-14 depict parameter and performance results for a power amplifier configuration comprising thepower amplifier circuit 100 ofFigure 1 , the RFcurrent generator 130 ofFigure 3 , and thematching network 200 ofFigure 7 .Figures 11A and 11B respectively show the supply voltage (VDD ) and cascode bias voltage (Bcc ) with respect to input power. For lower output power levels (linear operating mode), the supply voltage was kept constant at 0.48 V. As the input power increased, the supply voltage was increased to allow more headroom for the output signal. As depicted inFigure 11A , the supply voltage is 3.0 V at the peak input power.Figure 11B shows that the cascode bias voltage has similar characteristics to the supply voltage, except that the values go from 0.865 V for the linear mode of operation to a maximum bias of 1.9 V. -
Figure 12 depicts the output power, gain, and PAE results as a function of the input power at 2 GHz. As shown inFigure 12 , the output power tracks the input power linearly, which is also demonstrated by the flat gain response. The PAE peaks at 64%. When the input power is backed off by 16 dB, the PAE reduces to 37%. Considering the power range,Figure 12 demonstrates that the power amplifier operates over more than an 80 dB range, which satisfies WCDMA requirements. -
Figures 13A and 13B depict the frequency response for the output power and PAE for different input powers. At peak output power,Figure 13A demonstrates that the -3 dB bandwidth of thepower amplifier circuit 100 is 1.2 GHz (between 1.4 and 2.6 GHz).Figure 13A further demonstrates that the bandwidth increases for lower input powers. Further,Figure 13B demonstrates that the PAE at the peak output power is above 50% between 1.6 GHz and 2.6 GHz. When the output power is backed off by 18 dB, the PAE is at a constant value of 20% for in band frequencies, and rolls off quickly outside the bandwidth. - Lastly,
Figures 14A and 14B depict the linearity of the gain error and phase error, which was measured in a static fashion over the WCDMA output power range of approximately 80 dB. As shown inFigure 14A , thepower amplifier circuit 100 has a gain error of 0.2 dB over the entire range and linear gain during class AB operations. For the AM-PM conversion (Figure 14B ), which represents how much the phase changes when the amplitude changes, the total phase error is 17° over the entire output power range. The total error (both AM-AM and AM-PM) in the power amplifier is within a range of pre-distortable values. -
Figures 15A and 15B depict linearity performance results for the power amplifier comprising thepower amplifier circuit 100 ofFigure 1 , the RFcurrent generator 130 ofFigure 4 , and thematching network 200 ofFigure 7 .Figure 15A demonstrates that the gain error degrades slightly when the transconductance amplifier replaces the injection transistor embodiment of the RFcurrent generator 130, but the total phase error improves to roughly 1° (Figure 15B ). Again, the total error (both AM-AM and AM-PM) in the power amplifier is within pre-distortable values. -
Figures 16A and 16B depict the frequency response for the output power and PAE for the power amplifier comprising thepower amplifier circuit 100 ofFigure 1 , the RFcurrent generator 130 ofFigure 4 , and thematching network 200 ofFigure 8 . At peak output power,Figure 16A demonstrates that the -3 dB bandwidth of thepower amplifier circuit 100 is 2.0 GHz (between 0.6 and 3.6 GHz).Figure 16A further demonstrates that the bandwidth stays the same or increases for lower input powers. Further,Figure 16B demonstrates that the PAE at the peak output power is above 50% between 0.6 GHz and 3.4 GHz. When the output power is backed off by 18 dB, the PAE is at a constant value of approximately 20% for frequencies between 0.7 and 2.5 GHz. - The power amplifier circuit disclosed herein comprises an RF switched-mode power amplifier (SMPA). In an RF SMPA, switching typically dominates the losses, e.g., from power dissipation due to charging and discharging capacitances between the supply and ground. By using a tuned circuit, e.g., an LC-oscillator, the reactive energy may alternate between capacitors and inductors in the
matching network 200, rather than all of it being dissipated in the switch resistances every RF cycle. Some losses remain, however, due to losses of inductors and capacitors, and due to the non-zero currents and voltages in both thecascode transistors 112 and the switchingtransistors 122. In order to reduce these losses, the capacitance may be minimized, resulting in a low tank Q when connected to the resistive output load, and a wide bandwidth. For example, by integrating the cascode capacitances into thematching network 200, as shown inFigures 1 and7 or 8 , the losses can be reduced. - The
power amplifier circuit 100 disclosed herein may be implemented in the STMicroelectronics 65 nm CMOS process with eight metal layers and MIM capacitors. In one exemplary case, thecascode transistors 112 may be implemented using thick oxide 2.5 V I/O devices. In one exemplary layout, all transistors are drawn in a common-centroid layout to minimize mismatch. Because the area of each individual transistor is also large, the resulting mismatch is small. In one implementation, the resulting chip has a chip area of 0.52x0.48 mm2, including pads. - It will be appreciated that the
power amplifier circuit 100 disclosed herein provides a single-stage amplifier solution using 65 nm CMOS to achieve, in one embodiment, a 2 GHz bandwidth, 29 dBm output power, 20.5 dB gain, and 64% PAE. Such performance results are as good as some past multiple stage solutions, and generally are better than most past amplifier solutions. - While not required, the
power amplifier 100 andmatching network 200 disclosed herein may be used in a Hybrid-Envelope Elimination and Restoration (H-EER) system, such as shown inFigure 17 , where the amplifier operates as a Mixed-Mode Power Amplifier (MMPA). In this example, MMPA refers to the operation of the amplifier as a self-oscillating Switched-Mode Power Amplifier (SMPA) for high output power levels, and as a linear class AB power amplifier for low output power levels, e.g., when the power amplifier is not the main power consumer. This increases the power range of the system, overcoming one of the key issues of SMPAs, which is their poor power range. Such improvements are important for WCDMA operation, which has a power control range of 80 dB. - The power amplifier circuit disclosed herein utilizes a cross-coupled tapped cascode topology together with a technique of applying an RF injection current into a wideband node to provide a single-stage power amplifier with improved PAE, output power, and gain over a wide radio frequency band. It will be appreciated that while the power amplifier disclosed herein may be used for wideband operations, the power amplifier also provides high efficiency, output power, and gain for narrower frequency band applications.
- The power amplifier circuit comprises a current generator, a pair of cross-coupled switching transistors, a pair of cross-coupled cascode transistors, and first and second tap capacitors. The current generator is configured to generate a radio frequency differential injection current at a differential current generator output based on an input signal. The input signal may comprise any one of an analog input voltage signal at the radio frequency, or a baseband input signal, e.g., an analog or digital baseband input signal. The switching transistors each include a source node, a gate node, and a drain node, and are cross-coupled such that the drain node of one switching transistor couples to the gate node of the other switching transistor. Further, the drain nodes of the switching transistors are coupled to the differential current generator output to receive the differential injection current. The cascode transistors each include a source node, a gate node, and a drain node, and are cross-coupled such that the drain node of one cascode transistor couples to the gate node of the other cascode transistor. The cross-coupled cascode transistors are configured to generate a differential amplified output signal at the drain nodes of the cascode transistors based on a supply voltage operatively coupled to the drain node of the cascode transistors and the differential injection current applied to the source node of the cascode transistors. The first and second tap capacitors couple to the respective gate nodes of the cascode transistors. In one embodiment, the tap capacitors have a capacitance selected to control the amplitude of a gate signal at the gate nodes of the cascode transistors to substantially equal the amplitude of a source signal at the corresponding source nodes of the cascode transistors. As used herein, substantially equal could mean equal, but more likely means that the amplitude of the gate signals at the gate nodes of the cascode transistors has some deviation, e.g., deviates within a certain range around the amplitude of the source signals at the corresponding source nodes of the cascode transistors. The deviation range might, for example, be 10%. In other embodiments, the deviation range might be 5% in some cases, 2% in other cases, 20% in other cases, 50% in other cases, or any value in between, depending on the specific components values or operating conditions of the circuit. Preferably, this deviation range is over the entire dynamic range of the amplifier circuit. Nevertheless, there may be intervals where the deviation range is larger. The total length of such intervals preferably makes up no more than 20% of the entire dynamic range, but in some cases, a total interval length of, e.g., 10% or 5% or 2% might be required.
- The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning of the appended claims are intended to be embraced therein.
Claims (3)
- A matching network for matching an output impedance of an amplifier circuit to an external load resistor (RL), said matching network comprising:two first reactance units each comprising two inductors (LD1, LD2) adapted to be serially couplable between a signal ground and respective first and second outputs of the amplifier circuit for generating a first positive reactance at low frequencies and a second positive reactance at high frequencies;two second reactance units each comprising at least one series capacitor (Cs) and at least one series inductor (Ls) adapted to be serially couplable between a respective end of the external load resistor (RL) and the respective first and second outputs of the amplifier circuit, for generating a negative reactance at low frequencies and a third positive reactance at high frequencies; andtwo third reactance units each comprising at least one control capacitor (CD) adapted to be couplable at one node between the respective end of the external load resistor (RL) and the respective end of the second reactance unit and at the other node between the inductors (LD1, LD2) of the respective first reactance unit, for generating a short at high frequencies so as to reduce a parasitic capacitance at the first and second outputs of the amplifier circuit at high frequencies,wherein a generally constant impedance is provided across a wideband frequency range.
- The matching network of claim 1 wherein the signal ground corresponds to a supply voltage.
- An arrangement comprising the matching network of claims 1 or 2 and the external load resistor (RL).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/197,022 US8554162B2 (en) | 2011-08-03 | 2011-08-03 | High efficiency power amplifier |
EP12743933.9A EP2740213B1 (en) | 2011-08-03 | 2012-07-17 | A high efficiency power amplifier |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12743933.9A Division-Into EP2740213B1 (en) | 2011-08-03 | 2012-07-17 | A high efficiency power amplifier |
EP12743933.9A Division EP2740213B1 (en) | 2011-08-03 | 2012-07-17 | A high efficiency power amplifier |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2854288A2 EP2854288A2 (en) | 2015-04-01 |
EP2854288A3 EP2854288A3 (en) | 2015-04-29 |
EP2854288B1 true EP2854288B1 (en) | 2018-03-07 |
Family
ID=46639459
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12743933.9A Active EP2740213B1 (en) | 2011-08-03 | 2012-07-17 | A high efficiency power amplifier |
EP14191308.7A Active EP2854288B1 (en) | 2011-08-03 | 2012-07-17 | A matching network for use with an amplifier |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12743933.9A Active EP2740213B1 (en) | 2011-08-03 | 2012-07-17 | A high efficiency power amplifier |
Country Status (5)
Country | Link |
---|---|
US (1) | US8554162B2 (en) |
EP (2) | EP2740213B1 (en) |
CN (1) | CN103748785B (en) |
BR (1) | BR112014002542B1 (en) |
WO (1) | WO2013017407A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010026629A1 (en) * | 2010-07-09 | 2012-01-12 | Rohde & Schwarz Gmbh & Co. Kg | Linear differential amplifier with high input impedance |
DE102011116231B4 (en) * | 2011-10-17 | 2017-12-21 | Austriamicrosystems Ag | Illumination arrangement and method for detecting a short circuit in diodes |
US9054651B2 (en) * | 2012-08-17 | 2015-06-09 | Cambridge Silicon Radio Limited | Power amplifier circuit |
US9553573B2 (en) * | 2014-05-21 | 2017-01-24 | Qualcomm Incorporated | Differential mode bandwidth extension technique with common mode compensation |
US9825597B2 (en) | 2015-12-30 | 2017-11-21 | Skyworks Solutions, Inc. | Impedance transformation circuit for amplifier |
US9887673B2 (en) * | 2016-03-11 | 2018-02-06 | Intel Corporation | Ultra compact multi-band transmitter with robust AM-PM distortion self-suppression techniques |
US10062670B2 (en) | 2016-04-18 | 2018-08-28 | Skyworks Solutions, Inc. | Radio frequency system-in-package with stacked clocking crystal |
KR102504859B1 (en) | 2016-04-19 | 2023-03-02 | 스카이워크스 솔루션즈, 인코포레이티드 | Optional shielding of radio frequency modules |
US10171053B2 (en) * | 2016-05-05 | 2019-01-01 | Skyworks Solutions, Inc. | Apparatus and methods for power amplifiers with an injection-locked oscillator driver stage |
TWI800014B (en) | 2016-12-29 | 2023-04-21 | 美商天工方案公司 | Front end systems and related devices, integrated circuits, modules, and methods |
US10515924B2 (en) | 2017-03-10 | 2019-12-24 | Skyworks Solutions, Inc. | Radio frequency modules |
US10153739B2 (en) * | 2017-03-21 | 2018-12-11 | Panasonic Corporation | Power amplification division circuit and multi-stage type power amplification division circuit |
US10355646B2 (en) | 2017-12-20 | 2019-07-16 | Globalfoundries Inc. | Power amplifier for millimeter wave devices |
US10469039B2 (en) | 2018-03-23 | 2019-11-05 | Globalfoundries Inc. | Injection lock power amplifier with back-gate bias |
CN109379057A (en) * | 2018-09-20 | 2019-02-22 | 天津大学 | A kind of New Active power combining methods |
WO2020236209A1 (en) * | 2019-05-22 | 2020-11-26 | Adesto Technologies Corporation | Pulse width signal overlap compensation techniques |
US11476837B2 (en) * | 2019-07-12 | 2022-10-18 | The United States Of America As Represented By The Secretary Of The Army | Active matching network design for electrically small resonant antennas |
US10747254B1 (en) | 2019-09-03 | 2020-08-18 | Globalfoundries Inc. | Circuit structure for adjusting PTAT current to compensate for process variations in device transistor |
CN111934629B (en) * | 2020-07-24 | 2021-06-11 | 成都天锐星通科技有限公司 | Broadband high-linearity power amplifier |
JP7555479B2 (en) * | 2020-08-19 | 2024-09-24 | キョウセラ インターナショナル インコーポレイテッド | Peripheral equipment for amplifier linearization using complementary compensation. |
CN112511117B (en) * | 2021-02-03 | 2021-05-14 | 深圳市中科蓝讯科技股份有限公司 | Radio frequency amplifying circuit, radio frequency front end receiving circuit and wireless communication equipment |
CN113114127B (en) * | 2021-04-27 | 2023-09-08 | 东南大学 | Large signal output swing driving circuit with high linearity |
CN115955205B (en) * | 2023-01-16 | 2023-11-28 | 无锡众享科技有限公司 | Transconductance amplifier for power over Ethernet |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040731A (en) * | 1997-05-01 | 2000-03-21 | Raytheon Company | Differential pair gain control stage |
US6384688B1 (en) * | 1998-07-08 | 2002-05-07 | Hitachi, Ltd. | High-frequency power amplifier module |
US7760023B2 (en) | 2000-09-12 | 2010-07-20 | Black Sand Technologies, Inc. | Method and apparatus for stabilizing RF power amplifiers |
US6639447B2 (en) * | 2002-03-08 | 2003-10-28 | Sirific Wireless Corporation | High linearity Gilbert I Q dual mixer |
US7068104B2 (en) * | 2004-07-08 | 2006-06-27 | Amalfi Semiconductor, Inc. | Power amplifier utilizing high breakdown voltage circuit topology |
US7276976B2 (en) * | 2004-12-02 | 2007-10-02 | Electronics And Telecommunications Research Institute | Triple cascode power amplifier of inner parallel configuration with dynamic gate bias technique |
US7339433B2 (en) * | 2005-03-15 | 2008-03-04 | Apex Microtechnology Corporation | Differential amplifier stage |
US7509102B2 (en) * | 2006-04-07 | 2009-03-24 | Broadcom Corporation | DAC based switching power amplifier |
US7889003B2 (en) * | 2006-11-17 | 2011-02-15 | Nxp B.V. | Class-D amplifier |
JP5079387B2 (en) * | 2007-05-10 | 2012-11-21 | 株式会社エヌ・ティ・ティ・ドコモ | Matching circuit |
TWI424681B (en) * | 2007-07-25 | 2014-01-21 | Realtek Semiconductor Corp | Mixer circuit and method for reducing flicker noise thereof |
US8228125B2 (en) | 2007-11-09 | 2012-07-24 | St-Ericsson Sa | Electronic circuit with cascode amplifier |
CN101527577B (en) * | 2008-03-05 | 2013-07-17 | 北京六合万通微电子技术股份有限公司 | Wireless transmitter and method for eliminating local oscillation leakage in wireless transmitter |
US7808323B2 (en) * | 2008-05-23 | 2010-10-05 | Panasonic Corporation | High-efficiency envelope tracking systems and methods for radio frequency power amplifiers |
US7795980B2 (en) * | 2008-06-13 | 2010-09-14 | Freescale Semiconductor, Inc. | Power amplifiers having improved protection against avalanche current |
-
2011
- 2011-08-03 US US13/197,022 patent/US8554162B2/en active Active
-
2012
- 2012-07-17 WO PCT/EP2012/064032 patent/WO2013017407A1/en unknown
- 2012-07-17 BR BR112014002542-8A patent/BR112014002542B1/en active IP Right Grant
- 2012-07-17 EP EP12743933.9A patent/EP2740213B1/en active Active
- 2012-07-17 EP EP14191308.7A patent/EP2854288B1/en active Active
- 2012-07-17 CN CN201280037899.3A patent/CN103748785B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
BR112014002542B1 (en) | 2021-05-18 |
EP2740213B1 (en) | 2019-04-17 |
EP2740213A1 (en) | 2014-06-11 |
CN103748785A (en) | 2014-04-23 |
BR112014002542A2 (en) | 2020-10-27 |
CN103748785B (en) | 2017-07-18 |
US8554162B2 (en) | 2013-10-08 |
US20130033321A1 (en) | 2013-02-07 |
EP2854288A3 (en) | 2015-04-29 |
EP2854288A2 (en) | 2015-04-01 |
WO2013017407A1 (en) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2854288B1 (en) | A matching network for use with an amplifier | |
US7961048B2 (en) | Integrated power amplifiers for use in wireless communication devices | |
Vorapipat et al. | Voltage mode Doherty power amplifier | |
Su et al. | An IC for linearizing RF power amplifiers using envelope elimination and restoration | |
EP2409400B1 (en) | Common-gate common-source amplifier | |
US7768350B2 (en) | Output gain stage for a power amplifier | |
US8922282B2 (en) | Low output impedance RF amplifier | |
CN101310436B (en) | Polar modulation apparatus and method with common-mode control | |
Zheng et al. | A CMOS WCDMA/WLAN digital polar transmitter with AM replica feedback linearization | |
US10455529B2 (en) | Multi-standard transmitter architecture with digital upconvert stage and gallium nitride (GAN) amplifier circuit | |
Lee et al. | A dual-power-mode output matching network for digitally modulated CMOS power amplifier | |
Meshkin et al. | A novel 2.4 GHz CMOS class-E power amplifier with efficient power control for wireless communications | |
Hamid et al. | A State-of-the-Art Review on CMOS Radio Frequency Power Amplifiers for Wireless Communication Systems | |
KR100875201B1 (en) | Cascode Structured Power Amplifier for Amplitude Modulation | |
JP3853604B2 (en) | Frequency conversion circuit | |
Lindstrand et al. | A 1.6–2.6 GHz 29dBm injection-locked power amplifier with 64% peak PAE in 65nm CMOS | |
US8195109B2 (en) | Single ended switched power amplifier with tuned load coupling block | |
Chang et al. | Tunable delay compensation circuit in polar loop transmitter for WiMAX applications | |
Gaspariano et al. | CMOS upconversion mixer with filterless carrier feedthrough cancelation and output power tuning | |
US11736080B2 (en) | Linear class-AB voltage to current converter | |
Shalu et al. | mmWave Highly‐Linear Broadband Power Amplifiers | |
Girija et al. | A compact dual-band 5dBm RF power amplifier for cellular applications | |
Henkel et al. | Low Power RF Frontend for Wireless Sensor Networks | |
Steyaert et al. | Analog Interface Circuits–The Limit for AmI Applications | |
Jiang et al. | Low power saw‐less WCDMA transmitter with quadrature driver amplifier and injection‐locked frequency divider |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141031 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2740213 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H03F 3/217 20060101ALI20150325BHEP Ipc: H03F 1/52 20060101ALI20150325BHEP Ipc: H03F 1/56 20060101AFI20150325BHEP Ipc: H03F 3/24 20060101ALI20150325BHEP Ipc: H03F 3/45 20060101ALI20150325BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL) |
|
R17P | Request for examination filed (corrected) |
Effective date: 20151002 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20170509 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H03F 1/56 20060101AFI20171026BHEP Ipc: H03F 1/52 20060101ALI20171026BHEP Ipc: H03F 3/217 20060101ALI20171026BHEP Ipc: H03F 3/24 20060101ALI20171026BHEP Ipc: H03H 7/38 20060101ALI20171026BHEP Ipc: H03F 3/45 20060101ALI20171026BHEP |
|
INTG | Intention to grant announced |
Effective date: 20171127 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2740213 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 977576 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012043899 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 977576 Country of ref document: AT Kind code of ref document: T Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180608 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012043899 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180709 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
26N | No opposition filed |
Effective date: 20181210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180717 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180717 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180707 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240726 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240729 Year of fee payment: 13 |