EP2841626A1 - Connecteur de prechauffage - Google Patents

Connecteur de prechauffage

Info

Publication number
EP2841626A1
EP2841626A1 EP13782276.3A EP13782276A EP2841626A1 EP 2841626 A1 EP2841626 A1 EP 2841626A1 EP 13782276 A EP13782276 A EP 13782276A EP 2841626 A1 EP2841626 A1 EP 2841626A1
Authority
EP
European Patent Office
Prior art keywords
connector
preheating
anode
permanent
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13782276.3A
Other languages
German (de)
English (en)
Other versions
EP2841626A4 (fr
Inventor
Pierre Bon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP2841626A1 publication Critical patent/EP2841626A1/fr
Publication of EP2841626A4 publication Critical patent/EP2841626A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/10Arrangements for positively actuating jaws using screws
    • B25B5/103Arrangements for positively actuating jaws using screws with a hinge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/10External supporting frames or structures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/26Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for engaging or disengaging the two parts of a coupling device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a preheating connector for the electrical connection of an anode rod to an anode frame of a preheating electrolysis cell, an electrolysis cell equipped with this preheating connector, and a method electrically connecting the anode rods to the anode frame of an electrolytic cell to preheat the electrolytic cell.
  • An electrolysis cell traditionally comprises a metal box with a refractory lining.
  • a cathode of carbonaceous material is disposed at the bottom of the box.
  • the cathode In continuous operating mode, during which aluminum is produced, the cathode is covered with a sheet of liquid aluminum and an electrolytic bath, and anodes of carbonaceous material are partially immersed in the electrolytic bath. Each anode is attached to one end of an anode rod.
  • the anode rods are connected to an anode frame by means of electrical and mechanical connection systems also called connectors.
  • these connectors for the electrical and mechanical connection of the anode rods to the anode frame during the continuous operating regime of the tank will be designated as permanent connectors.
  • the anode frame is secured to a superstructure supported by concrete feet resting on the box and serving as electrical insulation between the box and the superstructure.
  • the anode frame is movable relative to the superstructure to allow adjustment of the position of the anodes, which are consumed in the electrolytic bath as the electrolysis reaction.
  • the continuous operating mode of an electrolytic cell is preceded by a preheating phase of the tank, intended to bring the tank from an initially cold state to an operating temperature of about 960 ° C.
  • This preheating phase allows, by a gradual rise in temperature, to avoid thermal shocks at the cathode that could reduce the service life of the tank.
  • the electrolysis cell in phase preheating does not contain a liquid electrolytic bath and the anodes are not suspended from the superstructure but rest on the layer of carbonaceous material.
  • preheating connectors electrical connection systems from anode rod to the anode frame, hereinafter referred to as preheating connectors, ensuring good electrical contact between the anode rod and the anodic frame and allowing displacements of the anode rod relative to the anode frame to take into account its expansion.
  • the existing preheating connectors must be removed as soon as the preheating is complete to allow the installation of permanent connectors adapted to the continuous operating condition of the tank.
  • the risk of degradation of the quality of the contact between the anode rod and the anode frame is not perfectly ensured.
  • the present invention aims to overcome all or part of these disadvantages by providing a preheating connector easily manipulated and easy to maintain, limiting the risk of degradation of the quality of the contact between anode rod and anode frame including transition period between the preheating phase and the start of the continuous operating regime of the electrolysis cell.
  • the subject of the present invention is a preheating connector intended for the electrical connection of an anode rod to an anode frame of an electrolysis cell in the preheating phase of the electrolytic cell, characterized in that that the preheating connector comprises means for hanging from the anode frame, and support means for exerting pressure on the anode rod to hold it pressed against the anode frame, the hooking means and the means for support being shaped and arranged to superimpose the preheating connector to a so-called permanent connector for the electrical and mechanical connection of the anode rod to the anode frame in continuous operation mode of the tank.
  • the preheating connector according to the invention offers the possibility of being place and used while a permament connector is already present, ie to coexist with a permanent connector. It is therefore possible, thanks to the preheating connector according to the invention, to prepare the continuous operating mode of the tank (once preheating is complete) by actuating the permanent connectors without removing the preheating connectors beforehand. This results in the maintenance of a quality electrical contact during the transition period between the end of the preheating phase and the start of continuous operation of the tank.
  • the hooking means and the support means are shaped and arranged to superpose the preheating connector to the permanent connector.
  • the hooking means comprise a hook.
  • the support means comprise two levers hinged about an axis and means for connecting and clamping the levers, each lever supporting at least one bearing surface for come to bear against the anode rod.
  • the preheating connector according to the invention offers the advantage of a simple structure to maintain and handle.
  • each bearing surface corresponds to a wall of a rotary roller.
  • This feature has the advantage of allowing a translation movement of the anode rod relative to the anode frame to compensate for the expansion of the components of the tank, while allowing to keep the plated anode rod against the anode frame.
  • this rotary roller is designed in an electrically insulating material, resistant to heat and having a low coefficient of friction.
  • the levers each comprise two cheeks spaced from each other by a predetermined distance by at least one crosspiece.
  • the cheeks of a lever delimit a space for receiving the permanent connector.
  • the one or one of the cross supports the one or one of the bearing surfaces.
  • the connecting means and clamping levers comprise two jaws each intended to be assembled to one of the levers and a threaded rod connecting the two jaws.
  • the jaws each comprise two grooves and the levers each comprise two end hooks, the end hooks and the grooves of the jaws co-operating in a complementary manner for assembling the jaws with the levers.
  • the latter comprises means of visual distinction of the two levers.
  • At least one of the cheeks comprises at least one perforation.
  • the perforations reduce the weight of the levers while maintaining rigidity and strength.
  • an electrolytic cell for the production of aluminum by electrolysis comprising an anode rod and an anode frame, characterized in that it simultaneously comprises a so-called permanent connector for the electrical and mechanical connection of the anode rod to the anode frame in continuous operation and a preheating connector connected to the electrical connection of the anode rod to the anode frame in the preheating phase of the electrolysis cell .
  • the preheating connector is superimposed on the permanent connector.
  • the permanent connector comprises an axis supported by the anode frame and the preheating connector is hooked to the axis of the permanent connector.
  • an electrically insulating strip is interposed between a bearing surface of the preheating connector and the anode rod.
  • This characteristic has the advantage of avoiding the passage of electric current in the preheating connector.
  • it also relates to a method of electrically connecting an anode rod to an anode frame of an electrolytic cell to preheat the electrolysis cell, characterized in that it includes a step of setting up a preheating connector, intended for the electrical connection of the anode rod to the anode frame during the preheating phase of the electrolytic cell, in addition to a so-called permanent connector for the electrical and mechanical connection of the anode rod to the anode frame in continuous operating mode.
  • the step of setting up the preheating connector is preceded by a step of placing an electrically insulating strip against the anode rod.
  • the step of setting up the preheating connector according to the invention comprises the superposition of the preheating connector to the permanent connector.
  • the step of setting up the preheating connector comprises the steps of: hanging from a first lever to an axis of the permanent connector, and from a second lever to the permanent connector axis, assembling a first jaw on the first lever and a second jaw on the second lever, clamping the first lever and the second lever by rotating a threaded rod connecting the first jaw and the second bit.
  • the tightening of the levers by the jaws causes their rotation relative to the axis on which they are articulated, so the displacement of their opposite end to that receiving the jaws to the anode frame. This allows the anode rod to be pressed against the anode frame.
  • the step of setting up the preheating connector comprises a prior step of identifying the first lever by means of visual distinction means.
  • FIG. a profile view of a preheating connector according to one embodiment of the invention
  • FIG. 2 is a perspective view of a preheating connector according to a Embodiment of the invention
  • FIG. 3 to 6 are perspective views of an electrolysis cell according to an embodiment of the invention, illustrating various steps of the method of electrically connecting the anode rods to the frames 7 is a perspective view of a portion of a preheating connector according to one embodiment of the invention.
  • Figures 1 and 2 show a preheating connector 1 according to one embodiment of the invention.
  • the preheating connector 1 is adapted to electrically connect an anode rod 2 of an electrolysis tank 4 (only a portion of which is shown in the figures) to an anodic frame 6 of the electrolytic cell 4 during the preheating phase of the electrolytic tank 4.
  • the preheating connector 1 comprises support means, such as levers 8, intended to exert pressure on the anode rod 2 to keep it pressed against the anode frame 6.
  • the preheating connector 1 also comprises means for hooking to the anodic frame 6, such as hooks 10.
  • the levers 8 and the hooks 10 are arranged and shaped to allow attachment of the preheating connector 1 to the anodic frame 6 in addition to a permanent connector 12.
  • the levers 8 and the hooks 10 are arranged and shaped to allow the superposition of the preheating connector 1 and the permanent connector 12.
  • the preheating connectors 1 can be arranged over the permanent connectors 12.
  • the levers 8 are each formed of two cheeks 14 spaced from each other by a predetermined distance allowing the superposition of the preheating connector 1 to the permanent connector 12. The space defined between each of the cheeks 14 is thus adapted to contain the permanent connector 12.
  • each flange 14 comprises a plurality of perforations 16 for lightening the levers 8 while maintaining rigidity and strength.
  • the preheating connectors 1 according to the invention intended for anodes of nearly 1.5 tons, are made of aluminum alloy and have a mass of less than 21 kg, each lever 8 weighing less than 7 kg. .
  • Each cheek 14 comprises one of the two hooks 10 equipping each lever 8.
  • the hooks 10 are therefore an integral part of the levers 8. In other words, the hooks 10 and the levers 8 form a single piece.
  • the hooks 10 are intended to cooperate with an axis 18, around which are articulated the levers 8.
  • the axis 18 here corresponds to an axis belonging to the permanent connector 12 which is superimposed on the connector 1 preheating.
  • the axis 18 is here supported by hooks 20 integral with the anode frame 6.
  • the cheeks 14 are connected to each other by at least one crosspiece 22.
  • the crosspieces 22 maintain the gap between the cheeks 14.
  • the two levers 8 of the preheating connector 1 are of substantially similar structure. Note however that one of the two levers 8 is shaped to be inserted between the cheeks 14 of the other lever 8. In other words, the space between the cheeks 14 of one of the levers 8 is adapted to receive and contain the other lever 8.
  • the levers 8 each comprise a bearing surface, corresponding here to the outer wall of a rotary roller 24, arranged at a first end of the levers 8.
  • Each bearing surface is intended to bear against an electrically insulating strip 26 , corresponding for example to a presspahn, disposed on the anode rod 2.
  • the rotating roller 24 is made of a material that is resistant to heat and has a low coefficient of friction.
  • the electrically insulating strips 26 have a width similar to that of the face of the anode rod 2 on which they rest. There are two of them, one for the bearing surface of each lever 8.
  • electrically insulating tape is not used, but the rotary roller is made of an electrically insulating material.
  • Each lever 8 here comprises a rotary roller 24.
  • the rotary rollers 24 are pivotally mounted on the crosspieces 22.
  • the rotary rollers 24 can be held in position by a pin 28.
  • the pins 28 are, for example, inserted into a hole formed in one of the crosspieces 22.
  • One end of the pin 28 is deformed to remain in position in the hole of the cross member 22, to prevent the translation of the roller 24 rotating along the crosspiece 22.
  • the preheating connector 1 also comprises means for connecting and clamping the two levers 8, for example two jaws 30 cooperating with a threaded rod 32.
  • the cheeks 14 of each lever 8 comprise a second end, opposite the first end relative to the articulation axis 18 of the hook-shaped levers 8.
  • Each jaw 30 comprises two grooves 36; the grooves 36 are shaped to receive the second ends of the cheeks 14 in the form of a hook 34. Thus, the jaws 30 can be assembled with the levers 8.
  • the jaws 30 comprise a bore 36 for receiving the threaded rod 32.
  • One of these bores 36 is threaded; in the example of Figure 2, the bore comprises a threaded insert 40.
  • the threaded rod 32 comprises a bearing surface intended to bear against one of the jaws 30, for example a lower face of its head 42.
  • the threaded rod 32 is rotatable relative to the jaws 30.
  • the preheating connector 1 may include visual discrimination means for distinguishing each of the two levers 8.
  • the visual discriminating means may comprise a keying pin integral with one of the flanges 14 of one of the two levers 8 only, or may correspond to a color code assigned to the levers 8.
  • the invention also relates to an electrolytic cell 4, partially shown in FIGS. 3 to 6, simultaneously comprising, for anode rod 2, a permanent connector 12 and a preheating connector 1.
  • the preheating connector 1 is advantageously superimposed on the permanent connector 12.
  • the levers 8 are hung on the axis 18 of the permanent connector 12.
  • FIGS. 3 to 6 also illustrate successive steps of a method of electrically connecting the anode rods 2 to the anode frames 6 of the electrolysis tank 4 for preheating the tank 4, according to another aspect of the present invention .
  • the method comprises a step of setting up a preheating connector 1, in addition to the permanent connector 12.
  • the introduction of the preheating connector 1 may consist of the superposition of the preheating connector 1 to the permanent connector 12.
  • the method may comprise a step of placing the permanent connectors 12 (one for each anode rod 2), when they are not already there. This step is illustrated in FIG. 3. More precisely, this step may comprise the positioning of each end of the axis 18 of each permanent connector 12 in a hook 20 fixed to the anodic frame 6. The permanent connectors 12 are thus suspended from the anodic frame 6.
  • the method comprises a step of positioning a first lever 8, illustrated in Figure 4.
  • the first lever 8 may have been identified by an operator through the abovementioned visual distinction means.
  • the step of positioning the first lever 8 consists more particularly in the attachment of the first lever 8 on the axis 18 of the permanent connector 12, via the hooks 10.
  • the first lever 8 is suspended from the axis 18. According to the embodiment of FIGS. 3 to 6, the first lever 8 is thus superposed on the permanent connector 12.
  • the step of positioning the first lever 8, and optionally also the step of placing the permanent connector 12, is advantageously preceded by a step of placing an electrically insulating strip 26.
  • the electrically insulating strip 26 is placed on the face of the anode rod 2 against which is intended to support the rotary roller 24 of each lever 8.
  • the method then comprises a step of setting up the second lever 8, illustrated in FIG. 5.
  • This step consists in superimposing the second lever 8 on the permanent connector 12 and the first lever 8, which are thus arranged in the defined space. between the cheeks 14 of the second lever 8.
  • the method then comprises the step of connecting and clamping the first lever 8 and the second lever 8.
  • This step consists of placing a jaw 30 on the first lever 8, a jaw 30 on the second lever 8, then to insert a threaded rod 32 connecting the two jaws 30 if it is not already the case. It is then sufficient for an operator to ensure that the first lever 8 and the second lever 8 are articulated around the axis 18 to which they have been hooked, then to screw the threaded rod 32 to bring the jaws 30 closer together, therefore the rotation of the levers 8 about the axis 18 and the support of the rotary rollers 24 against the anode rod 2 via the electrically insulating strip 26.
  • the permanent connectors 12 are loosened: they do not contribute to the electrical connection of the anode rods 2 to the anode frame 6 supporting them. At most, the permanent connectors 12 play a role in supporting the preheating connectors 1 when they are hooked to the axis of the permanent connectors 12.
  • the permanent connectors 12 are tightened in order to electrically and mechanically connect the anode rods 2 and the anodic frame 6 (the anode rods 2 are immobilized and become integral with the anodic frame 6. supporting).
  • the preheating connectors 1 are then loosened (by inverse rotation of the threaded rod 32).
  • the quality of the electrical contact is maintained during the transition between the preheating phase and the continuous operating regime.
  • this transition is fast since it does not require removing the preheating connectors 1 and then put in place 12 permanent connectors.
  • the preheating connectors 1 can be removed (without specific tools given their geometry and mass), or left in position, loosened.
  • the axis 18 of articulation of the preheating connectors 1 does not necessarily correspond to an axis of a permanent connector 12 but may correspond to a separate axis attached to the electrolytic tank 4.
  • the jaws 30 can also be an integral part of each lever 8, the ends of the jaws being integral with one or other of the flanges 14 of each lever 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Ce connecteur (1) de préchauffage, destiné au raccordement électrique d'une tige (2) d'anode à un cadre (6) anodique d'une cuve (4) d'électrolyse en phase de préchauffage de la cuve (4) d'électrolyse, comprend des moyens d'accroche au cadre (6) anodique, et des moyens d'appui destinés à exercer une pression sur la tige (2) d'anode pour la maintenir plaquée contre le cadre (6) anodique, les moyens d'accroche et les moyens d'appui étant conformés et agencés pour surajouter le connecteur (1) de préchauffage à un connecteur dit permanent destiné au raccordement électrique et mécanique de la tige (2) d'anode au cadre (6) anodique en régime de fonctionnement continu de la cuve (4).

Description

CONNECTEUR DE PRECHAUFFAGE
La présente invention concerne un connecteur de préchauffage destiné au raccordement électrique d'une tige d'anode à un cadre anodique d'une cuve d'électrolyse en phase de préchauffage, une cuve d'électrolyse équipée de ce connecteur de préchauffage, et un procédé de raccordement électrique des tiges d'anode au cadre anodique d'une cuve d'électrolyse pour préchauffer la cuve d'électrolyse.
Classiquement, l'aluminium est produit industriellement par électrolyse d'alumine en solution dans un bain de cryolithe fondue selon le procédé Hall-Héroult dans des cuves d'électrolyse. Une cuve d'électrolyse comprend traditionnellement un caisson métallique avec un revêtement intérieur réfractaire. Une cathode en matériau carboné est disposée au fond du caisson.
En régime de fonctionnement continu, au cours duquel est produit l'aluminium, la cathode est recouverte d'une nappe d'aluminium liquide et d'un bain électrolytique, et des anodes en matériau carboné sont partiellement immergées dans le bain électrolytique. Chaque anode est fixée à une extrémité d'une tige d'anode. Les tiges d'anode sont raccordées à un cadre anodique au moyen de systèmes de connexion électrique et mécanique aussi appelés connecteurs. Ci-après, ces connecteurs destinés au raccordement électrique et mécanique des tiges d'anode au cadre anodique pendant le régime de fonctionnement continu de la cuve seront désignés comme connecteurs permanents. Le cadre anodique est solidaire d'une superstructure supportée par des pieds en béton prenant appui sur le caisson et servant d'isolation électrique entre le caisson et la superstructure. Traditionnellement, le cadre anodique est mobile par rapport à la superstructure pour permettre un ajustement de la position des anodes, qui sont consommées dans le bain électrolytique au fur et à mesure de la réaction d'électrolyse. Classiquement, le régime de fonctionnement continu d'une cuve d'électrolyse est précédé d'une phase de préchauffage de la cuve, destinée à amener la cuve d'un état initialement froid jusqu'à une température de fonctionnement de l'ordre de 960°C. Cette phase de préchauffage permet, par une montée en température progressive, d'éviter des chocs thermiques au niveau de la cathode qui pourraient réduire la durée de vie de la cuve. II est connu, notamment du brevet US7485215, de réaliser cette phase de préchauffage en disposant sur la cathode une couche d'un matériau carboné destiné à chauffer la cuve par résistance électrique (effet Joule) lorsque le courant d'électrolyse traverse la cuve. Ainsi, à la différence du régime de fonctionnement continu, la cuve d'électrolyse en phase de préchauffage ne contient pas de bain électrolytique liquide et les anodes ne sont pas suspendues à la superstructure mais reposent sur la couche en matériau carboné.
Pour le bon cheminement du courant d'électrolyse au cours de la phase de préchauffage d'une cuve, il est prévu d'assurer un contact électrique de qualité entre le cadre anodique et chaque tige d'anode. Il peut en effet résulter d'un mauvais contact entre le cadre anodique et les tiges d'anode une augmentation de la chute de tension, la création d'arcs électriques dangereux pour les opérateurs et susceptibles d'endommager les surfaces de contact, ou bien la déviation du courant d'électrolyse dans des éléments disposés à proximité non adaptés et donc susceptibles de fondre.
En outre, la dilatation de la cathode, du caisson, de la superstructure, des anodes et des tiges d'anode, due à leur montée en température progressive, doit être prise en compte pour que cette dilatation n'engendre pas des contraintes mécaniques dommageables à la cuve d'électrolyse. Une absence de prise en compte suffisante de cette dilatation, et donc des mouvements relatifs induits des composants de la cuve, peut engendrer la transmission d'efforts mécaniques sur les pieds en béton soutenant la superstructure et provoquer leur rupture.
Il est connu d'utiliser, en phase de préchauffage, des systèmes de connexion électrique d'une tige d'anode au cadre anodique, appelés ci-après connecteurs de préchauffage, assurant un contact électrique de qualité entre la tige d'anode et le cadre anodique et autorisant des déplacements de la tige d'anode relativement au cadre anodique pour prendre en compte sa dilatation.
Toutefois, les connecteurs de préchauffage existants doivent être retirés dès le préchauffage terminé pour permettre la mise en place des connecteurs permanents adaptés au régime de fonctionnement continu de la cuve. Il en résulte, outre une perte de temps due au retrait des connecteurs de préchauffage et à la mise en place successive des connecteurs permanents, des risques de dégradation de la qualité du contact entre la tige d'anode et le cadre anodique. En effet, une fois les connecteurs de préchauffage retirés, et tant que les connecteurs permanents ne sont pas encore positionnés et serrés, la qualité de la connexion électrique entre la tige d'anode et le cadre anodique n'est pas parfaitement assurée.
En outre, la plupart des connecteurs de préchauffage existants s'avèrent difficilement manipulables en raison de leur encombrement, de leur masse et des forts champs magnétiques entourant les cuves d'électrolyse. Ainsi, leur mise en place et leur retrait (au moins un connecteur de préchauffage par tige d'anode de la cuve) pour la réalisation de la phase de préchauffage est relativement chronophage, dangereuse et mobilise un nombre important d'opérateurs, qui doivent être assistés de surcroît d'un outillage spécifique et coûteux pour manipuler ces connecteurs de préchauffage.
Le nombre d'opérateurs présents lors des opérations de mise en place ou de retrait des connecteurs de préchauffage, la durée de ces opérations, le matériel requis, reposant à même le sol lorsqu'il n'est pas utilisé, et l'environnement difficile dans lequel sont effectuées ces opérations rendent délicate et minutieuse la tâche des opérateurs.
Enfin, les connecteurs de préchauffage connus nécessitent souvent une maintenance importante et coûteuse pour s'assurer de leur bon fonctionnement. II est également connu du document de brevet GB21 1 1082A un connecteur faisant à la fois office de connecteur permanent et de connecteur de préchauffage. A ces connecteurs s'ajoutent des connecteurs de relevage de cadre qui permettent de relever le cadre anodique, après immobilisation des tiges d'anode au moyen des connecteurs de relevage de cadre et déconnexion des connecteurs. Ces connecteurs de relevage de cadre servent à immobiliser l'anode contre une partie immobile de la superstructure et conductrice du courant d'électrolyse pendant une courte période de temps et ne peuvent pas faire office de connecteur de préchauffage autorisant un mouvement des anodes. Le dispositif de GB21 1 1082A n'est toutefois pas viable économiquement et beaucoup trop compliqué à mettre en œuvre et à maintenir. Aussi la présente invention vise à pallier tout ou partie de ces inconvénients en proposant un connecteur de préchauffage aisément manipulable et simple d'entretien, limitant les risques de dégradation de la qualité du contact entre une tige d'anode et un cadre anodique y compris en période de transition entre la phase de préchauffage et le début du régime de fonctionnement continu de la cuve d'électrolyse. A cet effet, la présente invention a pour objet un connecteur de préchauffage destiné au raccordement électrique d'une tige d'anode à un cadre anodique d'une cuve d'électrolyse en phase de préchauffage de la cuve d'électrolyse, caractérisé en ce que le connecteur de préchauffage comprend des moyens d'accroché au cadre anodique, et des moyens d'appui destinés à exercer une pression sur la tige d'anode pour la maintenir plaquée contre le cadre anodique, les moyens d'accroché et les moyens d'appui étant conformés et agencés pour surajouter le connecteur de préchauffage à un connecteur dit permanent destiné au raccordement électrique et mécanique de la tige d'anode au cadre anodique en régime de fonctionnement continu de la cuve.
Ainsi, le connecteur de préchauffage selon l'invention offre la possibilité d'être mis en place et utilisé alors qu'un connecteur permament est déjà présent, autrement dit de coexister avec un connecteur permanent. Il est donc possible, grâce au connecteur de préchauffage selon l'invention, de préparer le régime de fonctionnement continu de la cuve (une fois le préchauffage terminé) en actionnant les connecteurs permanents sans retirer préalablement les connecteurs de préchauffage. Il en résulte le maintien d'un contact électrique de qualité pendant la période de transition s'écoulant entre la fin de la phase de préchauffage et le début du fonctionnement en régime continu de la cuve.
Selon une caractéristique du connecteur de préchauffage selon l'invention, les moyens d'accroché et les moyens d'appui sont conformés et agencés pour superposer le connecteur de préchauffage au connecteur permanent.
De manière avantageuse, les moyens d'accroché comprennent un crochet.
Selon une autre caractéristique du connecteur de préchauffage selon l'invention, les moyens d'appui comprennent deux leviers articulés autour d'un axe et des moyens de liaison et de serrage des leviers, chaque levier supportant au moins une surface d'appui destinée à venir en appui contre la tige d'anode.
Ainsi, le connecteur de préchauffage selon l'invention offre l'avantage d'une structure simple à entretenir et à manipuler.
Selon une possibilité, chaque surface d'appui correspond à une paroi d'un galet rotatif.
Cette caractéristique présente l'avantage d'autoriser un mouvement de translation de la tige d'anode par rapport au cadre anodique pour compenser la dilatation des composants de la cuve, tout en permettant de maintenir plaquée la tige d'anode contre le cadre anodique. Avantageusement, ce galet rotatif est conçu dans un matériau électriquement isolant, résistant à la chaleur et ayant un faible coefficient de frottement.
Selon un mode de réalisation, les leviers comprennent chacun deux joues espacées l'une de l'autre d'une distance prédéterminée par au moins une traverse.
Ainsi, les joues d'un levier délimitent un espace destiné à recevoir le connecteur permanent.
Avantageusement, la ou l'une des traverses supporte la ou l'une des surfaces d'appui.
Selon une forme d'exécution, les moyens de liaison et de serrage des leviers comprennent deux mors destinés à être chacun assemblé à l'un des leviers et une tige filetée reliant les deux mors. De préférence, les mors comprennent chacun deux gorges et les leviers comprennent chacun deux crochets d'extrémité, les crochets d'extrémité et les gorges des mors coopérant de manière complémentaire pour l'assemblage des mors aux leviers.
Selon une caractéristique du connecteur de préchauffage selon l'invention, celui-ci comprend des moyens de distinction visuelle des deux leviers.
De manière avantageuse, au moins l'une des joues comprend au moins une perforation.
Les perforations permettent de diminuer le poids des leviers tout en conservant rigidité et solidité.
Selon un autre aspect de la présente invention, celle-ci a aussi pour objet une cuve d'électrolyse pour la production d'aluminium par électrolyse, comprenant une tige d'anode et un cadre anodique, caractérisée en ce qu'elle comprend simultanément un connecteur dit permanent destiné au raccordement électrique et mécanique de la tige d'anode au cadre anodique en régime de fonctionnement continu et un connecteur de préchauffagedestiné au raccordement électrique de la tige d'anode au cadre anodique en phase de préchauffage de la cuve d'électrolyse.
Selon un mode de réalisation, le connecteur de préchauffage est superposé au connecteur permanent.
Avantageusement, le connecteur permanent comprend un axe supporté par le cadre anodique et le connecteur de préchauffage est accroché à l'axe du connecteur permanent.
Selon une forme d'exécution, une bande électriquement isolante est interposée entre une surface d'appui du connecteur de préchauffage et la tige d'anode.
Cette caractéristique offre l'avantage d'éviter le passage de courant électrique dans le connecteur de préchauffage. Selon encore un autre aspect de la présente invention, celle-ci a également pour objet un procédé de raccordement électrique d'une tige d'anode à un cadre anodique d'une cuve d'électrolyse pour préchauffer la cuve d'électrolyse, caractérisé en ce qu'il comprend une étape de mise en place d'un connecteur de préchauffage, destiné au raccordement électrique de la tige d'anode au cadre anodique en phase de préchauffage de la cuve d'électrolyse, en plus d'un connecteur dit permanent destiné au raccordement électrique et mécanique de la tige d'anode au cadre anodiqueen régime de fonctionnement continu. Selon une caractéristique du procédé selon l'invention, l'étape de mise en place du connecteur de préchauffage est précédée d'une étape de mise en place d'une bande électriquement isolante contre la tige d'anode.
Selon une caractéristique du procédé selon l'invention, l'étape de mise en place du connecteur de préchauffage selon l'invention comprend la superposition du connecteur de préchauffage au connecteur permanent.
Selon encore une autre caractéristique du procédé selon l'invention, l'étape de mise en place du connecteur de préchauffage comprend les étapes : d'accroché d'un premier levier à un axe du connecteur permanent, et d'un deuxième levier à l'axe du connecteur permanent, d'assemblage d'un premier mors sur le premier levier et d'un deuxième mors sur le deuxième levier, de serrage du premier levier et du deuxième levier par rotation d'une tige filetée reliant le premier mors et le deuxième mors. Ainsi, le serrage des leviers par les mors provoque leur rotation par rapport à l'axe sur lequel ils sont articulés, donc le déplacement de leur extrémité opposée à celle recevant les mors vers le cadre anodique. Cela permet de plaquer la tige d'anode contre le cadre anodique.
Avantageusement, l'étape de mise en place du connecteur de préchauffage comprend une étape préalable d'identification du premier levier par l'intermédiaire de moyens de distinction visuelle.
Cela permet à un opérateur en charge de la mise en place de connecteurs de préchauffage d'éviter des pertes de temps inutiles en se trompant dans le choix du levier à accrocher en premier lieu à l'axe du connecteur permanent. D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description ci-après d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels : la figure 1 est une vue de profil d'un connecteur de préchauffage selon un mode de réalisation de l'invention, - la figure 2 est une vue en perspective d'un connecteur de préchauffage selon un mode de réalisation de l'invention, les figures 3 à 6 sont des vues en perspective d'une cuve d'électrolyse selon un mode de réalisation de l'invention, illustrant différentes étapes du procédé de raccordement électrique des tiges d'anode aux cadres anodiques de la cuve d'électrolyse, la figure 7 est une vue en perspective d'une partie d'un connecteur de préchauffage selon un mode de réalisation de l'invention.
Les figures 1 et 2 montrent un connecteur 1 de préchauffage selon un mode de réalisation de l'invention. Le connecteur 1 de préchauffage est adapté pour raccorder électriquement une tige 2 d'anode d'une cuve 4 d'électrolyse (dont une partie seulement est représentée sur les figures) à un cadre 6 anodique de la cuve 4 d'électrolyse, pendant la phase de préchauffage de la cuve 4 d'électrolyse.
Le connecteur 1 de préchauffage comprend des moyens d'appui, comme des leviers 8, destinés à exercer une pression sur la tige 2 d'anode pour la maintenir plaquée contre le cadre 6 anodique.
Le connecteur 1 de préchauffage comprend également des moyens d'accroché au cadre 6 anodique, comme des crochets 10.
Les leviers 8 et les crochets 10 sont agencés et conformés pour permettre l'accrochage du connecteur 1 de préchauffage au cadre 6 anodique en plus d'un connecteur 12 permanent. Selon le mode de réalisation des figures 1 à 6, les leviers 8 et les crochets 10 sont agencés et conformés pour permettre la superposition du connecteur 1 de préchauffage et du connecteur 12 permanent. En d'autres termes, les connecteurs 1 de préchauffage peuvent être disposés par-dessus les connecteurs 12 permanents. Les leviers 8 sont chacun formés de deux joues 14 espacées l'une de l'autre d'une distance prédéterminée autorisant la superposition du connecteur 1 de préchauffage au connecteur 12 permanent. L'espace délimité entre chacune des joues 14 est ainsi adapté pour contenir le connecteur 12 permanent.
Dans l'exemple de réalisation représenté sur les figures 1 et 2, chaque joue 14 comprend une pluralité de perforations 16 destinées à alléger les leviers 8 tout en conservant rigidité et solidité. A titre d'exemple, les connecteurs 1 de préchauffage selon l'invention, destinés à des anodes de près de 1 ,5 tonnes sont en alliage d'aluminium et présentent une masse inférieure à 21 kg, chaque levier 8 pesant moins de 7 kg.
Chaque joue 14 comprend l'un des deux crochets 10 équipant chaque levier 8. Les crochets 10 font donc ici partie intégrante des leviers 8. Autrement dit, les crochets 10 et les leviers 8 forment une seule et même pièce.
Les crochets 10 sont destinés à coopérer avec un axe 18, autour duquel sont articulés les leviers 8. L'axe 18 correspond ici à un axe appartenant au connecteur 12 permanent auquel est superposé le connecteur 1 de préchauffage. L'axe 18 est ici supporté par des crochets 20 solidaires du cadre 6 anodique.
Les joues 14 sont reliées l'une à l'autre par au moins une traverse 22. Les traverses 22 maintiennent l'écart entre les joues 14.
Les deux leviers 8 du connecteur 1 de préchauffage sont de structure sensiblement similaire. On notera toutefois que l'un des deux leviers 8 est conformé pour être inséré entre les joues 14 de l'autre levier 8. En d'autres termes, l'espace entre les joues 14 de l'un des leviers 8 est adapté pour recevoir et contenir l'autre levier 8.
Les leviers 8 comprennent chacun une surface d'appui, correspondant ici à la paroi extérieure d'un galet 24 rotatif, agencée à une première extrémité des leviers 8. Chaque surface d'appui est destinée à venir en appui contre une bande 26 électriquement isolante, correspondant par exemple à un presspahn, disposée sur la tige 2 d'anode. Avantageusement, le galet 24 rotatif est en un matériau résistant à la chaleur et ayant un faible coefficient de frottement. Comme cela est visible sur les figures 1 et 2, les bandes 26 électriquement isolantes présentent une largeur similaire à celle de la face de la tige 2 d'anode sur laquelle elles reposent. Elles sont ici au nombre de deux, une pour la surface d'appui de chaque levier 8. Selon une alternative, il n'est pas fait usage de bande électriquement isolante mais le galet rotatif est conçu dans un matériau électriquement isolant. Chaque levier 8 comprend ici un galet 24 rotatif. Les galets 24 rotatifs sont montés pivotants sur les traverses 22.
Selon le mode de réalisation illustré à la figure 7, les galets 24 rotatifs peuvent être maintenus en position par une goupille 28. Les goupilles 28 sont par exemple insérées dans un trou ménagé dans l'une des traverses 22. Une extrémité de la goupille 28 est déformée pour rester en position dans le trou de la traverse 22, afin de prévenir la translation du galet 24 rotatif le long de la traverse 22. Le connecteur 1 de préchauffage comprend aussi des moyens de liaison et de serrage des deux leviers 8, par exemple deux mors 30 coopérant avec une tige 32 filetée.
Selon le mode de réalisation illustré aux figures 1 et 2, les joues 14 de chaque levier 8 comprennent une deuxième extrémité, opposée à la première extrémité par rapport à l'axe 18 d'articulation des leviers 8, en forme de crochet 34.
Chaque mors 30 comprend deux gorges 36 ; les gorges 36 sont conformées pour recevoir les deuxièmes extrémités des joues 14 en forme de crochet 34. Ainsi, les mors 30 peuvent être assemblés aux leviers 8.
Les mors 30 comprennent un alésage 36 destiné à recevoir la tige 32 filetée. L'un de ces alésages 36 est taraudé ; dans l'exemple de la figure 2, l'alésage comprend un insert 40 taraudé. La tige 32 filetée comprend une surface d'appui destinée à venir en appui contre l'un des mors 30, par exemple une face inférieure de sa tête 42. La tige 32 filetée est mobile en rotation par rapport aux mors 30.
Ainsi, la rotation de la tige 32 filetée provoque le rapprochement des mors 30, et conséquemment la rotation des leviers 8 par rapport à l'axe 18 auquel ils sont accrochés. Les galets 24 rotatifs exercent alors une pression contre la tige 2 d'anode, en direction du cadre 6 anodique.
Le connecteur 1 de préchauffage peut comprendre des moyens de distinction visuelle destinés à permettre la distinction de chacun des deux leviers 8. Ainsi, un opérateur peut aisément identifier le levier 8 qu'il est avantageux de positionner ou de retirer en premier. Les moyens de distinction visuelle peuvent comprendre un ergot détrompeur solidaire de l'une des joues 14 de l'un des deux leviers 8 uniquement, ou peuvent correspondre à un code couleur affecté aux leviers 8.
L'invention concerne également une cuve 4 d'électrolyse, partiellement représentée sur les figures 3 à 6, comprenant simultanément pour une tige 2 d'anode un connecteur 12 permanent et un connecteur 1 de préchauffage. Le connecteur 1 de préchauffage est avantageusement superposé au connecteur 12 permanent. Les leviers 8 sont accrochés sur l'axe 18 du connecteur 12 permanent.
Les figures 3 à 6 illustrent également des étapes successives d'un procédé de raccordement électrique des tiges 2 d'anode aux cadres 6 anodiques de la cuve 4 d'électrolyse pour le préchauffage de la cuve 4, selon un autre aspect de la présente invention. Le procédé comprend une étape de mise en place d'un connecteur 1 de préchauffage, en plus du connecteur 12 permanent.
La mise en place du connecteur 1 de préchauffage peut consister en la superposition du connecteur 1 de préchauffage au connecteur 12 permanent. Le procédé peut comprendre une étape de mise en place des connecteurs 12 permanents (un pour chaque tige 2 d'anode), lorsqu'ils ne le sont pas déjà. Cette étape est illustrée à la figure 3. Plus précisément, cette étape peut comprendre le positionnement de chaque extrémité de l'axe 18 de chaque connecteur 12 permanent dans un crochet 20 fixé au cadre 6 anodique. Les connecteurs 12 permanents sont ainsi suspendus au cadre 6 anodique.
Le procédé comprend une étape de positionnement d'un premier levier 8, illustrée à la figure 4. Le premier levier 8 peut avoir été identifié par un opérateur par l'intermédiaire des moyens de distinction visuelle susmentionnés.
Il s'agit du levier 8 dimensionné pour être contenu dans l'espace délimité entre les joues 14 du deuxième levier 8 du connecteur 1 de préchauffage.
L'étape de positionnement du premier levier 8 consiste plus particulièrement en l'accrochage du premier levier 8 sur l'axe 18 du connecteur 12 permanent, par l'intermédiaire des crochets 10. Le premier levier 8 est suspendu à l'axe 18. Selon le mode de réalisation des figures 3 à 6, le premier levier 8 se superpose ainsi au connecteur 12 permanent.
L'étape de positionnement du premier levier 8, et optionnellement également l'étape de mise en place du connecteur 12 permanent, est avantageusement précédée d'une étape de mise en place d'une bande 26 électriquement isolante. La bande 26 électriquement isolante est placée sur la face de la tige 2 d'anode contre laquelle est destiné à appuyer le galet 24 rotatif de chaque levier 8.
Le procédé comprend ensuite une étape de mise en place du deuxième levier 8, illustrée à la figure 5. Cette étape consiste ici à superposer le deuxième levier 8 au connecteur 12 permanent et au premier levier 8 qui se retrouvent ainsi disposés dans l'espace délimité entre les joues 14 du deuxième levier 8. Comme cela est représenté sur la figure 6, le procédé comprend ensuite l'étape de liaison et de serrage du premier levier 8 et du deuxième levier 8.
Cette étape consiste à placer un mors 30 sur le premier levier 8, un mors 30 sur le deuxième levier 8, puis à insérer une tige 32 filetée reliant les deux mors 30 si ce n'est pas déjà le cas. Il suffit ensuite à un opérateur de s'assurer que le premier levier 8 et le deuxième levier 8 sont bien articulés autour de l'axe 18 auquel ils ont été accrochés, puis à visser la tige 32 filetée pour provoquer le rapprochement des mors 30, donc la rotation des leviers 8 autour de l'axe 18 et l'appui des galets 24 rotatifs contre la tige 2 d'anode via la bande 26 électriquement isolante.
Pendant la phase de préchauffage de la cuve 4 d'électrolyse, les connecteurs 12 permanents sont desserrés : ils ne contribuent pas au raccordement électrique des tiges 2 d'anode au cadre 6 anodique les supportant. Tout au plus, les connecteurs 12 permanents jouent un rôle de support des connecteurs 1 de préchauffage lorsque ces derniers sont accrochés à l'axe des connecteurs 12 permanents.
A l'issue de la phase de préchauffage, les connecteurs 12 permanents sont serrés afin de raccorder électriquement et mécaniquement les tiges 2 d'anode et le cadre 6 anodique (les tiges 2 d'anode sont immobilisées et deviennent solidaires du cadre 6 anodique les supportant). Les connecteurs 1 de préchauffage sont ensuite desserrés (par rotation inverse de la tige 32 filetée).
Ainsi, la qualité du contact électrique est conservée pendant la transition entre la phase de préchauffage et le régime de fonctionnement continu. De plus, cette transition est rapide puisqu'elle ne nécessite pas de retirer les connecteurs 1 de préchauffage et de mettre ensuite en place des connecteurs 12 permanents.
Pendant le régime de fonctionnement continu, les connecteurs 1 de préchauffage peuvent être retirés (sans outillage spécifique compte-tenu de leur géométrie et de leur masse), ou bien être laissés en position, desserrés.
Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n'ayant été donné qu'à titre d'exemple. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.
Ainsi, l'axe 18 d'articulation des connecteurs 1 de préchauffage ne correspond pas nécessairement à un axe d'un connecteur 12 permanent mais peut correspondre à un axe distinct rattaché à la cuve 4 d'électrolyse.
Les mors 30 peuvent également faire partie intégrante de chaque levier 8, les extrémités des mors étant solidaires de l'une ou l'autre des joues 14 de chaque levier 8.

Claims

REVENDICATIONS
Connecteur (1) de préchauffage destiné au raccordement électrique d'une tige (2) d'anode à un cadre (6) anodique d'une cuve (4) d'électrolyse en phase de préchauffage de la cuve (4) d'électrolyse, caractérisé en ce que le connecteur (1) de préchauffage comprend des moyens d'accroché au cadre (6) anodique, et des moyens d'appui destinés à exercer une pression sur la tige (2) d'anode pour la maintenir plaquée contre le cadre (6) anodique, les moyens d'accroché et les moyens d'appui étant conformés et agencés pour surajouter le connecteur (1) de préchauffage à un connecteur (12) dit permanent destiné au raccordement électrique et mécanique de la tige (2) d'anode au cadre (6) anodique en régime de fonctionnement continu de la cuve (4).
Connecteur (1) de préchauffage selon la revendication 1 , caractérisé en ce que les moyens d'accroché et les moyens d'appui sont conformés et agencés pour superposer le connecteur (1) de préchauffage au connecteur (12) permanent.
Connecteur (1) de préchauffage selon la revendication 1 ou 2, caractérisé en ce que les moyens d'accroché comprennent un crochet (10).
Connecteur (1) de préchauffage selon l'une des revendications 1 à 3, caractérisé en ce que les moyens d'appui comprennent deux leviers (8) articulés autour d'un axe (18) et des moyens de liaison et de serrage des leviers (8), chaque levier (8) supportant au moins une surface d'appui destinée à venir en appui contre la tige (2) d'anode.
Connecteur (1) de préchauffage selon la revendication 4, caractérisé en ce que chaque surface d'appui correspond à une paroi d'un galet (24) rotatif.
Connecteur (1) de préchauffage selon la revendication 4 ou 5, caractérisé en ce que les leviers (8) comprennent chacun deux joues (14) espacées l'une de l'autre d'une distance prédéterminée par au moins une traverse (22).
Connecteur (1) de préchauffage selon la revendication 6, caractérisé en ce que la ou l'une des traverses (22) supporte la ou l'une des surfaces d'appui.
Connecteur (1) de préchauffage selon l'une des revendications 4 à 7, caractérisé en ce que les moyens de liaison et de serrage des leviers (8) comprennent deux mors (30) destinés à être chacun assemblé à l'un des leviers (8) et une tige (32) filetée reliant les deux mors (30).
9. Connecteur (1) de préchauffage selon la revendication 8, caractérisé en ce que les mors (30) comprennent chacun deux gorges (36) et les leviers (8) comprennent chacun deux crochets (34) d'extrémité, les crochets (34) d'extrémité et les gorges (36) des mors (30) coopérant de manière complémentaire pour l'assemblage des mors (30) aux leviers (8).
10. Connecteur (1) de préchauffage selon l'une des revendications 4 à 9, caractérisé en ce qu'il comprend des moyens de distinction visuelle des deux leviers (8).
1 1. Connecteur (1) de préchauffage selon l'une des revendications 6 à 10, caractérisé en ce qu'au moins l'une des joues (14) comprend au moins une perforation (16).
12. Cuve (4) d'électrolyse pour la production d'aluminium par électrolyse, comprenant une tige (2) d'anode et un cadre (6) anodique, caractérisée en ce qu'elle comprend simultanément un connecteur (12) dit permanent destiné au raccordement électrique et mécanique de la tige (2) d'anode au cadre (6) anodique en régime de fonctionnement continu et un connecteur (1) de préchauffage destiné au raccordement électrique de la tige (2) d'anode au cadre (6) anodique en phase de préchauffage de la cuve (4) d'électrolyse.
13. Cuve (4) d'électrolyse selon la revendication 12, caractérisée en ce que le connecteur (1) de préchauffage est superposé au connecteur (12) permanent. 14. Cuve (4) d'électrolyse selon la revendication 12 ou 13, caractérisée en ce que le connecteur (12) permanent comprend un axe (18) supporté par le cadre (6) anodique et en ce que le connecteur (1) de préchauffage est accroché à l'axe (18) du connecteur (12) permanent.
15. Cuve (4) d'électrolyse selon l'une des revendications 12 à 14, caractérisée en ce qu'une bande (26) électriquement isolante est interposée entre une surface d'appui du connecteur (1) de préchauffage et la tige (2) d'anode.
16. Procédé de raccordement électrique d'une tige (2) d'anode à un cadre (6) anodique d'une cuve (4) d'électrolyse pour préchauffer la cuve (4) d'électrolyse, caractérisé en ce qu'il comprend une étape de mise en place d'un connecteur (1) de préchauffage, destiné au raccordement électrique de la tige (2) d'anode au cadre (6) anodique en phase de préchauffage de la cuve (4) d'électrolyse, en plus d'un connecteur (12) dit permanent destiné au raccordement électrique et mécanique de la tige (2) d'anode au cadre (6) anodique en régime de fonctionnement continu.
17. Procédé selon la revendication 16, caractérisé en ce que l'étape de mise en place du connecteur (1) de préchauffage est précédée d'une étape de mise en place d'une bande (26) électriquement isolante contre la tige (2) d'anode. 18. Procédé selon la revendication 16 ou 17, caractérisé en ce que l'étape de mise en place du connecteur (1) de préchauffage comprend la superposition du connecteur (1) de préchauffage au connecteur (12) permanent.
19. Procédé selon l'une des revendications 16 à 18, caractérisé en ce que l'étape de mise en place du connecteur (1) de préchauffage comprend les étapes : - d'accroché d'un premier levier (8) à un axe (18) du connecteur (12) permanent, et d'un deuxième levier (8) à l'axe (18) du connecteur (12) permanent, d'assemblage d'un premier mors (30) sur le premier levier (8) et d'un deuxième mors (30) sur le deuxième levier (8), - de serrage du premier levier (8) et du deuxième levier (8) par rotation d'une tige (32) filetée reliant le premier mors (30) et le deuxième mors (30).
20. Procédé selon l'une des revendications 16 à 19, caractérisé en ce que l'étape de mise en place du connecteur (1) de préchauffage comprend une étape préalable d'identification du premier levier (8) par l'intermédiaire de moyens de distinction visuelle.
EP13782276.3A 2012-04-24 2013-04-12 Connecteur de prechauffage Withdrawn EP2841626A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201193A FR2989693B1 (fr) 2012-04-24 2012-04-24 Connecteur de prechauffage
PCT/CA2013/050288 WO2013159218A1 (fr) 2012-04-24 2013-04-12 Connecteur de prechauffage

Publications (2)

Publication Number Publication Date
EP2841626A1 true EP2841626A1 (fr) 2015-03-04
EP2841626A4 EP2841626A4 (fr) 2016-01-27

Family

ID=46514447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13782276.3A Withdrawn EP2841626A4 (fr) 2012-04-24 2013-04-12 Connecteur de prechauffage

Country Status (9)

Country Link
US (1) US20150114833A1 (fr)
EP (1) EP2841626A4 (fr)
CN (1) CN104254645A (fr)
AU (1) AU2013252463A1 (fr)
BR (1) BR112014026284A2 (fr)
CA (1) CA2870389A1 (fr)
FR (1) FR2989693B1 (fr)
RU (1) RU2014147043A (fr)
WO (1) WO2013159218A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050462B1 (fr) * 2016-04-26 2020-12-25 Nkm Noell Special Cranes Gmbh Connecteur pour le raccordement mecanique et electrique d'une anode au cadre anodique d'une cellule de production d'aluminium
CN109763144B (zh) * 2019-01-28 2020-09-08 中国铝业股份有限公司 一种基于连续阳极铝电解装置及方法
FR3093737B1 (fr) 2019-03-14 2023-02-24 Rio Tinto Alcan Int Ltd Dispositif de manutention destiné à convoyer un outil d’intervention sur une cuve d’électrolyse.
FR3093736B1 (fr) 2019-03-14 2021-02-19 Rio Tinto Alcan Int Ltd Outil d’intervention pour l’exploitation d’une cuve d’électrolyse
EP4079939A1 (fr) 2021-04-22 2022-10-26 Reel GmbH Clip d'anode, ainsi qu'agencement de sécurisation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2039543A5 (fr) * 1969-04-14 1971-01-15 Duclaux Daniel
FR2527646A2 (fr) * 1982-05-27 1983-12-02 Pechiney Aluminium Perfectionnement au dispositif de reglage precis du plan anodique d'une cuve d'electrolyse pour la production d'aluminium
IN158317B (fr) * 1981-12-08 1986-10-18 Pechiney Aluminium
CA1263948C (fr) * 1984-10-18 1989-12-19 Pince d'anode
FR2694945B1 (fr) * 1992-08-20 1994-10-07 Pechiney Aluminium Superstructure de cuve d'électrolyse de très haute intensité pour la production d'aluminium.
US5876585A (en) * 1996-05-29 1999-03-02 Schenk; Rodney J. Anode clamp
FR2854906B1 (fr) * 2003-05-12 2006-06-16 Ecl Organe de manutention de connecteurs de cellules d'electrolyse destinees a la production d'aluminium
JP2008533309A (ja) * 2005-03-24 2008-08-21 ビーエイチピー ビリトン イノベーション ピーティーワイ エルティーディー 陽極支持装置
FR2884833B1 (fr) * 2005-04-20 2007-05-25 Ecl Soc Par Actions Simplifiee Dispositif et procede de maintien et de raccordement d'une tige d'anode sur un cadre anodique d'une cellule d'electrolise de l'aluminium
FR2902443B1 (fr) * 2006-06-14 2008-08-22 Nkm Noell Special Cranes Connecteur pour le raccordement mecanique et electrique d'une anode au cadre anodique d'une cellule de production d'aluminium et dispositif de prehension et de serrage/desserage d'un tel connecteur
CN201678746U (zh) * 2009-12-12 2010-12-22 包头铝业有限公司 铝电解槽焙烧启动连接器
AU2011300604B2 (en) * 2010-09-08 2014-03-06 E.C.L. Handling tool, for secure handling of connectors of electrolysis cells intended for aluminium production

Also Published As

Publication number Publication date
FR2989693A1 (fr) 2013-10-25
FR2989693B1 (fr) 2015-06-12
CA2870389A1 (fr) 2013-10-31
EP2841626A4 (fr) 2016-01-27
BR112014026284A2 (pt) 2017-06-27
AU2013252463A1 (en) 2014-10-16
WO2013159218A1 (fr) 2013-10-31
US20150114833A1 (en) 2015-04-30
CN104254645A (zh) 2014-12-31
RU2014147043A (ru) 2016-06-10

Similar Documents

Publication Publication Date Title
EP2841626A1 (fr) Connecteur de prechauffage
CA2807888C (fr) Organe de manutention securisee de connecteurs de cellules d'electrolyse destinees a la production d'aluminium
EP3030696B1 (fr) Dispositif d' electrolyse et ensemble anodique destines a la production d'aluminium, cellule d' electrolyse et installation comportant un tel dispositif
EP1876265B1 (fr) Connecteur pour le raccordement mécanique et électrique d'une anode au cadre anodique d'une cellule de production d'aluminium et dispositif de préhension et de serrage/desserrage d'un tel connecteur
EP1627099B1 (fr) Organe de manutention de connecteurs d'electrode de cellules d'elctrolyse destinees a la production d'aluminium
FR2474378A1 (fr) Pince pour anode de cellule d'electrolyse, outil d'actionnement de la pince et procede d'utilisation de l'outil
EP0584024A1 (fr) Superstructure de cuve d'électrolyse de très haute intensité pour la production d'aluminium
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
EP2585624B1 (fr) Dispositif permettant d'extraire des cales de court-circuitage lors de la mise en circuit d'une cellule d'electrolyse pour la production d'aluminium
EP2585625B1 (fr) Dispositif extracteur de cales de court-circuitage destine a la mise en circuit d'une cellule d'electrolyse pour la production d'aluminium
WO2016128825A1 (fr) Ensemble anodique et cuve d'électrolyse destinée à la production d'aluminium liquide comprenant cet ensemble anodique, aluminerie comprenant cette cuve et procédé de mise en place d'un ensemble anodique dans cette cuve
WO2016128827A1 (fr) Cuve d'electrolyse, aluminerie comprenant cette cuve et procede de mise en place d'un ensemble anodique dans cette cuve
EP3935918B1 (fr) Electrode à auto-cuisson
FR3050462A1 (fr) Connecteur pour le raccordement mecanique et electrique d'une anode au cadre anodique d'une cellule de production d'aluminium
FR3032452B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium liquide et aluminerie comprenant cette cuve
EP3164530B1 (fr) Ensemble anodique
EP2212450B1 (fr) Procede et dispositif pour detacher les timbales des pieds d'anodes, notamment d'anodes utilisees pour la production d'aluminium par electrolyse ignee
OA16284A (fr) Dispositif permettant d'extraire des cales de court-circuitage lors de la mise en circuit d'une cellule d'électrolyse pour la production d'aluminium.
OA17345A (fr) Dispositif extracteur de cales de courtcircuitage destiné à la mise en circuit d'une cellule d'électrolyse pour la production d'aluminium.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160107

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/12 20060101ALI20151222BHEP

Ipc: C25C 3/10 20060101AFI20151222BHEP

Ipc: C25C 3/16 20060101ALI20151222BHEP

Ipc: B25B 5/10 20060101ALI20151222BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160806