EP2849994B1 - Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle - Google Patents

Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle Download PDF

Info

Publication number
EP2849994B1
EP2849994B1 EP13723095.9A EP13723095A EP2849994B1 EP 2849994 B1 EP2849994 B1 EP 2849994B1 EP 13723095 A EP13723095 A EP 13723095A EP 2849994 B1 EP2849994 B1 EP 2849994B1
Authority
EP
European Patent Office
Prior art keywords
swell
lull
ship
movement
prediction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13723095.9A
Other languages
German (de)
English (en)
Other versions
EP2849994A1 (fr
Inventor
Céline DROUET
Nicolas CELLIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D'Ingenierie De Recherches Et D'etudes En Ste
Original Assignee
D'Ingenierie De Recherches Et D'etudes En Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D'Ingenierie De Recherches Et D'etudes En Ste filed Critical D'Ingenierie De Recherches Et D'etudes En Ste
Publication of EP2849994A1 publication Critical patent/EP2849994A1/fr
Application granted granted Critical
Publication of EP2849994B1 publication Critical patent/EP2849994B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude

Definitions

  • the present invention relates to a method for predicting at least one movement of a ship lying on a body of water, under the effect of the swell of this body of water.
  • the swell causes the ship according to at least one of the aforementioned movements.
  • the object of the invention is in particular to remedy these drawbacks, by providing a relatively simple prediction method, and allowing a sufficiently precise prediction and sufficiently in advance of the movements of the ship under the effect of the swell.
  • the invention proposes to measure the swell upstream of the ship, to detect the lulls of the swell upstream and to estimate the propagation of these lulls downstream to the ship, in order to predict the times when the ship is at the right of a calm of the swell.
  • This principle of the invention is based in particular on the fact that for sufficiently long lull periods, it is possible to neglect the deformation of the wave envelope between an upstream measurement point and the position of the downstream vessel. Thus, it is possible to consider only a single rate of lull propagation, rather than a different speed for each component of the wave spectrum.
  • Such a method is particularly simple to implement because it seeks simply to provide a lull for the movement of the ship, not to predict the precise behavior of this movement.
  • a ship N being on a body of water, intended to carry out at least one operation requiring a stability of the ship, such as a deployment operation or recovery of a drone.
  • the movement considered is chosen from the caval, the lurching, the heave, the roll, the pitch or the yaw of the ship N.
  • the method according to the invention comprises a preliminary step 10 for estimating a direction D of propagation of the swell, as well as a step 20 for estimating a propagation velocity of this swell in said direction of propagation D.
  • estimation steps 10, 20 are performed using means for estimating the direction and velocity of propagation of the swell.
  • Such means are known per se, and will not be described in detail.
  • these estimation means comprise a RADAR type monitoring system known per se, carried by the ship N, and / or adapted buoys arranged on the body of water to carry out measurements, and suitable for communicating these. measurements to the ship N.
  • the method comprises a step 30 of measuring the evolution of a magnitude characteristic of the swell, in at least one measurement point P upstream of the ship N in the direction of propagation D, as shown on the figure 1 .
  • the evolution of the quantity is measured by periodically measuring said quantity.
  • the measured quantity may be any characteristic magnitude of the swell, making it possible to obtain the instantaneous wave energy, for example the elevation of the free surface, the elevation speed of this free surface, or the pressure at a height. determined. Note that the measurement can be performed at a point P, or on a defined space, for example on a measurement grid.
  • These measurements can be made using means known per se, such as a RADAR type system, LIDAR type, or other, carried by the ship, or by adapted buoys arranged on the body of water for carry out the measurements and to communicate these measurements to the ship N.
  • means known per se such as a RADAR type system, LIDAR type, or other, carried by the ship, or by adapted buoys arranged on the body of water for carry out the measurements and to communicate these measurements to the ship N.
  • the set of periodic measurements of the quantity forms a discrete sequence, representing the evolution of this measured characteristic quantity.
  • the method then comprises a step 40 of filtering the evolution of the measured characteristic quantity, by means of a discrete filter whose inputs are the measurements h ( t i ) of the periodically measured characteristic quantity, and the outputs represent the effect of the evolution of this characteristic quantity on the movement considered.
  • the outputs of the filter correspond to the fictitious movement, under the effect of the swell, of a fictitious ship (designated by the reference N 'on the figure 1 ), with the same characteristics that the ship N, which would be located at the point of measurement P.
  • the signal formed by outputs of this filter will be called "upstream dummy movement”.
  • the values of the constant matrices A, B, C and D are determined experimentally, and are chosen to minimize the difference between the real movements of the ship in response to the swell, and the fictitious movements reconstituted by this filter. In particular, these values are a function of the characteristics of the ship, the speed of that ship and the impact of the swell in relation to the heading of that ship, as well as the vessel movement considered.
  • the filter is for example of order 4, namely a first filter of order 2 for approximating the natural mechanical resonance of the ship, and a second filter of order 2 in cascade allowing to approximate the excitation at the moment of roll generated by the swell.
  • the method comprises a step 50 of calculating an envelope of this upstream fictitious motion signal. For this purpose, applying a Hilbert transform H (s (t)) to the output signal of filter s (t) to obtain the imaginary part of an analytical analytic signal S (t).
  • H Hilbert transform
  • the envelope of the signal s (t), denoted S env ( t ), is the norm of the analytical signal.
  • S ca. t S analytic t
  • the Hilbert transform is performed on a sliding window applied to the filter output signal.
  • the signal is then extended by a mirror operation which ensures a continuity of the periodic function and its derivative, and thus attenuates the windowing effects.
  • This mirror operation known per se, consists in considering that the signal upstream or downstream of the window is symmetrical to the signal inside the window, with respect to the point of the signal at the input, respectively at the exit, from the window.
  • the method comprises a step 60 of decomposition of the wavelet envelope, which makes it possible to isolate the lowest frequency components of this envelope.
  • the number of components to be considered can be predetermined, or established on a criterion of fractions of the energy. For example, we can use Meyer wavelets.
  • the method then comprises a step 70 of detecting a lull of the swell at the measurement point P, this step being performed from the obtained wavelets.
  • the envelope is compared with a predetermined amplitude threshold.
  • This detection step 70 also provides a measurement of a lull period, that is to say a duration during which this envelope is less than said predetermined amplitude threshold.
  • a lull is detected when the measured lull time is greater than a first threshold of predetermined duration.
  • the method therefore then comprises a step 80 for calculating a time interval between the detection of the calm of the swell at the measurement point P and a moment when this lull has repercussions on the movement of the ship N. This calculation is notably performed as a function of the wave propagation velocity previously estimated during the estimation step 20.
  • the calculation of the time interval also depends on the distance from the point P with respect to the ship N. Thus, if it is desired to have a time interval large enough to prepare the operation, it will be possible to choose a point P further away.
  • the method preferably comprises in step 80 of calculating the time interval, a step 90 of calculating a probability so that the detected lull has an effect on the movement of the ship, that is to say so that this movement of the vessel under the effect of the swell is less than a predetermined movement threshold for a duration greater than a second threshold of predetermined duration.
  • This second threshold of predetermined duration corresponds to the minimum time necessary to perform the operation.
  • This calculation is made in particular according to the duration of the lull detected.
  • This estimation of probability can be performed by calculation, using the theory of detection, known per se, detection probability formulas, and false alarms.
  • the probability estimate can be made by learning, this learning can for example be performed by counting, for a determined number of lulls detected, how much is propagated to the ship, in order to deduce a percentage.
  • a first threshold of duration (duration of a lull at point P) of 50 seconds was considered, and a second threshold of duration (duration during which the movement of the ship is less than the predetermined threshold of movement) of 40 seconds.
  • the movements considered are heave, rolling and pitching. Indeed, a lull of these three movements is generally necessary for a deployment operation or recovery of a drone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

  • La présente invention concerne un procédé de prévision d'au moins un mouvement d'un navire se trouvant sur une étendue d'eau, sous l'effet de la houle de cette étendue d'eau.
  • Dans la présente description, on appelle « un mouvement du navire » un mouvement de translation le long d'un axe, ou de rotation autour d'un axe. En particulier, le mouvement considéré sera généralement choisi parmi :
    • un mouvement de translation du navire le long d'un axe longitudinal (également appelé cavalement),
    • un mouvement de translation du navire le long d'un axe transversal (également appelé embardée),
    • un mouvement de translation du navire le long d'un axe vertical (également appelé pilonnement),
    • un mouvement de rotation du navire autour de l'axe longitudinal (également appelé roulis),
    • un mouvement de rotation du navire autour de l'axe transversal (également appelé tangage), ou
    • un mouvement de rotation du navire autour de l'axe vertical (également appelé lacet).
  • Certaines opérations effectuées par le navire ou à partir du navire, telles que des opérations de déploiement ou de récupération d'un drone, nécessitent une bonne stabilité du navire. Or, la houle entraîne le navire selon au moins un des mouvements précités.
  • Afin de pouvoir réaliser en toute sécurité une opération nécessitant une stabilité du navire, il est nécessaire de prévoir les mouvements du navire sous l'effet de la houle, pour anticiper des moments adaptés pour la réalisation de l'opération et/ou pour compenser les mouvements induits par la houle.
  • A cet effet, on connaît déjà, dans l'état de la technique, notamment d'après DE 10 2007 011711 , US 2005/278094 ou WO 03/075715 , divers procédés de prévision d'au moins un mouvement d'un navire sous l'effet de la houle. Toutefois, de tels procédés de l'état de la technique ne permettent généralement pas d'anticiper suffisamment à l'avance et de manière suffisamment précise les mouvements du navire sous l'effet de la houle, ou sont très complexes à mettre en oeuvre.
  • L'invention a notamment pour but de remédier à ces inconvénients, en fournissant un procédé de prévision relativement simple, et permettant une prévision suffisamment précise et suffisamment en avance des mouvements du navire sous l'effet de la houle.
  • A cet effet, l'invention a notamment pour objet un procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle d'une étendue d'eau, caractérisé en ce qu'il comporte :
    • une étape d'estimation d'une direction de propagation de la houle, et une étape d'estimation d'une vitesse de propagation de cette houle dans ladite direction de propagation,
    • une étape de mesure de l'évolution d'une grandeur caractéristique de la houle, en au moins un point de mesure situé en amont du navire dans la direction de propagation, en mesurant périodiquement ladite grandeur,
    • une étape de détection d'une accalmie de la houle au point de mesure, réalisée à l'aide de la mesure de l'évolution de la grandeur caractéristique, cette étape de détection comportant une mesure d'une durée d'une accalmie détectée, et
    lorsqu'une accalmie de la houle est détectée au point de mesure :
    • une étape de calcul d'un intervalle de temps entre la détection de l'accalmie de la houle au point de mesure détectée et un moment où cette accalmie se répercute sur le mouvement du navire, ce calcul étant notamment effectué en fonction de la vitesse de propagation estimée de la houle.
  • L'invention propose de mesurer la houle en amont du navire, de détecter les accalmies de la houle en amont et d'estimer la propagation de ces accalmies en aval jusqu'au navire, afin de prévoir les moments où le navire se trouve au droit d'une accalmie de la houle.
  • Ce principe de l'invention repose notamment sur le fait que pour des périodes d'accalmie suffisamment longues, il est possible de négliger la déformation de l'enveloppe de la houle entre un point de mesure amont et la position du navire en aval. Ainsi, il est possible de ne considérer qu'une vitesse unique de propagation de l'accalmie, plutôt qu'une vitesse différente pour chaque composante du spectre de la houle.
  • Un tel procédé est particulièrement simple à mettre en oeuvre, car il recherche simplement à prévoir une accalmie pour le mouvement du navire, et non pas à prévoir le comportement précis de ce mouvement.
  • En effet, il apparaît que pour la réalisation de certaines opérations nécessitant une stabilité du navire, il est suffisant de connaître un moment où le mouvement du navire est faible (accalmie), sans qu'il soit nécessaire de connaître le comportement précis de ce navire. Ainsi, le procédé selon l'invention présente une précision suffisante.
  • Le procédé selon l'invention peut comporter en outre l'une ou plusieurs des caractéristiques suivantes, prises seules ou selon toutes les combinaisons techniquement possibles.
    • Le procédé comporte, suite à l'étape de mesure, une étape de filtrage de l'évolution de la grandeur caractéristique mesurée, au moyen d'un filtre discret dont les entrées sont les grandeurs caractéristiques mesurées périodiquement, et les sorties formant un signal de sortie représentent l'effet de cette évolution de la grandeur caractéristique sur le mouvement considéré d'un navire fictif qui serait identique au navire et situé au point de mesure, et une étape de calcul d'une enveloppe du signal de sortie du filtre.
    • L'étape de détection d'une accalmie de la houle au point de mesure comprend : une comparaison de l'enveloppe avec un seuil d'amplitude prédéterminé, et la mesure de la durée d'accalmie, réalisée en mesurant la durée pendant laquelle l'enveloppe est inférieure audit seuil d'amplitude, une accalmie étant considérée comme détectée lorsque ladite durée d'accalmie est supérieure à un premier seuil de durée prédéterminé.
    • L'étape de calcul d'une enveloppe comporte l'application d'une transformée de Hilbert au signal de sortie de filtre.
    • La transformée de Hilbert est effectuée sur une fenêtre glissante appliquée au signal de sortie de filtre, la fenêtre glissante étant choisie pour coïncider entre deux passages par 0.
    • Le procédé comporte, suite à l'étape de calcul d'une enveloppe et préalablement à l'étape de détection d'une accalmie, une étape de décomposition de l'enveloppe en ondelettes.
    • Les ondelettes sont des ondelettes de Meyer.
    • L'étape de filtrage est réalisée au moyen d'un filtre discret linéaire et causal, et présentant la forme suivante : s t i = C X t i + D h t i
      Figure imgb0001
      avec :
      • h(ti ) la grandeur caractéristique de la houle à un instant de mesure ti ,
      • s(ti ) la valeur du signal de sortie de filtre à l'instant de mesure ti ,
      • X(ti ) une fonction matrice causale de la forme X(t i+1) = A·X(ti )+B·h(ti ), avec X(t 0)=0, et
      • A, B, C et D des matrices constantes.
    • Le procédé comporte, suite à l'étape de calcul de l'intervalle de temps, une étape d'estimation d'une probabilité que le mouvement du navire sous l'effet de la houle, au moment où l'accalmie détectée se répercute sur le mouvement du navire, soit inférieur à un seuil de mouvement prédéterminé pendant une durée supérieure à un second seuil de durée prédéterminé, cette estimation étant notamment effectué en fonction de la durée de l'accalmie détectée.
    • La grandeur caractéristique de la houle est choisi parmi une élévation de la surface de l'étendue d'eau au point de mesure, une vitesse d'élévation de la surface de l'étendue d'eau au point de mesure, ou une pression de l'eau au point de mesure.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux figures annexées, parmi lesquells :
    • la figure 1 un navire se trouvant sur une étendue d'eau ;
    • la figure 2 représente les étapes du procédé selon l'invention, pour la prévision d'au moins un mouvement du navire de la figure 1.
  • On a représenté sur la figure 1 un navire N se trouvant sur une étendue d'eau, destiné à réaliser au moins une opération nécessitant une stabilité du navire, telle qu'une opération de déploiement ou de récupération d'un drone.
  • Afin de prévoir une telle stabilité du navire N, il est nécessaire de prévoir au moins un mouvement du navire N sous l'effet de la houle de l'étendue d'eau, et ainsi prévoir un moment où ce mouvement est faible.
  • Le mouvement considéré est choisi parmi le cavalement, l'embardée, le pilonnement, le roulis, le tangage ou le lacet du navire N.
  • A cet effet, on a représenté sur la figure 2 les étapes d'un procédé de prévision d'au moins un mouvement du navire N sous l'effet de la houle de l'étendue d'eau, selon un exemple de mode de réalisation de l'invention.
  • Le procédé selon l'invention comporte une étape préalable 10 d'estimation d'une direction D de propagation de la houle, ainsi qu'une étape 20 d'estimation d'une vitesse de propagation de cette houle dans ladite direction de propagation D.
  • Ces étapes d'estimation 10, 20 sont réalisées à l'aide de moyens d'estimation de la direction et de la vitesse de propagation de la houle. De tels moyens sont connus en soi, et ne seront donc pas décrits en détail. Par exemple, ces moyens d'estimation comportent un système de monitoring de type RADAR connu en soi, porté par le navire N, et/ou des bouées adaptées disposées sur l'étendue d'eau pour réaliser des mesures, et propres à communiquer ces mesures au navire N.
  • Ces étapes d'estimation 10, 20 pourront être réalisées de nouveau à tout moment du procédé de prévision, afin, si nécessaire, de réaliser une mise à jour de la direction D et de la vitesse de propagation de la houle.
  • Une fois la direction D de propagation de la houle connue, le procédé comporte une étape 30 de mesure de l'évolution d'une grandeur caractéristique de la houle, en au moins un point P de mesure situé en amont du navire N dans la direction de propagation D, comme cela est représenté sur la figure 1. L'évolution de la grandeur est mesurée en mesurant périodiquement ladite grandeur.
  • La grandeur mesurée peut être toute grandeur caractéristique de la houle, permettant d'obtenir l'énergie instantanée de la houle, par exemple l'élévation de la surface libre, la vitesse d'élévation de cette surface libre, ou la pression à une hauteur déterminée. On notera que la mesure peut être effectuée en un point P, ou sur un espace délimité, par exemple sur une grille de mesure.
  • Ces mesures peuvent être effectuées à l'aide de moyens connus en soi, tels qu'un système de type RADAR, de type LIDAR, ou autre, porté par le navire, ou par des bouées adaptées disposées sur l'étendue d'eau pour réaliser les mesures, et propres à communiquer ces mesures au navire N.
  • Dans ce qui suit, on notera h(ti ) une mesure de la grandeur effectuée à un instant t i = t 0 + i dt ,
    Figure imgb0002
    • t 0 est l'instant de la première mesure effectuée,
    • dt est la période à laquelle sont effectuées les mesures, dite période d'échantillonage, et
    • i est le rang de la mesure considérée.
  • L'ensemble des mesures périodiques de la grandeur forme une suite discrète, représentant l'évolution de cette grandeur caractéristique mesurée.
  • Le procédé comporte ensuite une étape 40 de filtrage de l'évolution de la grandeur caractéristique mesurée, au moyen d'un filtre discret dont les entrées sont les mesures h(ti ) de la grandeur caractéristique mesurée périodiquement, et les sorties représentent l'effet de l'évolution de cette grandeur caractéristique sur le mouvement considéré.
  • On notera que, si l'on souhaite étudier plusieurs mouvements du navire, il est nécessaire de prévoir autant de filtres que de mouvements considérés, afin d'étudier l'effet de la houle sur chacun de ces mouvements.
  • On notera par ailleurs que les mesures étant effectuées en amont du navire, les sorties du filtre correspondent au mouvement fictif, sous l'effet de la houle, d'un navire fictif (désigné par la référence N' sur la figure 1), présentant les mêmes caractéristiques que le navire N, qui serait situés au niveau du point de mesure P. Dans la suite de la présente description, le signal formé par sorties de ce filtre sera appelé « mouvement fictif amont ».
  • Dans ce qui suit, la sortie du filtre à un moment ti sera notée s(ti ).
  • Conformément au mode de réalisation décrit, le filtre choisi est un filtre discret linéaire et causal, présentant la forme suivante : s t i = C X t i + D h t i ,
    Figure imgb0003
    • X est une fonction vectorielle causale telle que : X(t i+1) = A·X(ti )+B·h(ti ), avec X(t 0) = 0, et
    • A, B, C et D sont des matrices constantes.
  • Les valeurs des matrices constantes A, B, C et D sont déterminées expérimentalement, et sont choisies pour minimiser l'écart entre les mouvements réels du navire en réponse à la houle, et les mouvements fictifs reconstitués par ce filtre. En particulier, ces valeurs sont fonction des caractéristiques du navire, de la vitesse de ce navire et de l'incidence de la houle par rapport au cap de ce navire, ainsi que du mouvement de navire considéré.
  • Lorsque le mouvement considéré est le roulis du navire, le filtre est par exemple d'ordre 4, à savoir un premier filtre d'ordre 2 permettant d'approximer la résonance mécanique naturelle du navire, et un second filtre d'ordre 2 en cascade permettant d'approximer l'excitation en moment de roulis générée par la houle.
  • Afin d'étudier le signal de mouvement fictif amont, le procédé comporte une étape 50 de calcul d'une enveloppe de ce signal de mouvement fictif amont. A cet effet, on applique une transformée de Hilbert H(s(t)) au signal de sortie du filtre s(t), afin d'obtenir la partie imaginaire d'un signal analytique Sanalytique (t).
  • Ainsi : H s t = 1 π + s τ t τ ,
    Figure imgb0004
    Et S analytique t = s t + i H s t
    Figure imgb0005
  • L'enveloppe du signal s(t), notée Senv (t), est la norme du signal analytique. S env t = S analytique t
    Figure imgb0006
  • Dans le cas d'un signal s(t) discret, l'enveloppe est calculée par l'algorithme suivant:
    1. a) on calcule la transformée de Fourier rapide du signal S(f)= FFT(s(t))
    2. b) on calcule un signal S'(f) défini de la manière suivante :
      • pour les fréquences f positives, S'(f) = 2 × S(f)
      • pour les fréquences f négatives, S'(f)=0,
      • pour la fréquence nulle et la fréquence de Shannon, S'(f)=S(f).
    3. c) on calcule la transformée inverse du signal S'(f), et on obtient ainsi l'enveloppe Senv (t)=IFFT(S'(f)).
  • De préférence, la transformée de Hilbert est effectuée sur une fenêtre glissante appliquée au signal de sortie de filtre. Avantageusement, la fenêtre glissante est choisie pour coïncider entre deux passages par zéro, c'est-à-dire que s(t)=0 en entrée et en sortie de la fenêtre. Le signal est ensuite étendu par une opération de miroir qui permet d'assurer une continuité de la fonction périodique et de sa dérivée, et atténue ainsi les effets de fenêtrage. Cette opération de miroir, connue en soi, consiste à considérer que le signal en amont, respectivement en aval, de la fenêtre, est symétrique au signal à l'intérieur de la fenêtre, par rapport au point du signal à l'entrée, respectivement à la sortie, de la fenêtre.
  • En effet, en appliquant une simple fenêtre rectangulaire, sans aucun traitement amont, des artéfacts (également appelés effets de bord) apparaissent sur les bords du signal. En revanche, si on effectue l'opération de miroir avant d'appliquer la transformée de Hilbert dans la fenêtre, les discontinuités disparaissent.
  • Grâce à l'enveloppe obtenue, il sera possible de détecter une accalmie de la houle, par rapport au mouvement considéré, c'est-à-dire une accalmie de la houle qui n'entraîne qu'un mouvement considéré suffisamment faible. A cet effet, le procédé comporte une étape 60 de décomposition de l'enveloppe en ondelettes, qui permet d'isoler les plus basses composantes fréquentielles de cette enveloppe.
  • Le nombre de composantes à prendre en considération peut être prédéterminé, ou établi sur un critère de fractions de l'énergie. Par exemple, on pourra utiliser des ondelettes de Meyer.
  • Le procédé comporte ensuite une étape 70 de détection d'une accalmie de la houle au point de mesure P, cette étape étant réalisée à partir des ondelettes obtenues.
  • Au cours de cette étape de détection 70, l'enveloppe est comparée avec un seuil d'amplitude prédéterminé.
  • Cette étape de détection 70 prévoit également une mesure d'une durée d'accalmie, c'est-à-dire une durée pendant laquelle cette enveloppe est inférieure au dit seuil d'amplitude prédéterminé.
  • On considère alors qu'une accalmie est détectée lorsque la durée d'accalmie mesurée est supérieure à un premier seuil de durée prédéterminé.
  • Lorsqu'une telle accalmie est détectée, on peut considérer qu'elle se propage dans la direction D de propagation de la houle, à la vitesse de propagation de cette houle, donc en direction du navire N.
  • Le procédé comporte donc ensuite une étape 80 de calcul d'un intervalle de temps entre la détection de l'accalmie de la houle au point de mesure P et un moment où cette accalmie se répercute sur le mouvement du navire N. Ce calcul est notamment effectué en fonction de la vitesse de propagation de la houle estimée précédemment, au cours de l'étape d'estimation 20.
  • On notera que le calcul de l'intervalle de temps dépend également de la distance du point P par rapport au navire N. Ainsi, si l'on souhaite disposer d'un intervalle de temps suffisamment important pour préparer l'opération, on pourra choisir un point P plus éloigné.
  • Lorsqu'une opération du navire nécessite sa stabilité selon plusieurs mouvements, on considère que cette opération pourra être effectuée lorsqu'une accalmie sera détectée simultanément pour chacun de ces mouvements.
  • On notera qu'il peut survenir qu'une accalmie ne se propage pas depuis le point de mesure P jusqu'au navire N, notamment lorsque ce point de mesure P est particulièrement éloigné du navire N. Ainsi, le procédé comporte de préférence, suite à l'étape 80 du calcul de l'intervalle de temps, une étape 90 de calcul d'une probabilité pour que l'accalmie détectée se répercute effectivement sur le mouvement du navire, c'est-à-dire pour que ce mouvement du navire sous l'effet de la houle soit inférieur à un seuil de mouvement prédéterminé pendant une durée supérieure à un second seuil de durée prédéterminée.
  • Ce second seuil de durée prédéterminée correspond au temps minimal nécessaire pour réaliser l'opération.
  • Ce calcul est notamment effectué en fonction de la durée de l'accalmie détectée. Cette estimation de probabilité peut être effectuée par calcul, à l'aide de la Théorie de la détection, connue en soi, de formules de probabilités de détection, et de fausses alarmes. En variante, l'estimation de probabilité peut être réalisée par apprentissage, cet apprentissage peut par exemple être effectué en comptant, pour un nombre déterminé d'accalmies détectées, combien se propagent jusqu'au navire, afin d'en déduire un pourcentage.
  • On a représenté dans le tableau ci-dessous des exemples de probabilités obtenues au cours de tests du procédé selon l'invention.
  • En particulier, on a considéré un premier seuil de durée (durée d'une accalmie au point P) de 50 secondes, et un second seuil de durée (durée pendant laquelle le mouvement du navire est inférieur au seuil de mouvement prédéterminé) de 40 secondes.
  • Ainsi, dans le tableau ci-dessous :
    • la première colonne précise la distance du point P au navire N, en mètres
    • chaque double colonne concerne un exemple de mouvement particulier, et comporte :
      • o une colonne indiquant l'intervalle de durée mesurée entre l'accalmie au point P et l'accalmie au navire N, en secondes
      • o une colonne indiquant la probabilité d'une accalmie d'au moins 40 seconde au navire lorsqu'une accalmie d'au moins 50 secondes a été détectée au point P, en %.
  • Les mouvements considérés sont le pilonnement, le roulis et le tangage. En effet, une accalmie de ces trois mouvements est généralement nécessaire pour une opération de déploiement ou de récupération d'un drone.
    Pilonnement Roulis Tangage
    Distance Probabilité Temps Probabilité Temps Probabilité Temps
    480 m 90% 18 s 98% 13 s 90% 31 s
    720 m 50% 47 s 90% 40 s 90% 66 s
    960 m 55% 76 s 90% 67 s 70% 101 s
  • Il apparaît clairement que, plus le point P est éloigné, et plus la probabilité d'une accalmie au navire est faible, mais plus l'intervalle de temps pour préparer l'opération est grand. La distance du navire au point P sera donc généralement choisie selon le meilleur compromis entre la nécessité d'un intervalle de temps important pour préparer la mission et le souhait d'une probabilité suffisante d'accalmie.
  • On notera que l'invention n'est pas limitée au mode de réalisation précédemment décrit, et pourrait présenter diverses variantes sans sortir du cadre des revendications.

Claims (10)

  1. Procédé de prévision d'au moins un mouvement d'un navire (N) sous l'effet de la houle d'une étendue d'eau, caractérisé en ce qu'il comporte :
    - une étape (10) d'estimation d'une direction (D) de propagation de la houle, et une étape (20) d'estimation d'une vitesse de propagation de cette houle dans ladite direction de propagation (D),
    - une étape (30) de mesure de l'évolution d'une grandeur caractéristique de la houle, en au moins un point de mesure (P) situé en amont du navire dans la direction de propagation (D), en mesurant périodiquement ladite grandeur,
    - une étape (70) de détection d'une accalmie de la houle au point de mesure (P), réalisée à l'aide de la mesure de l'évolution de la grandeur caractéristique, cette étape de détection (70) comportant une mesure d'une durée d'une accalmie détectée, et
    lorsqu'une accalmie de la houle est détectée au point de mesure (P) :
    - une étape (80) de calcul d'un intervalle de temps entre la détection de l'accalmie de la houle au point de mesure détectée (P) et un moment où cette accalmie se répercute sur le mouvement du navire (N), ce calcul étant notamment effectué en fonction de la vitesse de propagation estimée de la houle.
  2. Procédé de prévision selon la revendication 1, comportant :
    - suite à l'étape de mesure (30), une étape (40) de filtrage de l'évolution de la grandeur caractéristique mesurée, au moyen d'un filtre discret dont les entrées sont les grandeurs caractéristiques mesurées périodiquement, et les sorties formant un signal de sortie représentent l'effet de cette évolution de la grandeur caractéristique sur le mouvement considéré d'un navire fictif (N') qui serait identique au navire (N) et situé au point de mesure (P),
    - une étape (50) de calcul d'une enveloppe du signal de sortie du filtre.
  3. Procédé de prévision selon la revendication 2, dans lequel l'étape (70) de détection d'une accalmie de la houle au point de mesure (P) comprend :
    - une comparaison de l'enveloppe avec un seuil d'amplitude prédéterminé,
    - la mesure de la durée d'accalmie, réalisée en mesurant la durée pendant laquelle l'enveloppe est inférieure audit seuil d'amplitude,
    une accalmie étant considérée comme détectée lorsque ladite durée d'accalmie est supérieure à un premier seuil de durée prédéterminé.
  4. Procédé de prévision selon la revendication 2 ou 3, dans lequel l'étape (50) de calcul d'une enveloppe comporte l'application d'une transformée de Hilbert au signal de sortie de filtre.
  5. Procédé de prévision selon la revendication 4, dans lequel la transformée de Hilbert est effectuée sur une fenêtre glissante appliquée au signal de sortie de filtre, la fenêtre glissante étant choisie pour coïncider entre deux passages par 0.
  6. Procédé de prévision selon l'une quelconque des revendications 2 à 5, comportant, suite à l'étape (50) de calcul d'une enveloppe et préalablement à l'étape (70) de détection d'une accalmie, une étape (60) de décomposition de l'enveloppe en ondelettes.
  7. Procédé selon la revendication 6, dans lequel les ondelettes sont des ondelettes de Meyer.
  8. Procédé de prévision selon l'une quelconque des revendications 2 à 7, dans lequel l'étape de filtrage (40) est réalisée au moyen d'un filtre discret linéaire et causal, et présentant la forme suivante : s t i = C X t i + D h t i
    Figure imgb0007
    avec :
    h(ti ) la grandeur caractéristique de la houle à un instant de mesure ti ,
    s(ti ) la valeur du signal de sortie de filtre à l'instant de mesure ti ,
    X(ti ) une fonction matrice causale de la forme X(t i+1) = A · X(ti ) + B · h(ti ), avec X(t 0)=0, et
    A, B, C et D des matrices constantes.
  9. Procédé selon l'une quelconque des revendications précédentes, comportant, suite à l'étape (80) de calcul de l'intervalle de temps, une étape (90) d'estimation d'une probabilité que le mouvement du navire (N) sous l'effet de la houle, au moment où l'accalmie détectée se répercute sur le mouvement du navire (N), soit inférieur à un seuil de mouvement prédéterminé pendant une durée supérieure à un second seuil de durée prédéterminé, cette estimation étant notamment effectué en fonction de la durée de l'accalmie détectée.
  10. Procédé de prévision selon l'une quelconque des revendications précédentes, dans lequel la grandeur caractéristique de la houle est choisi parmi une élévation de la surface de l'étendue d'eau au point de mesure, une vitesse d'élévation de la surface de l'étendue d'eau au point de mesure, ou une pression de l'eau au point de mesure.
EP13723095.9A 2012-05-16 2013-05-14 Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle Active EP2849994B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254503A FR2990681B1 (fr) 2012-05-16 2012-05-16 Procede de prevision d'au moins un mouvement d'un navire sous l'effet de la houle
PCT/EP2013/059871 WO2013171179A1 (fr) 2012-05-16 2013-05-14 Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle

Publications (2)

Publication Number Publication Date
EP2849994A1 EP2849994A1 (fr) 2015-03-25
EP2849994B1 true EP2849994B1 (fr) 2016-07-06

Family

ID=47019095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13723095.9A Active EP2849994B1 (fr) 2012-05-16 2013-05-14 Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle

Country Status (7)

Country Link
US (1) US9371116B2 (fr)
EP (1) EP2849994B1 (fr)
BR (1) BR112014028372B8 (fr)
FR (1) FR2990681B1 (fr)
MY (1) MY172234A (fr)
SG (1) SG11201407464PA (fr)
WO (1) WO2013171179A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990681B1 (fr) * 2012-05-16 2014-06-13 Ingenierie De Rech S Et D Etudes En Hydrodynamique Navale Par Abreviation Sirehna Soc D Procede de prevision d'au moins un mouvement d'un navire sous l'effet de la houle
EP3512768A2 (fr) 2016-09-16 2019-07-24 Applied Physical Sciences Corp. Systèmes et procédés de détection d'onde et de prévision de mouvement de navire dotés d'affichages de prévision de défilement
US10780968B2 (en) * 2017-11-27 2020-09-22 Applied Physical Sciences Corp. Systems and methods for wave sensing and ship motion forecasting with operational period indicators
CN110702110A (zh) * 2019-10-16 2020-01-17 江苏科技大学 一种基于无迹卡尔曼滤波的舰船升沉运动测量方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665168A (en) * 1970-12-18 1972-05-23 Gen Electric Adaptively controlled position prediction system
US6469664B1 (en) * 1999-10-05 2002-10-22 Honeywell International Inc. Method, apparatus, and computer program products for alerting surface vessels to hazardous conditions
US7039512B2 (en) * 2002-03-06 2006-05-02 Vssl Commercial, Inc. Active suspension for a marine platform
US7418324B2 (en) * 2002-03-06 2008-08-26 Vssl Commercial, Inc. Active suspension for a marine platform
JP3992101B2 (ja) * 2003-05-16 2007-10-17 よこはまティーエルオー株式会社 個別波予測・警報システム
US7219015B2 (en) * 2004-02-26 2007-05-15 Swiss Reinsurance Company Methods for generating data set
US7352651B2 (en) * 2005-06-29 2008-04-01 Nortek As System and method for determining directional and non-directional fluid wave and current measurements
US7613072B2 (en) * 2005-06-29 2009-11-03 Nortek, AS System and method for determining directional and non-directional fluid wave and current measurements
DE102007011711A1 (de) * 2007-03-08 2008-09-18 Joachim Falkenhagen Verfahren zur Antizipation von Wellen- und Windbewegungen und zu deren Kompensation
US8067942B2 (en) * 2007-09-28 2011-11-29 Florida State University Research Foundation Method for locating phase to ground faults in DC distribution systems
CN102741895B (zh) * 2010-01-19 2014-09-10 瑞士再保险有限公司 自动进行位置相关的自然灾害预报的方法和系统
US8643509B1 (en) * 2011-01-31 2014-02-04 The Boeing Company Methods and systems for providing sloshing alerts and advisories
US8494697B2 (en) * 2011-03-28 2013-07-23 The Boeing Company Methods and systems for predicting water vessel motion
CA2836697C (fr) * 2011-05-20 2021-01-19 Optilift As Systeme, dispositif et procede pour suivre position et orientation de vehicule, dispositif de chargement et chargement dans operations de dispositif de chargement
US8725429B2 (en) * 2011-05-27 2014-05-13 Stress Engineering Services, Inc. Fatigue monitoring
FR2990681B1 (fr) * 2012-05-16 2014-06-13 Ingenierie De Rech S Et D Etudes En Hydrodynamique Navale Par Abreviation Sirehna Soc D Procede de prevision d'au moins un mouvement d'un navire sous l'effet de la houle
EP2979443A4 (fr) * 2013-03-27 2016-08-17 Total E&P Res & Technology Usa Inc Compression de données sismiques à base d'ondelettes

Also Published As

Publication number Publication date
MY172234A (en) 2019-11-18
BR112014028372B8 (pt) 2023-04-18
SG11201407464PA (en) 2015-04-29
US9371116B2 (en) 2016-06-21
FR2990681A1 (fr) 2013-11-22
BR112014028372A2 (pt) 2017-06-27
FR2990681B1 (fr) 2014-06-13
EP2849994A1 (fr) 2015-03-25
BR112014028372B1 (pt) 2023-03-07
US20150183497A1 (en) 2015-07-02
WO2013171179A1 (fr) 2013-11-21

Similar Documents

Publication Publication Date Title
EP2849994B1 (fr) Procédé de prévision d'au moins un mouvement d'un navire sous l'effet de la houle
EP3555585B1 (fr) Procede et systeme de controle de sante integre d'une structure mecanique par ondes elastiques diffuses
FR2872296A1 (fr) Procede destine a amiliorer la resolution sismique
EP3811109B1 (fr) Procédé de mesure de la hauteur de vagues à l'aide d'un radar aéroporté
EP0588688A1 (fr) Procédé et dispositif de réglage du seuil de détection d'un radar
EP1615049B1 (fr) Traitement cohérent rapide pour codes à spectre de raies périodiques
EP2235558B1 (fr) Procédé de trajectographie robuste en temps réel sur ordinateur portable, de un ou plusieurs cétacés par acoustique passive
FR2844057A1 (fr) Unite de traitement de signaux de radar et procede de traite ment de signaux de radar
EP1751494B1 (fr) Dispositif et procédé de caractérisation dimensionnelle d'un objet cylindrique.
EP3259608B1 (fr) Procede de caracterisation d'un defaut non franc dans un cable
EP3295212B1 (fr) Procédé et dispositif de sondage par propagation d'ondes
EP2309289A1 (fr) Procédé de séparation de trains d'impulsions radar imbriqués
FR2896314A1 (fr) Dispositif de localisation de sources acoustiques et de mesure de leur intensite
EP2544020B1 (fr) Procédé et dispositif de détection d'une cible masquée par des réflecteurs de forte énergie
EP3044580B1 (fr) Procédé de contrôle non-destructif par ultrasons d'une pièce par analyses d'échos
EP2214009A2 (fr) Procédé de localisation d'apparition d'un défaut dans un milieu par une onde
EP1360524B1 (fr) Procede de determination du courant marin et dispositif associe
EP3619519B1 (fr) Dispositif et procede de mesure et de suivi de la quantite ou concentration d'un composant dans un fluide
EP2827174B1 (fr) Procédé et dispositif de mesure de la vitesse d'un aéronef par effet Doppler
EP4001934B1 (fr) Méthode de caractérisation d'une ligne de transmission par son profil d'impédance caractéristique
EP4172648B1 (fr) Procede de determination des composantes de la vitesse du vent au moyen d'un capteur de teledetection par laser et au moyen d'une coherence temporelle
EP4155724A1 (fr) Procédé de détection d'un défaut dans une structure d'un dispositif par modulation vibro-acoustiques
EP3781952B1 (fr) Anemometre a ultrason
EP4300095B1 (fr) Procédé d'identification automatique d'une source acoustique a partir d'un signal acoustique produit
EP2666026B1 (fr) Procede et dispositif d'estimation de la reponse impulsionnelle d'un reseau de cables par deconvolution myope

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013009130

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160706

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 810490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013009130

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

26N No opposition filed

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170514

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240513

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240426

Year of fee payment: 12

Ref country code: FR

Payment date: 20240411

Year of fee payment: 12