EP2853095A1 - Procédé et système de traitement pour générer au moins deux flux vidéo compresses - Google Patents

Procédé et système de traitement pour générer au moins deux flux vidéo compresses

Info

Publication number
EP2853095A1
EP2853095A1 EP13727300.9A EP13727300A EP2853095A1 EP 2853095 A1 EP2853095 A1 EP 2853095A1 EP 13727300 A EP13727300 A EP 13727300A EP 2853095 A1 EP2853095 A1 EP 2853095A1
Authority
EP
European Patent Office
Prior art keywords
video stream
metric
met
video
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP13727300.9A
Other languages
German (de)
English (en)
Inventor
Pierre Larbier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ateme SA
Original Assignee
ASSISTANCE TECHNIQUE ET ETUDE DE MATERIELS ELECTRONIQUES - ATEME
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASSISTANCE TECHNIQUE ET ETUDE DE MATERIELS ELECTRONIQUES - ATEME filed Critical ASSISTANCE TECHNIQUE ET ETUDE DE MATERIELS ELECTRONIQUES - ATEME
Publication of EP2853095A1 publication Critical patent/EP2853095A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/762Media network packet handling at the source 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/179Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scene or a shot
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/192Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive
    • H04N19/194Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive involving only two passes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Definitions

  • the object of the present invention lies in the field of coding and decoding of digital video, and more specifically in the field of compression / decompression of a digital video stream.
  • the object of the present invention relates to a specific data processing for generating independently several compressed video streams from the same video source.
  • the object of the present invention thus finds a particularly advantageous application for multi-stream video encoders by enabling the distribution of multimedia content via the Internet or mobile networks based on adaptive bit rate techniques such as for example HLS techniques (for HTTP Live Streaming "),” SmoothStreaming ", or MPEG DASH (for” Dynamic Adaptive Streaming over http ").
  • HLS techniques for HTTP Live Streaming "
  • SmoothStreaming for SmoothStreaming
  • MPEG DASH for Dynamic Adaptive Streaming over http "
  • the receiver chooses the rate at which it wishes to receive the content.
  • the desired content is compressed simultaneously and independently at different bit rates.
  • the receiver which is aware of available compressed streams, continuously measures the transmission rate available on the link, and requires the content server the version whose rate is most suitable for the link.
  • each section contains a compressed video stream using the H.264 / AVC standard and a compressed audio stream using the MPEG standard
  • This method is substantially analogous to the HLS method described above, except that it is based on encapsulation of the sections into type files.
  • Such a difference has the advantage of allowing the transmission of auxiliary data such as subtitles, and of allowing in a simple way the direct access within the sections (called here "seeks").
  • the main variations are: the compressed rate, the dimensions of the compressed images, the number of frames per second (in English "frame-rate”) or the profile of the standard used.
  • the output streams are cut into sections. However, for the receiver to switch from one stream to another, it is necessary that these sections are aligned; that is, the same source image is encoded at the beginning of each section.
  • One of the objectives of the present invention is to improve the situation described above.
  • the object of the present invention relates to a method of processing a video stream for generating at least two compressed video streams.
  • the processing method includes an analysis step in which at least one image of the video stream is analyzed to determine at least one metric of the video stream.
  • metric of a video stream in the sense of the present invention, here is meant a datum containing at least one physical information allowing a spatial or space-time characterization of an image or a sequence of images of the video stream.
  • metrics determined during this step we find in particular the average brightness, the indication of a change of scene, the variance, the complexity, the local and / or global activity, a pre-grid of weighting information. blocks of images and / or a set of motion vectors.
  • the processing method provides an encoding step during which, following a transformation of the type for example a spatial and / or temporal decimation, a change of color space and / or a deinterlacing operation of the video stream, the transformed video stream is encoded according to said at least one metric so as to obtain at least two compressed video streams.
  • a transformation of the type for example a spatial and / or temporal decimation, a change of color space and / or a deinterlacing operation of the video stream.
  • the processing method described above makes it possible to generate from the same source several compressed video streams that are independent of each other.
  • each of the output video streams is independently decodable, and these streams may share common features such as sync points.
  • the processing method according to the present invention comprises a first determination step during which is determined, according to said at least one metric, an encoding structure of the video stream.
  • Determining the most appropriate encoding structure from a metric of the video stream enables the synchronization of sections of the stream.
  • MPEG type predictive encoders it can be the type of image: I, P or B. It is understood here that it can also be a much finer encoding structure like the encoding mode of each block of the image.
  • the processing method according to the present invention comprises a second determination step during which is determined, according to said at least one metric, an adaptive quantization of the video stream.
  • This quantization notably makes it possible to control the lossy compression part and the output rate of the compressed video stream for the network.
  • This may for example consist of a quantization grid according to which it can be provided that all the pixels of a block must be decimated spatially and / or temporally as a function of a quantization step.
  • the processing method according to the present invention comprises a processing step which consists in particular in a scaling of the video stream and / or said at least one metric.
  • Such scaling allows in particular that said at least one metric is in correspondence with the video stream to be encoded.
  • the scaling is performed in such a way that it allows a change in spatio-temporal resolution and / or a change in the image rate.
  • the treatment method according to the present invention comprises a refinement step during which said at least one metric is refined on at least one image of the digital stream.
  • the object of the present invention relates to a computer program which includes instructions adapted for the execution of the steps of the method of provisioning as described above, this in particular when said computer program is executed. by a computer.
  • Such a computer program can use any programming language, and be in the form of a source code, an object code, or an intermediate code between a source code and an object code, such as in a partially compiled form, or in any other desirable form.
  • the subject of the present invention relates to a computer-readable recording medium on which is recorded a computer program comprising instructions for executing the steps of the delivery method as described hereinabove. above.
  • the recording medium can be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD-ROM or a microelectronic circuit type ROM, or a means magnetic recording, for example a "floppy disk” type diskette or a hard disk.
  • this recording medium can also be a transmitted medium such as an electrical or optical signal, such a signal can be conveyed via an electrical or optical cable, conventional radio or radio or self-directed laser beam or by other means.
  • the computer program according to the invention can in particular be downloaded to an Internet type network.
  • the recording medium may be an integrated circuit in which the computer program is incorporated, the integrated circuit being adapted to execute or to be used in the execution of the method in question.
  • the subject of the present invention also relates to a computer processing device comprising computer means configured to implement the steps of the method described above.
  • the computing processing device comprises an analysis means which is configured to analyze at least one image of the video stream to determine at least one metric of said video stream.
  • the computing processing device further comprises at least a first and a second encoding means configured to encode, according to said at least one metric, said video stream previously transformed during a transformation of the type by example a spatial and / or temporal decimation, a change of color space and / or a deinterlacing operation of the video stream.
  • the first and second encoding means thus make it possible to obtain, according to said at least one metric, said at least two compressed video streams.
  • the computing processing device comprises at least a first determination means which is configured to determine, according to said at least one metric, an encoding structure of the video stream.
  • the computing processing device comprises at least a second determination means which is configured to determine, based on said at least one metric, adaptive quantization of the video stream.
  • the computing processing device comprises at least one processing means configured to allow scaling of the video stream and / or said at least one metric.
  • said at least one processing means is configured to allow a change in the space-time resolution of the video stream and / or a change in the image rate.
  • said at least one processing means is further configured to refine said at least one metric on at least one image of the video stream.
  • the object of the present invention by its various functional and structural aspects, allows multi-stream generation particularly advantageous for the distribution of multimedia content via the Internet or mobile networks based on adaptive bit rate techniques.
  • FIGS. 1 to 2 illustrate an exemplary embodiment thereof which is devoid of any limiting character and on which:
  • FIGS. 1a and 1b each schematically represent a computing processing device according to an advantageous embodiment of the present invention.
  • FIG. 2 represents a flowchart illustrating the treatment method according to an advantageous exemplary embodiment.
  • a video encoder processes a video source and produces a compressed stream of this source: to allow the design a multi-stream video encoder from the same video source is one of the objectives of the present invention.
  • the object of the present invention relates to a computer processing device 100 which is configured to implement a processing method as illustrated in FIG.
  • the computing device 100 allows the processing of an input video stream IN such that a plurality of at least two video streams OUTN are generated (N being a positive integer between 2 to N).
  • N compressed video streams OUT1, OUT2, OUT3, OUTN are generated at the output (where N is a positive integer greater than or equal to 4).
  • the device 100 comprises a main video encoder 10 which comprises an analysis means M 1 capable of analyzing the input video stream IN once during a prior analysis step S1.
  • This means M1 thus makes it possible to determine, once and for all, at least one metric MET such as, for example, the average brightness, an indication of a change of scene, the variance, the complexity, the local and / or global activity, a pre-grid of information for weighting the image blocks and / or a set of motion vectors.
  • at least one metric MET such as, for example, the average brightness, an indication of a change of scene, the variance, the complexity, the local and / or global activity, a pre-grid of information for weighting the image blocks and / or a set of motion vectors.
  • This analysis can be relatively complex, and in some cases, may even consist of completely encoding the images.
  • the present invention typically consists in using the measurements of these MET metrics obtained during this analysis step S1 to simplify the operations to be performed in the encoding phase.
  • the analysis phase includes a motion estimation
  • the vectors determined during this analysis can be used as starting points for a simple refinement during encoding.
  • the inventive concept underlying the present invention therefore consists in using the fact that the measurements made during the analysis phase are used subsequently during the encoding phase, with possibly relatively simple modifications for all the versions encoded from the same source.
  • MET metrics are obtained only from structural data images provided source, they do not depend on the encoding process itself. Because of this, the variations required during the multi-stream encoding can be performed on MET metrics without having to recalculate them completely.
  • the images to be compressed are therefore analyzed once in the main video encoder 10.
  • the main video encoder 10 comprises a first determination means M2 which, in a first determination step S2, determines as a function of the MET metric of the stream. the video or encoding structures ideal for each of the streams OUT1, OUT2, OUT3, and OUTN.
  • the computing device 100 further comprises second determining means M3_1, M3_2, M3_3, M3_N which are configured to determine, according to the said at least one metric MET, an adaptive quantization of the video stream IN, this during a second determination step S3.
  • second determining means M3_1, M3_2, M3_3, M3_N which are configured to determine, according to the said at least one metric MET, an adaptive quantization of the video stream IN, this during a second determination step S3.
  • this quantization makes it possible to control the lossy compression portion and the output rate of the compressed video stream for the network.
  • the MET metrics thus follow the same path as that of the source images I and are applied methods for compensating for the variations applied to the source images.
  • each secondary encoder 20, 30 and N comprises processing means M4_2 and M4_2 ', M4_3 and M4_3', and M4_N and M4_N 'which are configured to scale the flow IN video and / or said at least one metric MET, this during a processing step S4.
  • processing means M4_2 and M4_2 ', M4_3 and M4_3', and M4_N and M4_N ' which are configured to scale the flow IN video and / or said at least one metric MET, this during a processing step S4.
  • Such scaling allows the MET metric (s) to match the IN video stream to be encoded.
  • a direct transformation that is to say without using the image, sometimes gives no satisfactory results. This is the case for example of the motion vector set or the "Quadtree" decomposition used in the HEVC encoders.
  • the processing means M4_2 and M4_2 ', M4_3 and M4_3 ⁇ and M4_N and M4_N' are configured to refine the at least one metric MET on at least one image I of the video stream IN, during a refinement step S5.
  • This operation is generally very inexpensive in terms of calculations because a very good starting point can be obtained from the initial metrics.
  • the I images and MET metrics are scaled from already scaled variations. This is the most efficient method in terms of calculations made, but it should be noted that it requires to be usable in practice to order the variations. For example, starting from a frame rate of 25 frames / s, variations at 12.5 frames / sec and 6.25 frames / sec impose the temporal decimation order: 6.25 frames / sec is obtained from 12.5 images / s, the opposite is impossible.
  • the encoders that is to say the main encoder 10 and the secondary encoders 20, 30, N, each comprise an encoding means M5_1, M5_2, M5_3, M5_N configured to encode the video stream IN respectively. function of the various input parameters to obtain compressed video streams OUT1, OUT2, OUT3, OUTN independent of each other.
  • the image analysis I is performed on the main stream, and the coding structure determination can be communalised for all streams. It is thus possible to synchronize the sections, for example on the scene changes that are common to all the streams.
  • each output stream is a version decimated spatially (reduction in size of the images) and / or temporally (reduction of the number of images per second) of the same video source, this according in particular to the or MET metrics determined in a single analysis.
  • This succession of technical steps is managed by a computer program PG which includes instructions adapted to perform the steps of the method described above and which is contained on a recording medium CI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

L'objet de la présente invention porte sur un procédé et un dispositif informatique (100) de traitement d'un flux vidéo (IN) permettant de générer au moins deux flux vidéo compressés (OUT1, OUT2), le dispositif selon la présente invention comportant: - un moyen d'analyse (M1) configuré pour analyser au moins une image (I) du flux vidéo (IN) afin de déterminer au moins une métrique dudit flux vidéo (IN), et - au moins un premier (M5_1) et un deuxième (M5_2) moyens d'encodage configuré pour encoder, en fonction de ladite au moins une métrique, ledit flux vidéo préalablement décimé spatialement et/ou temporellement en sorte d'obtenir lesdits au moins deux flux vidéo compressés (OUT1, OUT2).

Description

PROCEDE ET SYSTEME DE TRAITEMENT POUR GENERER AU MOINS DEUX FLUX VIDEO COMPRESSES
Domaine technique
L'objet de la présente invention se situe dans le domaine du codage et du décodage de vidéo numérique, et plus précisément dans le domaine de la compression/décompression d'un flux vidéo numérique.
L'objet de la présente invention porte sur un traitement de données spécifique permettant de générer de façon indépendante plusieurs flux vidéo compressés issus d'une même source vidéo.
L'objet de la présente invention trouve ainsi une application particulièrement avantageuse pour les encodeurs vidéo multi-flux en permettant la distribution de contenus multimédia via Internet ou les réseaux mobiles reposant sur des techniques de débit adaptatif telles que par exemple les techniques HLS (pour « HTTP Live Streaming »), « SmoothStreaming », ou encore MPEG DASH (pour « Dynamic Adaptive Streaming over http »).
Etat de la technique
Actuellement, les méthodes de distribution de contenus multimédia via l'Internet ou les réseaux mobiles reposent sur des techniques de débit adaptatif.
Avec de telles méthodes, le récepteur choisit le débit auquel il souhaite recevoir le contenu.
Aussi, qu'il soit produit en direct comme un programme de télévision ou en différé comme un clip vidéo, le contenu souhaité est compressé simultanément et indépendamment à différents débits.
Pour ce faire, le récepteur, qui est instruit des flux compressés disponibles, mesure en permanence le débit de transmission disponible sur la liaison, et requiert du serveur de contenu la version dont le débit est le plus adapté à la liaison.
On comprend ici que les conditions qui guident cette sélection sont multiples. Il s'agit généralement de sélectionner le flux dont le débit est immédiatement inférieur à la capacité de la liaison. Néanmoins, d'autres raisons peuvent également guider cette sélection : il peut s'agir par exemple de la capacité de décodage du récepteur, du temps de démarrage du décodage d'un nouveau contenu ou encore de la gestion des droits.
En pratique, une dizaine de flux est mise à disposition par le serveur pour un type de récepteur donné ; la sélection du débit est effectuée par le récepteur toutes les dix secondes.
Plusieurs techniques sont actuellement disponibles. Néanmoins, on retrouve principalement deux méthodes expliquées ci-dessous qui couvrent à elles seules la quasi-intégralité des déploiements actuels.
On retrouve d'une part la méthode HLS (pour « HTTP Live Streaming ») qui est proposée par la société « Apple® » et qui est implémentée sur tous les équipements de la marque.
Le concept sur lequel repose cette méthode porte sur un découpage des flux en tronçons (appelés ici « chunks ») de dix secondes.
Selon cette méthode, chaque tronçon contient un flux vidéo compressé en utilisant la norme H.264/AVC et un flux audio compressé utilisant la norme MPEG
AAC. Ces deux flux sont encapsulés dans une couche MPEG Transport Stream.
On retrouve d'autre part la méthode dite de « SmoothStreaming » qui est proposée par la société « Microsoft® ».
Cette méthode est sensiblement analogue à la méthode HLS décrite ci-dessus à la différence prés qu'elle repose sur une encapsulation des tronçons en fichiers de type
MPEG-4.
Une telle différence présente l'avantage de permettre la transmission de données auxiliaires telles que des sous-titres, et d'autoriser de manière simple les accès directs au sein des tronçons (appelés ici « seeks »).
En tout état de cause, la multiplicité des techniques de transmission ainsi que la grande variation dans les capacités des récepteurs imposent d'encoder un grand nombre de versions des mêmes sources.
Ainsi, il est donc généralement nécessaire de produire simultanément plusieurs dizaines de versions du même contenu. Dans le domaine de la vidéo, les principales variations sont : le débit compressé, les dimensions des images compressées, le nombre d'images par seconde (en anglais «frame-rate ») ou encore le profil de la norme utilisé.
Pour générer autant de flux vidéo que nécessaire, il faut concevoir un transcodeur vidéo multi-flux dont la structure consiste à faire travailler en parallèle autant d'encodeurs qu'il y a de variations à produire.
Néanmoins, la demanderesse soumet qu'une telle structure présente des inconvénients.
D'une part, la multiplicité des encodeurs indépendants est très inefficace en termes de quantité de calculs à réaliser. On relève notamment qu'avec un tel système une même source est traitée plusieurs fois à quelques variations près.
D'autre part, les flux en sortie sont découpés en tronçons. Or, pour que le récepteur puisse basculer d'un flux à un autre, il est nécessaire que ces tronçons soient alignés ; c'est-à-dire que la même image source soit encodée au début de chaque tronçon.
Comme les encodeurs sont indépendants, la méthode la plus pratique et la plus sûre pour garantir cet alignement consiste à imposer les images sources constituant les frontières de tronçon, indépendamment de leur contenu. La conséquence de cette technique est l'impossibilité de prise en compte des images qui constituent les changements de scène.
Objet et Résumé de la présente invention
Un des objectifs de la présente invention est d'améliorer la situation décrite ci- dessus.
A cet effet, l'objet de la présente invention porte sur un procédé de traitement d'un flux vidéo permettant de générer au moins deux flux vidéo compressés.
Selon la présente invention, le procédé de traitement comporte une étape d'analyse au cours de laquelle au moins une image du flux vidéo est analysée pour déterminer au moins une métrique du flux vidéo.
Par métrique d'un flux vidéo au sens de la présente invention, on entend ici une donnée contenant au moins une information physique permettant une caractérisation spatiale ou spatio-temporelle d'une image ou d'une séquence d'images du flux vidéo. Parmi les métriques déterminées lors de cette étape, on retrouve notamment la luminosité moyenne, l'indication d'un changement de scène, la variance, la complexité, l'activité locale et/ou globale, une pré- grille d'information de pondération des blocs d'images et/ou un jeu de vecteurs de mouvement.
Ensuite, le procédé de traitement prévoit une étape d'encodage au cours de laquelle, suite à une transformation du type par exemple une décimation spatiale et/ou temporelle, un changement d'espace colorimétrique et/ou une opération de désentrelacement du flux vidéo, le flux vidéo transformé est encodé en fonction de ladite au moins une métrique en sorte d'obtenir au moins deux flux vidéo compressés.
Ainsi, grâce à cette succession d'étapes, caractéristique de la présente invention, le procédé de traitement décrit ci-dessus permet de générer à partir de la même source plusieurs flux vidéo compressés qui sont indépendants les uns des autres.
Grâce à cette analyse, l'encodage est intrinsèquement multi-flux. En d'autres termes, selon la présente invention, chacun des flux vidéo en sortie est indépendamment décodable, et ces flux peuvent partager des caractéristiques communes comme des points de synchronisation.
Avantageusement, le procédé de traitement selon la présente invention comporte une première étape de détermination au cours de laquelle est déterminée, en fonction de ladite au moins une métrique, une structure d'encodage du flux vidéo.
La détermination de la structure d'encodage la plus adéquate à partir d'une métrique du flux vidéo permet le découpage synchrone des tronçons du flux.
Ceci permet une exploitation de la structure temporelle et/ou spatiale du flux vidéo.
Ainsi, dans le cas des encodeurs prédictifs de type MPEG, il peut s'agir du type d'image : I, P ou B. On comprend ici qu'il peut également s'agir d'une structure d'encodage beaucoup plus fine comme le mode de codage de chaque bloc de l'image.
Avantageusement, le procédé de traitement selon la présente invention comporte une deuxième étape de détermination au cours de laquelle est déterminée, en fonction de ladite au moins une métrique, une quantification adaptative du flux vidéo.
Cette quantification permet notamment de contrôler la partie de compression avec perte et le débit de sortie du flux vidéo compressé pour le réseau. Celle-ci peut consister par exemple en une grille de quantification selon laquelle on peut prévoir que tous les pixels d'un bloc doivent être décimés spatialement et/ou temporellement en fonction d'un pas de quantification.
Avantageusement, le procédé de traitement selon la présente invention comporte une étape de traitement qui consiste notamment en une mise à l'échelle du flux vidéo et/ou de ladite au moins une métrique.
Une telle mise à l'échelle permet notamment que ladite au moins une métrique soit en correspondance avec le flux vidéo à encoder.
Selon la présente invention, la mise à l'échelle est réalisée de telle manière qu'elle permet un changement de résolution spatio-temporelle et/ou un changement du débit d'images.
Avantageusement, le procédé de traitement selon la présente invention comporte une étape de raffinement au cours de laquelle ladite au moins une métrique est raffinée sur au moins une image du flux numérique.
Corrélativement, l'objet de la présente invention porte sur un programme d'ordinateur qui comporte des instructions adaptées pour l'exécution des étapes du procédé de mise à disposition tel que décrit ci-dessus, ceci notamment lorsque ledit programme d'ordinateur est exécuté par un ordinateur.
Un tel programme d'ordinateur peut utiliser n'importe quel langage de programmation, et être sous la forme d'un code source, d'un code objet, ou d'un code intermédiaire entre un code source et un code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
De même, l'objet de la présente invention porte sur un support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur comprenant des instructions pour l'exécution des étapes du procédé de mise à disposition tel que décrit ci-dessus.
D'une part, le support d'enregistrement peut être n'importe quel entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une mémoire ROM, par exemple un CD-ROM ou une mémoire ROM de type circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette de type « floppy dise » ou un disque dur.
D'autre part, ce support d'enregistrement peut également être un support transmis sible tel qu'un signal électrique ou optique, un tel signal pouvant être acheminé via un câble électrique ou optique, par radio classique ou hertzienne ou par faisceau laser autodirigé ou par d'autres moyens. Le programme d'ordinateur selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
Alternativement, le support d'enregistrement peut être un circuit intégré dans lequel le programme d'ordinateur est incorporé, le circuit intégré étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
L'objet de la présente porte également sur un dispositif informatique de traitement comprenant des moyens informatiques configurés pour mettre en œuvre les étapes du procédé décrit ci-dessus.
Plus précisément, selon la présente invention, le dispositif informatique de traitement comporte un moyen d'analyse qui est configuré pour analyser au moins une image du flux vidéo afin de déterminer au moins une métrique dudit flux vidéo.
Selon la présente invention, le dispositif informatique de traitement comporte en outre au moins un premier et un deuxième moyens d'encodage configurés pour encoder, en fonction de ladite au moins une métrique, ledit flux vidéo préalablement transformé lors d'une transformation du type par exemple une décimation spatiale et/ou temporelle, un changement d'espace colorimétrique et/ou une opération de désentrelacement du flux vidéo.
Les premier et deuxième moyens d'encodage permettent ainsi d'obtenir, en fonction de ladite au moins une métrique, lesdits au moins deux flux vidéo compressés.
Avantageusement, le dispositif informatique de traitement selon la présente invention comporte au moins un premier moyen de détermination qui est configuré pour déterminer, en fonction de ladite au moins une métrique, une structure d'encodage du flux vidéo.
Avantageusement, le dispositif informatique de traitement selon la présente invention comporte au moins un deuxième moyen de détermination qui est configuré pour déterminer, en fonction de ladite au moins une métrique, une quantification adaptative du flux vidéo.
Avantageusement, le dispositif informatique de traitement selon la présente invention comporte au moins un moyen de traitement configuré pour permettre une mise à l'échelle du flux vidéo et/ou de ladite au moins une métrique.
Selon la présente invention, ledit au moins un moyen de traitement est configuré de manière à permettre un changement de résolution spatio-temporelle du flux vidéo et/ou un changement du débit d'images.
Avantageusement, ledit au moins un moyen de traitement est en outre configuré pour raffiner ladite au moins une métrique sur au moins une image du flux vidéo.
Ainsi, l'objet de la présente invention, par ses différents aspects fonctionnels et structurels, permet une génération multi-flux particulièrement avantageuse pour la distribution de contenus multimédia via l'Internet ou les réseaux mobiles reposant sur des techniques de débit adaptatif.
Brève description des figures annexées
D'autres caractéristiques et avantages de la présente invention res sortiront de la description ci-dessous, en référence aux figures la à 2 annexées qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif et sur lesquelles :
- les figures la et lb représentent chacune de façon schématique un dispositif informatique de traitement selon un exemple de réalisation avantageux de la présente invention ; et
la figure 2 représente un organigramme illustrant le procédé de traitement selon un exemple de réalisation avantageux.
Description détaillée d'un mode de réalisation de l'invention
Un procédé de traitement et le dispositif informatique correspondant, conformes à un exemple de réalisation avantageux de la présente invention, vont maintenant être décrits dans ce qui suit en faisant référence conjointement aux figures la à 2.
Pour rappel, selon une approche traditionnelle, un encodeur vidéo traite une source vidéo et produit un flux compressé de cette source : permettre la conception d'un encodeur vidéo multi-flux à partir d'une même source vidéo est un des objectifs de la présente invention.
A cet effet, l'objet de la présente invention porte sur un dispositif informatique de traitement 100 qui est configuré pour mettre en œuvre un procédé de traitement tel qu'illustré en figure 2.
Plus précisément, dans l'exemple décrit ici, le dispositif informatique 100 selon la présente invention permet le traitement d'un flux vidéo IN en entrée de telle manière qu'est générée une pluralité d'au moins deux flux vidéo OUTN (N étant un entier positif compris entre 2 à N).
Dans l'exemple correspondant à la figure la, sont générés en sortie deux flux vidéo compressés OUTl et OUT2.
Dans l'exemple correspondant à la figure lb, sont générés en sortie N flux vidéo compressés OUTl, OUT2, OUT3, OUTN (N étant ici un entier positif supérieur ou égal à 4).
Dans cet exemple, le dispositif 100 comporte un encodeur vidéo principal 10 qui comporte un moyen d'analyse Ml apte à analyser une seule fois en entrée le flux vidéo IN lors d'une étape préalable d'analyse SI.
Ce moyen Ml permet ainsi de déterminer, une fois pour toute, au moins une métrique MET telle que par exemple la luminosité moyenne, une indication d'un changement de scène, la variance, la complexité, l'activité locale et/ou globale, une pré-grille d'information de pondération des blocs d'images et/ou un jeu de vecteurs de mouvement.
Cette analyse peut s'avérer relativement complexe, et dans certains cas, peut même consister à encoder complètement les images.
La présente invention de façon caractéristique consiste à utiliser les mesures de ces métriques MET obtenues lors de cette étape d'analyse SI pour simplifier les opérations à réaliser dans la phase d'encodage.
Par exemple, si la phase d'analyse intègre une estimation de mouvement, les vecteurs déterminés lors de cette analyse peuvent être utilisés comme points de départ pour un simple raffinement lors de l'encodage. Le concept inventif sous-jacent à la présente invention consiste donc à utiliser le fait que les mesures réalisées lors de la phase d'analyse sont utilisées par la suite lors de la phase d'encodage, avec éventuellement des modifications relativement simples pour toutes les versions encodées de la même source.
En effet, comme les métriques MET sont obtenues uniquement à partir de données structurelles des images fournies en source, elles ne dépendent pas du processus d'encodage proprement dit. De ce fait, les variations requises lors de l'encodage multi-flux peuvent être réalisées sur les métriques MET sans avoir besoin de les recalculer complètement.
Les images à compresser sont donc analysées une seule fois dans l'encodeur vidéo principal 10.
Dans l'exemple décrit ici, suite à cette unique analyse SI, l'encodeur vidéo principal 10 comporte un premier moyen M2 de détermination qui, lors d'une première étape de détermination S2, détermine en fonction de la ou des métriques MET du flux vidéo la ou les structures d'encodage idéales pour chacun des flux OUT1, OUT2, OUT3, et OUTN.
Dans l'exemple décrit ici et illustré en figure la, le dispositif informatique 100 comporte en outre des deuxièmes moyens de détermination M3_l, M3_2, M3_3, M3_N qui sont configurés pour déterminer, en fonction de ladite au moins une métrique MET, une quantification adaptative du flux vidéo IN, ceci lors d'une deuxième étape de détermination S3.
Comme énoncé précédemment, cette quantification permet de contrôler la partie de compression avec perte et le débit de sortie du flux vidéo compressé pour le réseau.
Les métriques obtenues MET suivent donc le même chemin que celui des images sources I et se voient appliquer des procédés permettant de compenser les variations appliquées aux images sources.
Les variations les plus courantes sont de simples mises à l'échelle ; à cet effet, dans l'exemple décrit ici, chaque encodeur secondaire 20, 30 et N comporte des moyens de traitement M4_2 et M4_2', M4_3 et M4_3', et M4_N et M4_N' qui sont configurés pour mettre à l'échelle le flux vidéo IN et/ou ladite au moins une métrique MET, ceci lors d'une étape de traitement S4. Une telle mise à l'échelle permet que la ou les métriques MET soient en correspondance avec le flux vidéo IN à encoder.
Pour certaines métriques MET comme la luminosité moyenne ou l'indication de changement de scène, ces variations n'ont pas d'impact.
En revanche, pour d'autres variations comme la variance ou le jeu de vecteurs de mouvement, il est nécessaire d'appliquer une transformation aux métriques MET pour qu'elles soient en correspondance avec le flux individuel à encoder.
Une transformation directe, c'est-à-dire sans utiliser l'image, ne donne parfois pas de résultats satisfaisants. C'est le cas par exemple du jeu de vecteurs de mouvements ou la décomposition en « Quadtree » utilisée dans les encodeurs HEVC.
Pour cette raison, il peut être nécessaire de raffiner les métriques MET sur les images I. A cet effet, les moyens de traitement M4_2 et M4_2', M4_3 et M4_3\ et M4_N et M4_N' sont configurés pour raffiner ladite au moins une métrique MET sur au moins une image I du flux vidéo IN, lors d'une étape de raffinement S5.
Cette opération est en général très peu coûteuse en termes de calculs car un très bon point de départ peut être obtenu à partir des métriques initiales.
Tel qu'illustré en figures la et lb, les images I et les métriques MET sont mises à l'échelle à partir de variations déjà mises à l'échelle. Il s'agit de la méthode la plus efficace en termes de calculs réalisés, mais il faut noter qu'elle nécessite pour être utilisable en pratique d'ordonner les variations. Par exemple, en partant d'un débit d'images à 25 images/s, des variations à 12.5 images/s et 6.25 images/s imposent l'ordre de décimation temporelle: 6.25 images/s est obtenu à partir de 12.5 images/s, le contraire est impossible.
Ensuite, les encodeurs, c'est-à-dire l'encodeur principal 10 et les encodeurs secondaires 20, 30, N, comportent chacun un moyen d'encodage M5_l, M5_2, M5_3, M5_N configuré pour encoder respectivement le flux vidéo IN en fonction des différents paramètres en entrée pour obtenir des flux vidéo compressés OUT1, OUT2, OUT3, OUTN indépendants les uns des autres.
Ainsi, grâce à la présente invention, l'analyse d'image I est réalisée sur le flux principal, et la détermination de structure de codage peut être communalisée pour tous les flux. Π devient ainsi possible de synchroniser les tronçons par exemple sur les changements de scène qui sont communs à tous les flux.
Il est donc possible de produire plusieurs flux compressés OUT1, OUT2, OUT3, OUTN issus de la même source vidéo IN.
Dans l'exemple décrit ici, chaque flux de sortie est une version décimée spatialement (réduction de taille des images) et/ou temporellement (réduction du nombre d'images par seconde) d'une même source vidéo, ceci en fonction notamment de la ou des métriques MET déterminées lors d'une unique analyse.
Il est ensuite possible, selon la présente invention, de dériver des flux compressés secondaires à des débits différents.
Cette succession d'étapes techniques est gérée par un programme d'ordinateur PG qui comporte des instructions adaptées pour l'exécution des étapes du procédé décrit ci-dessus et qui est contenu sur un support d'enregistrement CI.
Il devra être observé que cette description détaillée porte sur un exemple de réalisation particulier de la présente invention, mais qu'en aucun cas cette description ne revêt un quelconque caractère limitatif à l'objet de l'invention ; bien au contraire, elle a pour objectif d'ôter toute éventuelle imprécision ou toute mauvaise interprétation des revendications qui suivent.

Claims

REVENDICATIONS
1. Procédé de traitement d'un flux vidéo (IN) permettant de générer au moins deux flux vidéo compressés (OUT1, OUT2, OUT3, OUTN),
caractérisé en ce qu'il comporte les étapes suivantes :
- une étape d'analyse (S I) au cours de laquelle au moins une image (I) du flux vidéo (IN) est analysée pour déterminer au moins une métrique (MET) du flux vidéo (IN), et
- une étape d'encodage (S6) au cours de laquelle, suite à une transformation du type par exemple une décimation spatiale et/ou temporelle, un changement d'espace colorimétrique et/ou une opération de désentrelacement, le flux vidéo (IN) est encodé en fonction de ladite au moins une métrique (MET) en sorte d'obtenir lesdits au moins deux flux vidéo compressés (OUT1, OUT2, OUT3, OUTN).
2. Procédé de traitement selon la revendication 1, caractérisé en ce que ladite au moins une métrique (MET) déterminée lors de l'étape d'analyse (SI) consiste notamment en une luminosité moyenne, une indication d'un changement de scène, une variance, la complexité, l'activité locale et/ou globale, une pré-grille d'information de pondération des blocs d'images et/ou un jeu de vecteurs de mouvement.
3. Procédé de traitement selon la revendication 1 ou 2, caractérisé en ce qu'il comporte une première étape de détermination (S2) au cours de laquelle est déterminée, en fonction de ladite au moins une métrique (MET), une structure d'encodage du flux vidéo.
4. Procédé de traitement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une deuxième étape de détermination (S3) au cours de laquelle est déterminée, en fonction de ladite au moins une métrique (MET), une quantification adaptative du flux vidéo.
5. Procédé de traitement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une étape de traitement (S4) consistant en une mise à l'échelle du flux vidéo (IN) et/ou de ladite au moins une métrique (MET).
6. Procédé de traitement selon la revendication 5, caractérisé en ce que la mise à l'échelle est réalisée de telle manière qu'elle permet un changement de résolution spatio-temporelle et/ou un changement du débit d'images.
7. Procédé de traitement selon la revendication 5 ou 6, caractérisé en ce qu'il comporte une étape de raffinement (S5) au cours de laquelle ladite au moins une métrique
(MET) est raffinée sur au moins une image (I) du flux vidéo (IN).
8. Programme d'ordinateur (PG) comportant des instructions adaptées pour l'exécution des étapes du procédé selon l'une quelconque des revendications 1 à 7 lorsque ledit programme d'ordinateur (PG) est exécuté par un ordinateur.
9. Support d'enregistrement (CI) lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur (PG) comprenant des instructions pour l'exécution des étapes du procédé selon l'une quelconque des revendications 1 à 7.
10. Dispositif informatique (100) de traitement d'un flux vidéo (IN) permettant de générer au moins deux flux vidéo compressés (OUT1, OUT2, OUT3, OUTN), caractérisé en ce qu'il comporte :
- un moyen d'analyse (Ml) configuré pour analyser au moins une image (I) du flux vidéo (IN) afin de déterminer au moins une métrique (MET) dudit flux vidéo (IN), et
- au moins un premier (M5_l) et un deuxième (M5_2) moyens d'encodage configurés pour encoder, en fonction de ladite au moins une métrique (MET), ledit flux vidéo préalablement transformé lors d'une transformation du type par exemple une décimation spatiale et/ou temporelle, un changement d'espace colorimétrique et/ou une opération de désentrelacement du flux vidéo en sorte d'obtenir lesdits au moins deux flux vidéo compressés (OUT1, OUT2, OUT3, OUTN).
11. Dispositif informatique (100) selon la revendication 10, caractérisé en ce qu'il comporte un premier moyen (M2) de détermination configuré pour déterminer, en fonction de ladite au moins une métrique (MET), une structure d'encodage du flux vidéo (IN).
12. Dispositif informatique (100) selon l'une quelconque des revendications 10 ou 11, caractérisé en ce qu'il comporte au moins un deuxième moyen de détermination
(M3_l ; M3_2 ; M3_3 ; M3_N) configuré pour déterminer, en fonction de ladite au moins une métrique (MET), une quantification adaptative du flux vidéo (IN).
13. Dispositif informatique (100) selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comporte au moins un moyen de traitement (M4_2, M4_2' ;
M4_3, Μ4_3' ; M4_N, M4_N') configuré pour permettre une mise à l'échelle du flux vidéo (IN) et/ou de ladite au moins une métrique (MET).
14. Dispositif informatique (100) selon la revendication 13, caractérisé en ce que ledit au moins un moyen de traitement (M4_2, Μ4_2' ; M4_3, Μ4_3' ; M4_N, M4_N') est configuré de manière à permettre un changement de résolution spatio-temporelle du flux vidéo et/ou un changement du débit d'images.
15. Dispositif informatique (100) selon la revendication 13 ou 14, caractérisé en ce que ledit au moins un moyen de traitement (M4_2, Μ4_2' ; M4_3, M4_3' ; M4_N,
M4_N') est configuré pour raffiner ladite au moins une métrique (MET) sur au moins une image (I) du flux vidéo (IN).
EP13727300.9A 2012-05-18 2013-05-16 Procédé et système de traitement pour générer au moins deux flux vidéo compresses Ceased EP2853095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254567A FR2990814B1 (fr) 2012-05-18 2012-05-18 Procede et systeme de traitement pour generer au moins deux flux video compresses
PCT/FR2013/051072 WO2013171433A1 (fr) 2012-05-18 2013-05-16 Procédé et système de traitement pour générer au moins deux flux vidéo compresses

Publications (1)

Publication Number Publication Date
EP2853095A1 true EP2853095A1 (fr) 2015-04-01

Family

ID=46785577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13727300.9A Ceased EP2853095A1 (fr) 2012-05-18 2013-05-16 Procédé et système de traitement pour générer au moins deux flux vidéo compresses

Country Status (4)

Country Link
US (1) US20150163490A1 (fr)
EP (1) EP2853095A1 (fr)
FR (1) FR2990814B1 (fr)
WO (1) WO2013171433A1 (fr)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414469A (en) * 1991-10-31 1995-05-09 International Business Machines Corporation Motion video compression system with multiresolution features
US5793425A (en) * 1996-09-13 1998-08-11 Philips Electronics North America Corporation Method and apparatus for dynamically controlling encoding parameters of multiple encoders in a multiplexed system
US5987183A (en) * 1997-07-31 1999-11-16 Sony Corporation Image activity data compression and decompression method and apparatus
US6040861A (en) * 1997-10-10 2000-03-21 International Business Machines Corporation Adaptive real-time encoding of video sequence employing image statistics
US5978029A (en) * 1997-10-10 1999-11-02 International Business Machines Corporation Real-time encoding of video sequence employing two encoders and statistical analysis
US6963608B1 (en) * 1998-10-02 2005-11-08 General Instrument Corporation Method and apparatus for providing rate control in a video encoder
US6356589B1 (en) * 1999-01-28 2002-03-12 International Business Machines Corporation Sharing reference data between multiple encoders parallel encoding a sequence of video frames
GB2353426A (en) * 1999-08-17 2001-02-21 British Broadcasting Corp Mutiple output variable bit rate encoding
JP2001223665A (ja) * 2000-02-08 2001-08-17 Matsushita Electric Ind Co Ltd 信号符号化伝送装置、信号復号化受信装置、およびプログラム記録媒体
JP2002041285A (ja) * 2000-07-28 2002-02-08 Toshiba Corp データ処理装置およびデータ処理方法
US7418007B1 (en) * 2000-09-20 2008-08-26 General Instrument Corporation Method and apparatus for determining a transmission bit rate in a statistical multiplexer
JP4615958B2 (ja) * 2004-10-15 2011-01-19 クラリオン株式会社 デジタル放送の送出装置、受信装置およびデジタル放送システム
JP4797974B2 (ja) * 2006-12-25 2011-10-19 株式会社日立製作所 撮像装置
US20090052540A1 (en) * 2007-08-23 2009-02-26 Imagine Communication Ltd. Quality based video encoding
FR2925795B1 (fr) * 2007-12-20 2010-01-15 Ateme Sa Procede et dispositif de codage d'une sequence temporelle d'images video, sous contrainte de debit
US9083986B2 (en) * 2009-05-01 2015-07-14 Broadcom Corporation Method and system for adaptive rate video compression and transmission
US9218644B2 (en) * 2009-12-17 2015-12-22 Broadcom Corporation Method and system for enhanced 2D video display based on 3D video input
EP2355510A1 (fr) * 2009-12-21 2011-08-10 Alcatel Lucent Procédé et appareil de codage vidéo
US20120179833A1 (en) * 2010-06-02 2012-07-12 Onmobile Global Limited Method and apparatus for adapting media
US8705616B2 (en) * 2010-06-11 2014-04-22 Microsoft Corporation Parallel multiple bitrate video encoding to reduce latency and dependences between groups of pictures
US9451283B2 (en) * 2011-07-05 2016-09-20 Texas Instruments Incorporated Method, system and computer program product for selecting a motion vector in scalable video coding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013171433A1 *

Also Published As

Publication number Publication date
FR2990814B1 (fr) 2014-05-16
WO2013171433A1 (fr) 2013-11-21
US20150163490A1 (en) 2015-06-11
FR2990814A1 (fr) 2013-11-22

Similar Documents

Publication Publication Date Title
FR2894421A1 (fr) Procede et dispositif de decodage d'un flux video code suivant un codage hierarchique
CA2842560C (fr) Transmission de donnees de reconstruction dans une hierarchie de qualite de signal echelonnee
FR2902266A1 (fr) Procede et dispositif de repartition de la bande passante de communication
EP4009633A1 (fr) Procédé et support d'enregistrement mémorisant un flux de données d'images codées
EP3707900B1 (fr) Procédé de formation d'une séquence d'images de sortie à partir d'une séquence d'images d'entrée, procédé de reconstruction d'une séquence d'images d'entrée à partir d'une séquence d'images de sortie, dispositifs, equipement serveur, equipement client et programmes d'ordinateurs associés
FR3012714A1 (fr) Procede de codage et de decodage d'images, dispositif de codage et de decodage d'images et programmes d'ordinateur correspondants
EP3758371A1 (fr) Procédé de traitement d'un ensemble d'images d'une séquence vidéo
FR3029381A1 (fr) Procede de composition d’une representation video intermediaire
FR2895172A1 (fr) Procede et dispositif de codage d'un flux video code suivant un codage hierarchique, flux de donnees, procede et dispositif de decodage associes
EP3449634B1 (fr) Procédé de composition contextuelle d'une représentation vidéo intermédiaire
EP3780632B1 (fr) Systeme de distribution d'un contenu audiovisuel
FR3087309A1 (fr) Optimisation d'un sous-echantillonnage intervenant avant le codage d'images en compression
FR3024933A1 (fr) Procede de codage et de decodage d'images, dispositif de codage et de decodage d'images et programmes d'ordinateur correspondants
WO2017085421A1 (fr) Procédé de traitement de données codées, procédé de réception de données codées, dispositifs, et programmes d'ordinateurs associés
EP2853095A1 (fr) Procédé et système de traitement pour générer au moins deux flux vidéo compresses
EP2761871A1 (fr) Estimation de mouvement au niveau du décodeur par mise en correspondance modèles
EP1714498B1 (fr) Procede de recherche de la directon de prediction en codage video intra-image
WO2020157413A1 (fr) Procédé et dispositif de codage et de décodage de données correspondant à une séquence vidéo
FR2916931A1 (fr) Procede de selection d'une donnee de codage et dispositif de codage implementant ledit procede
FR3041851A1 (fr) Procede d'allocation de debit, dispositif, codeur et programme d'ordinateur associes
EP2914005B1 (fr) Générateur de flux vidéo
WO2013007920A1 (fr) Procédé de codage et décodage d'images, dispositif de codage et décodage et programmes d'ordinateur correspondants
FR3058858A1 (fr) Procede et dispositif de codage et de decodage d'une sequence multi-vues
FR2938146A1 (fr) Procede et dispositif d'optimisation du debit d'encodage d'une image video en mode entrelace.
Adhau et al. An Empirical Analysis of Video Streaming and Congestion Control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATEME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200618