EP2842716A1 - Worm machine and method for the treatment of plastic melts - Google Patents

Worm machine and method for the treatment of plastic melts Download PDF

Info

Publication number
EP2842716A1
EP2842716A1 EP13182151.4A EP13182151A EP2842716A1 EP 2842716 A1 EP2842716 A1 EP 2842716A1 EP 13182151 A EP13182151 A EP 13182151A EP 2842716 A1 EP2842716 A1 EP 2842716A1
Authority
EP
European Patent Office
Prior art keywords
shaft
bearing
plastic melt
screw machine
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13182151.4A
Other languages
German (de)
French (fr)
Other versions
EP2842716B1 (en
Inventor
Edgar R. Schlipf
Raimund Schleicher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coperion GmbH
Original Assignee
Coperion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coperion GmbH filed Critical Coperion GmbH
Priority to EP13182151.4A priority Critical patent/EP2842716B1/en
Publication of EP2842716A1 publication Critical patent/EP2842716A1/en
Application granted granted Critical
Publication of EP2842716B1 publication Critical patent/EP2842716B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/793Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling upstream of the plasticising zone, e.g. heating in the hopper
    • B29C48/797Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • B29C48/2522Shaft or screw supports, e.g. bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/51Screws with internal flow passages, e.g. for molten material
    • B29C48/515Screws with internal flow passages, e.g. for molten material for auxiliary fluids, e.g. foaming agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • B29C48/85Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • B29C48/2526Direct drives or gear boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/254Sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2564Screw parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/269Extrusion in non-steady condition, e.g. start-up or shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling

Definitions

  • the invention relates to a screw machine for the treatment of plastic melts according to the preamble of claim 1. Furthermore, the invention relates to a method for the treatment of plastic melts.
  • a worm machine whose shafts are cantilevered at an upstream end of the housing by means of plain bearings and sealed by means of a cloth liner.
  • the sliding bearing consists of a sintered metal, in particular of sintered bronze.
  • the invention has for its object to provide a screw machine for the treatment of plastic melts, which allows a simple way a shaft bearing with relatively less wear.
  • the at least one shaft bearing upstream of the feed opening is formed hydrodynamically according to the invention, whereby a contact-free and thus wear-free storage is achieved in a simple manner.
  • the shaft bearing can be dispensed with quality materials or material pairings, whereby the shaft bearing is easier and less expensive.
  • the hydrodynamic design of the at least one shaft bearing takes place in particular by means of the plastic melt to be processed. As a result, the plastic melt to be processed is used at the same time for shaft bearing in a simple manner.
  • the worm machine is designed in particular as a multi-shaft worm machine, preferably as a twin-shaft worm machine.
  • the treatment element waves of the multi-shaft screw machine or twin-shaft screw machine are in particular in the same direction rotatably drivable and formed dichthimmmend.
  • a screw machine ensures a non-contact and wear-free shaft bearing.
  • a sliding film or lubricating film forms in the respective bearing gap, ie between the at least one shaft and the housing.
  • the sliding film is formed substantially symmetrically or rotationally symmetric due to a - normally - symmetrical pressure distribution.
  • radial loads act on the at least one shaft, it shifts radially, creating an asymmetric sliding film and an asymmetric pressure distribution that compensate for the radial loads.
  • the bearing gap is preferably charged with the plastic melt to be processed.
  • a screw machine according to claim 3 ensures a simple and reliable shaft bearing.
  • the gap width B ensures that the sliding film on the one hand has a sufficient radial thickness to compensate for radial loads, and on the other hand that the radial thickness of the sliding film is not too large to allow a stable shaft bearing.
  • a screw machine according to claim 4 ensures a simple and reliable shaft bearing.
  • the gap length L ensures that the bearing gap on the one hand in the axial direction is sufficiently long to distribute the occurring radial loads over the gap length and compensate in conjunction with the gap width, and that the gap length on the other hand is not too long to a large flow resistance to avoid and to ensure a reliable lubrication.
  • a screw machine allows a simple way hydrodynamic shaft bearing. Due to the fact that the respective bearing gap is flowed through by the plastic melt to be processed, the plastic melt simultaneously forms the sliding film or lubricating film in a simple manner.
  • the plastic melt to be processed is divided into a main flow and a secondary flow, wherein the bearing gap is flowed through by the secondary flow.
  • the bearing gap with the at least one housing bore in connection so that either the plastic melt or the secondary flow to the bearing gap from the at least one housing bore can be fed and / or the plastic melt or the secondary stream after flowing through the bearing gap in the at least one housing bore can be discharged is. As a result, a simple supply and / or discharge of the plastic melt or the secondary flow is ensured.
  • a screw machine according to claim 6 ensures a simple shaft bearing.
  • the secondary flow of the plastic melt is supplied to the main flow after flowing through the bearing gap, so that the plastic melt used for the hydrodynamic shaft bearing is further processed. Disposal of the hydrodynamic Storage used plastic melt is eliminated by this. In addition, the entire plastic melt is retained in the treatment process.
  • a screw machine ensures in a simple manner the supply of the plastic melt to the respective bearing gap.
  • the plastic melt supplied to the screw machine is divided in the at least one housing bore into a main flow and a secondary flow.
  • the secondary flow flows through against the conveying direction of the main flow to the respective bearing gap.
  • the plastic melt is supplied, for example, with a correspondingly high melt pressure in the at least one housing bore, so that the main flow is conveyed in the usual manner in the conveying direction and the secondary flow is forced through the respective melt channel.
  • a feed element can be arranged in the feed section, which conveys the secondary flow counter to the conveying direction of the main flow to the respective bearing gap.
  • the secondary flow can be returned to the main flow.
  • the respective melt channel opens again into the feed opening or into the at least one housing bore.
  • the melt channel can be formed in sections in the housing and / or outside the housing or externally for returning the secondary flow.
  • a screw machine according to claim 8 ensures a reliable shaft bearing.
  • the charging element ensures in a simple manner a supply of the associated storage gap with the plastic melt to be processed.
  • the supply is in particular independent of the melt pressure with which the plastic melt is supplied.
  • a screw machine according to claim 9 ensures a simple hydrodynamic shaft bearing.
  • the plastic melt is divided before being fed into the at least one housing bore into a main flow and a secondary flow.
  • the main stream is fed to the preparation in the at least one housing bore.
  • the secondary flow is guided in the conveying direction of the main flow through the respective bearing gap.
  • the secondary flow is then guided into the at least one housing bore. Due to a sufficiently high melt pressure, the secondary flow is preferably forced through the respective melt channel or the respective bearing gap.
  • a screw machine according to claim 10 ensures a possible wear-free startup of the screw machine.
  • the at least one shaft bearing or the associated bearing gap is prefilled with a lubricant prior to starting the screw machine.
  • the lubricant may for example be a grease and / or the plastic melt.
  • the start-up takes place in particular at reduced load, so that the starting takes place as wear-free as possible.
  • plastic molded body can be inserted, such as plastic strips, which melt at the first start in the at least one bearing gap and minimize wear during startup.
  • a screw machine ensures in a simple manner a reliable shaft bearing. Due to the temperature controllability of the housing and / or the at least one shaft, the hydrodynamic bearing properties of the at least one shaft bearing can be influenced as required. For example, when flowing through the Storage gap high heat generation due to a high viscosity of the plastic melt, so the at least one shaft bearing or the bearing can be cooled.
  • the housing and / or the at least one shaft is formed in particular coolable in the region of the at least one shaft bearing.
  • a screw machine ensures a simple sealing of the at least one shaft.
  • the sealing element is designed in particular as a non-contact sealing element and thus maintenance-free, for example as a threaded shaft sealing element.
  • the threaded shaft sealing element By means of the threaded shaft sealing element, the plastic melt or the secondary flow is conveyed in the direction of the at least one housing bore and constructed accordingly for sealing a back pressure.
  • the plastic melt or the secondary stream is preferably conveyed back into the melt channel and / or the at least one housing bore.
  • the invention is further based on the object to provide a method for the preparation of plastic melts, which allows a simple way a shaft bearing with relatively less wear.
  • a method according to claim 14 ensures a simple and reliable hydrodynamic shaft bearing. Because of the plastic melt is divided into a main flow and a secondary flow, only the secondary flow must be passed through the respective bearing gap of the at least one shaft bearing for hydrodynamic bearing of at least one shaft. The secondary flow thus ensures a simple way a wear-free shaft bearing. At the same time, the throughput of the screw machine is not affected because the main stream does not have to flow through the bearing gap. Preferably, the secondary stream is fed back to the main stream after flowing through the storage gap, so that disposal of plastic melt is eliminated and the entire plastic melt is processed.
  • a method according to claim 15 ensures a reliable hydrodynamic shaft bearing.
  • the melt pressure ensures that the plastic melt or the secondary stream flows through the respective bearing gap continuously, ie without interruption.
  • the melt pressure can be provided, for example, by means of a melt pump.
  • the melt pressure is preferably adjustable as needed or plastic melt.
  • the melt pressure indicates the pressure of the plastic melt minus the ambient pressure.
  • a multi-shaft screw machine 1 has a housing 2 made up of a plurality of housing sections 4 to 13 arranged one after the other in a conveying direction 3 and designated as housing sections.
  • the housing sections 4 to 13 are connected to each other via flanges, not shown, and form the housing 2.
  • housing sections 5 to 13 two mutually parallel and interpenetrating housing bores 14, 15 are formed, which have the shape of a horizontal eight in cross section.
  • housing bores 14, 15 concentrically two treatment element shafts 16, 17 are arranged, which are rotatably driven about associated axes of rotation 18, 19.
  • the screw machine 1 has in succession in the conveying direction 3 a feed zone 20, a first treatment zone 21, a degassing zone 22, a second treatment zone 23 and a pressure buildup zone 24.
  • the housing 2 is closed off at the last housing section 13 by an adapter plate 25, which has a discharge opening 26.
  • the treatment element shafts 16, 17 are formed by shafts 27, 28 with treatment elements 29 to 37 or 29 'to 37' arranged thereon.
  • the treatment elements 29 to 37 arranged on the first shaft 27 and the treatment elements 29 'to 37' arranged on the second shaft 28 correspond to each other, the reference numerals of the treatment elements 29 'to 37' arranged on the second shaft 28 being distinguished by a "'". exhibit.
  • the treatment elements 29 to 37 or 29 'to 37' are designed to treat or treat a plastic melt 38 in pairs tightly combing.
  • the housing section 9 has a degassing opening 39.
  • the treatment element shafts 16, 17 are by means of a drive motor 40 and an associated branching gear 41 in the same direction, ie in the same directions of rotation 42, 43 about the axes of rotation 18, 19 rotatably driven. Between the drive motor 40 and the branching gear 41, a clutch 44 is arranged.
  • the shafts 27, 28 are provided in the region of the treatment elements 29 to 37 or 29 'to 37' with an outer profile A, which with a respective inner profile I of the treatment elements 29 to 37 or 29 'to 37' generates the rotationally fixed connection.
  • a feed opening 45 is formed in the housing section 5, which opens into the housing bores 14, 15.
  • the plastic melt 38 can be fed, for example, by means of a melt pump with an adjustable melt pressure p through the feed opening 45 into the housing bores 14, 15.
  • the screw machine 1 For supporting the shafts 27, 28, the screw machine 1 has two shaft bearings 47, 48 upstream of the housing section 4, relative to the conveying direction 3.
  • the shaft bearings 47, 48 are hydrodynamically formed and are also referred to below as hydrodynamic shaft bearings 47, 48.
  • the bearing bores 49, 50 extend from the housing bores 14, 15 concentrically to the axes of rotation 18, 19 through the housing section 4 to the branching gear 41.
  • the bearing bores 49, 50 have a diameter D L , which is smaller than a diameter D G. the housing bores 14, 15, so that the bearing bores 49, 50 do not intersect.
  • the shafts 27, 28 are guided by the associated bearing bores 49, 50.
  • the shafts 27, 28 associated bearing portions 51, 52 which form a first smooth bearing surface L 1 .
  • the bearing bores 49, 50 have second smooth bearing surfaces L 2 in the region of the bearing sections 51, 52.
  • the bearing bores 49, 50 and the associated bearing sections 51, 52 define associated bearing gaps 53, 54 with their bearing surfaces L 1 and L 2.
  • the shafts 27, 28 have a diameter D W in the area of the bearing sections 51, 52 which is smaller than the diameter Diameter D L is, so that the bearing gaps 53, 54 in the concentric arrangement of the shafts 27, 28 in the bearing bores 49, 50 are annular and over the entire circumference have a radial gap width B.
  • the bearing gaps 53, 54 furthermore have a gap length L in the direction of the axes of rotation 18, 19.
  • a gap length L in the direction of the axes of rotation 18, 19.
  • the bearing gaps 53, 54 can be flowed through by the plastic melt 38.
  • the screw machine 1 has melt channels 55, 56 which, as the respective section, comprise the bearing gap 53 or 54.
  • Fig. 4 shows the melt channel 56 with the associated bearing gap 54.
  • the melt channels 55, 56 are identical, so that only the melt channel 56 is described below.
  • the melt channel 56 comprises, starting from the housing bore 15, a feed section 57, the bearing section 52, a discharge section 58 and a return section 59.
  • the feed section 57 extends from the feed opening 45 to the bearing gap 54.
  • a feed element 60 designed as a screw element is arranged on the shaft 28.
  • the feed element 60 has a feed conveying direction 61, which is directed opposite to the conveying direction 3.
  • the charging element 60 is rotatably mounted on the shaft 28 corresponding to the treatment elements 29 'to 37'. Relative to the conveying direction 3, the feed section 57 is thus arranged downstream of the respectively associated bearing gap 53, 54.
  • the discharge section 58 is arranged downstream of the bearing gap 54 in the feed conveying direction 61.
  • the shaft 28 has a diameter D A , which is smaller than the diameter D L , so that in the discharge section 58 between the shaft 28 and the housing portion 4 in the bearing bore 50, a comparatively large annular space is formed in the the plastic melt 38 can be discharged from the bearing gap 54.
  • the plastic melt 38 can be returned to the feed opening 45 via the return section 59.
  • the return section 59 is formed in sections as a channel in the housing section 4 and arranged as outside the housing section 4 return line. The same applies to the melt channel 55 and the associated bearing gap 53.
  • the housing portion 4 is formed in the region of the shaft bearings 47, 48 tempered.
  • a plurality of temperature control channels 62 are formed in the housing section 4, into which a temperature control means 63 can be fed.
  • the temperature control channels 62 and the temperature control 63 serve for cooling.
  • the shafts 27, 28 in the region of the shaft bearings 47, 48 formed tempered.
  • the waves 27, 28 tempering 67 formed which can be filled with a temperature control 68 or flowed through by this.
  • the temperature control channels 67 and the temperature control 68 serve for cooling.
  • a non-contact sealing element 64 is arranged in each case.
  • the sealing elements 64 are designed as threaded shaft sealing elements.
  • the threaded shaft sealing elements 64 are rotatably mounted on the shafts 27 and 28 in the manner already described.
  • the threaded shaft sealing elements 64 have a conveying direction which corresponds to the conveying direction 3.
  • the threaded shaft sealing elements 64 are arranged in the feed conveying direction 61 downstream of the discharge section 58, so that the plastic melt 38 can be introduced into the return section 59.
  • a start pump 46 which serves for supplying a lubricant, in particular the plastic melt 38 to the shaft bearings 47, 48.
  • the starting pump 46 can be connected to the melt channels 55, 56, so that before starting the screw machine 1, the lubricant or plastic melt 38 can be conveyed into the bearing gaps 53, 54.
  • the starting pump 46 is in Fig. 4 indicated.
  • the starting pump 46 is first connected to the melt channels 55, 56. Subsequently, plastic melt 38 is conveyed into the bearing gaps 53, 54 by means of the starting pump 46.
  • the starting pump 46 is again separated from the melt channels 55, 56.
  • the plastic melt 38 is supplied with a melt pressure p through the feed opening 45 in the housing bores 14, 15 and the screw machine 1 approached.
  • melt pressure p which designates the differential pressure between the pressure of the plastic melt 38 and the ambient pressure, the following applies: 0.01 bar ⁇ p ⁇ 20 bar, in particular 0.1 ⁇ p ⁇ 10 bar, in particular 0.5 bar ⁇ p ⁇ 5 bar, and in particular 1 bar ⁇ p ⁇ 3 bar.
  • the plastic melt 38 is divided into a main flow and a secondary flow.
  • the main flow is indicated by arrows marked H
  • the side flow is indicated by arrows labeled N.
  • the main stream H is conveyed in the usual way by means of the treatment elements 29 to 37 and 29 'to 37' in the conveying direction 3 and the plastic melt 38 is processed in the usual way.
  • the secondary flow N is conveyed to the hydrodynamic shaft bearings 47, 48 by means of the feed elements 60 in the feed direction 61, ie opposite to the conveying direction 3.
  • the plastic melt 38 flows through the bearing gaps 53, 54, whereby the shafts 27, 28 are mounted hydrodynamically in the region of the bearing sections 51, 52.
  • the plastic melt 38 forms a sliding film or lubricating film in the bearing gaps 53, 54. Due to the rotation of the shafts 27, 28, the pressure distribution in the bearing gaps 53, 54 is substantially symmetrical, so that the sliding film forms symmetrically or rotationally symmetrically. Acting radial loads on the shafts 27, 28, so they shift in the bearing bores 49, 50, resulting in an asymmetric pressure distribution and forms an asymmetric sliding film that compensates for the radial loads.
  • the hydrodynamic shaft bearings 47, 48 work without contact and thus wear-free.
  • the plastic melt 38 which has flowed through the bearing gaps 53, 54, is fed back to the main flow H through the feed opening 45 via the discharge sections 58 and the return sections 59.
  • the threaded shaft seals 64 promote the plastic melt 38 in the conveying direction 3, so that they generate a back pressure.
  • the back pressure causes the plastic melt 38 on the one hand does not get to the branching gear 41 and on the other hand is passed into the return sections 59.
  • a temperature control medium 63 is passed through the temperature control channels 62.
  • the temperature is preferably a cooling. Cooling is necessary in particular for viscous plastic melts 38, which generate heat when flowing through the bearing gaps 53, 54. Additionally or alternatively, a temperature control 68 is passed through the temperature control 67.
  • the feed conveying direction 61 of the feed elements 60 is rectified relative to the conveying direction 3.
  • the feed section 57 is formed by a respective feed channel 65 which opens into the bearing bore 50 between the threaded shaft sealing element 64 and the shaft bearing 48.
  • the loading element 60 is arranged on the shaft 28, which enters the plastic melt 38 entering the bearing bore 50 in the direction of loading 61 promotes to the shaft bearing 48.
  • the discharge section 58 is arranged in the conveying direction 3 downstream of the shaft bearing 48.
  • a conveying element 66 is arranged on the shaft 28, which conveys the plastic melt 38, which has flowed through the bearing gap 54, into the housing bore 15 and returns the secondary flow N into the main flow H.
  • the discharge section 58 thus simultaneously forms the return section.
  • the plastic melt 38 is provided with a melt pressure p and divided into a main flow H and a secondary flow N.
  • the secondary flow N is forced through the supply channels 65 to the feed elements 60, where they promote the secondary flow N to the shaft bearings 47, 48.
  • the secondary flow N is supplied to the main flow H by means of the conveying elements 66 in the housing bores 14, 15.
  • the main flow H is guided in the usual way through the feed opening 45 in the housing bores 14, 15 and processed by means of the treatment elements 29 to 37 and 29 'to 37' in the screw machine 1 and conveyed in the conveying direction 3.

Abstract

Eine Schneckenmaschine weist zur Aufbereitung einer Kunststoffschmelze (38) ein Gehäuse (2) mit mindestens einer darin ausgebildeten Gehäusebohrung (15) auf, in der mindestens eine Behandlungselementwelle (17) angeordnet und um eine zugehörige Drehachse (19) drehantreibbar ist. Zur Behandlung der Kunststoffschmelze (38) weist die mindestens eine Behandlungselementwelle (17) mehrere Behandlungselemente (29', 30') auf, die in einer Förderrichtung (3) der Kunststoffschmelze (38) nacheinander auf mindestens einer zugehörigen Welle (28) drehfest angeordnet sind. Zur Lagerung der mindestens einen Welle (28) in dem Gehäuse (2) ist relativ zu der Förderrichtung (3) stromaufwärts einer Zuführöffnung (45) mindestens ein Wellenlager (48) angeordnet. Das mindestens eine Wellenlager (48) ist hydrodynamisch ausgebildet. Hierdurch wird auf einfache Weise eine Wellenlagerung mit im Vergleich zum Stand der Technik geringerem Verschleiß ermöglicht.A screw machine has for preparing a plastic melt (38) a housing (2) with at least one housing bore (15) formed therein, in which at least one treatment element shaft (17) is arranged and is rotatably driven about an associated axis of rotation (19). For the treatment of the plastic melt (38), the at least one treatment element shaft (17) has a plurality of treatment elements (29 ', 30') which are rotationally fixed in succession on at least one associated shaft (28) in a conveying direction (3) of the plastic melt (38) , For supporting the at least one shaft (28) in the housing (2), at least one shaft bearing (48) is arranged upstream of a feed opening (45) relative to the conveying direction (3). The at least one shaft bearing (48) is hydrodynamically formed. As a result, a shaft bearing with less wear compared to the prior art is possible in a simple manner.

Description

Die Erfindung betrifft eine Schneckenmaschine zur Aufbereitung von Kunststoffschmelzen gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung ein Verfahren zur Aufbereitung von Kunststoffschmelzen.The invention relates to a screw machine for the treatment of plastic melts according to the preamble of claim 1. Furthermore, the invention relates to a method for the treatment of plastic melts.

Aus der EP 2 082 862 A1 ist eine Schneckenmaschine bekannt, deren Wellen an einem stromaufwärtigen Ende des Gehäuses mittels Gleitlager fliegend gelagert und mittels einer Stoffbuchspackung abgedichtet sind. Das Gleitlager besteht aus einem Sintermetall, insbesondere aus Sinterbronze. Nachteilig ist, dass die Lagerung der Wellen aufwendig ist und dennoch einem Verschleiß unterliegt, so dass die Lagerung in regelmäßigen Abständen gewartet werden muss.From the EP 2 082 862 A1 a worm machine is known, whose shafts are cantilevered at an upstream end of the housing by means of plain bearings and sealed by means of a cloth liner. The sliding bearing consists of a sintered metal, in particular of sintered bronze. The disadvantage is that the storage of the waves is complex and yet subject to wear, so that the storage must be maintained at regular intervals.

Der Erfindung liegt die Aufgabe zugrunde, eine Schneckenmaschine zur Aufbereitung von Kunststoffschmelzen zu schaffen, die auf einfache Weise eine Wellenlagerung mit vergleichsweise geringerem Verschleiß ermöglicht.The invention has for its object to provide a screw machine for the treatment of plastic melts, which allows a simple way a shaft bearing with relatively less wear.

Diese Aufgabe wird durch eine Schneckenmaschine mit den Merkmalen des Anspruchs 1 gelöst. Das mindestens eine Wellenlager stromaufwärts der Zuführöffnung ist erfindungsgemäß hydrodynamisch ausgebildet, wodurch auf einfache Weise eine berührungsfreie und damit auch verschleißfreie Lagerung erzielt wird. Insbesondere kann bei der Wellenlagerung auf hochwertige Werkstoffe bzw. Werkstoffpaarungen verzichtet werden, wodurch die Wellenlagerung einfacher und kostengünstiger wird. Die hydrodynamische Ausbildung des mindestens einen Wellenlagers erfolgt insbesondere mittels der aufzubereitenden Kunststoffschmelze. Hierdurch wird auf einfache Weise die aufzubereitende Kunststoffschmelze gleichzeitig zur Wellenlagerung eingesetzt.This object is achieved by a screw machine with the features of claim 1. The at least one shaft bearing upstream of the feed opening is formed hydrodynamically according to the invention, whereby a contact-free and thus wear-free storage is achieved in a simple manner. In particular, in the shaft bearing can be dispensed with quality materials or material pairings, whereby the shaft bearing is easier and less expensive. The hydrodynamic design of the at least one shaft bearing takes place in particular by means of the plastic melt to be processed. As a result, the plastic melt to be processed is used at the same time for shaft bearing in a simple manner.

Die Schneckenmaschine ist insbesondere als Mehrwellen-Schneckenmaschine, vorzugsweise als Zweiwellen-Schneckenmaschine ausgebildet. Die Behandlungselementwellen der Mehrwellen-Schneckenmaschine bzw. Zweiwellen-Schneckenmaschine sind insbesondere gleichsinnig drehantreibbar und dichtkämmend ausgebildet.The worm machine is designed in particular as a multi-shaft worm machine, preferably as a twin-shaft worm machine. The treatment element waves of the multi-shaft screw machine or twin-shaft screw machine are in particular in the same direction rotatably drivable and formed dichtkämmend.

Eine Schneckenmaschine nach Anspruch 2 gewährleistet eine berührungslose und verschleißfreie Wellenlagerung. Sobald die mindestens eine Welle drehangetrieben wird, bildet sich in dem jeweiligen Lagerspalt, also zwischen der mindestens einen Welle und dem Gehäuse, ein Gleitfilm bzw. Schmierfilm aus. Der Gleitfilm ist aufgrund einer - im Regelfall - symmetrischen Druckverteilung im Wesentlichen symmetrisch bzw. rotationssymmetrisch ausgebildet. Wirken radiale Lasten auf die mindestens eine Welle, verlagert sich diese in radialer Richtung, wodurch sich ein asymmetrischer Gleitfilm und eine asymmetrische Druckverteilung aufbauen, die die radialen Lasten kompensieren. Der Lagerspalt wird vorzugsweise mit der aufzubereitenden Kunststoffschmelze beschickt.A screw machine according to claim 2 ensures a non-contact and wear-free shaft bearing. As soon as the at least one shaft is rotationally driven, a sliding film or lubricating film forms in the respective bearing gap, ie between the at least one shaft and the housing. The sliding film is formed substantially symmetrically or rotationally symmetric due to a - normally - symmetrical pressure distribution. When radial loads act on the at least one shaft, it shifts radially, creating an asymmetric sliding film and an asymmetric pressure distribution that compensate for the radial loads. The bearing gap is preferably charged with the plastic melt to be processed.

Eine Schneckenmaschine nach Anspruch 3 gewährleistet eine einfache und zuverlässige Wellenlagerung. Die Spaltbreite B gewährleistet, dass der Gleitfilm einerseits eine ausreichende radiale Dicke aufweist, um radiale Lasten kompensieren zu können, und dass die radiale Dicke des Gleitfilms andererseits nicht zu groß ist, um eine stabile Wellenlagerung zu ermöglichen.A screw machine according to claim 3 ensures a simple and reliable shaft bearing. The gap width B ensures that the sliding film on the one hand has a sufficient radial thickness to compensate for radial loads, and on the other hand that the radial thickness of the sliding film is not too large to allow a stable shaft bearing.

Eine Schneckenmaschine nach Anspruch 4 gewährleistet eine einfache und zuverlässige Wellenlagerung. Die Spaltlänge L gewährleistet, dass der Lagerspalt einerseits in axialer Richtung ausreichend lang ist, um die auftretenden radialen Lasten über die Spaltlänge verteilt und in Verbindung mit der Spaltbreite kompensieren zu können, und dass die Spaltlänge andererseits nicht zu lang ist, um einen zu großen Strömungswiderstand zu vermeiden und eine zuverlässige Schmierung zu gewährleisten.A screw machine according to claim 4 ensures a simple and reliable shaft bearing. The gap length L ensures that the bearing gap on the one hand in the axial direction is sufficiently long to distribute the occurring radial loads over the gap length and compensate in conjunction with the gap width, and that the gap length on the other hand is not too long to a large flow resistance to avoid and to ensure a reliable lubrication.

Eine Schneckenmaschine nach Anspruch 5 ermöglicht auf einfache Weise eine hydrodynamische Wellenlagerung. Dadurch, dass der jeweilige Lagerspalt von der aufzubereitenden Kunststoffschmelze durchströmt wird, bildet die Kunststoffschmelze in einfacher Weise gleichzeitig den Gleitfilm bzw. Schmierfilm aus. Vorzugsweise wird die aufzubereitende Kunststoffschmelze in einen Hauptstrom und einen Nebenstrom aufgeteilt, wobei der Lagerspalt von dem Nebenstrom durchströmt wird. Vorzugsweise ist der Lagerspalt mit der mindestens einen Gehäusebohrung in Verbindung, so dass entweder die Kunststoffschmelze bzw. der Nebenstrom dem Lagerspalt aus der mindestens einen Gehäusebohrung zuführbar ist und/oder die Kunststoffschmelze bzw. der Nebenstrom nach dem Durchströmen des Lagerspalts in die mindestens eine Gehäusebohrung abführbar ist. Hierdurch wird eine einfache Zuführung und/oder Abführung der Kunststoffschmelze bzw. des Nebenstroms gewährleistet.A screw machine according to claim 5 allows a simple way hydrodynamic shaft bearing. Due to the fact that the respective bearing gap is flowed through by the plastic melt to be processed, the plastic melt simultaneously forms the sliding film or lubricating film in a simple manner. Preferably, the plastic melt to be processed is divided into a main flow and a secondary flow, wherein the bearing gap is flowed through by the secondary flow. Preferably, the bearing gap with the at least one housing bore in connection, so that either the plastic melt or the secondary flow to the bearing gap from the at least one housing bore can be fed and / or the plastic melt or the secondary stream after flowing through the bearing gap in the at least one housing bore can be discharged is. As a result, a simple supply and / or discharge of the plastic melt or the secondary flow is ensured.

Eine Schneckenmaschine nach Anspruch 6 gewährleistet eine einfache Wellenlagerung. Der Nebenstrom der Kunststoffschmelze wird nach dem Durchströmen des Lagerspalts dem Hauptstrom zugeführt, so dass die zu der hydrodynamischen Wellenlagerung eingesetzte Kunststoffschmelze weiterverarbeitet wird. Eine Entsorgung von der zur hydrodynamischen Lagerung verwendeten Kunststoffschmelze entfällt hierdurch. Zudem bleibt die gesamte Kunststoffschmelze im Aufbereitungsprozess erhalten.A screw machine according to claim 6 ensures a simple shaft bearing. The secondary flow of the plastic melt is supplied to the main flow after flowing through the bearing gap, so that the plastic melt used for the hydrodynamic shaft bearing is further processed. Disposal of the hydrodynamic Storage used plastic melt is eliminated by this. In addition, the entire plastic melt is retained in the treatment process.

Eine Schneckenmaschine nach Anspruch 7 gewährleistet auf einfache Weise die Zuführung der Kunststoffschmelze zu dem jeweiligen Lagerspalt. Die der Schneckenmaschine zugeführte Kunststoffschmelze wird in der mindestens einen Gehäusebohrung in einen Hauptstrom und einen Nebenstrom aufgeteilt. Der Nebenstrom durchströmt entgegen der Förderrichtung des Hauptstroms den jeweiligen Lagerspalt. Hierzu wird die Kunststoffschmelze beispielsweise mit einem entsprechend hohen Schmelzedruck in die mindestens eine Gehäusebohrung zugeführt, so dass der Hauptstrom in üblicher Weise in der Förderrichtung gefördert wird und der Nebenstrom durch den jeweiligen Schmelzekanal gedrückt wird. Darüber hinaus kann beispielsweise in dem Zuführabschnitt ein Beschickungselement angeordnet sein, das den Nebenstrom entgegen der Förderrichtung des Hauptstroms zu dem jeweiligen Lagerspalt fördert. Nach dem Durchströmen des Lagerspalts kann der Nebenstrom wieder dem Hauptstrom zugeführt werden. Hierzu mündet der jeweilige Schmelzekanal wieder in die Zuführöffnung bzw. in die mindestens eine Gehäusebohrung. Der Schmelzekanal kann zur Rückführung des Nebenstroms abschnittsweise in dem Gehäuse und/oder außerhalb des Gehäuses bzw. extern ausgebildet sein.A screw machine according to claim 7 ensures in a simple manner the supply of the plastic melt to the respective bearing gap. The plastic melt supplied to the screw machine is divided in the at least one housing bore into a main flow and a secondary flow. The secondary flow flows through against the conveying direction of the main flow to the respective bearing gap. For this purpose, the plastic melt is supplied, for example, with a correspondingly high melt pressure in the at least one housing bore, so that the main flow is conveyed in the usual manner in the conveying direction and the secondary flow is forced through the respective melt channel. In addition, for example, a feed element can be arranged in the feed section, which conveys the secondary flow counter to the conveying direction of the main flow to the respective bearing gap. After flowing through the bearing gap, the secondary flow can be returned to the main flow. For this purpose, the respective melt channel opens again into the feed opening or into the at least one housing bore. The melt channel can be formed in sections in the housing and / or outside the housing or externally for returning the secondary flow.

Eine Schneckenmaschine nach Anspruch 8 gewährleistet eine zuverlässige Wellenlagerung. Das Beschickungselement stellt auf einfache Weise eine Versorgung des zugehörigen Lagerspalts mit der aufzubereitenden Kunststoffschmelze sicher. Die Versorgung ist insbesondere unabhängig von dem Schmelzedruck, mit dem die Kunststoffschmelze zugeführt wird. Eine Schneckenmaschine nach Anspruch 9 gewährleistet eine einfache hydrodynamische Wellenlagerung. Die Kunststoffschmelze wird vor dem Zuführen in die mindestens eine Gehäusebohrung in einen Hauptstrom und einen Nebenstrom aufgeteilt. Der Hauptstrom wird zur Aufbereitung in die mindestens eine Gehäusebohrung geführt. Der Nebenstrom wird in der Förderrichtung des Hauptstroms durch den jeweiligen Lagerspalt geführt. Vorzugsweise wird der Nebenstrom anschließend in die mindestens eine Gehäusebohrung geführt. Vorzugsweise wird der Nebenstrom aufgrund eines ausreichend hohen Schmelzedrucks durch den jeweiligen Schmelzekanal bzw. jeweiligen den Lagerspalt gepresst.A screw machine according to claim 8 ensures a reliable shaft bearing. The charging element ensures in a simple manner a supply of the associated storage gap with the plastic melt to be processed. The supply is in particular independent of the melt pressure with which the plastic melt is supplied. A screw machine according to claim 9 ensures a simple hydrodynamic shaft bearing. The plastic melt is divided before being fed into the at least one housing bore into a main flow and a secondary flow. The main stream is fed to the preparation in the at least one housing bore. The secondary flow is guided in the conveying direction of the main flow through the respective bearing gap. Preferably, the secondary flow is then guided into the at least one housing bore. Due to a sufficiently high melt pressure, the secondary flow is preferably forced through the respective melt channel or the respective bearing gap.

Eine Schneckenmaschine nach Anspruch 10 gewährleistet ein möglichst verschleißfreies Anfahren der Schneckenmaschine. Mittels der Startpumpe wird vor dem Anfahren der Schneckenmaschine das mindestens eine Wellenlager bzw. der zugehörige Lagerspalt mit einem Gleitmittel vorgefüllt. Das Gleitmittel kann beispielsweise ein Schmierfett und/oder die Kunststoffschmelze sein. Das Anfahren erfolgt insbesondere bei verminderter Last, so dass das Anfahren möglichst verschleißfrei erfolgt. Alternativ oder zusätzlich können für das erstmalige Anfahren der Schneckenmaschine in den mindestens einen Lagerspalt Kunststoff-Formkörper eingelegt werden, wie beispielsweise Kunststoff-Streifen, die beim erstmaligen Anfahren in dem mindestens einen Lagerspalt aufschmelzen und den Verschleiß beim Anfahren minimieren.A screw machine according to claim 10 ensures a possible wear-free startup of the screw machine. By means of the starting pump, the at least one shaft bearing or the associated bearing gap is prefilled with a lubricant prior to starting the screw machine. The lubricant may for example be a grease and / or the plastic melt. The start-up takes place in particular at reduced load, so that the starting takes place as wear-free as possible. Alternatively or additionally, for the initial start-up of the screw machine in the at least one bearing gap plastic molded body can be inserted, such as plastic strips, which melt at the first start in the at least one bearing gap and minimize wear during startup.

Eine Schneckenmaschine nach Anspruch 11 gewährleistet in einfacher Weise eine zuverlässige Wellenlagerung. Durch die Temperierbarkeit des Gehäuses und/oder der mindestens einen Welle können die hydrodynamischen Lagereigenschaften des mindestens einen Wellenlagers je nach Bedarf beeinflusst werden. Erfolgt beispielsweise beim Durchströmen des Lagerspalts eine hohe Wärmeerzeugung aufgrund einer hohen Viskosität der Kunststoffschmelze, so kann das mindestens eine Wellenlager bzw. die Lagerstelle gekühlt werden. Das Gehäuse und/oder die mindestens eine Welle ist im Bereich des mindestens einen Wellenlagers insbesondere kühlbar ausgebildet.A screw machine according to claim 11 ensures in a simple manner a reliable shaft bearing. Due to the temperature controllability of the housing and / or the at least one shaft, the hydrodynamic bearing properties of the at least one shaft bearing can be influenced as required. For example, when flowing through the Storage gap high heat generation due to a high viscosity of the plastic melt, so the at least one shaft bearing or the bearing can be cooled. The housing and / or the at least one shaft is formed in particular coolable in the region of the at least one shaft bearing.

Eine Schneckenmaschine nach Anspruch 12 gewährleistet eine einfache Abdichtung der mindestens einen Welle. Das Dichtelement ist insbesondere als berührungslos arbeitendes Dichtelement und somit wartungsfrei ausgebildet, beispielsweise als Gewindewellen-Dichtelement. Mittels des Gewindewellen-Dichtelements wird die Kunststoffschmelze bzw. der Nebenstrom in Richtung der mindestens einen Gehäusebohrung gefördert und dementsprechend zur Abdichtung ein Staudruck aufgebaut. Die Kunststoffschmelze bzw. der Nebenstrom wird vorzugsweise in den Schmelzekanal und/oder die mindestens eine Gehäusebohrung zurückgefördert.A screw machine according to claim 12 ensures a simple sealing of the at least one shaft. The sealing element is designed in particular as a non-contact sealing element and thus maintenance-free, for example as a threaded shaft sealing element. By means of the threaded shaft sealing element, the plastic melt or the secondary flow is conveyed in the direction of the at least one housing bore and constructed accordingly for sealing a back pressure. The plastic melt or the secondary stream is preferably conveyed back into the melt channel and / or the at least one housing bore.

Der Erfindung liegt ferner die Aufgabe zugrunde, ein Verfahren zur Aufbereitung von Kunststoffschmelzen zu schaffen, das in einfacher Weise eine Wellenlagerung mit vergleichsweise geringerem Verschleiß ermöglicht.The invention is further based on the object to provide a method for the preparation of plastic melts, which allows a simple way a shaft bearing with relatively less wear.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 13 gelöst. Die Vorteile des erfindungsgemäßen Verfahrens entsprechen den bereits beschriebenen Vorteilen der erfindungsgemäßen Schneckenmaschine, worauf hiermit verwiesen wird. Das Verfahren kann insbesondere mit den Merkmalen der Ansprüche 2 bis 12 weitergebildet werden.This object is achieved by a method having the features of claim 13. The advantages of the method according to the invention correspond to the already described advantages of the screw machine according to the invention, to which reference is hereby made. The method can be developed in particular with the features of claims 2 to 12.

Ein Verfahren nach Anspruch 14 gewährleistet eine einfache und zuverlässige hydrodynamische Wellenlagerung. Dadurch, dass die Kunststoffschmelze in einen Hauptstrom und in einen Nebenstrom aufgeteilt wird, muss zur hydrodynamischen Lagerung der mindestens einen Welle lediglich der Nebenstrom durch den jeweiligen Lagerspalt des mindestens einen Wellenlagers geführt werden. Der Nebenstrom gewährleistet somit auf einfache Weise eine verschleißfreie Wellenlagerung. Gleichzeitig wird der Durchsatz der Schneckenmaschine nicht beeinträchtigt, da der Hauptstrom nicht den Lagerspalt durchströmen muss. Vorzugsweise wird der Nebenstrom nach dem Durchströmen des Lagerspalts wieder dem Hauptstrom zugeführt, so dass eine Entsorgung von Kunststoffschmelze entfällt und die gesamte Kunststoffschmelze aufbereitet wird.A method according to claim 14 ensures a simple and reliable hydrodynamic shaft bearing. Because of the plastic melt is divided into a main flow and a secondary flow, only the secondary flow must be passed through the respective bearing gap of the at least one shaft bearing for hydrodynamic bearing of at least one shaft. The secondary flow thus ensures a simple way a wear-free shaft bearing. At the same time, the throughput of the screw machine is not affected because the main stream does not have to flow through the bearing gap. Preferably, the secondary stream is fed back to the main stream after flowing through the storage gap, so that disposal of plastic melt is eliminated and the entire plastic melt is processed.

Ein Verfahren nach Anspruch 15 gewährleistet eine zuverlässige hydrodynamische Wellenlagerung. Der Schmelzedruck stellt sicher, dass die Kunststoffschmelze bzw. der Nebenstrom kontinuierlich, also ohne Unterbrechung, den jeweiligen Lagerspalt durchströmt. Der Schmelzedruck kann beispielsweise mittels einer Schmelzepumpe bereitgestellt werden. Der Schmelzedruck ist vorzugsweise je nach Bedarf bzw. Kunststoffschmelze einstellbar. Der Schmelzedruck gibt den Druck der Kunststoffschmelze abzüglich dem Umgebungsdruck an.A method according to claim 15 ensures a reliable hydrodynamic shaft bearing. The melt pressure ensures that the plastic melt or the secondary stream flows through the respective bearing gap continuously, ie without interruption. The melt pressure can be provided, for example, by means of a melt pump. The melt pressure is preferably adjustable as needed or plastic melt. The melt pressure indicates the pressure of the plastic melt minus the ambient pressure.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele. Es zeigen:

Fig. 1
eine teilweise geschnitten dargestellte Mehrwellen-Schneckenmaschine gemäß einem ersten Ausführungsbeispiel mit hydrodynamisch gelagerten Wellen,
Fig. 2
eine teilweise geschnittene Draufsicht auf die Mehrwellen-Schneckenmaschine in Fig. 1,
Fig. 3
einen Querschnitt durch die Mehrwellen-Schneckenmaschine entlang der Schnittlinie III-III in Fig. 2,
Fig. 4
eine vergrößerte Darstellung der Mehrwellen-Schnecken-maschine im Bereich der hydrodynamisch gelagerten Wellen,
Fig. 5
einen Querschnitt durch die Mehrwellen-Schneckenmaschine entlang der Schnittlinie V-V in Fig. 4, und
Fig. 6
eine vergrößerte und teilweise geschnittene Darstellung einer Mehrwellen-Schneckenmaschine gemäß einem zweiten Ausführungsbeispiel mit hydrodynamisch gelagerten Wellen.
Further features, advantages and details of the invention will become apparent from the following description of several embodiments. Show it:
Fig. 1
a partially cut illustrated multi-shaft screw machine according to a first embodiment with hydrodynamically mounted shafts,
Fig. 2
a partially sectioned plan view of the multi-shaft screw machine in Fig. 1 .
Fig. 3
a cross section through the multi-shaft screw machine along the section line III-III in Fig. 2 .
Fig. 4
an enlarged view of the multi-shaft screw machine in the area of hydrodynamically mounted shafts,
Fig. 5
a cross section through the multi-shaft worm machine along the section line VV in Fig. 4 , and
Fig. 6
an enlarged and partially sectioned view of a multi-shaft screw machine according to a second embodiment with hydrodynamically mounted shafts.

Nachfolgend ist anhand der Fig. 1 bis 5 ein erstes Ausführungsbeispiel der Erfindung beschrieben. Eine Mehrwellen-Schneckenmaschine 1 weist ein Gehäuse 2 aus mehreren, in einer Förderrichtung 3 nacheinander angeordneten und als Gehäuseschüssen bezeichneten Gehäuseabschnitten 4 bis 13 auf. Die Gehäuseabschnitte 4 bis 13 sind über nicht näher dargestellte Flansche miteinander verbunden und bilden das Gehäuse 2 aus.The following is based on the Fig. 1 to 5 a first embodiment of the invention described. A multi-shaft screw machine 1 has a housing 2 made up of a plurality of housing sections 4 to 13 arranged one after the other in a conveying direction 3 and designated as housing sections. The housing sections 4 to 13 are connected to each other via flanges, not shown, and form the housing 2.

In den Gehäuseabschnitten 5 bis 13 sind zwei zueinander parallele und einander durchdringende Gehäusebohrungen 14, 15 ausgebildet, die im Querschnitt die Form einer liegenden Acht haben. In den Gehäusebohrungen 14, 15 sind konzentrisch zwei Behandlungselementwellen 16, 17 angeordnet, die um zugehörige Drehachsen 18, 19 drehantreibbar sind.In the housing sections 5 to 13 two mutually parallel and interpenetrating housing bores 14, 15 are formed, which have the shape of a horizontal eight in cross section. In the housing bores 14, 15 concentrically two treatment element shafts 16, 17 are arranged, which are rotatably driven about associated axes of rotation 18, 19.

Die Schneckenmaschine 1 weist in der Förderrichtung 3 nacheinander eine Einzugszone 20, eine erste Aufbereitungszone 21, eine Entgasungszone 22, eine zweite Aufbereitungszone 23 und eine Druckaufbauzone 24 auf. Das Gehäuse 2 ist an dem letzten Gehäuseabschnitt 13 durch eine Adapterplatte 25 abgeschlossen, die eine Austragsöffnung 26 aufweist.The screw machine 1 has in succession in the conveying direction 3 a feed zone 20, a first treatment zone 21, a degassing zone 22, a second treatment zone 23 and a pressure buildup zone 24. The housing 2 is closed off at the last housing section 13 by an adapter plate 25, which has a discharge opening 26.

Die Behandlungselementwellen 16, 17 sind durch Wellen 27, 28 mit darauf angeordneten Behandlungselementen 29 bis 37 bzw. 29' bis 37' gebildet. Die auf der ersten Welle 27 angeordneten Behandlungselemente 29 bis 37 und die auf der zweiten Welle 28 angeordneten Behandlungselemente 29' bis 37' entsprechen einander, wobei die Bezugszeichen der auf der zweiten Welle 28 angeordneten Behandlungselemente 29' bis 37' zur Unterscheidung ein "'" aufweisen. In der Einzugszone 20, der Entgasungszone 22 und der Druckaufbauzone 24 sind die Behandlungselemente 29, 29', 30, 30', 33, 33', 36, 36' und 37, 37' als Schneckenelemente ausgebildet, wohingegen die Behandlungselemente 31, 31', 32, 32', 34, 34' und 35, 35' in den Aufbereitungszonen 21 und 23 als Knetelemente ausgebildet sind. Die Behandlungselemente 29 bis 37 bzw. 29' bis 37' sind zur Behandlung bzw. Aufbereitung einer Kunststoffschmelze 38 paarweise dichtkämmend ausgebildet. Zur Entgasung der Kunststoffschmelze 38 weist der Gehäuseabschnitt 9 eine Entgasungsöffnung 39 auf.The treatment element shafts 16, 17 are formed by shafts 27, 28 with treatment elements 29 to 37 or 29 'to 37' arranged thereon. The treatment elements 29 to 37 arranged on the first shaft 27 and the treatment elements 29 'to 37' arranged on the second shaft 28 correspond to each other, the reference numerals of the treatment elements 29 'to 37' arranged on the second shaft 28 being distinguished by a "'". exhibit. In the feed zone 20, the degassing zone 22 and the pressure buildup zone 24, the treatment elements 29, 29 ', 30, 30', 33, 33 ', 36, 36' and 37, 37 'are formed as screw elements, whereas the treatment elements 31, 31' , 32, 32 ', 34, 34' and 35, 35 'are formed in the processing zones 21 and 23 as kneading elements. The treatment elements 29 to 37 or 29 'to 37' are designed to treat or treat a plastic melt 38 in pairs tightly combing. For degassing the plastic melt 38, the housing section 9 has a degassing opening 39.

Die Behandlungselementwellen 16, 17 sind mittels eines Antriebsmotors 40 und eines zugehörigen Verzweigungsgetriebes 41 gleichsinnig, also in gleichen Drehrichtungen 42, 43 um die Drehachsen 18, 19 drehantreibbar. Zwischen dem Antriebsmotor 40 und dem Verzweigungsgetriebe 41 ist eine Kupplung 44 angeordnet.The treatment element shafts 16, 17 are by means of a drive motor 40 and an associated branching gear 41 in the same direction, ie in the same directions of rotation 42, 43 about the axes of rotation 18, 19 rotatably driven. Between the drive motor 40 and the branching gear 41, a clutch 44 is arranged.

Zur drehfesten Anordnung der Behandlungselemente 29 bis 37 bzw. 29' bis 37' sind die Wellen 27, 28 im Bereich der Behandlungselemente 29 bis 37 bzw. 29' bis 37' mit einem Außenprofil A versehen, das mit einem jeweiligen Innenprofil I der Behandlungselemente 29 bis 37 bzw. 29' bis 37' die drehfeste Verbindung erzeugt.For the rotationally fixed arrangement of the treatment elements 29 to 37 or 29 'to 37', the shafts 27, 28 are provided in the region of the treatment elements 29 to 37 or 29 'to 37' with an outer profile A, which with a respective inner profile I of the treatment elements 29 to 37 or 29 'to 37' generates the rotationally fixed connection.

Zur Zuführung der Kunststoffschmelze 38 ist in dem Gehäuseabschnitt 5 eine Zuführöffnung 45 ausgebildet, die in die Gehäusebohrungen 14, 15 mündet. Die Kunststoffschmelze 38 ist beispielsweise mittels einer Schmelzepumpe mit einem einstellbaren Schmelzedruck p durch die Zuführöffnung 45 in die Gehäusebohrungen 14, 15 zuführbar.For supplying the plastic melt 38, a feed opening 45 is formed in the housing section 5, which opens into the housing bores 14, 15. The plastic melt 38 can be fed, for example, by means of a melt pump with an adjustable melt pressure p through the feed opening 45 into the housing bores 14, 15.

Zur Lagerung der Wellen 27, 28 weist die Schneckenmaschine 1 relativ zu der Förderrichtung 3 stromaufwärts im Bereich des Gehäuseabschnitts 4 zwei Wellenlager 47, 48 auf. Die Wellenlager 47, 48 sind hydrodynamisch ausgebildet und werden nachfolgend auch als hydrodynamische Wellenlager 47, 48 bezeichnet.For supporting the shafts 27, 28, the screw machine 1 has two shaft bearings 47, 48 upstream of the housing section 4, relative to the conveying direction 3. The shaft bearings 47, 48 are hydrodynamically formed and are also referred to below as hydrodynamic shaft bearings 47, 48.

Zur Ausbildung der hydrodynamischen Wellenlager 47, 48 sind in dem Gehäuseabschnitt 4 zwei Lagerbohrungen 49, 50 ausgebildet. Die Lagerbohrungen 49, 50 erstrecken sich ausgehend von den Gehäusebohrungen 14, 15 konzentrisch zu den Drehachsen 18, 19 durch den Gehäuseabschnitt 4 bis zu dem Verzweigungsgetriebe 41. Die Lagerbohrungen 49, 50 weisen einen Durchmesser DL auf, der kleiner als ein Durchmesser DG der Gehäusebohrungen 14, 15 ist, so dass sich die Lagerbohrungen 49, 50 nicht schneiden.To form the hydrodynamic shaft bearings 47, 48, two bearing bores 49, 50 are formed in the housing section 4. The bearing bores 49, 50 extend from the housing bores 14, 15 concentrically to the axes of rotation 18, 19 through the housing section 4 to the branching gear 41. The bearing bores 49, 50 have a diameter D L , which is smaller than a diameter D G. the housing bores 14, 15, so that the bearing bores 49, 50 do not intersect.

Die Wellen 27, 28 sind durch die zugehörigen Lagerbohrungen 49, 50 geführt. Zur Ausbildung der hydrodynamischen Wellenlager 47, 48 weisen die Wellen 27, 28 zugehörige Lagerabschnitte 51, 52 auf, die eine erste glatte Lageroberfläche L1 bilden. Entsprechend weisen die Lagerbohrungen 49, 50 im Bereich der Lagerabschnitte 51, 52 zweite glatte Lageroberflächen L2 auf. Die Lagerbohrungen 49, 50 und die zugehörigen Lagerabschnitte 51, 52 begrenzen mit ihren Lageroberflächen L1 und L2 zugehörige Lagerspalte 53, 54. Die Wellen 27, 28 weisen im Bereich der Lagerabschnitte 51, 52 einen Durchmesser DW auf, der kleiner als der Durchmesser DL ist, so dass die Lagerspalte 53, 54 bei konzentrischer Anordnung der Wellen 27, 28 in den Lagerbohrungen 49, 50 ringförmig ausgebildet sind und über den gesamten Umfang eine radiale Spaltbreite B aufweisen. Für das Verhältnis der Spaltbreite B zu dem Durchmesser DW gilt: 0,0005 ≤ B/DW ≤ 0,02, insbesondere 0,001 ≤ B/DW ≤ 0,01, und insbesondere 0,002 ≤ B/DW ≤ 0,005.The shafts 27, 28 are guided by the associated bearing bores 49, 50. To form the hydrodynamic shaft bearings 47, 48 point the shafts 27, 28 associated bearing portions 51, 52 which form a first smooth bearing surface L 1 . Correspondingly, the bearing bores 49, 50 have second smooth bearing surfaces L 2 in the region of the bearing sections 51, 52. The bearing bores 49, 50 and the associated bearing sections 51, 52 define associated bearing gaps 53, 54 with their bearing surfaces L 1 and L 2. The shafts 27, 28 have a diameter D W in the area of the bearing sections 51, 52 which is smaller than the diameter Diameter D L is, so that the bearing gaps 53, 54 in the concentric arrangement of the shafts 27, 28 in the bearing bores 49, 50 are annular and over the entire circumference have a radial gap width B. For the ratio of the gap width B to the diameter D W : 0.0005 ≦ B / D W ≦ 0.02, in particular 0.001 ≦ B / D W ≦ 0.01, and in particular 0.002 ≦ B / D W ≦ 0.005.

Die Lagerspalte 53, 54 weisen ferner in Richtung der Drehachsen 18, 19 eine Spaltlänge L auf. Für das Verhältnis der Spaltlänge L zu dem Durchmesser DW gilt: 0,25 ≤ L/DW ≤ 6, insbesondere 0,5 ≤ L/DW ≤ 4, und insbesondere 1 ≤ L/DW ≤ 2The bearing gaps 53, 54 furthermore have a gap length L in the direction of the axes of rotation 18, 19. For the ratio of the gap length L to the diameter D W : 0.25 ≦ L / D W ≦ 6, in particular 0.5 ≦ L / D W ≦ 4, and in particular 1 ≦ L / D W ≦ 2

Zur Ausbildung der hydrodynamischen Wellenlager 47, 48 sind die Lagerspalte 53, 54 von der Kunststoffschmelze 38 durchströmbar. Die Schneckenmaschine 1 weist hierzu Schmelzekanäle 55, 56 auf, die als jeweiligen Teilabschnitt den Lagerspalt 53 bzw. 54 umfassen. Fig. 4 zeigt den Schmelzekanal 56 mit dem zugehörigen Lagerspalt 54.To form the hydrodynamic shaft bearings 47, 48, the bearing gaps 53, 54 can be flowed through by the plastic melt 38. For this purpose, the screw machine 1 has melt channels 55, 56 which, as the respective section, comprise the bearing gap 53 or 54. Fig. 4 shows the melt channel 56 with the associated bearing gap 54.

Die Schmelzekanäle 55, 56 sind identisch ausgebildet, so dass nachfolgend lediglich der Schmelzekanal 56 beschrieben ist. Der Schmelzekanal 56 umfasst ausgehend von der Gehäusebohrung 15 einen Zuführabschnitt 57, den Lagerabschnitt 52, einen Abführabschnitt 58 und einen Rückführabschnitt 59. Der Zuführabschnitt 57 erstreckt sich ausgehend von der Zuführöffnung 45 bis zu dem Lagerspalt 54. In dem Zuführabschnitt 57 ist auf der Welle 28 ein als Schneckenelement ausgebildetes Beschickungselement 60 angeordnet. Das Beschickungselement 60 weist eine Beschickungsförderrichtung 61 auf, die der Förderrichtung 3 entgegengesetzt gerichtet ist. Das Beschickungselement 60 ist entsprechend den Behandlungselementen 29' bis 37' auf der Welle 28 drehfest befestigt. Relativ zu der Förderrichtung 3 ist der Zuführabschnitt 57 somit stromabwärts zu dem jeweils zugehörigen Lagerspalt 53, 54 angeordnet.The melt channels 55, 56 are identical, so that only the melt channel 56 is described below. The melt channel 56 comprises, starting from the housing bore 15, a feed section 57, the bearing section 52, a discharge section 58 and a return section 59. The feed section 57 extends from the feed opening 45 to the bearing gap 54. In the feed section 57, a feed element 60 designed as a screw element is arranged on the shaft 28. The feed element 60 has a feed conveying direction 61, which is directed opposite to the conveying direction 3. The charging element 60 is rotatably mounted on the shaft 28 corresponding to the treatment elements 29 'to 37'. Relative to the conveying direction 3, the feed section 57 is thus arranged downstream of the respectively associated bearing gap 53, 54.

Der Abführabschnitt 58 ist dem Lagerspalt 54 in der Beschickungsförderrichtung 61 nachgeordnet. In dem Abführabschnitt 58 weist die Welle 28 einen Durchmesser DA auf, der kleiner als der Durchmesser DL ist, so dass in dem Abführabschnitt 58 zwischen der Welle 28 und dem Gehäuseabschnitt 4 in der Lagerbohrung 50 ein vergleichsweise großer Ringraum ausgebildet ist, in den die Kunststoffschmelze 38 aus dem Lagerspalt 54 abführbar ist. Über den Rückführabschnitt 59 ist die Kunststoffschmelze 38 wieder in die Zuführöffnung 45 zurückführbar. Der Rückführabschnitt 59 ist abschnittsweise als Kanal in dem Gehäuseabschnitt 4 und als außerhalb des Gehäuseabschnitts 4 angeordnete Rückführleitung ausgebildet. Entsprechendes gilt für den Schmelzekanal 55 und den zugehörigen Lagerspalt 53.The discharge section 58 is arranged downstream of the bearing gap 54 in the feed conveying direction 61. In the discharge section 58, the shaft 28 has a diameter D A , which is smaller than the diameter D L , so that in the discharge section 58 between the shaft 28 and the housing portion 4 in the bearing bore 50, a comparatively large annular space is formed in the the plastic melt 38 can be discharged from the bearing gap 54. The plastic melt 38 can be returned to the feed opening 45 via the return section 59. The return section 59 is formed in sections as a channel in the housing section 4 and arranged as outside the housing section 4 return line. The same applies to the melt channel 55 and the associated bearing gap 53.

Der Gehäuseabschnitt 4 ist im Bereich der Wellenlager 47, 48 temperierbar ausgebildet. Hierzu sind in dem Gehäuseabschnitt 4 mehrere Temperierkanäle 62 ausgebildet, in die ein Temperiermittel 63 zuführbar ist. Vorzugsweise dienen die Temperierkanäle 62 bzw. das Temperiermittel 63 zur Kühlung. Weiterhin sind die Wellen 27, 28 im Bereich der Wellenlager 47, 48 temperierbar ausgebildet. Hierzu sind in den Wellen 27, 28 Temperierkanäle 67 ausgebildet, die mit einem Temperiermittel 68 füllbar bzw. von diesem durchströmbar sind. Vorzugsweise dienen die Temperierkanäle 67 bzw. das Temperiermittel 68 zur Kühlung.The housing portion 4 is formed in the region of the shaft bearings 47, 48 tempered. For this purpose, a plurality of temperature control channels 62 are formed in the housing section 4, into which a temperature control means 63 can be fed. Preferably, the temperature control channels 62 and the temperature control 63 serve for cooling. Furthermore, the shafts 27, 28 in the region of the shaft bearings 47, 48 formed tempered. For this purpose, in the waves 27, 28 tempering 67 formed, which can be filled with a temperature control 68 or flowed through by this. Preferably, the temperature control channels 67 and the temperature control 68 serve for cooling.

In der Förderrichtung 3 stromaufwärts zu den Wellenlagern 47, 48 bzw. in der Beschickungsförderrichtung 61 stromabwärts ist jeweils ein berührungslos arbeitendes Dichtelement 64 angeordnet. Die Dichtelemente 64 sind als Gewindewellen-Dichtelemente ausgebildet. Die Gewindewellen-Dichtelemente 64 sind auf den Wellen 27 bzw. 28 in bereits beschriebener Weise drehfest angeordnet. Die Gewindewellen-Dichtelemente 64 weisen eine Förderrichtung auf, die der Förderrichtung 3 entspricht. Die Gewindewellen-Dichtelemente 64 sind in der Beschickungsförderrichtung 61 stromabwärts zu dem Abführabschnitt 58 angeordnet, so dass die Kunststoffschmelze 38 in den Rückführabschnitt 59 einleitbar ist.In the conveying direction 3 upstream of the shaft bearings 47, 48 and in the feed conveying direction 61 downstream, a non-contact sealing element 64 is arranged in each case. The sealing elements 64 are designed as threaded shaft sealing elements. The threaded shaft sealing elements 64 are rotatably mounted on the shafts 27 and 28 in the manner already described. The threaded shaft sealing elements 64 have a conveying direction which corresponds to the conveying direction 3. The threaded shaft sealing elements 64 are arranged in the feed conveying direction 61 downstream of the discharge section 58, so that the plastic melt 38 can be introduced into the return section 59.

Zum Anfahren der Schneckenmaschine 1 ist eine Startpumpe 46 vorgesehen, die zur Zuführung eines Gleitmittels, insbesondere der Kunststoffschmelze 38 zu den Wellenlagern 47, 48 dient. Die Startpumpe 46 ist mit den Schmelzekanälen 55, 56 verbindbar, so dass vor dem Anfahren der Schneckenmaschine 1 das Gleitmittel bzw. die Kunststoffschmelze 38 in die Lagerspalte 53, 54 förderbar ist. Die Startpumpe 46 ist in Fig. 4 angedeutet.To start the screw machine 1, a start pump 46 is provided, which serves for supplying a lubricant, in particular the plastic melt 38 to the shaft bearings 47, 48. The starting pump 46 can be connected to the melt channels 55, 56, so that before starting the screw machine 1, the lubricant or plastic melt 38 can be conveyed into the bearing gaps 53, 54. The starting pump 46 is in Fig. 4 indicated.

Nachfolgend ist die Funktionsweise der Schneckenmaschine 1 beschrieben:The operation of the screw machine 1 is described below:

Zum Anfahren der Schneckenmaschine wird zunächst die Startpumpe 46 mit den Schmelzekanälen 55, 56 verbunden. Anschließend wird mittels der Startpumpe 46 Kunststoffschmelze 38 in die Lagerspalte 53, 54 gefördert.To start the screw machine, the starting pump 46 is first connected to the melt channels 55, 56. Subsequently, plastic melt 38 is conveyed into the bearing gaps 53, 54 by means of the starting pump 46.

Sind die Lagerspalte 53, 54 mit Kunststoffschmelze 38 gefüllt, wird die Startpumpe 46 wieder von den Schmelzekanälen 55, 56 getrennt.If the bearing gaps 53, 54 filled with plastic melt 38, the starting pump 46 is again separated from the melt channels 55, 56.

Anschließend wird die Kunststoffschmelze 38 mit einem Schmelzedruck p durch die Zuführöffnung 45 in die Gehäusebohrungen 14, 15 zugeführt und die Schneckenmaschine 1 angefahren. Für den Schmelzedruck p, der den Differenzdruck zwischen dem Druck der Kunststoffschmelze 38 und dem Umgebungsdruck bezeichnet, gilt: 0,01 bar ≤ p ≤ 20 bar, insbesondere 0,1 ≤ p ≤ 10 bar, insbesondere 0,5 bar ≤ p ≤ 5 bar, und insbesondere 1 bar ≤ p ≤ 3 bar.Subsequently, the plastic melt 38 is supplied with a melt pressure p through the feed opening 45 in the housing bores 14, 15 and the screw machine 1 approached. For the melt pressure p, which designates the differential pressure between the pressure of the plastic melt 38 and the ambient pressure, the following applies: 0.01 bar ≦ p ≦ 20 bar, in particular 0.1 ≦ p ≦ 10 bar, in particular 0.5 bar ≦ p ≦ 5 bar, and in particular 1 bar ≤ p ≤ 3 bar.

In den Gehäusebohrungen 14, 15 wird die Kunststoffschmelze 38 in einen Hauptstrom und in einen Nebenstrom aufgeteilt. In Fig. 4 ist der Hauptstrom durch Pfeile angedeutet, die mit H bezeichnet sind, wohingegen der Nebenstrom durch Pfeile angedeutet ist, die mit N bezeichnet sind. Der Hauptstrom H wird in üblicher Weise mittels der Behandlungselemente 29 bis 37 und 29' bis 37' in der Förderrichtung 3 gefördert und die Kunststoffschmelze 38 in üblicher Weise aufbereitet. Demgegenüber wird der Nebenstrom N mittels der Beschickungselemente 60 in der Beschickungsrichtung 61, also entgegengesetzt zu der Förderrichtung 3, zu den hydrodynamischen Wellenlagern 47, 48 gefördert. Die Kunststoffschmelze 38 durchströmt die Lagerspalte 53, 54, wodurch die Wellen 27, 28 im Bereich der Lagerabschnitte 51, 52 hydrodynamisch gelagert werden. Die Kunststoffschmelze 38 bildet in den Lagerspalten 53, 54 einen Gleitfilm bzw. Schmierfilm aus. Aufgrund der Drehung der Wellen 27, 28 ist die Druckverteilung in den Lagerspalten 53, 54 im Wesentlichen symmetrisch, so dass sich der Gleitfilm symmetrisch bzw. rotationssymmetrisch ausbildet. Wirken radiale Lasten auf die Wellen 27, 28, so verlagern sich diese in den Lagerbohrungen 49, 50, wodurch sich eine asymmetrische Druckverteilung und ein asymmetrischer Gleitfilm ausbildet, der die radialen Lasten kompensiert. Die hydrodynamischen Wellenlager 47, 48 arbeiten berührungsfrei und damit auch verschleißfrei.In the housing bores 14, 15, the plastic melt 38 is divided into a main flow and a secondary flow. In Fig. 4 the main flow is indicated by arrows marked H, whereas the side flow is indicated by arrows labeled N. The main stream H is conveyed in the usual way by means of the treatment elements 29 to 37 and 29 'to 37' in the conveying direction 3 and the plastic melt 38 is processed in the usual way. In contrast, the secondary flow N is conveyed to the hydrodynamic shaft bearings 47, 48 by means of the feed elements 60 in the feed direction 61, ie opposite to the conveying direction 3. The plastic melt 38 flows through the bearing gaps 53, 54, whereby the shafts 27, 28 are mounted hydrodynamically in the region of the bearing sections 51, 52. The plastic melt 38 forms a sliding film or lubricating film in the bearing gaps 53, 54. Due to the rotation of the shafts 27, 28, the pressure distribution in the bearing gaps 53, 54 is substantially symmetrical, so that the sliding film forms symmetrically or rotationally symmetrically. Acting radial loads on the shafts 27, 28, so they shift in the bearing bores 49, 50, resulting in an asymmetric pressure distribution and forms an asymmetric sliding film that compensates for the radial loads. The hydrodynamic shaft bearings 47, 48 work without contact and thus wear-free.

Die Kunststoffschmelze 38, die die Lagerspalte 53, 54 durchströmt hat, wird über die Abführabschnitte 58 und die Rückführabschnitte 59 wieder durch die Zuführöffnung 45 dem Hauptstrom H zugeführt. Die Gewindewellen-Dichtungen 64 fördern die Kunststoffschmelze 38 in der Förderrichtung 3, so dass diese einen Staudruck erzeugen. Der Staudruck führt dazu, dass die Kunststoffschmelze 38 einerseits nicht zu dem Verzweigungsgetriebe 41 gelangt und andererseits in die Rückführabschnitte 59 geleitet wird.The plastic melt 38, which has flowed through the bearing gaps 53, 54, is fed back to the main flow H through the feed opening 45 via the discharge sections 58 and the return sections 59. The threaded shaft seals 64 promote the plastic melt 38 in the conveying direction 3, so that they generate a back pressure. The back pressure causes the plastic melt 38 on the one hand does not get to the branching gear 41 and on the other hand is passed into the return sections 59.

Zur Temperierung der Wellenlager 47, 48 wird durch die Temperierkanäle 62 ein Temperiermittel 63 geleitet. Die Temperierung ist vorzugsweise eine Kühlung. Eine Kühlung ist insbesondere bei viskosen Kunststoffschmelzen 38 erforderlich, die bei Durchströmen der Lagerspalte 53, 54 Wärme erzeugen. Zusätzlich oder alternativ wird durch die Temperierkanäle 67 ein Temperiermittel 68 geleitet.For temperature control of the shaft bearings 47, 48, a temperature control medium 63 is passed through the temperature control channels 62. The temperature is preferably a cooling. Cooling is necessary in particular for viscous plastic melts 38, which generate heat when flowing through the bearing gaps 53, 54. Additionally or alternatively, a temperature control 68 is passed through the temperature control 67.

Nachfolgend ist anhand von Fig. 6 ein zweites Ausführungsbeispiel der Erfindung beschrieben. Im Unterschied zu dem ersten Ausführungsbeispiel ist die Beschickungsförderrichtung 61 der Beschickungselemente 60 gleichgerichtet zu der Förderrichtung 3. Der Zuführabschnitt 57 wird durch einen jeweiligen Zuführkanal 65 gebildet, der zwischen dem Gewindewellen-Dichtelement 64 und dem Wellenlager 48 in die Lagerbohrung 50 mündet. Zwischen der Gewindewellen-Dichtung 64 und dem Wellenlager 48 ist das Beschickungselement 60 auf der Welle 28 angeordnet, das die in die Lagerbohrung 50 eintretende Kunststoffschmelze 38 in der Beschickungsrichtung 61 zu dem Wellenlager 48 fördert. Der Abführabschnitt 58 ist in der Förderrichtung 3 stromabwärts zu dem Wellenlager 48 angeordnet. In dem Abführabschnitt 58 ist ein Förderelement 66 auf der Welle 28 angeordnet, das die Kunststoffschmelze 38, die den Lagerspalt 54 durchströmt hat, in die Gehäusebohrung 15 fördert und den Nebenstrom N in den Hauptstrom H zurückführt. Der Abführabschnitt 58 bildet somit gleichzeitig den Rückführabschnitt aus.The following is based on Fig. 6 A second embodiment of the invention described. In contrast to the first exemplary embodiment, the feed conveying direction 61 of the feed elements 60 is rectified relative to the conveying direction 3. The feed section 57 is formed by a respective feed channel 65 which opens into the bearing bore 50 between the threaded shaft sealing element 64 and the shaft bearing 48. Between the threaded shaft seal 64 and the shaft bearing 48, the loading element 60 is arranged on the shaft 28, which enters the plastic melt 38 entering the bearing bore 50 in the direction of loading 61 promotes to the shaft bearing 48. The discharge section 58 is arranged in the conveying direction 3 downstream of the shaft bearing 48. In the discharge section 58, a conveying element 66 is arranged on the shaft 28, which conveys the plastic melt 38, which has flowed through the bearing gap 54, into the housing bore 15 and returns the secondary flow N into the main flow H. The discharge section 58 thus simultaneously forms the return section.

Die Kunststoffschmelze 38 wird mit einem Schmelzedruck p bereitgestellt und in einen Hauptstrom H und einen Nebenstrom N aufgeteilt. Der Nebenstrom N wird durch die Zuführkanäle 65 zu den Beschickungselementen 60 gedrückt, wo diese den Nebenstrom N zu den Wellenlagern 47, 48 fördern. Nach dem Durchströmen der Lagerspalte 53, 54 wird der Nebenstrom N mittels der Förderelemente 66 in den Gehäusebohrungen 14, 15 dem Hauptstrom H zugeführt. Der Hauptstrom H wird in üblicher Weise durch die Zuführöffnung 45 in die Gehäusebohrungen 14, 15 geführt und mittels der Behandlungselemente 29 bis 37 bzw. 29' bis 37' in der Schneckenmaschine 1 aufbereitet und in der Förderrichtung 3 gefördert. Hinsichtlich des weiteren Aufbaus der Schneckenmaschine sowie der weiteren Funktionsweise wird auf das erste Ausführungsbeispiel verwiesen.The plastic melt 38 is provided with a melt pressure p and divided into a main flow H and a secondary flow N. The secondary flow N is forced through the supply channels 65 to the feed elements 60, where they promote the secondary flow N to the shaft bearings 47, 48. After flowing through the bearing gaps 53, 54, the secondary flow N is supplied to the main flow H by means of the conveying elements 66 in the housing bores 14, 15. The main flow H is guided in the usual way through the feed opening 45 in the housing bores 14, 15 and processed by means of the treatment elements 29 to 37 and 29 'to 37' in the screw machine 1 and conveyed in the conveying direction 3. With regard to the further construction of the screw machine and the further operation, reference is made to the first embodiment.

Claims (15)

Schneckenmaschine zur Aufbereitung von Kunststoffschmelzen, mit - einem Gehäuse (2), - mindestens einer in dem Gehäuse (2) ausgebildeten Gehäusebohrung (14, 15), - einer in die mindestens eine Gehäusebohrung (14, 15) mündenden Zuführöffnung (45) zur Zuführung einer Kunststoffschmelze (38), - mindestens einer Behandlungselementwelle (16, 17), -- die in der zugehörigen Gehäusebohrung (14, 15) angeordnet und um eine zugehörige Drehachse (18, 19) drehantreibbar ist, und -- die zur Behandlung der Kunststoffschmelze (38) mehrere Behandlungselemente (29 bis 37, 29' bis 37') aufweist, die in einer Förderrichtung (3) der Kunststoffschmelze (38) nacheinander auf mindestens einer zugehörigen Welle (27, 28) drehfest angeordnet sind, - mindestens einem relativ zu der Förderrichtung (3) stromaufwärts der Zuführöffnung (45) angeordneten Wellenlager (47, 48) zur Lagerung der mindestens einen Welle (27, 28) in dem Gehäuse (2), dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) hydrodynamisch ausgebildet ist.
Screw machine for the treatment of plastic melts, with a housing (2), at least one housing bore (14, 15) formed in the housing (2), - One in the at least one housing bore (14, 15) opening feed opening (45) for supplying a plastic melt (38), at least one treatment element shaft (16, 17), - Which in the associated housing bore (14, 15) and is rotatably driven about an associated axis of rotation (18, 19), and - Which for the treatment of the plastic melt (38) a plurality of treatment elements (29 to 37, 29 'to 37') which in a conveying direction (3) of the plastic melt (38) successively rotatably arranged on at least one associated shaft (27, 28) are, - At least one relative to the conveying direction (3) upstream of the feed opening (45) arranged shaft bearing (47, 48) for supporting the at least one shaft (27, 28) in the housing (2), characterized,
that the at least one shaft bearing (47, 48) is hydrodynamically formed.
Schneckenmaschine nach Anspruch 1, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der insbesondere ringförmig ausbildbar ist.
Screw machine according to claim 1, characterized
in that the at least one shaft bearing (47, 48) comprises a bearing gap (53, 54) which can be formed in particular in an annular manner.
Schneckenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der radial zu der Drehachse (18, 19) eine Spaltbreite B hat, wobei für ein Verhältnis der Spaltbreite B zu einem Durchmesser DW der mindestens einen Welle (27, 28) im Bereich des mindestens einen Wellenlagers (47, 48) gilt: 0,0005 ≤ B/DW ≤ 0,02, insbesondere 0,001 ≤ B/DW ≤ 0,01, und insbesondere 0,002 ≤ B/DW ≤ 0,005.
Screw machine according to claim 1 or 2, characterized
the at least one shaft bearing (47, 48) a bearing gap (53, 54) radially to the rotational axis (18, 19) has a gap width has B, wherein a ratio of the gap width B to a diameter D W of the at least one shaft (27, 28) in the region of the at least one shaft bearing (47, 48) is: 0.0005 ≦ B / D W ≦ 0.02, in particular 0.001 ≦ B / D W ≦ 0.01, and in particular 0.002 ≦ B / D W ≤ 0.005.
Schneckenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der in Richtung der Drehachse (18, 19) eine Spaltlänge L hat, wobei für ein Verhältnis der Spaltlänge L zu einem Durchmesser DW der mindestens einen Welle (27, 28) im Bereich des mindestens einen Wellenlagers (47, 48) gilt: 0,25 ≤ L/DW ≤ 6, insbesondere 0,5 ≤ L/DW ≤ 4, und insbesondere 1 ≤ L/DW ≤ 2.
Screw machine according to one of claims 1 to 3, characterized
in that the at least one shaft bearing (47, 48) comprises a bearing gap (53, 54) which has a gap length L in the direction of the rotation axis (18, 19), wherein for a ratio of the gap length L to a diameter D W of the at least one shaft (27, 28) in the region of the at least one shaft bearing (47, 48): 0.25 ≦ L / D W ≦ 6, in particular 0.5 ≦ L / D W ≦ 4, and in particular 1 ≦ L / D W ≦ second
Schneckenmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der zur Ausbildung einer hydrodynamischen Lagerung von der Kunststoffschmelze (38) durchströmbar ist, und der insbesondere mit der mindestens einen Gehäusebohrung (14, 15) in Verbindung ist.
Screw machine according to one of claims 1 to 4, characterized
that the at least one shaft bearing (47, 48) a bearing gap (53, 54) which can be traversed for forming a hydrodynamic bearing from the plastic melt (38), and in particular with the at least one housing bore (14, 15) in connection ,
Schneckenmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der einen Teilabschnitt eines Schmelzkanals (55, 56) bildet, und
dass durch den Schmelzekanal (55, 56) ein Nebenstrom (N) der Kunststoffschmelze (38) in einen Hauptstrom (H) der Kunststoffschmelze (38) zuführbar ist.
Screw machine according to one of claims 1 to 5, characterized
in that the at least one shaft bearing (47, 48) comprises a bearing gap (53, 54) which forms a partial section of a melt channel (55, 56), and
that through the melt channel (55, 56), a secondary stream (N) of the plastic melt (38) into a main flow (H) of the plastic melt (38) can be fed.
Schneckenmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der einen Teilabschnitt eines Schmelzkanals (55, 56) für einen Nebenstrom (N) der Kunststoffschmelze (38) bildet, und
dass ein Zuführabschnitt (57) des Schmelzekanals (55, 56) relativ zu der Förderrichtung (3) eines Hauptstroms (H) der Kunststoffschmelze (38) stromabwärts des Lagerspalts (53, 54) angeordnet ist.
Screw machine according to one of claims 1 to 6, characterized
in that the at least one shaft bearing (47, 48) comprises a bearing gap (53, 54) which forms a partial section of a melt channel (55, 56) for a secondary flow (N) of the plastic melt (38), and
in that a feed section (57) of the melt channel (55, 56) relative to the conveying direction (3) of a main flow (H) of the plastic melt (38) is arranged downstream of the bearing gap (53, 54).
Schneckenmaschine nach Anspruch 7, dadurch gekennzeichnet,
dass in dem Zuführabschnitt (57) ein Beschickungselement (59) angeordnet ist, das zur Ausbildung des Nebenstroms (N) eine entgegengesetzt zu der Förderrichtung (3) verlaufende Beschickungsförderrichtung (61) aufweist.
Screw machine according to claim 7, characterized
in that a feed element (59) is arranged in the feed section (57) which has a feed conveying direction (61) running opposite to the conveying direction (3) in order to form the secondary flow (N).
Schneckenmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
dass das mindestens eine Wellenlager (47, 48) einen Lagerspalt (53, 54) umfasst, der einen Teilabschnitt eines Schmelzkanals (55, 56) für einen Nebenstrom (N) der Kunststoffschmelze (38) bildet, und
dass ein Zuführabschnitt (57) des Schmelzekanals (55, 56) relativ zu der Förderrichtung (3) eines Hauptstroms (H) der Kunststoffschmelze (38) stromaufwärts des Lagerspalts (53, 54) angeordnet ist.
Screw machine according to one of claims 1 to 7, characterized
in that the at least one shaft bearing (47, 48) comprises a bearing gap (53, 54) which forms a partial section of a melt channel (55, 56) for a secondary flow (N) of the plastic melt (38), and
that a supply portion (57) of the melt channel (55, 56) relative to the conveying direction (3) of a main flow (H) of the plastic melt (38) upstream of the bearing gap (53, 54) is arranged.
Schneckenmaschine nach einem der Ansprüche 1 bis 9, gekennzeichnet
durch eine Startpumpe (46) zur Zuführung eines Gleitmittels, insbesondere der Kunststoffschmelze (38), in das mindestens eine Wellenlager (47, 48).
Screw machine according to one of claims 1 to 9, characterized
by a starting pump (46) for supplying a lubricant, in particular the plastic melt (38), into the at least one shaft bearing (47, 48).
Schneckenmaschine nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
dass das Gehäuse (2) und/oder die mindestens eine Welle (27, 28) im Bereich des mindestens einen Wellenlagers (47, 48) temperierbar ausgebildet ist.
Screw machine according to one of claims 1 to 10, characterized
that the housing (2) and / or the at least one shaft (27, 28) is (47 48) formed in the temperature-range of the at least one shaft bearing.
Schneckenmaschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
dass relativ zu der Förderrichtung (3) stromaufwärts zu dem mindestens einen Wellenlager (47, 48) ein Dichtelement (64) angeordnet ist, das insbesondere als Gewindewellen-Dichtelement (64) ausgebildet ist.
Screw machine according to one of claims 1 to 11, characterized
in that, relative to the conveying direction (3), upstream of the at least one shaft bearing (47, 48) a sealing element (64) is arranged, which is designed in particular as a threaded shaft sealing element (64).
Verfahren zur Aufbereitung von Kunststoffschmelzen, umfassend folgende Schritte: - Bereitstellen einer Schneckenmaschine (1) mit -- einem Gehäuse (2), -- mindestens einer in dem Gehäuse (2) ausgebildeten Gehäusebohrung (14, 15), -- einer in die mindestens eine Gehäusebohrung (14, 15) mündenden Zuführöffnung (45) zur Zuführung einer Kunststoffschmelze (38), -- mindestens einer Behandlungselementwelle (16, 17), --- die in der zugehörigen Gehäusebohrung (14, 15) angeordnet und um eine zugehörige Drehachse (18, 19) drehantreibbar ist, und --- die zur Behandlung der Kunststoffschmelze (38) mehrere Behandlungselemente (29 bis 37, 29' bis 37') aufweist, die in einer Förderrichtung (3) der Kunststoffschmelze (38) nacheinander auf mindestens einer zugehörigen Welle (27, 28) drehfest angeordnet sind, - Bereitstellen einer Kunststoffschmelze (38), - Zuführen der Kunststoffschmelze (38) durch die Zuführöffnung (45) in die mindestens eine Gehäusebohrung (14, 15), - Aufbereiten der Kunststoffschmelze (38) mittels der mindestens einen Behandlungselementwelle (16, 17), wobei die mindestens eine Welle (27, 28) während des Aufbereitens mittels mindestens eines relativ zu der Förderrichtung (3) stromaufwärts der Zuführöffnung (45) angeordneten Wellenlagers (47, 48) hydrodynamisch in dem Gehäuse (2) gelagert ist. Process for the preparation of plastic melts, comprising the following steps: - Providing a screw machine (1) with a housing (2), at least one housing bore (14, 15) formed in the housing (2), - One in the at least one housing bore (14, 15) opening feed opening (45) for supplying a plastic melt (38), at least one treatment element shaft (16, 17), --- in the associated housing bore (14, 15) arranged and about an associated axis of rotation (18, 19) is rotationally driven, and --- which for the treatment of the plastic melt (38) a plurality of treatment elements (29 to 37, 29 'to 37'), in a conveying direction (3) of the plastic melt (38) successively rotatably on at least one associated shaft (27, 28) are arranged Providing a plastic melt (38), Feeding the plastic melt (38) through the feed opening (45) into the at least one housing bore (14, 15), Preparing the plastic melt (38) by means of the at least one treatment element shaft (16, 17), wherein the at least one shaft (27, 28) during the preparation by means of at least one relative to the conveying direction (3) upstream of the feed opening (45) arranged shaft bearing ( 47, 48) is mounted hydrodynamically in the housing (2). Verfahren nach Anspruch 13, dadurch gekennzeichnet,
dass die Kunststoffschmelze (38) in einen Nebenstrom (N) und einen Hauptstrom (H) aufgeteilt wird,
dass der Nebenstrom (N) einen Lagerspalt (53, 54) des mindestens einen Wellenlagers (47, 48) durchströmt, und
dass insbesondere der Nebenstrom (N) nach dem Durchströmen des Lagerspalts (53, 54) dem Hauptstrom (H) zugeführt wird.
Method according to claim 13, characterized in that
that the plastic melt (38) into a secondary stream (N) and a main stream (H) is divided,
that the secondary flow (N) flows through a bearing gap (53, 54) of the at least one shaft bearing (47, 48), and
in particular that the secondary flow (N) is supplied to the main flow (H) after flowing through the storage gap (53, 54).
Verfahren nach Anspruch 13 oder 14 , dadurch gekennzeichnet,
dass die Kunststoffschmelze (38) mit einem Schmelzedruck p bereitgestellt wird, wobei gilt: 0,01 bar ≤ p ≤ 20 bar, insbesondere 0,1 ≤ p < 10 bar, insbesondere 0,5 bar ≤ p ≤ 5 bar, und insbesondere 1 bar ≤ p < 3 bar.
Method according to claim 13 or 14, characterized
that the plastic melt (38) is provided with a melt pressure p, where: 0.01 bar ≤ p ≤ 20 bar, in particular 0.1 ≤ p < 10 bar, in particular 0.5 bar ≤ p ≤ 5 bar, and in particular 1 bar ≤ p < 3 bar.
EP13182151.4A 2013-08-29 2013-08-29 Worm machine and method for the treatment of plastic melts Active EP2842716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13182151.4A EP2842716B1 (en) 2013-08-29 2013-08-29 Worm machine and method for the treatment of plastic melts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13182151.4A EP2842716B1 (en) 2013-08-29 2013-08-29 Worm machine and method for the treatment of plastic melts

Publications (2)

Publication Number Publication Date
EP2842716A1 true EP2842716A1 (en) 2015-03-04
EP2842716B1 EP2842716B1 (en) 2016-07-13

Family

ID=49054419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13182151.4A Active EP2842716B1 (en) 2013-08-29 2013-08-29 Worm machine and method for the treatment of plastic melts

Country Status (1)

Country Link
EP (1) EP2842716B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043630A1 (en) * 2019-09-04 2021-03-11 KraussMaffei Extrusion GmbH Sealing device with cooling function
WO2021043629A1 (en) * 2019-09-04 2021-03-11 KraussMaffei Extrusion GmbH Sealing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112016B4 (en) 2018-05-18 2022-04-28 Edl Anlagenbau Gesellschaft Mbh Device and method for the thermal depolymerization of polyolefinic plastics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635343A1 (en) * 1993-07-21 1995-01-25 Josef Blach Machine with several screws
WO1999029486A1 (en) * 1997-12-08 1999-06-17 Thyssen Henschel Industrietechnik Gmbh Gear mechanism, especially for a double screw extruder
EP1541870A2 (en) * 2003-12-11 2005-06-15 Spreafico Vittorino &amp; Fratelli S.R.l. Extruder and related extrusion process
DE102004051306A1 (en) * 2004-10-20 2006-04-27 Renk Ag Drive unit for twin screw extruder has one or more motors driving primary and secondary extruder screw shafts via gear stages and rotating parts are mounted in sliding bearings
DE102007055764A1 (en) * 2007-01-26 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Extruder screw for use in double screw extruder, has bearing segment with screw channels arranged in rotation direction with constant disalignment of their phase, where length of channels is fixed on outer diameter of bearing segment
EP2082862A1 (en) 2008-01-22 2009-07-29 Coperion GmbH Extruder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635343A1 (en) * 1993-07-21 1995-01-25 Josef Blach Machine with several screws
WO1999029486A1 (en) * 1997-12-08 1999-06-17 Thyssen Henschel Industrietechnik Gmbh Gear mechanism, especially for a double screw extruder
EP1541870A2 (en) * 2003-12-11 2005-06-15 Spreafico Vittorino &amp; Fratelli S.R.l. Extruder and related extrusion process
DE102004051306A1 (en) * 2004-10-20 2006-04-27 Renk Ag Drive unit for twin screw extruder has one or more motors driving primary and secondary extruder screw shafts via gear stages and rotating parts are mounted in sliding bearings
DE102007055764A1 (en) * 2007-01-26 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Extruder screw for use in double screw extruder, has bearing segment with screw channels arranged in rotation direction with constant disalignment of their phase, where length of channels is fixed on outer diameter of bearing segment
EP2082862A1 (en) 2008-01-22 2009-07-29 Coperion GmbH Extruder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043630A1 (en) * 2019-09-04 2021-03-11 KraussMaffei Extrusion GmbH Sealing device with cooling function
WO2021043629A1 (en) * 2019-09-04 2021-03-11 KraussMaffei Extrusion GmbH Sealing device
CN114302799A (en) * 2019-09-04 2022-04-08 克劳斯马菲挤塑有限公司 Sealing device with cooling mechanism
US11858192B2 (en) 2019-09-04 2024-01-02 KraussMaffei Extrusion GmbH Sealing device
CN114302799B (en) * 2019-09-04 2024-01-05 克劳斯马菲挤塑有限公司 Sealing device with cooling mechanism

Also Published As

Publication number Publication date
EP2842716B1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
EP2507527B1 (en) Rolling bearing arrangement
EP2233760B1 (en) Grease lubricated two-row roller bearing and storage system with such a roller bearing and a lubricating device
EP0597271B1 (en) Arrangement for treating thermoplastic melt with a gear pump
EP1836429B1 (en) Guide of a molten polymeric mass and tubular rotary joint
DE3411829A1 (en) TRANSMISSION
EP2082862B1 (en) Extruder
EP2002136A1 (en) Hydrodynamic axial plain bearing and associated operating method
DE1525193A1 (en) Training and assignment of warehouse parts
DE102015218280A1 (en) Bearing lubrication for electrical machine
EP0669465B1 (en) Bearing arrangement for a viscous fluid pump
AT390129B (en) HYDRODYNAMIC SLIDING BEARING ARRANGEMENT FOR ROTATING BEARING PINS OR. SHAFT PIN
EP2842716B1 (en) Worm machine and method for the treatment of plastic melts
EP2193907B1 (en) Screw-type machine with axial compensation for thermal expansion
EP2776179B1 (en) Rolling mill drive comprising a toothed articulated spindle
EP2188073B1 (en) Rolling stand for rolling metal strips, and roll or roller for a rolling stand of this type
DE19852478A1 (en) High pressure rotary union for mechanical power press
EP1708864B1 (en) Device for shaping a foil strip
EP3290733A1 (en) Sliding bearing with lubrication grooves for hydraulic crank up transmission
DE102013224413A1 (en) Thrust bearing with lubricant supply for a high-speed shaft
DE2911000C2 (en) Rotary feedthrough for introducing flowable media into a rotating machine part
EP3974669A1 (en) Sliding bearing sleeve for sliding bearing with increased bearing capacity
DE3045192A1 (en) Gear pump hard, e.g. steel, driving gear - has softer, e.g. plastic, driven gear for reduced noise development and wear
DE102019134040A1 (en) Cleaning device
DE2552418C3 (en) Guide roller for continuous casting plants, with several roller bodies mounted on one axis
DE102012213497A1 (en) Plain bearing arrangement has slide bearing that is partially cooled and lubricant whose viscosity within bearing gap is partially changed

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150805

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B29C 47/36 20060101ALN20160302BHEP

Ipc: B29C 47/60 20060101ALN20160302BHEP

Ipc: B29C 47/76 20060101ALN20160302BHEP

Ipc: B29C 47/00 20060101ALN20160302BHEP

Ipc: B29C 47/82 20060101ALN20160302BHEP

Ipc: B29C 47/08 20060101AFI20160302BHEP

Ipc: B29C 47/84 20060101ALN20160302BHEP

Ipc: B29C 47/40 20060101ALN20160302BHEP

INTG Intention to grant announced

Effective date: 20160315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 811924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013003670

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013003670

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160829

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160829

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013003670

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B29C0047080000

Ipc: B29C0048250000

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 811924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230822

Year of fee payment: 11