EP2850389B1 - Interferometrisches messsystem mit optischer faser und inertialführungs- oder navigationssystem mit einem solchen interferometrischen messsystem - Google Patents

Interferometrisches messsystem mit optischer faser und inertialführungs- oder navigationssystem mit einem solchen interferometrischen messsystem Download PDF

Info

Publication number
EP2850389B1
EP2850389B1 EP13727296.9A EP13727296A EP2850389B1 EP 2850389 B1 EP2850389 B1 EP 2850389B1 EP 13727296 A EP13727296 A EP 13727296A EP 2850389 B1 EP2850389 B1 EP 2850389B1
Authority
EP
European Patent Office
Prior art keywords
optical
fiber
transmission means
source
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13727296.9A
Other languages
English (en)
French (fr)
Other versions
EP2850389A1 (de
Inventor
Frédéric GUATTARI
Cédric MOLUCON
Eric Ducloux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iXBlue SAS
Original Assignee
iXBlue SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by iXBlue SAS filed Critical iXBlue SAS
Publication of EP2850389A1 publication Critical patent/EP2850389A1/de
Application granted granted Critical
Publication of EP2850389B1 publication Critical patent/EP2850389B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Definitions

  • the field of the present disclosure is that of optical fiber ring interferometers. More specifically, the invention relates to an interferometric measurement system based on a plurality of optical fiber ring interferometers. A particular application of such a system relates to a device using several optical fiber gyroscopes (FOG for fiber optic gyroscope) for multi-axis rotation measurements.
  • FOG optical fiber optic gyroscope
  • a FOG is based on a Sagnac ring interferometer in reciprocal configuration, the ring being formed by an optical fiber coil.
  • An optical fiber gyroscope generally comprises a broad-spectrum source, a first beam splitter (said source-detector separator), a spatial single-mode filter and a common input-output polarization of the interferometer, and a second splitter (called splitter). coil), an optical fiber coil and a detector.
  • a broad-spectrum source is a light source having a coherence length of less than one millimeter.
  • the incident light beam is split to produce two secondary beams.
  • the two secondary beams polarized linearly at the input, propagate in opposite directions along a closed optical path, recombine and produce interferences that depend on the phase shift of the beams during their recombination.
  • the optical paths are perfectly reciprocal, the phase shifts induced in the propagative sense and in the contra-propagative direction are canceled out.
  • a Sagnac ring interferometer is sensitive to physical phenomena capable of producing non-reciprocal phase shifts.
  • the rotation of a Sagnac ring interferometer with respect to an axis perpendicular to the surface of the ring, induces a phase shift proportional to the rotation speed ⁇ .
  • the Sagnac effect follows the main application of a Sagnac ring interferometer to a gyroscope to measure a rotational speed. Due to their stability, reliability and compactness, fiber optic gyroscopes are increasingly used for rotational measurement in inertial guidance or navigation systems.
  • an inertial guidance or navigation system generally comprises a system of three gyroscopes for measuring the rotations around three axes of a reference in space, the axes of the three fiber coils forming the axes of the reference mark. . Note that in some cases, for redundancy purposes, more than three axes can be used.
  • the FOGs implement the amplified spontaneous emission source technologies stimulated emission or source ASE (Amplified Spontaneous Emission) to amplifying optical fiber doped rare earth, or superluminescent diode semiconductor, optical fiber (for the coil) and multi-function integrated optical circuit (COI) (polarizer, beam splitter, phase modulators).
  • the figure 1 represents a system with three FOGs comprising a single light source 10 and three interferometers.
  • the source 10 generates a light beam 20.
  • a first beam splitter 30 separates the beam 20 into three divided beams.
  • the beam splitter 30 is for example an optical fiber coupler 1 x 3.
  • Each interferometer comprises an optical fiber coil 18, respectively 28, 38 and an integrated optical circuit 41, respectively 42, 43.
  • the integrated optical circuits 41, 42, 43 make it possible to perform several integrated functions on the same substrate. These circuits make it possible to increase the compactness of the device and to reduce manufacturing costs.
  • each integrated optical circuit 41, 42, 43 comprises an input monomode waveguide, a coil splitter for example a Y junction, an input connection to the source and to a detector, and two connections to the ends. of the fiber reel.
  • each integrated optical circuit serves as a polarizer and comprises means for modulating the signal.
  • the light source 10 is connected by monomode optical fibers to each integrated optical circuit.
  • Each fiber coil 18, respectively 28, 38 is connected to an independent integrated optical circuit on different substrates (cf. Figure 1 ).
  • a multiple integrated optical circuit can thus advantageously be connected on the one hand to a single source and on the other hand to different optical fiber Sagnac ring interferometers.
  • a fiber comb multi-fiber array
  • a fiber comb generally consists of a planar substrate having regularly spaced V-shaped grooves so as to accurately position the ends of different optical fibers along a single line and to allow collective coupling.
  • the figure 2 is a top view of a multiple integrated optical circuit connected to input and output optical fiber combs.
  • the multiple integrated optical circuit comprises three individual integrated optical circuits arranged in parallel on the same substrate 2.
  • each individual integrated optical circuit comprises a coil separator, of Y-junction type having a trunk common 12 (respectively 22, 32) and two branches 121 and 122 (respectively 221, 222 and 321, 322).
  • a first fiber comb 51 makes it possible to align and hold optical fibers 11, respectively 21, 31 facing the ends of common trunks 12, respectively 22, 32.
  • a second fiber comb 52 makes it possible to align and maintain the fibers 71, 72, 73, 74, 75, 76 facing the opposite ends of the different branches of the waveguides respectively 121, 122, 221, 222, 321, 322.
  • a beam propagating on the optical fiber 11 is coupled in the waveguide 12 and then divided by the Y junction into two secondary beams propagating separately to the ends 121 and 122 of the waveguide. The secondary beams are coupled to the ends of the optical fibers 71 and 72.
  • an integrated optical circuit makes it possible to integrate other functions on the same substrate: polarization of the beams, modulations, etc.
  • the common trunks 12, 22, 32 comprise polarizing waveguides 14, 24 , 34 integrated on a substrate 2 of lithium niobate.
  • Electro-optic phase modulators may be arranged on either side of the branches 121, 122 (respectively 221, 222 and 321, 322) for modulating the phase of the interferometric signals.
  • the use of a multiple integrated optical circuit in a system of several optical fiber gyroscopes poses problems of parasitic coupling between the different connected fibers and therefore between the different interferometers. If these parasitic couplings are coherent, this can induce unstable bias faults. In addition, it is necessary to avoid that the different interferometers are coherent.
  • one and the same light source is used for the different interferometers.
  • the source used is generally a broad-spectrum source having a coherence length of a few tens of microns (for a super-luminescent diode) to several hundred microns (for a source ASE).
  • a broad-spectrum source can be considered as emitting wave trains which have the coherence length of the source as their length.
  • the lengths of the different optical paths are not equal to this about ten or a hundred microns. A difference in length of several millimeters is sufficient a priori to eliminate coherent coupling phenomena between the different interferometers.
  • the physical phenomena at the origin of parasitic couplings in a multiple COI can be varied and are generally complex: coupling of a part of the incidence wave via the substrate between the ends of optical fibers on the opposite faces of the substrate or at the level of a Y junction, multiple internal reflections in the substrate ...
  • the patent US5,157,461 discloses an apparatus for measuring three angular rotations comprising a source, an integrated optical circuit connected to three fiber optic coils and means for selectively switching the source signal to one of the three fiber coils so as to time multiplex the source signal between the three coils. This device thus avoids any interference between the signals of the different fiber coils.
  • the difference in optical length between any two of the first, second and third optical transmission means is greater than four times the value of the maximum of ⁇ N b 1 ⁇ L 1 , ⁇ N b 2 ⁇ L 2 and ⁇ N b 3 x L 3 .
  • the broad-spectrum light source is selected from a super-luminescent diode and a rare earth-doped fiber ASE source.
  • the invention particularly relates to a gyroscopic measurement system comprising an optical fiber interferometric measurement system according to one of the described embodiments, in which a first optical fiber gyroscope comprises the first optical fiber interferometer, a source-separator. detector and a detector.
  • the invention also relates to an inertial guidance or navigation system comprising an interferometric optical fiber measurement system according to one of the embodiments described.
  • the invention will find a particularly advantageous application in interferometric measurement systems incorporating several fiber optic gyroscopes, including inertial guidance or navigation systems.
  • the present invention also relates to the features which will emerge in the course of the description which follows and which will have to be considered individually or in all their technically possible combinations.
  • the figure 3 represents a gyroscopic measurement system with three gyroscopes according to a preferred embodiment of the invention.
  • the gyroscopic measurement system comprises a broad spectrum light source 10, preferably an "ASE" source (rare earth doped source, in particular erbium or neodymium) or a superluminescent diode (DSL).
  • the wide-spectrum light source 10 emits a source light beam 20 at a wavelength ⁇ .
  • the emission wavelength is around 1530 nm (cf. figure 4 ).
  • a beam splitter 30 separates the source light beam into three divided source beams.
  • the first, second and third divided source beams 100, 200, 300 have identical powers.
  • the beam splitter 30 consists of an optical fiber component, such as an optical fiber 1x3 coupler.
  • Optical fibers 11, 21, 31 respectively transmit the first, second and third divided source beams 100, 200, 300 to a fiber comb 51.
  • the ends of the fibers 11, 21, 31 are respectively aligned with the ends of different individual integrated optical circuits arranged in parallel on the same substrate 2.
  • a first individual integrated optical circuit 13 is connected firstly to one end of the first optical fiber 11 and secondly to the two ends of a first optical fiber coil 18 via a second fiber comb. 52.
  • the first individual integrated optical circuit 13 comprises a beam splitter so as to separate the first divided source light beam 100 into a first secondary beam 110 traversing the first optical fiber coil 18 in the propagating direction and a second secondary beam 120 traversing the first optical fiber coil 18 in the contra-propagative direction.
  • the two secondary beams 110, 120 recombine at the beam splitter of the first individual COI 13 and form an interferometric beam 130.
  • a source-detector separator 16 directs the interferometric beam 130 to a first detector 17.
  • the source-detector separator 16 can be made from a -3dB coupler or from an optical circulator.
  • the first individual integrated optical circuit 13 and the first optical fiber coil 18 form a first Sagnac ring interferometer 19.
  • a second individual integrated optical circuit 23 and a third individual integrated optical circuit 33 On the same substrate 2 are arranged a second individual integrated optical circuit 23 and a third individual integrated optical circuit 33.
  • the second individual integrated optical circuit 23 is connected on the one hand to a second optical fiber 21 transmitting the beam split source 200 and secondly at both ends of a second optical fiber coil 28.
  • the third individual integrated optical circuit 33 is connected on the one hand to a third optical fiber 31 transmitting the split source beam 300 and on the other hand at both ends of a third optical fiber coil 38.
  • the second individual integrated optical circuit 23 has a beam splitter so as to separate the second divided source light beam 200 into a first secondary beam 210 traversing the second coil of optical fiber 28 in the propagating direction and a second secondary beam 220 traversing the second e optical fiber coil 28 in the contra-propagative direction.
  • the two secondary beams 210, 220 recombine at the level of the beam splitter of the second individual COI 23 and form an interferometric beam 230.
  • the third individual integrated optical circuit 33 comprises a beam splitter so as to separate the third divided source light beam 300 in a first secondary beam 310 traversing the third coil of optical fiber 38 in the propagating direction and a second secondary beam 320 traversing the third coil of optical fiber 38 in the contra-propagative direction.
  • the two secondary beams 310, 320 recombine at the level of the beam splitter of the third individual COI 33 and form an interferometric beam 330.
  • a source-detector separator 26, respectively 36 directs the interferometric beam 230, respectively 330, to a detector 27. , respectively 37.
  • the second individual integrated optical circuit 23 and the second optical fiber coil 28 form a second interferometer 29 Sagnac ring.
  • the third individual integrated optical circuit 33 and the third optical fiber coil 38 form a third interferometer 39 in the Sagnac
  • each individual integrated optical circuit 13, respectively 23, 33 comprises an integrated polarizer 14, 24, 34 so as to linearly polarize the divided source beams propagating in the optical fiber coils (see FIG. figure 2 ).
  • the optical fiber coil 18, 28, 38 is formed from a polarization-preserving optical fiber whose axes are aligned along the polarization axis of the polarizer of each individual COI 13, respectively 23, 33
  • Various polarization-conserving optical fibers based on the use of stress bars or an elliptical core are known.
  • Polarization-preserving optical fibers are birefringent fibers.
  • FIG. figure 4 represents the normalized light power spectrum P as a function of the wavelength ⁇ measured at the output of the broad-spectrum light source 10. This spectrum P ( ⁇ ) appears smooth as a function of the wavelength.
  • the figure 5 represents the coherence function C (d) of the source 10 (ie the Fourier transform of the spectrum of the figure 4 ) on a logarithmic scale as abscissa and ordinate.
  • the coherence function C (d) of the broad-spectrum light source 10 has a continuous decay and becomes negligible beyond a distance d of one millimeter.
  • the source used is generally a broad-spectrum source having a coherence length of a few hundred microns.
  • the differences in length between the optical paths from the source to the input of the different interferometers are not equal in practice to a few millimeters.
  • a difference in length of a few millimeters is sufficient in principle to eliminate the coherence of parasitic couplings between the different interferometers.
  • a consideration forming part of the present invention consists in measuring the spectrum (and the associated coherence function) of the output source of the optical fiber interferometer and not the input.
  • the figure 6 represents the normalized light power spectrum P as a function of the wavelength ⁇ measured at the output of an optical fiber interferometer, the light arriving just before the detector 17.
  • the interferometer comprises a coil of optical fiber 18 having a length L of 200m, the optical fiber being birefringent and having a group birefringence index difference ⁇ N b ⁇ 3.10 -4 .
  • the specter of figure 6 is centered on the same wavelength ( ⁇ 1.53 ⁇ m) as the spectrum of the figure 4 and has substantially the same spectral width. However, the specter of figure 6 presents random grooves according to the wavelength.
  • the figure 7 represents the coherence function C (d) measured at the output of the interferometer (ie the Fourier transform of the spectrum of the figure 6 ).
  • This coherence function C (d) has a decay up to about 10 -2 and typically has random fluctuations between 10 -2 and 10 -3 which continue beyond a distance d of several centimeters or even several tens of centimeters. .
  • PMD-I ⁇ NOT b / vs
  • the PMD-I coefficient represents the dispersion coefficient of the so-called intrinsic mode polarization modes.
  • the PMD-I ratio is usually expressed in ps / km.
  • there is also a PMD-C coefficient in coupled regime which increases according to the square root of the length of the coil.
  • the intrinsic mode is considered, which in practice gives a higher DGD-I than the DGD-C.
  • the coherence function calculated by Fourier transform has random fluctuations, typically around 10 -2 to 10 -3 , and over a distance corresponding to the length equivalent to the total DGD-I (Differential Group Delay) of the coil. : typically a distance equivalent to 1/2000 of its length L 1 .
  • the first optical fiber coil 18 has a length L 1 and has a group birefringence index difference ⁇ N b 1 which corresponds to a dispersion coefficient of the polarization modes equal to PMO-I 1 .
  • the second optical fiber coil 28 has a length L 2 and has a group birefringence index difference ⁇ N b 2 which corresponds to a dispersion coefficient of the polarization modes equal to PMD-I 2 .
  • the optical fiber coils 18 and 28 comprise monomode fibers with polarization conservation.
  • coherent interfering couplings may occur between the signals from the first optical interferometer and the second interferometer. optical fiber as soon as the distance between these signals is less than the maximum of PMX -I cx 1 x L 1 and cx PMD-I 2 x L 2 .
  • the proposed solution consists in introducing a difference in optical length ⁇ l at the source beam between the respective inputs of the different interferometers. It is recalled that the optical length l is equal to the product of the physical length by the refractive index of the material (approximately 1.45 for an optical fiber).
  • l 1 the optical length of the first optical fiber transmission means 11 taken between the source 10 and the input of the first individual integrated optical circuit 13 on the substrate 2, and respectively l 2 the optical length of the second transmission means to an optical fiber 21 connected between the source 10 and the input of the second individual integrated optical circuit 23 on the substrate 2.
  • the difference ⁇ l between the optical length l 1 of the first optical fiber transmission means and the optical length l 2 of the second Optical fiber transmission means is greater than four times the maximum of ⁇ N b 1 x L 1 and ⁇ N b 2 x L 2 .
  • the optical length l 1 of the optical fiber 11 is equal to the product of the physical length of the optical fiber 11 by its refractive index n.
  • the difference ⁇ l between the optical lengths l 1 and l 2 must then be greater than 50 cm in the vacuum, which corresponds to a difference in optical fiber physical length of 35 cm.
  • a difference in physical length ⁇ l / n of 1 to 2 m is chosen.
  • This difference ⁇ l between the optical lengths l 1 and l 2 of several tens of cm (or more than one meter) is much greater than what is implemented in the interferometric systems of the prior art.
  • lengths are generally used for the different optical paths between the source and each interferometer different by several millimeters, that is to say a difference in optical length ⁇ l slightly greater than the coherence length of the source, generally of the order of a few hundred microns.
  • the criterion of length difference related to the coherence length of the source is not sufficient, it requires a difference in length of more than 1000 times the coherence length of the source.
  • the optical length difference ⁇ l between the broad-spectrum light source 10 and any two of the interferometers is greater than four times the maximum of ⁇ N b 1 x L 1 , ⁇ N b 2 x L 2 and ⁇ N b 3 x L 3 .
  • the physical lengths of the optical fibers 11, 21 and 31 make it possible to materialize the optical lengths of the different optical paths between the common source 10 and the input of the multiple COI.
  • the optical length difference is between the source beam splitter 30 and the respective inputs of each FOG on the multiple COI.
  • This difference in length between the optical fibers 11, 21 and 31 may be located between the source beam splitter 30 and a source-detector separator 16, 26, respectively 36 and / or between the multiple COI and a source-detector separator 16, 26, respectively 36.
  • the difference ⁇ l between the lengths of the different optical fibers is schematically represented by one or more optical fiber loops.
  • the invention makes it possible to manufacture a Sagnac ring optical fiber interferometric system using a single source and a multiple COI while considerably reducing the coherent interfering couplings occurring between the signals of different optical fiber interferometers.
  • the system of the invention therefore makes it possible to increase the compactness of a system with several interferometers by using a multiple COI integrating several individual COIs in parallel on a single substrate, while maintaining the qualities of long-term bias. of each of the independent interferometers.
  • the invention finds application particularly in inertial guidance or navigation systems using several fiber optic gyroscopes.

Claims (11)

  1. Interferometrisches Meßsystem mit optischer Faser mit:
    - einer Lichtquelle (10) mit breitem Spektrum, geeignet, einen Quellenlichtstrahl (20) auszusenden,
    - einem Strahlenteiler (30), geeignet, den Quellenlichtstrahl (20) zu empfangen und einen ersten geteilten Quellenstrahl (100) und einen zweiten geteilten Quellenstrahl (200) zu bilden,
    - ersten optischen Übertragungsmitteln (11) der optischen Länge l1 , geeignet, den ersten geteilten Quellenstrahl (100) zu übertragen, und zweiten optischen Übertragungsmitteln (21) der optischen Länge l2 , geeignet, den zweiten geteilten Quellenstrahl (200) zu übertragen,
    - einem ersten Sagnac-Ringinterferometer mit einer ersten Spule aus einer optischen Faser (18) und einem ersten individuellen integrierten optischen Schaltkreis (13), der einerseits mit den ersten optischen Übertragungsmitteln (11) und andererseits mit den beiden Enden der ersten Spule aus einer optischen Faser (18) verbunden ist, wobei die erste Spule aus einer optischen Faser (18) eine Länge L1 und eine Gruppendoppelbrechungsindexdifferenz ΔN b1 aufweist,
    - einem ersten Detektor (17), geeignet, ein erstes interferometrisches, durch die Ausbreitung des ersten geteilten Quellenstrahls (100) im ersten Sagnac-Ringinterferometer gebildetes Signal (130) zu erfassen,
    - einem zweiten Sagnac-Ringinterferometer mit einer zweiten Spule aus einer optischen Faser (28) und einem zweiten individuellen integrierten optischen Schaltkreis (23), der einerseits mit den zweiten optischen Übertragungsmitteln (21) und andererseits mit den beiden Enden der zweiten Spule aus einer optischen Faser (28) verbunden ist, wobei die zweite Spule aus einer optischen Faser (28) eine Länge L2 und eine Gruppendoppelbrechungsindexdifferenz ΔN b2 aufweist,
    - einem zweiten Detektor (27), geeignet, ein zweites interferometrisches, durch die Ausbreitung des zweiten geteilten Quellenstrahls (200) im zweiten Sagnac-Ringinterferometer gebildetes Signal (230) zu erfassen, und
    - einem mehrfachen integrierten optischen Schaltkreis, der auf einem selben Substrat (2) den ersten individuellen integrierten optischen Schaltkreis (13) und den zweiten individuellen integrierten optischen Schaltkreis (23) integriert,
    dadurch gekennzeichnet, daß
    - die Differenz Δl zwischen der optischen Länge l1 der ersten optischen Übertragungsmittel (11) und der optischen Länge l2 der zweiten optischen Übertragungsmittel (21) größer als das Maximum von ΔNb1 x L1 und ΔN b2 x L2 ist.
  2. Interferometrisches Meßsystem mit optischer Faser gemäß Anspruch 1, bei dem die Differenz Δl zwischen der optischen Länge l1 der ersten optischen Übertragungsmittel (11) und der optischen Länge l2 der zweiten optischen Übertragungsmittel (21) größer als das Vierfache des Wertes des Maximums von ΔNb1 x L1 und von ΔNb2 x L2 ist.
  3. Interferometrisches Meßsystem mit optischer Faser gemäß Anspruch 1 oder Anspruch 2, bei dem die ersten optischen Übertragungsmittel (11) eine optische Faser aufweisen und/oder die zweiten optischen Übertragungsmittel (21) eine optische Faser aufweisen.
  4. Interferometrisches Meßsystem mit optischer Faser gemäß einem der Ansprüche 1 bis 3, bei dem die erste bzw. die zweite Spule aus einer optischen Faser (18, 28) eine optische Faser mit Polarisationserhalt mit einer Gruppendoppelbrechungsindexdifferenz ΔNb1 bzw. ΔNb2 zwischen 10-4 und 10-3 aufweist und bei dem die Differenz Δl zwischen der optischen Länge l1 der ersten optischen Übertragungsmittel mit optischer Faser und der optischen Läge l2 der zweiten optischen Übertragungsmittel mit optischer Faser zwischen 10-4 und 10-3 multipliziert mit dem Maximum von L1 und L2 ist.
  5. Interferometrisches Meßsystem mit optischer Faser gemäß einem der Ansprüche 1 bis 4, das außerdem einen ersten bzw. einen zweiten, zwischen dem Strahlteiler (30) und dem mehrfachen integrierten Schaltkreis angeordneten Separator Quelle/Detektor (16, 26) aufweist, bei dem die Differenz Δl zwischen der optischen Länge l1 der ersten optischen Übertragungsmittel (11) und der optischen Länge l2 der zweiten optischen Übertragungsmittel (21) zwischen dem Strahlteiler (30) und dem ersten und dem zweiten Separator Quelle/Detektor (16, 26) liegt.
  6. Interferometrisches Meßsystem mit optischer Faser gemäß einem der Ansprüche 1 bis 4, das außerdem einen ersten bzw. einen zweiten, zwischen dem Strahlteiler (30) und dem mehrfachen integrierten Schaltkreis angeordneten Separator Quelle/Detektor (16, 26) aufweist, bei dem die Differenz Δl zwischen der optischen Länge l1 der ersten optischen Übertragungsmittel (11) und der optischen Länge l2 der zweiten optischen Übertragungsmittel (21) zwischen dem mehrfachen integrierten Schaltkreis und dem ersten und dem zweiten Separator Quelle/Detektor (16, 26) liegt.
  7. Interferometrisches Meßsystem mit optischer Faser gemäß einem der vorangehenden Anspräche, das außerdem dritte optische Übertragungsmittel (31) der optischen Länge l3 , geeignet, einen dritten geteilten Quellenstrahl (300) zu übertragen, und ein drittes Sagnac-Ringinterferometer mit einer dritten Spule aus einer optischen Faser (38) und einen dritten individuellen integrierten optischen Schaltkreis (33) aufweist, der einerseits mit den dritten optischen Übertragungsmitteln (31) und andererseits mit den beiden Enden der dritten Spule aus einer optischen Faser (38) verbunden ist, wobei die dritte Spule aus einer optischen Faser (38) eine Länge L3 und eine Gruppendoppelbrechungsindexdifferenz ΔNb3 aufweist,
    bei dem der mehrfache integrierte optische Schaltkreis auf demselben Substrat (2) den ersten individuellen integrierten optischen Schaltkreis (13), den zweiten individuellen integrierten optischen Schaltkreis (23) und den dritten individuellen integrierten optischen Schaltkreis (33) integriert und bei dem die Differenz der optischen Längen zwischen irgendwelchen zwei der ersten, zweiten und dritten optischen Übertragungsmittel (11, 21, 31) größer als das Maximum von ΔNb1 x L1 , ΔN b2 x L2 und dNb3 x L3 ist.
  8. Interferometrisches Meßsystem mit optischer Faser gemäß Anspruch 7, bei dem die Differenz der optischen Längen zwischen irgendwelchen zwei der ersten, zweiten und dritten optischen Übertragungsmittel (11, 21, 31) größer als das Vierfache des Wertes des Maximums von ΔNb1 x L1 , ΔNb2 x L2 und ΔNb3 x L3 ist.
  9. Interferometrisches Meßsystem mit optischer Faser gemäß einem der vorangehenden Ansprüche, bei dem die Lichtquelle (10) mit breitem Spektrum aus einer Superleuchtdiode und einer Quelle mit mit Seltenen Erden dotierten Faser ausgewählt ist.
  10. Gyroskopisches Meßsystem, das ein interferometrisches Meßsystem mit optischer Faser gemäß einem der Ansprüche 1 bis 9 aufweist.
  11. Inertialführungs- oder Navigationssystem mit einem interferometrischen Meßsystem mit optischer Faser gemäß einem der Ansprüche 1 bis 9.
EP13727296.9A 2012-05-16 2013-05-15 Interferometrisches messsystem mit optischer faser und inertialführungs- oder navigationssystem mit einem solchen interferometrischen messsystem Active EP2850389B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254523A FR2990751B1 (fr) 2012-05-16 2012-05-16 Systeme de mesure interferometrique a fibre optique et systeme inertiel de guidage ou de navigation comprenant un tel systeme de mesure interferometrique
PCT/FR2013/051060 WO2013171428A1 (fr) 2012-05-16 2013-05-15 Système de mesure interférométrique à fibre optique et système inertiel de guidage ou de navigation comprenant un tel système de mesure interférométrique

Publications (2)

Publication Number Publication Date
EP2850389A1 EP2850389A1 (de) 2015-03-25
EP2850389B1 true EP2850389B1 (de) 2016-03-23

Family

ID=47424967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13727296.9A Active EP2850389B1 (de) 2012-05-16 2013-05-15 Interferometrisches messsystem mit optischer faser und inertialführungs- oder navigationssystem mit einem solchen interferometrischen messsystem

Country Status (4)

Country Link
US (1) US9518826B2 (de)
EP (1) EP2850389B1 (de)
FR (1) FR2990751B1 (de)
WO (1) WO2013171428A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011072B1 (fr) * 2013-09-24 2017-05-19 Ixblue Systeme interferometrique a fibre optique multiaxe et procede de traitement d'un signal interferometrique dans un tel systeme
US10563986B2 (en) 2016-09-22 2020-02-18 LGS Innovations LLC Cladding-pumped waveguide optical gyroscope
IT202000005710A1 (it) * 2020-03-18 2021-09-18 Civitanavi Systems Spa Semilavorato per la realizzazione di un giroscopio e giroscopio comprendente il semilavorato.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157461A (en) * 1990-06-14 1992-10-20 Smiths Industries Aerospace & Defense Systems Inc. Interface configuration for rate sensor apparatus
US5260768A (en) * 1991-11-25 1993-11-09 Litton Systems, Inc. Fiber optic gyro with low-birefringence and PM networks
US5321779A (en) 1992-11-06 1994-06-14 The Charles Stark Draper Laboratory, Inc. Optical substrate with light absorbing segments
US5854678A (en) * 1996-06-28 1998-12-29 Honeywell Inc. Three-axis fiber optic gyroscope having a single source and multi-coupler configuration
GB2329482B (en) * 1997-09-23 1999-08-11 Bookham Technology Ltd An optical circuit
US7746476B2 (en) * 2007-07-11 2010-06-29 Emcore Corporation Fiber optic gyroscope
FR2966926B1 (fr) 2010-11-03 2012-12-21 Ixsea Systeme interferometrique apolarise et procede de mesure interferometrique apolarise

Also Published As

Publication number Publication date
US9518826B2 (en) 2016-12-13
FR2990751B1 (fr) 2015-07-17
FR2990751A1 (fr) 2013-11-22
EP2850389A1 (de) 2015-03-25
WO2013171428A1 (fr) 2013-11-21
US20150131102A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
EP0457668B1 (de) Fiberoptische Messeinrichtung, Gyroskop, Stabilisierungssystem und Strom- oder Magnetfeldsensor
US11293757B2 (en) Non-interferometric optical gyroscope based on polarization sensing and implementations of closed loop control allowing for slow phase modulation
EP2972086B1 (de) Interferometrische glasfaser-messvorrichtung mit einem ringresonator, gyrometer und trägheitshaltung oder navigationseinheit mit solch einer vorrichtung
FR3017945A1 (fr) Dispositif de mesure interferometrique
EP0326476B1 (de) Fiberoptisches Hydrophon und Antenne, die eine Reihe von Hydrophonen umfasst
US11549812B2 (en) Compact optical-fibre Sagnac interferometer
FR2744844A1 (fr) Capteur laser interferometrique
FR3011632A1 (fr) Gyrometre optique passif resonant a trois faisceaux
EP2850389B1 (de) Interferometrisches messsystem mit optischer faser und inertialführungs- oder navigationssystem mit einem solchen interferometrischen messsystem
EP3167244B1 (de) Faseroptisches interferometrisches system
EP2635883B1 (de) Apolarisiertes interferometrisches system und apolarisiertes interferometrisches messsystem
FR2605101A1 (fr) Interferometre en anneau a fibres optiques a trois axes
EP2817590B1 (de) Faseroptische messungsvorrichtung, gyrometer und navigations- sowie trägheitsstabilisierungssystem
EP2462405B1 (de) Interferometer mit einer glasfaser mit hoher pmd im gekoppelten modus, glasfasergyroskop und trägheitsnavigationssystem mit einem solchen gyroskop
EP2936057B1 (de) Interferometrische messvorrichtung mit einem filterungsinterferometer
EP1387997A1 (de) Messvorrichtung fur nichtreziproken effekt, insbesondere ein optischer faserkreisel
WO2023280992A1 (fr) Interféromètre à fibre optique basé sur une source laser monofréquence et procédé d'interférométrie corrigés des réflexions parasites
EP0837302A1 (de) Optischer Faserkreisel mit mehreren Betriebsarten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IXBLUE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783601

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013005761

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 783601

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160515

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013005761

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160515

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230307

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230302

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013005761

Country of ref document: DE

Owner name: EXAIL SAS, FR

Free format text: FORMER OWNER: IXBLUE, SAINT-GERMAIN-EN-LAYE, FR