EP2839497B1 - Overcurrent protection device - Google Patents

Overcurrent protection device Download PDF

Info

Publication number
EP2839497B1
EP2839497B1 EP12725708.7A EP12725708A EP2839497B1 EP 2839497 B1 EP2839497 B1 EP 2839497B1 EP 12725708 A EP12725708 A EP 12725708A EP 2839497 B1 EP2839497 B1 EP 2839497B1
Authority
EP
European Patent Office
Prior art keywords
conductor
temperature
protection device
overcurrent protection
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12725708.7A
Other languages
German (de)
French (fr)
Other versions
EP2839497A1 (en
Inventor
Andreas Krätzschmar
Martin Maier
Bernhard Rösch
Yi Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2839497A1 publication Critical patent/EP2839497A1/en
Application granted granted Critical
Publication of EP2839497B1 publication Critical patent/EP2839497B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition

Definitions

  • the invention relates to an overcurrent protection device, comprising a conductor, an evaluation unit, a temperature sensor, wherein the conductor is configured such that a current is conducted from a source along a defined path of the conductor to a consumer.
  • the publication EP 1 912 238 A1 shows a miniature overcurrent limiter with a mix of current measurement and temperature measurement to match a trip point to an ambient temperature.
  • the adjustment range is the range in which monitoring of an operating current of an electrical consumer can take place. It is limited by an operating current upper limit I 0 and an operating current lower limit I U.
  • an adjusting means eg an adjusting screw
  • a thermal overload release can be set to the respective system current, so that a targeted monitoring of the downstream consumer to be monitored can take place.
  • an overcurrent protection device comprising a conductor, an evaluation unit, a temperature sensor, wherein the conductor is configured such that a current is conducted from a source along a defined path of the conductor to a consumer and arranged the temperature sensor to the conductor is that a temperature of the conductor can be measured as a temperature measured value, wherein the temperature sensor is connected to the evaluation unit, while the evaluation unit is configured to compare the temperature measured value with a temperature limit stored in the evaluation unit, wherein the temperature Limit value is selected such that it represents a prevailing in the conductor distribution of a maximum allowable electric current, wherein a resulting current density is counted as an overcurrent in the conductor, the evaluation unit is further configured so that when the temperature reading the temperature ur limit value has been reached, a control signal is output via a control output of the evaluation unit, which indicates the overcurrent in the conductor.
  • the overcurrent protection device has a first temperature sensor, a second temperature sensor and a third temperature sensor arranged distributed along the path of the conductor and the temperature sensors are arranged to the conductor, that a first temperature of the conductor to a first location, a second temperature at a second location and a third temperature at a third location of the conductor as a first, second and third temperature measurement is measurable.
  • the temperature difference value can be determined by the evaluation unit, for example, during a simultaneous determination of the individual temperatures of the temperature sensors. By a corresponding evaluation of the temperature difference value in the evaluation unit can finally be recognized whether a proper operation of the consumer is present or whether an overload on the consumer is pending or already exists.
  • the current density characterizes the distribution of the electric current in a conductor and serves as a measure of its electrical load capacity. It is defined as the ratio of the current intensity to the current cross-sectional area through which the current passes. The larger the current density, the more the conductor heats up and the better the temperature sensor can detect a temperature reading. Depending on the choice of the temperature limit value, an adjustment range for the overcurrent protection device can now be selected.
  • a typical setting range of a bimetallic release is approx. 1 to 1.6.
  • a typical value for a necessary temperature in a bimetal trip for example, 16 Kelvin overtemperature.
  • a current-related heating of approximately 1 Kelvin can already be determined. This adjustment ranges can be greater than 1 to 4, in particular greater than 1 to 6 realize.
  • the conductor is formed as a sequence of loops, while a conductor length of the conductor is accommodated by the loop sequence on a measuring section, wherein the length dimension of the measuring section is smaller than the conductor length. Due to the sequence of loops, the conductor in an overcurrent protection device requires less installation space than is known in the prior art.
  • the conductor has a meander-shaped configuration and thus essentially has a rectangular area for an installation space.
  • the rectangular area is advantageous if the temperature sensors are arranged between the rectangular area and, for example, a printed circuit board.
  • the conductor has a meandering, circular configuration and thereby a circular area is given for an installation space, wherein the loops of the conductor are arranged bifilar.
  • a bifilar arrangement of the loops has the particular advantage that, in a circular arrangement, a magnetic field produced by the conductor cancels itself out.
  • a circular meander-shaped configuration for example in the case of a bifilar spiral, it is advantageous that an installation space is minimized.
  • a temperature reading can be taken in particular in the middle of the circular area, since centralized here a heating power.
  • a three-point temperature measurement could be here at a start, in the center and at one end of the meandering, circular conductor are performed.
  • a further embodiment of the overcurrent protection device provides that the conductor is designed as a flat strip extended in the longitudinal direction and in one Loop is arranged a cross-sectional reduction in the strip, which leads to increase the current density in the vicinity of the cross-sectional reduction.
  • a cross-sectional reduction could, for example, be realized by a hole, a recess or a lateral recess in the flat strip.
  • the current density increases at these points, since here the cross-section is reduced.
  • An increase in the current density at the reduced cross section results in a temperature increase at this point. Accordingly, a measuring point can be arranged by means of a temperature sensor at this point, a query of a temperature is thus facilitated.
  • a further preferred embodiment provides that the conductor is designed as a flat strip by a layered composition of several loops as a cuboidal element.
  • an insulating material is arranged between the layers arranged loops of the cuboidal element.
  • a further embodiment of the cuboidal element provides that an initial section of the conductor and an end section of the conductor are arranged substantially at right angles to the cuboid element and a partial region of the initial and final sections is reinforced in each case with a further electrically conductive, surface-shaped material.
  • a reinforcement for example, with a copper plate, makes installation on a printed circuit board easier and forms a contact surface for a switch mechanism arranged in the overcurrent protection device.
  • the material of the conductor advantageously has a chromium-nickel alloy, in particular a copper-nickel alloy, in particular a steel-nickel alloy, in particular a chromium-aluminum alloy.
  • a chromium-nickel alloy in particular a copper-nickel alloy, in particular a steel-nickel alloy, in particular a chromium-aluminum alloy.
  • Such alloys have the advantage that the resistance remains constant as possible despite heating, which favors an additional strength of the conductor, based on an overload current or short-circuit current at which the overcurrent protection device is not yet to react directly. Because with a suitable choice of material and a sufficient cross-section of the conductor is not destroyed in a short-term overcurrent ("burn-through danger").
  • a resistance of the conductor relative to the path will be in the range of 1 milliohm to 100 milliohms.
  • the overcurrent protection device is configured as comprising an electrical switch assembly, an input clamping region for connecting source lines, an output clamping region for connecting consumer leads, and in addition to the first conductor, a second conductor, a third conductor a first switching means, a second switching means, a third switching means, wherein the conductors are respectively arranged in series with the switching means between an associated first, second and third input terminal of the input terminal and a first, second and third output terminal of the output terminal.
  • the overcurrent protection device has for each a conductor each cooperating with the respective switching means switching mechanism for switching off the current flowing through the conductor, wherein the force of a spring is used, with a manual switching tensioned and upon reaching the excess temperature limit via a with the control output connected triggering device is relaxed.
  • an overcurrent protection device 1 for the protection of a consumer 201 is shown. Under consumer here, for example, an electric motor is considered.
  • the load 201 receives its power via a three-phase source 101.
  • the overcurrent protection device 1 provides an input clamping region 100 and an output clamping region 200.
  • a first conductor 10, a second conductor 20 and a third conductor 30 are arranged in the overcurrent protection device 1.
  • the conductors 10, 20, 30 are designed such that a current I 1 , I 2 , I 3 is conducted from the source 101 along a defined path of the conductors 10, 20, 30 to the consumer 201.
  • each conductor has a first temperature sensor 11, 21, 31, a second temperature sensor 12, 22, 32 and a third temperature sensor 13, 23, 33.
  • the structure of the first conductor 10 is explained in more detail.
  • the first conductor 10 has the first temperature sensor 11, the second temperature sensor 12 and the third temperature sensor 13 distributed along the path of the conductor 10 arranged on.
  • the temperature sensors 11,12,13 are arranged to the conductor 10, that a first temperature of the conductor 10 at a first location X1 (see FIG. 3 and FIG. 7 ), a second temperature at a second location X2, and a third temperature at a third location X3 of the conductor 10 as a first, second, and third temperature measurements.
  • the temperature sensors 11, 12, 13 are each connected to an evaluation unit 4, in which case the evaluation unit 4 is configured to compare a temperature measurement value with a temperature limit value stored in the evaluation unit 4 or to determine a temperature difference value and by an evaluation a rise rate of the temperature difference value to close an overcurrent in the conductor 10.
  • the evaluation unit 4 is configured such that when the temperature measured value has reached the temperature limit value or the temperature difference value reaches the temperature difference limit value, a control signal 4a which indicates an overcurrent in the conductor 10 via a control output 4a of the evaluation unit 4 to spend.
  • the control output 4a is connected to a trip unit 5 in connection.
  • the trip unit 5 is in turn configured to operate a first switching means 105, a second switching means 205 and a third switching means 305 and thus to interrupt the circuit from the source 101 to the load 201 as a protective measure.
  • the temperature sensors 11, 12, 13; 21, 22, 23 and 31, 32, 33 of each conductor 10, 20, 30 are each separated by a first insulation layer 51, a second insulation layer 52 and a third insulation layer 53 from the conductors.
  • a first embodiment of a conductor 10 is according to FIG. 2 shown. Between a first copper rail 73 and a second copper rail 74, a planar, meander-shaped conductor is arranged. As a special feature in this embodiment variant, the planar, meander-shaped configuration of the conductor has a first recess 71 and a second recess 72. A current emanating from the first copper bus 73 may be distributed into a first and a second branch until it is recombined at a surface 75 for a temperature sensor. This merger has a cross-sectional enlargement result so that decreases a current density at this point again.
  • the decrease in the current density at the surface 75 has the advantage that a temperature sensor can be placed here which measures a temperature which does not necessarily have to coincide with the temperature prevailing at another location of the conductor 10. This ensures that in the case of a short-time overcurrent, for example inrush current of an engine, the measured temperature does not immediately reach the range of the temperature limit value.
  • FIG. 3 another embodiment of the conductor 10 is shown.
  • the conductor 10 is in each case arranged between a copper plate 23.
  • the conductor 10 is arranged as a flat, metallic strip meandering between the two copper plates 23.
  • the conductor 10 is formed as a succession of loops S1, ..., S6.
  • a conductor length of the conductor 10, which is to be equated with a path W of the conductor 10 is accommodated by the loop sequence on a measuring path MS, wherein the length dimension of the measuring path MS is smaller than the conductor length of the conductor 10, that is smaller than the path W.
  • the conductor 10 is an approximately 8 mm wide and 1 mm thick flat metal alloy, such as a chromium-aluminum alloy.
  • the ratio of width to thickness of the conductor should therefore in particular be 1 to 10.
  • the conductor 10 is arranged on a first insulating layer 51.
  • the conductor 10 and the insulating layer 51 are in turn arranged on a printed circuit board 60 (see also FIG FIG. 9 ).
  • the route description has a first location X1, a second location X2, and a third location X3. At these three locations X1, X2, X3, three different temperature sensors are arranged distributed.
  • FIG. 5 is in each case a side view of the conductor 10 from FIG. 3 shown.
  • a first type of cross-sectional reduction in a loop of the conductor 10 is illustrated. These are lateral recesses 21.
  • a second type of cross-sectional reduction is shown. This is a bore 22.
  • a further embodiment variant of a conductor 10 is according to FIG. 6 displayed.
  • the conductor 10 has a meandering, circular configuration, it is characterized given a circular area for an installation space that is special in this case, the loops of the conductor 10 are arranged bifilar, whereby a magnetic field cancels.
  • the meandering, circular configuration of the conductor 10 could also be considered as a spiral, wherein a first temperature sensor is arranged at the left input of the spiral and a third temperature sensor is arranged at the right exit of the spiral, the second temperature sensor is thus arranged in the center of the spiral, because there is a concentration of heat here.
  • a particular preferred embodiment variant of the conductor 10 is according to the FIG. 7 given.
  • a layered composition of several loops S1, ..., S13 a flat strip of the conductor 10 is folded into a cuboidal element. Between the layers arranged loops S1, ..., S13, an insulating material 40 is arranged.
  • An initial section A1 of the conductor 10 and an end section E1 of the conductor 10 is arranged substantially perpendicular to the cuboidal element, wherein in each case a reinforced copper plate can be applied in a partial area of the start and end sections.
  • temperature sensors can be attached via the conductor 10.
  • FIG. 8 is a possible embodiment variant of an overcurrent protection device 1 shown as a switching assembly. Between the input clamping region 100 and the output clamping region 200 are the protective elements as they are symbolic With FIG. 1 were arranged.
  • a printed circuit board 60 has a first conductor 10, a second conductor 20 and a third conductor 30, the conductors 10, 20, 30 being configured as a layered arrangement of a plurality of loops S1,..., S13 to form a parallelepiped element.
  • FIG. 9 is the circuit board 60 off FIG. 8 shown in a detailed view.
  • the bays 301, ..., 303 serve to receive the first to third temperature sensor.
  • the printed circuit board 60 is constructed, for example, as a multilayer, and has inside the printed circuit board 60 in the vicinity of the mounting locations 301,..., 303 the corresponding temperature sensors in semiconductor design in the interior of the printed circuit board 60. Corresponding conductor tracks are guided by the temperature sensors within the printed circuit board 60 to the evaluation unit 5.
  • the evaluation unit 5 is designed to determine a temperature difference value and to compare with a corresponding limit and when the corresponding limit is exceeded, a corresponding switching mechanism, as is known in the prior art, trigger and thus safety to an overcurrent react.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

Die Erfindung betrifft eine Überstromschutzeinrichtung, umfassend einen Leiter, eine Auswerteeinheit, einen Temperatursensor, wobei der Leiter derart ausgestaltet ist, dass ein Strom von einer Quelle längs eines definierten Weges des Leiters zu einem Verbraucher geführt wird.The invention relates to an overcurrent protection device, comprising a conductor, an evaluation unit, a temperature sensor, wherein the conductor is configured such that a current is conducted from a source along a defined path of the conductor to a consumer.

Aus der WO 2007/082775 A1 ist eine derartige Überstromschutzeinrichtung bereits bekannt. Nachteilig an der bekannten Überstromschutzeinrichtung ist es, dass sie mit einem Bimetallauslöser arbeitet, bei welchem nur ein begrenzter Einstellbereich des Überstromschutzschalters gegeben ist.From the WO 2007/082775 A1 Such an overcurrent protection device is already known. A disadvantage of the known overcurrent protection device is that it works with a bimetallic release, in which only a limited adjustment range of the overcurrent protection switch is given.

Die Offenlegungsschrift EP 1 912 238 A1 zeigt einen miniatur Überstrombegrenzer mit einer Mischung aus Strommessung und Temperaturmessung um einen Auslösepunkt auf eine Umgebungstemperatur abzustimmen.The publication EP 1 912 238 A1 shows a miniature overcurrent limiter with a mix of current measurement and temperature measurement to match a trip point to an ambient temperature.

Der Einstellbereich ist der Bereich, in welchem eine Überwachung eines Betriebsstromes eines elektrischen Verbrauchers erfolgen kann. Er wird durch eine Betriebsstromobergrenze I0 und eine Betriebsstromuntergrenze IU begrenzt. Mittels eines Einstellmittels (z.B. eine Einstellschraube) an der Vorrichtung kann ein thermischer Überlastauslöser (Bimetall) auf den jeweiligen Anlagenstrom eingestellt werden, so dass eine gezielte Überwachung des nachgeschalteten zu überwachenden Verbrauchers erfolgen kann.The adjustment range is the range in which monitoring of an operating current of an electrical consumer can take place. It is limited by an operating current upper limit I 0 and an operating current lower limit I U. By means of an adjusting means (eg an adjusting screw) on the device, a thermal overload release (bimetal) can be set to the respective system current, so that a targeted monitoring of the downstream consumer to be monitored can take place.

Um den Einstellbereich bei der Überstromschutzeinrichtung aus der WO 2007/082775 A1 zu erweitern, werden aufwändige zusätzliche Einstellmittel und Verfahren vorgesehen.To the adjustment range for the overcurrent protection of the WO 2007/082775 A1 To expand, elaborate additional adjustment means and methods are provided.

Es ist Aufgabe der vorliegenden Erfindung eine Überstromschutzeinrichtung bereitzustellen, bei welchem ein erweiterter Einstellbereich auf einfachere Weise als es im Stand der Technik gegeben ist, möglich ist.It is an object of the present invention to provide an overcurrent protection device in which an extended Setting range in a simpler manner than is given in the prior art, is possible.

Gelöst wird die Aufgabe durch eine Überstromschutzeinrichtung, umfassend einen Leiter, eine Auswerteeinheit, einen Temperatursensor, wobei der Leiter derart ausgestaltet ist, dass ein Strom von einer Quelle längs eines definierten Weges des Leiters zu einen Verbraucher geführt wird und der Temperatursensor derart zu dem Leiter angeordnet ist, dass eine Temperatur des Leiters als ein Temperatur-Messwert messbar ist, wobei der Temperatursensor mit der Auswerteeinheit verbunden ist, dabei ist die Auswerteeinheit dazu ausgestaltet den Temperatur-Messwert mit einem in der Auswerteeinheit hinterlegten Temperatur-Grenzwert zu vergleichen, wobei der Temperatur-Grenzwert derart gewählt ist, dass er eine in dem Leiter herrschende Verteilung eines maximal zulässigen elektrischen Stromes repräsentiert, wobei eine daraus resultierende Stromdichte als ein Überstrom in dem Leiter gewertet wird, die Auswerteeinheit ist weiterhin dazu ausgestaltet, dass wenn der Temperatur-Messwert den Temperatur-Grenzwert erreicht hat, über einen Steuerausgang der Auswerteeinheit ein Steuersignal ausgegeben wird, welches den Überstrom in den Leiter anzeigt.The object is achieved by an overcurrent protection device, comprising a conductor, an evaluation unit, a temperature sensor, wherein the conductor is configured such that a current is conducted from a source along a defined path of the conductor to a consumer and arranged the temperature sensor to the conductor is that a temperature of the conductor can be measured as a temperature measured value, wherein the temperature sensor is connected to the evaluation unit, while the evaluation unit is configured to compare the temperature measured value with a temperature limit stored in the evaluation unit, wherein the temperature Limit value is selected such that it represents a prevailing in the conductor distribution of a maximum allowable electric current, wherein a resulting current density is counted as an overcurrent in the conductor, the evaluation unit is further configured so that when the temperature reading the temperature ur limit value has been reached, a control signal is output via a control output of the evaluation unit, which indicates the overcurrent in the conductor.

Eine höhere Genauigkeit und Ausdehnung des Einstellbereiches wird dadurch erreicht, dass die Überstromschutzeinrichtung einen ersten Temperatursensor, einen zweiten Temperatursensor und einen dritten Temperatursensor längs des Weges des Leiters verteilt angeordnet aufweist und die Temperatursensoren derart zu dem Leiter angeordnet sind, dass eine erste Temperatur des Leiters an einem ersten Ort, eine zweite Temperatur an einem zweiten Ort und eine dritte Temperatur an einem dritten Ort des Leiters als ein erster, zweiter und dritter Temperatur-Messwert messbar ist.Higher accuracy and extension of the adjustment range is achieved in that the overcurrent protection device has a first temperature sensor, a second temperature sensor and a third temperature sensor arranged distributed along the path of the conductor and the temperature sensors are arranged to the conductor, that a first temperature of the conductor to a first location, a second temperature at a second location and a third temperature at a third location of the conductor as a first, second and third temperature measurement is measurable.

Zur Ermittlung eines Temperaturdifferenzwerts (ΔTn) kann beispielsweise folgende Formel angewandt werden: ΔT n = T n 2 T n 1 + T n 2 T n 3 2 = T n 2 T n 1 T n 3 2

Figure imgb0001

ΔTn:
Temperaturdifferenzwert
Tn1:
Ermittelte Temperatur des ersten Temperatursensors am ersten Ort
Tn2:
Ermittelte Temperatur des zweiten Temperatursensors am zweiten Ort
Tn3:
Ermittelte Temperatur des dritten Temperatursensors am dritten Ort
n:
Betrachtetes Messelement bzw. betrachteter Leiter.
To determine a temperature difference value (ΔT n ), for example, the following formula can be used: .DELTA.T n = T n 2 - T n 1 + T n 2 - T n 3 2 = T n 2 - T n 1 - T n 3 2
Figure imgb0001
ΔT n :
Temperature difference value
Tn1 :
Determined temperature of the first temperature sensor at the first location
T n2 :
Determined temperature of the second temperature sensor at the second location
T n3 :
Determined temperature of the third temperature sensor at the third location
n:
Viewed measuring element or considered conductor.

Der Temperaturdifferenzwert kann durch die Auswerteeinheit beispielsweise bei einer zeitgleichen Ermittlung der einzelnen Temperaturen der Temperatursensoren ermittelt werden. Durch eine entsprechende Auswertung des Temperaturdifferenzwerts in der Auswerteeinheit kann letztendlich erkannt werden ob ein ordnungsgemäßer Betrieb des Verbrauchers vorliegt oder ob eine Überlast am Verbraucher ansteht oder bereits vorliegt.The temperature difference value can be determined by the evaluation unit, for example, during a simultaneous determination of the individual temperatures of the temperature sensors. By a corresponding evaluation of the temperature difference value in the evaluation unit can finally be recognized whether a proper operation of the consumer is present or whether an overload on the consumer is pending or already exists.

Die Stromdichte kennzeichnet die Verteilung des elektrischen Stromes in einem Leiter und dient als Maß für dessen elektrische Belastbarkeit. Sie ist definiert als das Verhältnis der Stromstärke zur Stromquerschnittsfläche, durch die der Strom tritt. Je größer die Stromdichte, umso mehr erwärmt sich der Leiter und desto besser kann mit dem Temperatursensor ein Temperatur-Messwert erfasst werden. Je nach Wahl des Temperatur-Grenzwertes kann nun ein Einstellbereich für die Überstromschutzeinrichtung gewählt werden.The current density characterizes the distribution of the electric current in a conductor and serves as a measure of its electrical load capacity. It is defined as the ratio of the current intensity to the current cross-sectional area through which the current passes. The larger the current density, the more the conductor heats up and the better the temperature sensor can detect a temperature reading. Depending on the choice of the temperature limit value, an adjustment range for the overcurrent protection device can now be selected.

Bei einer Überwachung mittels eines Bimetallauslösers, wie es nach dem Stand der Technik der Fall ist, wird ein zu überwachender Strom mit einem Bimetallauslöser derart gekoppelt, dass er durch den Stromanstieg zu einer Erwärmung des Bimetallauslösers und letztendlich zu einer räumlichen Auslenkung eines Teils des Bimetallauslösers kommt. Ein typischer Einstellbereich eines Bimetallauslösers liegt bei ca. 1 zu 1,6. Ein typischer Wert für eine notwendige Temperatur bei einer Bimetallauslösung ist beispielsweise 16 Kelvin Übertemperatur. Hingegen bei einer Lösung mittels eines Leiters mit einem Temperatursensor kann bereits eine strombedingte Erwärmung von ca. 1 Kelvin ermittelt werden. Hiermit lassen sich Einstellbereiche größer als 1 zu 4, insbesondere größer als 1 zu 6 realisieren.When monitoring by means of a bimetallic release, as is the case in the prior art, a current to be monitored is coupled to a bimetallic actuator in such a way that the increase in current leads to heating of the bimetallic release and finally to a spatial deflection of a part of the bimetallic release , A typical setting range of a bimetallic release is approx. 1 to 1.6. A typical value for a necessary temperature in a bimetal trip, for example, 16 Kelvin overtemperature. By contrast, in the case of a solution by means of a conductor with a temperature sensor, a current-related heating of approximately 1 Kelvin can already be determined. This adjustment ranges can be greater than 1 to 4, in particular greater than 1 to 6 realize.

In einer weiteren Ausgestaltung der Überstromschutzeinrichtung ist der Leiter als eine Abfolge von Schlingen ausgebildet, dabei ist eine Leiterlänge des Leiters durch die Schlingenabfolge auf einer Messstrecke untergebracht, wobei die Längenausdehnung der Messstrecke kleiner ist als die Leiterlänge. Durch die Abfolge von Schlingen nimmt der Leiter in einer Überstromschutzeinrichtung weniger Einbauraum in Anspruch als es nach dem Stand der Technik bekannt ist.In a further embodiment of the overcurrent protection device, the conductor is formed as a sequence of loops, while a conductor length of the conductor is accommodated by the loop sequence on a measuring section, wherein the length dimension of the measuring section is smaller than the conductor length. Due to the sequence of loops, the conductor in an overcurrent protection device requires less installation space than is known in the prior art.

Bei einer Ausgestaltungsvariante der Überstromschutzeinrichtung weist der Leiter eine mäanderförmige Ausgestaltung auf und besitzt dadurch im Wesentlichen eine rechteckförmige Fläche für einen Einbauraum. Die rechteckförmige Fläche ist von Vorteil, wenn zwischen der rechteckförmigen Fläche und beispielsweise einer Leiterplatte die Temperatursensoren angeordnet sind.In one embodiment variant of the overcurrent protection device, the conductor has a meander-shaped configuration and thus essentially has a rectangular area for an installation space. The rectangular area is advantageous if the temperature sensors are arranged between the rectangular area and, for example, a printed circuit board.

Eine andere alternative Ausgestaltung sieht vor, dass der Leiter eine mäanderförmige, kreisförmige Ausgestaltung aufweist und dadurch eine Kreis-Fläche für einen Einbauraum gegeben ist, wobei die Schlingen des Leiters bifilar angeordnet sind. Eine bifilare Anordnung der Schlingen hat insbesondere den Vorteil, dass sich bei einer kreisförmigen Anordnung ein durch den Leiter hervorgerufenes Magnetfeld aufhebt. Bei einer kreisförmigen mäanderförmigen Ausgestaltung, beispielsweise bei einer bifilaren Spirale, ist es von Vorteil, dass ein Einbauraum minimiert wird. Ein Temperaturmesswert kann insbesondere in der Mitte der kreisförmigen Fläche abgenommen werden, da sich hier eine Heizleistung zentralisiert. Eine Drei-Punkte-Temperaturmessung könnte hier an einen Anfang, in der Mitte und an einem Ende des mäanderförmigen, kreisförmigen Leiters durchgeführt werden.Another alternative embodiment provides that the conductor has a meandering, circular configuration and thereby a circular area is given for an installation space, wherein the loops of the conductor are arranged bifilar. A bifilar arrangement of the loops has the particular advantage that, in a circular arrangement, a magnetic field produced by the conductor cancels itself out. In the case of a circular meander-shaped configuration, for example in the case of a bifilar spiral, it is advantageous that an installation space is minimized. A temperature reading can be taken in particular in the middle of the circular area, since centralized here a heating power. A three-point temperature measurement could be here at a start, in the center and at one end of the meandering, circular conductor are performed.

Eine weitere Ausgestaltung der Überstromschutzeinrichtung sieht vor, dass der Leiter als ein in Längsrichtung ausgedehnter flacher Streifen ausgestaltet ist und in einer Schlinge eine Querschnittsverkleinerung in dem Streifen angeordnet ist, welche zur Erhöhung der Stromdichte in der Umgebung der Querschnittsverkleinerung führt. Eine Querschnittsverkleinerung könnte beispielsweise durch eine Bohrung, eine Ausnehmung oder eine laterale Aussparung in dem flachen Streifen realisiert werden. Bei einer Bohrung oder einer seitlichen Verengung des Streifens bzw. des Leiters nimmt die Stromdichte an diesen Stellen zu, da hier der Querschnitt verkleinert ist. Eine Zunahme der Stromdichte an dem verkleinerten Querschnitt hat eine Temperaturerhöhung an dieser Stelle zur Folge. Dementsprechend kann an dieser Stelle eine Messstelle mittels eines Temperatursensors angeordnet werden, eine Abfrage einer Temperatur wird somit erleichtert.A further embodiment of the overcurrent protection device provides that the conductor is designed as a flat strip extended in the longitudinal direction and in one Loop is arranged a cross-sectional reduction in the strip, which leads to increase the current density in the vicinity of the cross-sectional reduction. A cross-sectional reduction could, for example, be realized by a hole, a recess or a lateral recess in the flat strip. In the case of a bore or a lateral narrowing of the strip or of the conductor, the current density increases at these points, since here the cross-section is reduced. An increase in the current density at the reduced cross section results in a temperature increase at this point. Accordingly, a measuring point can be arranged by means of a temperature sensor at this point, a query of a temperature is thus facilitated.

Eine weitere bevorzugte Ausgestaltung sieht vor, dass der Leiter als flacher Streifen durch eine schichtweise Zusammenstellung mehrerer Schlingen als ein quaderförmiges Element ausgestaltet ist.A further preferred embodiment provides that the conductor is designed as a flat strip by a layered composition of several loops as a cuboidal element.

Weiterhin ist es von Vorteil, wenn zwischen den schichtweise angeordneten Schlingen des quaderförmigen Elementes ein Isolationsmaterial angeordnet ist.Furthermore, it is advantageous if an insulating material is arranged between the layers arranged loops of the cuboidal element.

Eine weiterführende Ausgestaltung des quaderförmigen Elementes sieht vor, dass eine Anfangsstrecke des Leiters und eine Endstrecke des Leiters im Wesentlichen rechtwinklig zu dem quaderförmigen Element angeordnet sind und ein Teilbereich der Anfangs- und Endstrecke jeweils mit einem weiteren elektrisch leitenden, flächig ausgeprägten Material verstärkt ist. Eine Verstärkung, beispielsweise mit einer Kupferplatte, gestaltet einen Einbau auf einer Leiterplatte einfacher und bildet eine Kontaktfläche für ein in der Überstromschutzeinrichtung angeordnetes Schaltschloss.A further embodiment of the cuboidal element provides that an initial section of the conductor and an end section of the conductor are arranged substantially at right angles to the cuboid element and a partial region of the initial and final sections is reinforced in each case with a further electrically conductive, surface-shaped material. A reinforcement, for example, with a copper plate, makes installation on a printed circuit board easier and forms a contact surface for a switch mechanism arranged in the overcurrent protection device.

Mit Vorteil weist das Material des Leiters eine Chrom-Nickel-Legierung, insbesondere eine Kupfer-Nickel-Legierung, insbesondere eine Stahl-Nickel-Legierung, insbesondere eine Chrom-Aluminium-Legierung auf. Derartige Legierungen haben den Vorteil, dass der Widerstand trotz Erwärmung möglichst konstant bleibt, welches eine zusätzliche Festigkeit des Leiters, bezogen auf einen Überlaststrom oder Kurzlaststrom bei welchen die Überstromschutzeinrichtung noch nicht direkt reagieren soll, begünstigt. Denn bei einer geeigneten Materialwahl und einem ausreichenden Querschnitt wird der Leiter bei einem kurzzeitigen Überstrom nicht zerstört ("Durchbrenn-Gefahr").The material of the conductor advantageously has a chromium-nickel alloy, in particular a copper-nickel alloy, in particular a steel-nickel alloy, in particular a chromium-aluminum alloy. Such alloys have the advantage that the resistance remains constant as possible despite heating, which favors an additional strength of the conductor, based on an overload current or short-circuit current at which the overcurrent protection device is not yet to react directly. Because with a suitable choice of material and a sufficient cross-section of the conductor is not destroyed in a short-term overcurrent ("burn-through danger").

Vorteilhafter Weise wird ein Widerstand des Leiters bezogen auf den Weg im Bereich von einem 1 Milliohm bis 100 Milliohm liegen.Advantageously, a resistance of the conductor relative to the path will be in the range of 1 milliohm to 100 milliohms.

Für einen Einsatz, beispielsweise als Motorstromschutzschalter, ist die Überstromschutzeinrichtung ausgestaltet als eine elektrische Schaltbaugruppe umfassend, einen Eingangsklemmbereich zum Anschließen von Quell-Leitungen, einen Ausgangsklemmbereich zum Anschließen von Verbraucher-Leitungen, und zusätzlich zu dem ersten Leiter, einen zweiten Leiter, einen dritten Leiter, ein erstes Schaltmittel, ein zweites Schaltmittel, ein drittes Schaltmittel, wobei die Leiter jeweils in Reihe mit den Schaltmitteln zwischen einer zugehörigen ersten, zweiten bzw. dritten Eingangsklemme des Eingangsklemmbereiches und einer ersten, zweiten bzw. dritten Ausgangsklemme des Ausgangsklemmbereiches angeordnet sind.For use, such as a motor circuit breaker, the overcurrent protection device is configured as comprising an electrical switch assembly, an input clamping region for connecting source lines, an output clamping region for connecting consumer leads, and in addition to the first conductor, a second conductor, a third conductor a first switching means, a second switching means, a third switching means, wherein the conductors are respectively arranged in series with the switching means between an associated first, second and third input terminal of the input terminal and a first, second and third output terminal of the output terminal.

Die Überstromschutzeinrichtung weist für je einen Leiter je ein mit dem jeweiligen Schaltmittel zusammenwirkenden Schaltschloss zum Abschalten des über den Leiter fließenden Stromes auf, wobei die Kraft einer Feder genutzt wird, wobei einem manuellen Zuschalten gespannt und bei Erreichen des Übertemperatur-Grenzwertes über eine mit den Steuerausgang verbundene Auslöseeinrichtung entspannt wird.The overcurrent protection device has for each a conductor each cooperating with the respective switching means switching mechanism for switching off the current flowing through the conductor, wherein the force of a spring is used, with a manual switching tensioned and upon reaching the excess temperature limit via a with the control output connected triggering device is relaxed.

Die Zeichnung zeigt mehrere Ausführungsbeispiele zur Ausgestaltung eines Leiters einer Überstromschutzeinrichtung. Es zeigen:

FIG 1
eine Überstromschutzeinrichtung 1 für einen dreiphasigen Schutz zwischen einer Quelle und einen Verbraucher,
FIG 2
eine erste Ausgestaltungsvariante eines Leiters,
FIG 3
eine zweite Ausgestaltungsvariante eines Leiters,
FIG 4
eine Querschnittsverkleinerung in einem Leiter,
FIG 5
eine weitere Querschnittsverkleinerung in einem Leiter,
FIG 6
eine dritte Ausgestaltungsvariante eines Leiters,
FIG 7
eine vierte Ausgestaltungsvariante eines Leiters,
FIG 8
eine Überstromschutzeinrichtung ausgestaltet als eine Schaltbaugruppe und
FIG 9
eine Leiterplatte der Schaltbaugruppe.
The drawing shows several embodiments of the embodiment of a conductor of an overcurrent protection device. Show it:
FIG. 1
an overcurrent protection device 1 for a three-phase protection between a source and a consumer,
FIG. 2
a first embodiment variant of a conductor,
FIG. 3
a second embodiment variant of a conductor,
FIG. 4
a cross-sectional reduction in a conductor,
FIG. 5
another cross-sectional reduction in a ladder,
FIG. 6
a third embodiment variant of a leader,
FIG. 7
a fourth embodiment variant of a conductor,
FIG. 8
an overcurrent protection device designed as a switch assembly and
FIG. 9
a circuit board of the switch assembly.

Gemäß FIG 1 ist eine Überstromschutzeinrichtung 1 für den Schutz eines Verbrauchers 201 dargestellt. Unter Verbraucher wird hier beispielsweise ein Elektromotor angesehen. Der Verbraucher 201 erhält seinen Strom über eine dreiphasige Quelle 101. Für einen Anschluss der Quelle 101 und des Verbrauchers 201 sieht die Überstromschutzeinrichtung 1 einen Eingangsklemmbereich 100 und einen Ausgangsklemmbereich 200 vor.According to FIG. 1 an overcurrent protection device 1 for the protection of a consumer 201 is shown. Under consumer here, for example, an electric motor is considered. The load 201 receives its power via a three-phase source 101. For a connection of the source 101 and the load 201, the overcurrent protection device 1 provides an input clamping region 100 and an output clamping region 200.

Für den dreiphasigen Schutz des Verbrauchers 201 sind in der Überstromschutzeinrichtung 1 ein erster Leiter 10, ein zweiter Leiter 20 und ein dritter Leiter 30 angeordnet. Die Leiter 10,20,30 sind derart ausgestaltet, dass ein Strom I1,I2,I3 von der Quelle 101 längs eines definierten Weges der Leiter 10,20,30 zu dem Verbraucher 201 geführt wird.For the three-phase protection of the load 201, a first conductor 10, a second conductor 20 and a third conductor 30 are arranged in the overcurrent protection device 1. The conductors 10, 20, 30 are designed such that a current I 1 , I 2 , I 3 is conducted from the source 101 along a defined path of the conductors 10, 20, 30 to the consumer 201.

Um eine Temperaturverteilung in den Leitern 10,20,30 zu bestimmen, weist jeder Leiter einen ersten Temperatursensor 11,21,31, einen zweiten Temperatursensor 12,22,32 und einen dritten Temperatursensor 13,23,33 auf. Am Beispiel des ersten Leiters 10 sei der Aufbau näher erklärt. Der erste Leiter 10 weist den ersten Temperatursensor 11, den zweiten Temperatursensor 12 und den dritten Temperatursensor 13 längs des Weges des Leiters 10 verteilt angeordnet auf. Die Temperatursensoren 11,12,13 sind derart zu dem Leiter 10 angeordnet, dass eine erste Temperatur des Leiters 10 an einem ersten Ort X1 (siehe hierzu FIG 3 und FIG 7), eine zweite Temperatur an einem zweiten Ort X2 und eine dritte Temperatur an einem dritten Ort X3 des Leiters 10 als ein erster, zweiter und dritter Temperatur-Messwert messbar ist.In order to determine a temperature distribution in the conductors 10, 20, 30, each conductor has a first temperature sensor 11, 21, 31, a second temperature sensor 12, 22, 32 and a third temperature sensor 13, 23, 33. The structure of the first conductor 10 is explained in more detail. The first conductor 10 has the first temperature sensor 11, the second temperature sensor 12 and the third temperature sensor 13 distributed along the path of the conductor 10 arranged on. The temperature sensors 11,12,13 are arranged to the conductor 10, that a first temperature of the conductor 10 at a first location X1 (see FIG. 3 and FIG. 7 ), a second temperature at a second location X2, and a third temperature at a third location X3 of the conductor 10 as a first, second, and third temperature measurements.

Die Temperatursensoren 11,12,13 sind jeweils mit einer Auswerteeinheit 4 verbunden, dabei ist die Auswerteeinheit 4 dazu ausgestaltet, einen Temperatur-Messwert mit einem in der Auswerteeinheit 4 hinterlegten Temperatur-Grenzwert zu vergleichen oder einen Temperatur-Differenzwert zu ermitteln und durch eine Auswertung einer Anstiegsgeschwindigkeit des Temperatur-Differenzwertes auf einen Überstrom in dem Leiter 10 zu schließen.The temperature sensors 11, 12, 13 are each connected to an evaluation unit 4, in which case the evaluation unit 4 is configured to compare a temperature measurement value with a temperature limit value stored in the evaluation unit 4 or to determine a temperature difference value and by an evaluation a rise rate of the temperature difference value to close an overcurrent in the conductor 10.

Eine Auswertung des Temperatur-Differenzwertes ΔTn kann durch folgende Formel erfolgen. d Δ T n dt x = Δ T nx Δ T n x 1 t x t x 1

Figure imgb0002

ΔTn:
Ist der Temperaturdifferenzwert des entsprechenden Leiters "n" 10,20,30 zum jeweiligen Auswertezeitpunkt, in welchem durch die entsprechenden Temperatursensoren gleichzeitig die Temperaturen erfasst werden.
n:
Betrachteter Leiter 10,20,30
x:
Auswertezeitpunkt (aktueller Zeitpunkt einer Messauswertung)
An evaluation of the temperature difference value ΔT n can be made by the following formula. d Δ T n dt x = Δ T nx - Δ T n x - 1 t x - t x - 1
Figure imgb0002
ΔT n :
If the temperature difference value of the corresponding conductor "n" is 10, 20, 30 at the respective evaluation time in which the temperatures are simultaneously detected by the corresponding temperature sensors.
n:
Considered ladder 10,20,30
x:
Evaluation time (current time of a measurement evaluation)

Weiterhin ist die Auswerteeinheit 4 dazu ausgestaltet, dass wenn der Temperatur-Messwert den Temperatur-Grenzwert oder der Temperatur-Differenzwert den Temperatur-Differenz-Grenzwert erreicht hat, über einen Steuerausgang 4a der Auswerteeinheit 4 ein Steuersignal, welches einen Überstrom in dem Leiter 10 anzeigt, auszugeben.Furthermore, the evaluation unit 4 is configured such that when the temperature measured value has reached the temperature limit value or the temperature difference value reaches the temperature difference limit value, a control signal 4a which indicates an overcurrent in the conductor 10 via a control output 4a of the evaluation unit 4 to spend.

Der Steuerausgang 4a steht mit einer Auslöseeinheit 5 in Verbindung. Die Auslöseeinheit 5 ist wiederum dazu ausgestaltet ein erstes Schaltmittel 105, ein zweites Schaltmittel 205 und ein drittes Schaltmittel 305 zu betätigen und damit den Stromkreis von der Quelle 101 zu dem Verbraucher 201 als Schutzmaßnahme zu unterbrechen. Die Temperatursensoren 11,12,13; 21,22,23 und 31,32,33 eines jeden Leiters 10,20,30 sind jeweils durch eine erste Isolationsschicht 51, eine zweite Isolationsschicht 52 und durch eine dritte Isolationsschicht 53 von den Leitern getrennt angeordnet.The control output 4a is connected to a trip unit 5 in connection. The trip unit 5 is in turn configured to operate a first switching means 105, a second switching means 205 and a third switching means 305 and thus to interrupt the circuit from the source 101 to the load 201 as a protective measure. The temperature sensors 11, 12, 13; 21, 22, 23 and 31, 32, 33 of each conductor 10, 20, 30 are each separated by a first insulation layer 51, a second insulation layer 52 and a third insulation layer 53 from the conductors.

Eine erste Ausführungsform eines Leiters 10 ist gemäß FIG 2 dargestellt. Zwischen einer ersten Kupferschiene 73 und einer zweiten Kupferschiene 74 ist ein flächig, mäanderförmig ausgeprägter Leiter angeordnet. Als Besonderheit bei dieser Ausgestaltungsvariante weist die flächig, mäanderförmige Ausgestaltung des Leiters eine erste Aussparung 71 und eine zweite Aussparung 72 auf. Ein von der ersten Kupferschiene 73 ausgehender Strom kann sich in einen ersten und in einen zweiten Zweig verteilen, bis er an einer Fläche 75 für einen Temperatursensor wieder zusammengeführt wird. Diese Zusammenführung hat eine Querschnittsvergrößerung zur Folge damit nimmt eine Stromdichte an dieser Stelle wieder ab. Die Abnahme der Stromdichte an der Fläche 75 hat den Vorteil, dass hier ein Temperatursensor platziert werden kann, welche eine Temperatur misst, welche nicht zwangsläufig mit der Temperatur übereinstimmen muss, welche an einem anderen Ort des Leiters 10 herrscht. Damit wird erreicht, dass bei einem kurzzeitigen Überstrom, z.B. Einschaltstrom eines Motors, nicht sofort die gemessene Temperatur in dem Bereich des Temperatur-Grenzwertes gelangt.A first embodiment of a conductor 10 is according to FIG. 2 shown. Between a first copper rail 73 and a second copper rail 74, a planar, meander-shaped conductor is arranged. As a special feature in this embodiment variant, the planar, meander-shaped configuration of the conductor has a first recess 71 and a second recess 72. A current emanating from the first copper bus 73 may be distributed into a first and a second branch until it is recombined at a surface 75 for a temperature sensor. This merger has a cross-sectional enlargement result so that decreases a current density at this point again. The decrease in the current density at the surface 75 has the advantage that a temperature sensor can be placed here which measures a temperature which does not necessarily have to coincide with the temperature prevailing at another location of the conductor 10. This ensures that in the case of a short-time overcurrent, for example inrush current of an engine, the measured temperature does not immediately reach the range of the temperature limit value.

Gemäß FIG 3 ist ein weiteres Ausführungsbeispiel des Leiters 10 dargestellt. Der Leiter 10 ist jeweils zwischen einer Kupferplatte 23 angeordnet. Der Leiter 10 ist als ein flächiger, metallischer Streifen mäanderförmig zwischen den beiden Kupferplatten 23 angeordnet. Demnach ist der Leiter 10 als eine Abfolge von Schlingen S1,...,S6 ausgebildet. Eine Leiterlänge des Leiters 10, welche gleichzusetzen ist mit einem Weg W des Leiters 10 ist durch die Schlingenabfolge auf einer Messtrecke MS untergebracht, wobei die Längenausdehnung der Messstrecke MS kleiner ist als die Leiterlänge des Leiters 10, also kleiner als der Weg W. Als vorteilhaft hat sich beispielsweise herausgestellt, wenn der Leiter 10 eine ca. 8 mm breite und 1 mm starke flächig ausgeprägte Metalllegierung, beispielsweise eine Chrom-Aluminium-Legierung ist. Das Verhältnis von Breite zu Dicke des Leiters sollte daher insbesondere 1 zu 10 aufweisen.According to FIG. 3 another embodiment of the conductor 10 is shown. The conductor 10 is in each case arranged between a copper plate 23. The conductor 10 is arranged as a flat, metallic strip meandering between the two copper plates 23. Thus, the conductor 10 is formed as a succession of loops S1, ..., S6. A conductor length of the conductor 10, which is to be equated with a path W of the conductor 10 is accommodated by the loop sequence on a measuring path MS, wherein the length dimension of the measuring path MS is smaller than the conductor length of the conductor 10, that is smaller than the path W. As advantageous has been found, for example, when the conductor 10 is an approximately 8 mm wide and 1 mm thick flat metal alloy, such as a chromium-aluminum alloy. The ratio of width to thickness of the conductor should therefore in particular be 1 to 10.

Für den späteren Einbau des Leiters 10 in eine Schaltbaugruppe als eine Überstromschutzeinrichtung ist es ratsam, wenn der Leiter 10 auf einer ersten Isolationsschicht 51 angeordnet ist. Der Leiter 10 und die Isolationsschicht 51 sind wiederum auf einer Leiterplatte 60 angeordnet (siehe auch FIG 9).For later installation of the conductor 10 in a switch assembly as an overcurrent protection device, it is advisable if the conductor 10 is arranged on a first insulating layer 51. The conductor 10 and the insulating layer 51 are in turn arranged on a printed circuit board 60 (see also FIG FIG. 9 ).

Unterhalb der Leiterplatte 60 ist in der FIG 3 schematisch die Messstrecke MS durch eine Streckenabzeichnung angedeutet. Die Streckenabzeichnung weist einen ersten Ort X1, einen zweiten Ort X2 und einen dritten Ort X3 auf. An diesen drei Orten X1,X2,X3 werden drei unterschiedliche Temperatursensoren verteilt angeordnet.Below the circuit board 60 is in the FIG. 3 schematically indicated the measuring section MS by a route mark. The route description has a first location X1, a second location X2, and a third location X3. At these three locations X1, X2, X3, three different temperature sensors are arranged distributed.

Gemäß FIG 4 und FIG 5 ist jeweils eine Seitenansicht des Leiters 10 aus FIG 3 dargestellt. Mit FIG 4 wird eine erste Art einer Querschnittsverkleinerung in einer Schleife des Leiters 10 dargestellt. Hierbei handelt es sich um laterale Ausnehmungen 21. In FIG 5 ist eine zweite Art der Querschnittsverkleinerung dargestellt. Hierbei handelt es sich um eine Bohrung 22.According to 4 and FIG. 5 is in each case a side view of the conductor 10 from FIG. 3 shown. With FIG. 4 For example, a first type of cross-sectional reduction in a loop of the conductor 10 is illustrated. These are lateral recesses 21. In FIG. 5 a second type of cross-sectional reduction is shown. This is a bore 22.

Eine weitere Ausgestaltungsvariante eines Leiters 10 ist gemäß FIG 6 abgebildet. Dabei weist der Leiter 10 eine mäanderförmige, kreisförmige Ausgestaltung auf, es wird dadurch eine Kreis-Fläche für einen Einbauraum gegeben, dass besondere ist hierbei das die Schlingen des Leiters 10 bifilar angeordnet sind, wodurch sich ein Magnetfeld aufhebt. Die mäanderförmige, kreisförmige Ausgestaltung des Leiters 10 könnte auch als eine Spirale betrachtet werden, wobei am linken Eingang der Spirale ein erster Temperatursensor angeordnet wird und am rechten Ausgang der Spirale ein dritter Temperatursensor angeordnet wird, der zweite Temperatursensor wird demzufolge im Mittelpunkt der Spirale angeordnet, da sich hier eine Wärmeentwicklung konzentriert.A further embodiment variant of a conductor 10 is according to FIG. 6 displayed. In this case, the conductor 10 has a meandering, circular configuration, it is characterized given a circular area for an installation space that is special in this case, the loops of the conductor 10 are arranged bifilar, whereby a magnetic field cancels. The meandering, circular configuration of the conductor 10 could also be considered as a spiral, wherein a first temperature sensor is arranged at the left input of the spiral and a third temperature sensor is arranged at the right exit of the spiral, the second temperature sensor is thus arranged in the center of the spiral, because there is a concentration of heat here.

Eine besondere bevorzugte Ausgestaltungsvariante des Leiters 10 ist gemäß der FIG 7 gegeben. Durch eine schichtweise Zusammenstellung mehrerer Schleifen S1,...,S13 ist ein flacher Streifen des Leiters 10 zu einem quaderförmigen Element zusammengelegt. Zwischen den schichtweise angeordneten Schleifen S1,...,S13 ist ein Isolationsmaterial 40 angeordnet. Eine Anfangsstrecke A1 des Leiters 10 und eine Endstrecke E1 des Leiters 10 ist im Wesentlichen rechtwinklig zu dem quaderförmigen Element angeordnet, wobei in einem Teilbereich der Anfangs- und Endstrecke jeweils eine verstärkte Kupferplatte aufgebracht sein kann.A particular preferred embodiment variant of the conductor 10 is according to the FIG. 7 given. By a layered composition of several loops S1, ..., S13 a flat strip of the conductor 10 is folded into a cuboidal element. Between the layers arranged loops S1, ..., S13, an insulating material 40 is arranged. An initial section A1 of the conductor 10 and an end section E1 of the conductor 10 is arranged substantially perpendicular to the cuboidal element, wherein in each case a reinforced copper plate can be applied in a partial area of the start and end sections.

Durch die schichtweise Zusammenstellung der Schlingen S1,...,S13 kann auf einer Längenausdehnung einer Messstrecke MS ein wesentlicher größerer Weg W des Leiters 10 untergebracht werden.As a result of the layered arrangement of the loops S1,..., S13, a considerably larger path W of the conductor 10 can be accommodated on a longitudinal extent of a measuring path MS.

An den Orten X1,X2 und X3 können über den Leiter 10 verteilt Temperatursensoren angebracht werden.At the locations X1, X2 and X3, temperature sensors can be attached via the conductor 10.

Mit FIG 8 ist eine mögliche Ausgestaltungsvariante einer Überstromschutzeinrichtung 1 als eine Schaltbaugruppe abgebildet. Zwischen dem Eingangsklemmbereich 100 und dem Ausgangsklemmbereich 200 sind die Schutzelemente, wie sie symbolisch mit FIG 1 erklärt wurden, angeordnet. Eine Leiterplatte 60 weist einen ersten Leiter 10, einen zweiten Leiter 20 und einen dritten Leiter 30 auf, wobei die Leiter 10,20,30 als eine schichtweise Zusammenstellung mehrerer Schlingen S1,...,S13 zu einen quaderförmigen Element ausgestaltet sind.With FIG. 8 is a possible embodiment variant of an overcurrent protection device 1 shown as a switching assembly. Between the input clamping region 100 and the output clamping region 200 are the protective elements as they are symbolic With FIG. 1 were arranged. A printed circuit board 60 has a first conductor 10, a second conductor 20 and a third conductor 30, the conductors 10, 20, 30 being configured as a layered arrangement of a plurality of loops S1,..., S13 to form a parallelepiped element.

Gemäß FIG 9 ist die Leiterplatte 60 aus FIG 8 in einer Detailansicht dargestellt. Neben dem ersten Leiter 10, dem zweiten Leiter 20 und dem dritten Leiter 30 sind hier ein erster Einbauplatz 301, ein zweiter Einbauplatz 302 und ein dritter Einbauplatz 303 zu sehen. Die Einbauplätze 301,...,303 dienen der Aufnahme des ersten bis dritten Temperatursensors. Die Leiterplatte 60 ist beispielsweise als ein Multilayer aufgebaut und weist im Inneren der Leiterplatte 60 in der Nähe der Einbauplätze 301,...,303 die entsprechenden Temperatursensoren in Halbleiterbauform im Inneren der Leiterplatte 60 auf. Entsprechende Leiterbahnen sind von den Temperatursensoren innerhalb der Leiterplatte 60 zu der Auswerteeinheit 5 geführt. Die Auswerteeinheit 5 ist dabei ausgestaltet, einen Temperatur-Differenz-Wert zu ermitteln und mit einem entsprechenden Grenzwert zu vergleichen und bei Überschreiten des entsprechenden Grenzwertes ein entsprechendes Schaltschloss, wie es nach dem Stand der Technik bekannt ist, auszulösen und damit auf einen Überstrom sicherheitstechnisch zu reagieren.According to FIG. 9 is the circuit board 60 off FIG. 8 shown in a detailed view. In addition to the first conductor 10, the second conductor 20 and the third conductor 30, a first installation space 301, a second installation space 302 and a third installation space 303 can be seen here. The bays 301, ..., 303 serve to receive the first to third temperature sensor. The printed circuit board 60 is constructed, for example, as a multilayer, and has inside the printed circuit board 60 in the vicinity of the mounting locations 301,..., 303 the corresponding temperature sensors in semiconductor design in the interior of the printed circuit board 60. Corresponding conductor tracks are guided by the temperature sensors within the printed circuit board 60 to the evaluation unit 5. The evaluation unit 5 is designed to determine a temperature difference value and to compare with a corresponding limit and when the corresponding limit is exceeded, a corresponding switching mechanism, as is known in the prior art, trigger and thus safety to an overcurrent react.

Claims (12)

  1. Overcurrent protection device (1) comprising
    a conductor (10),
    an evaluation unit (4),
    a first temperature sensor (11), wherein
    - the conductor (10) is embodied such that a current (I) is conducted from a source (101) along a defined path (W) of the conductor (10) to a load (201) and
    - the temperature sensor (11) is arranged relative to the conductor (10) such that a temperature of the conductor (10) can be measured as a temperature measured value, wherein
    - the first temperature sensor (11) is connected to the evaluation unit (4), here the evaluation unit (4) is embodied to compare the temperature measured value with a temperature limit value stored in the evaluation unit (4), wherein the temperature limit value is selected such that it represents a distribution of a maximum permissible electric current which prevails in the conductor (10), wherein a current density resulting therefrom is evaluated as an overcurrent in the conductor (10),
    the evaluation unit (4) is further embodied such that if the temperature measured value has reached the temperature limit value, a control signal is output via a control output (4a) of the evaluation unit (3), said control signal indicating the overcurrent in the conductor (10),
    characterised in that in addition to the first temperature sensor (11), a second temperature sensor (12) and a third temperature sensor (13) are arranged distributed along the path (W) of the conductor (10) and the temperature sensors (11, 12, 13) are arranged relative to the conductor (10) such that a first temperature of the conductor (10) at a first location (X1), a second temperature at a second location (X2) and a third temperature at a third location (X3) of the conductor (10) can be measured as a first, second and third temperature measured value in each case, wherein the evaluation unit (4) is connected to the first temperature sensor (11), the second temperature sensor (12) and the third temperature sensor (13) and is embodied to calculate a temperature difference value from the first, second and third temperature measured value.
  2. Overcurrent protection device (1) according to claim 1, wherein the conductor (10) is embodied as a sequence of loops (S1,...,S13), here a conductor length of the conductor (10) is accommodated by the loop sequence on a measuring section (MS), wherein the linear extension of the measuring section (MS) is smaller than the conductor length.
  3. Overcurrent protection device (1) according to one of claims 1 or 2, wherein the conductor (10) has a meander-shaped embodiment, and as a result an essentially rectangular surface is provided for an installation space.
  4. Overcurrent protection device (1) according to one of claims 2 or 3, wherein the conductor (10) has a meander-shaped, circular embodiment, and as a result a circular area is provided for the installation space, wherein the loops of the conductor (10) are arranged in a bifilar manner.
  5. Overcurrent protection device (1) according to one of claims 2 to 4, wherein the conductor (10) is embodied as a two-dimensional strip extended in the longitudinal direction and a cross-sectional reduction in the strip is arranged in a loop, which results in an increase in the current density in the surroundings of the cross-sectional reduction.
  6. Overcurrent protection device (1) according to claim 3, wherein the conductor (10) as a two-dimensional strip is embodied as a box-shaped element by a composition of a number of loops (S1, ..., S13) in layers.
  7. Overcurrent protection device (1) according to claim 6, wherein an insulation material (40) is arranged between the loops (S1, ..., S13) arranged in layers.
  8. Overcurrent protection device (1) according to claim 6 or 7, wherein an initial section (A1) of the conductor (10) and a final section (E1) of the conductor (10) are essentially arranged at right angles to the box-shaped element and a subarea of the initial and final section (A1, E1) is strengthened in each case with a further electrically conducting, two-dimensional material.
  9. Overcurrent protection device (1) according to one of claims 1 to 8, wherein the material of the conductor has
    - a chrome-nickel alloy, in particular
    - a copper-nickel alloy, in particular
    - a steel-nickel alloy, in particular
    - chrome-aluminium alloy.
  10. Overcurrent protection device (1) according to one of claims 1 to 9, wherein a resistance of the conductor (10) in respect of the path (W) is in the range between 1 milliohm and 100 milliohms.
  11. Overcurrent protection device (1) according to one of claims 1 to 10, embodied as an electrical switching module comprising
    an input terminal area (100) for connecting source lines,
    an output terminal area (200) for connecting load lines and in addition to the
    first conductor (10),
    a second conductor (20),
    a third conductor (30),
    a first switching means (105),
    a second switching means (205),
    a third switching means (305),
    wherein the conductors (10, 20, 30) are each arranged in series with the switching means (105, 205, 305) between an associated first, second or third input terminal of the input terminal area (100) and a first, second or third output terminal of the output terminal area (200).
  12. Overcurrent protection device (1) according to claim 11 having, for each conductor (10, 20, 30), a latch which interacts with each respective switching means (105, 205, 305) for disconnecting the current (I 1, I 2, I 3) flowing via the conductor (10, 20, 30), wherein the force of a spring is used, which is tensioned with a manual connection and is detensioned when the temperature limit value is reached via a trigger device (5) connected to the control output (4a).
EP12725708.7A 2012-05-30 2012-05-30 Overcurrent protection device Not-in-force EP2839497B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/060166 WO2013178259A1 (en) 2012-05-30 2012-05-30 Overcurrent protection device

Publications (2)

Publication Number Publication Date
EP2839497A1 EP2839497A1 (en) 2015-02-25
EP2839497B1 true EP2839497B1 (en) 2016-08-31

Family

ID=46208491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12725708.7A Not-in-force EP2839497B1 (en) 2012-05-30 2012-05-30 Overcurrent protection device

Country Status (2)

Country Link
EP (1) EP2839497B1 (en)
WO (1) WO2013178259A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3278349B1 (en) * 2015-03-31 2020-09-16 Eaton Intelligent Power Limited Switchgear cabinet arrangement with improved cut-off in the event of an overload

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223839A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Electronic circuit breaker
DE102006003124A1 (en) 2006-01-23 2007-08-02 Siemens Ag Method for implementing an improved thermo-mechanical overload protection and associated overload protection device
US7675721B2 (en) * 2006-10-13 2010-03-09 Eaton Corporation Circuit interrupter including a shunt wire current sensor and a processor having a thermal overload predictive function
JP5552362B2 (en) * 2010-05-14 2014-07-16 河村電器産業株式会社 Electronic circuit breaker that counts the duration of overcurrent

Also Published As

Publication number Publication date
WO2013178259A1 (en) 2013-12-05
EP2839497A1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
DE102008039568B4 (en) Current detection device
DE60107204T2 (en) ELECTRICITY DETECTOR AND CURRENT MEASUREMENT DEVICE INCLUDING TEMPERATURE COMPENSATION
EP2542902B1 (en) Electronic component, current sensor
DE10049071B4 (en) Safety device for a circuit, in particular in motor vehicles
DE112017007752T5 (en) Combination current detection device
EP2756572B1 (en) Device and method for protecting a load
WO2008052813A1 (en) Switchgear cabinet with temperature monitoring
EP0750382A2 (en) Current detecting device for mounting on a current-carrying conductor
EP2839497B1 (en) Overcurrent protection device
DE2400396A1 (en) SWITCHING DEVICE TO PROTECT ACCUMULATORS, DC MACHINES OR DC DEVICES AGAINST OVERCURRENT, OVERTEMPERATURE AND UNDERVOLTAGE
EP2735066B1 (en) Device and method for protecting a consumer
DE102012202153A1 (en) Thermomagnetic release for small current ranges
DE3902416A1 (en) Overcurrent-sensitive circuit breaker
DE202020102365U1 (en) Measuring device housing, measuring device and fuse arrangement
DE102012208115A1 (en) Device and method for the intelligent protection of an electrical line
EP2826117B1 (en) Device for protecting a user
EP2048685B1 (en) Protective switch assembly and protective switch device
DE102010018037B4 (en) Temperature Monitoring System
DE102014222689A1 (en) sensor unit
DE102012201995A1 (en) Switching device e.g. circuit breaker for protecting generator in wind power plant, has electronic shutter which is provided with direct current sensor provided with soft magnetic probes as magnetic field detectors
EP2115759B1 (en) Protective device and method for its operation
DE102014225897B3 (en) Hysteresis-free high-temperature sensor
DE102021203218B4 (en) Method for monitoring the functionality of a high-voltage switch, high-voltage switch, computer program product and computer-readable medium
DE102021210833A1 (en) Protective switching device and method
AT406099B (en) TRIP DEVICE FOR AN OVERCURRENT SWITCHING DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAIER, MARTIN

Inventor name: KRAETZSCHMAR, ANDREAS

Inventor name: ROESCH, BERNHARD

Inventor name: ZHU, YI

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008131

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008131

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 825627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210526

Year of fee payment: 10

Ref country code: IT

Payment date: 20210525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210720

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012008131

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220530