EP2819970A1 - Retardateur de prise pour ciment sulfo-alumineux - Google Patents

Retardateur de prise pour ciment sulfo-alumineux

Info

Publication number
EP2819970A1
EP2819970A1 EP13711076.3A EP13711076A EP2819970A1 EP 2819970 A1 EP2819970 A1 EP 2819970A1 EP 13711076 A EP13711076 A EP 13711076A EP 2819970 A1 EP2819970 A1 EP 2819970A1
Authority
EP
European Patent Office
Prior art keywords
cement
use according
weight
sulfo
aluminous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13711076.3A
Other languages
German (de)
English (en)
Inventor
Laure Regnaud
Angélique Vichot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Italcementi SpA
Original Assignee
Ciments Francais SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciments Francais SAS filed Critical Ciments Francais SAS
Publication of EP2819970A1 publication Critical patent/EP2819970A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0059Graft (co-)polymers
    • C04B2103/006Comb polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • C04B2103/22Set retarders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00103Self-compacting mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions

Definitions

  • the present invention relates to the field of sulfo-aluminous cements and their adjuvants.
  • the present invention relates more particularly to the use of adjuvants making it possible to obtain both a fluidification and a setting delay.
  • Sulpho-aluminous cements have appeared in China where they were produced industrially from the 1970s. Because of their expansive property, they were initially used in the production of self-constrained cement pipes.
  • these cements are used in many applications because of their specific properties such as: short setting time, strong short-term strengths, high heat of hydration, low porosity and alkalinity. All these properties derive from the composition of these cements, rich in yeelimite. Indeed, yeelimite causes the homogeneous formation of large quantities of ettringite from the beginning of the hydration of the cement and forms a network in the cement.
  • Sulphoaluminum cements are known to have a particularly short setting time. It is necessary for those skilled in the art to increase and control the setting time of compositions based on sulfo-aluminous cements.
  • setting retarding adjuvants are well known to those skilled in the art, in particular salts of citrate or tartrate.
  • a first object of the invention is therefore to provide a setting retarding adjuvant for increasing the setting time of hydraulic binders based on sulfo-aluminous cement, or containing exclusively sulfoaluminous cement, while respecting the constraints. required fluidity according to the uses of these cements.
  • Another object of the invention is to provide a combination of compatible retarding additives and fluidifiers, applicable for compositions containing sulfo-aluminous cement or exclusively containing sulfo-aluminous cement.
  • the present invention thus relates to the use of a polycarboxylate polymer as a fluidizing and retardant setting of a hydraulic binder comprising predominantly a sulfo-aluminous clinker, sulfo-aluminous clinker containing at least 30% by weight phase Yeelimite.
  • the term "retarding the setting” means repelling in time the moment when the hydraulic binder becomes solid.
  • the hydration reactions that take place in the cementitious composition lead to the formation of solid hydrates, especially ettringite in the case of sulfo-aluminous cements.
  • Increasing the amount of these hydrates causes stiffening of the hydraulic binder, leading to setting.
  • the setting time is measured using a texturometer.
  • polycarboxylate refers here to an organic compound consisting of a main hydrocarbon chain and functionalized in particular by carboxylate groups. These compounds are well known in the field of the adjuvantation of cements as superplasticizers, the superplasticizers being a class of fluidifying adjuvants.
  • hydroaulic binder is interpreted in the sense of EN 206-1 (March 2006). That is, it refers to a finely ground mineral material which, after being mixed with water, forms a paste that sets and hardens by the effect of chemical reaction and hydration process, and which, after curing, retains its strength and stability even under water. In the present invention, the hydraulic binder is synonymous with "cement”.
  • This cement is the combination, finely ground, of at least one clinker, possibly at least one calcium sulphate, and optionally of one or more pozzolanic mineral additions, such as blast furnace slag, fly ash, silica fumes or pozzolans.
  • clinker refers to the product of high temperature cooking of a mixture of minerals.
  • a sulfo-aluminous clinker is the product resulting from the baking at about 1300 ° C, a mixture composed in particular of limestone, bauxite and gypsum.
  • the "yeelimite”, or ye'elimite, is a mineralogical phase of formula Ca 4 AI 6 0i 2 (SO 4) present in the sulfo-aluminous clinker and designated in cement notation by the symbol C4A3 $.
  • the effects of admixtures vary according to the composition of the hydraulic binders and particularly the clinkers that compose them. It is important in the context of the present invention that the mass proportion of sulfoaluminous clinker in the hydraulic binder remains at least majority, that is to say greater than 50% by weight of the hydraulic binder. All percentages given in this text are percentages by mass.
  • a polymer according to the present invention is such that said hydraulic binder comprises at least 60% by weight, especially at least 80% by weight, preferably at least 90% by weight of sulfo-aluminous clinker.
  • polycarboxylate as a fluidizing and retarding agent for a hydraulic binder composed of different types of clinkers, for example sulpho-aluminous clinker mixed with Portland clinker, and / or aluminous clinker.
  • Portland clinker is the product of cooking at about 1450 ° C of a mixture composed in particular of limestone and clay.
  • An aluminous clinker is the product of cooking at about 1500-1600 ° C of a mixture composed in particular of limestone and bauxite.
  • said hydraulic binder may thus comprise less than 50%, preferably not more than 40%, more preferably 10 to 20% Portland clinker, or a mass proportion of less than 10% Portland cement.
  • Said hydraulic binder may comprise less than 50%, preferably not more than 40%, preferably 10 to 20% aluminous clinker, or a mass proportion of less than 10% aluminous clinker.
  • the hydraulic binder according to the present invention may not comprise Portland clinker and / or aluminous clinker.
  • the use of the polycarboxylate is more particularly effective when said sulfo-aluminous clinker comprises at least 40%, especially 40 to 80%, preferably 50 to 70% by weight of the elite.
  • Yelimite is an essential mineral phase within the meaning of the present invention, but it does not constitute the entirety of the sulfo-aluminous clinker.
  • sulfo-aluminous clinker also contains belite, designated C2S in cement notation.
  • a polymer according to the present invention is also characterized in that said polycarboxylate polymer has a comb-like structure.
  • comb type refers to the general molecular structure of the polymer which has the same shape as the object, namely a main chain and side groups. These carboxylate side groups may be engaged in ester or amide chemical bonds with functionalizing groups. The rate of functionalization indicates the percentage of carboxylate side groups involved in such chemical bonds.
  • said polycarboxylate polymer according to the invention advantageously has a degree of functionalization of from 1 to 80%, especially from 10 to 80%, more particularly from 10 to 50%, preferably from 15 to 50%, and more preferably from 15 to 30%.
  • said polycarboxylate polymer has functionalization with polyalkoxide type chains, especially polyethylene oxide.
  • Functionalizing groups of polyethylene oxide type make it possible to increase the solubility of the polymer in the aqueous phase, while the non-functionalized carboxylate side groups interact electrostatically with the surface of the cement particles.
  • the molecular weight of the chains functionalizing the side groups is correlated with the steric repulsion that the polymer will cause. This steric repulsion phenomenon makes it possible to move the particles of cement away from one another and to ensure a superplasticizing effect.
  • Said polycarboxylate polymer therefore advantageously has functionalization with chains having an average molecular mass ranging from 750 to 7000 g / mol, preferably from 1000 to 6000 g / mol.
  • polycarboxylate adjuvant according to the present invention is in particular implementation for the realization of mortar, traditional screed, or self-placing fluid screed.
  • the term "traditional screed” designates a mortar layer comprising in particular cement, water, sand, optionally mineral additives, and possibly at least one adjuvant, with or without a mesh.
  • the mortar does not spread by itself under the action of gravity, and is not pumpable.
  • self-setting fluid screed designates a mortar comprising in particular cement, water, sand, possibly mineral additives (or filler) and optionally at least one adjuvant, with or without a mesh.
  • the mortar is fluid and spreads itself under the action of gravity.
  • sand is meant aggregates with a diameter of less than or equal to 4 mm.
  • Standard additions or “filler” means finely divided mineral particles used in concrete in order to improve certain properties or to confer particular properties on it (Standard EN 206-1 paragraph 3.1.23, March 2006, Standard NF P 18-501, paragraph 3, March 1992).
  • polycarboxylate can also be implemented for the production of concrete, such as ready-mixed concrete, in particular self-placing concrete.
  • crete refers to a mixture comprising cement, water, sand, gravel, possibly mineral additives and possibly at least one adjuvant.
  • grain is meant aggregates with a diameter greater than 4 mm.
  • BPE ready-mix concrete
  • self-placing concrete refers to a concrete that flows and compacts by gravitational effect alone, capable of filling a formwork while maintaining its homogeneity (Standard NF EN 206.9, June 2010). More particularly, the polycarboxylate is used in said hydraulic binder in a mass proportion of between 0.01 and 3%, especially 0.05 and 3%, more particularly between 0.05 and 1.5%, particularly between 0, 1 and 1% with respect to the hydraulic binder.
  • the present invention relates to the use of a combination of several polycarboxylates, of different structures, but each having individually both a fluidizing effect and a retarding effect.
  • the use of polycarboxylate (s) according to the present invention has proved particularly advantageous for fluidizing, and delaying the setting of the hydraulic binder for at least 90 minutes, especially 120 to 300 minutes, particularly 120 to 240 minutes.
  • the setting time of a sulfoaluminous cement without setting retarder can vary between 10 and 60 minutes.
  • the hydraulic binder as described above may comprise, in addition to the polycarboxylate polymer, at least one additional adjuvant chosen from air entraining agents, thickeners, adhesion and ductility agents, hardening accelerators, defoamers, dyes, or complementary retardants other than polycarboxylate.
  • complementary retarders include carboxylic acids including tartaric acid and citric acid, carbohydrates including glucose; as an example of an air entrainer, surfactants, in particular glycol ethers, lauryl sulphates; as an example of thickener including cellulose derivatives and polyacrylamides; as an example adhesion and ductility agent including latex; as an example of a hardening accelerator, especially lithium and sodium carbonates; as an example of antifoam including polyethylene oxide copolymers polypropylene, triisobutylphosphates and fatty alcohols.
  • the characteristics of the sulpho-aluminous cement used (industrial cement produced in Italy) are shown in Table 1. It contains 60% by weight of Yeelimite, 11% by weight of Belite and 23% by weight of anhydrite.
  • the Portiand cement used here is an industrial CEM I. Its characteristics are shown in Table 2. Its composition is typical of a Portiand cement with a medium alkali content. Table 2 - Main characteristics of the Portiand cement used.
  • the polycarboxylate used comes from AXIM France. It is a polycarboxylate with a grafting rate close to 20%. It is functionalized by long polyethylene glycol chains (about 5000 g / mol). Comparative adjuvant
  • Citric acid is a retarding agent commonly used in Portiand, aluminous and sulfo-aluminous cements. Citric acid comes from Sigma-Aldrich. All the tests were carried out at 20 ° C. on cement pastes having a water / cement ratio (W / C) equal to 0.44. The pasta was obtained by mixing the water with the cement for 3 minutes using a Bioblock scientific propeller mixer.
  • the evaluation of the initial setting time was carried out using a texturometric analyzer TA-XT2L This test consists of measuring a "penetration force" at a finite depth in a cement paste at a given time. A 7 mm 2 needle is pressed over a distance of 10 mm and the required applied force is measured.
  • the setting time of the cement paste is deduced by considering that the beginning of setting takes place when the necessary force is 10 N, and that the end of setting occurs when the necessary force is 100 N.
  • the spreading measurements were carried out on a dry glass plate placed on a horizontal plane.
  • the formulation is mixed again at high speed (850 rpm) for 1 minute.
  • the formulation is put in place in the mini-cone (1/5 of the Abrams cone, height 6 cm, high radius 1 cm, low radius 2 cm), vibrated and leveled.
  • the cone is raised slowly and the measured spread (diameter).
  • FIG. 1 represents the fluidizing effect induced by the polycarboxylate, at an implementation time of 15 minutes, on two types of cement: a Portland cement (results schematized by circles) and a sulpho-aluminous cement (squares).
  • the polycarboxylate polymer actually has a fluidifying effect on the two cements, and that for a polymer dosage greater than 0.05% (by weight) relative to the cement (hydraulic binder), the fluidifying effect is approximately twice more important for a sulfo-aluminous cement than for a Portland cement.
  • Table 3 shows the start times, expressed in minutes, of the cements Portland, and sulfo-aluminous studied.
  • Citric acid a known retarder of Portland cement has a significant effect on Portland cement (+ 190 minutes) but relatively low on sulfo-aluminous cement (+ 15 minutes),

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Utilisation d'un polymère polycarbonate en tant que fluidifiant et retardateur de prise d'un liant hydraulique comprenant majoritairement un clinker sulfo-alumineux, le clinker sulfo-alumineux renfermant au moins 30 % en masse de phase Yeelimite.

Description

RETARDATEUR DE PRISE POUR CIMENT SULFO-ALUMINEUX
La présente invention concerne le domaine des ciments sulfo-alumineux et leurs adjuvants. La présente invention concerne plus particulièrement l'utilisation d'adjuvants permettant d'obtenir à la fois une fluidification et un retard de prise.
Les ciments sulfo-alumineux sont apparus en Chine où ils ont été produits industriellement dés les années 1970. En raison de leur propriété expansive, ils ont été utilisés initialement dans le cadre de la production de tuyaux en ciment auto-contraint. De nos jours, ces ciments sont utilisés dans de nombreuses applications en raison de leurs propriétés spécifiques telles que : court temps de prise, fortes résistances à court terme, forte chaleur d'hydratation, faible porosité et alcalinité. Toutes ces propriétés découlent de la composition de ces ciments, riche en yeelimite. En effet, la yeelimite entraine la formation homogène d'importantes quantités d'ettringite dès le début de l'hydratation du ciment et forme un réseau dans le ciment.
L'addition de ciment sulfo-alumineux à un ciment Portland a permis de développer de nombreux produits innovants tels que des bétons à forte résistance à très court terme, des chapes auto nivellantes à faible retrait, des bétons renforcés aux fibres de verre, etc.. Dans toutes ces compositions des adjuvants sont utilisés et leur rôle est essentiel.
Les ciments sulfo-alumineux sont connus pour avoir un temps de prise particulièrement court. Il est nécessaire pour l'homme du métier d'augmenter et de maîtriser le délai de prise des compositions à base de ciments sulfo-alumineux. A cette fin, des adjuvants retardateurs de prise sont bien connus de l'homme du métier, notamment des sels de citrate ou de tartrate.
Cependant, il est également connu de l'homme du métier que certains adjuvants peuvent présenter des incompatibilités, notamment les superplastifiants et les retardateurs de prise, comme décrit dans l'article de J. Plank et al., Cernent and Concrète Research, 38 (2008) 599-605.
En conséquence, il existe un besoin de contrôler le temps de prise des ciments sulfo- alumineux tout en contrôlant la fluidité des compositions à base de ces ciments.
Un premier but de l'invention est donc de proposer un adjuvant retardateur de prise permettant d'augmenter le temps de prise de composition de liants hydrauliques à base de ciment sulfo-alumineux, ou renfermant exclusivement du ciment sulfo- alumineux, en respectant les contraintes de fluidité requises selon les utilisations de ces ciments.
Un autre but de l'invention est de proposer une combinaison d'adjuvants retardateurs de prise et fluidifiant compatibles, applicable pour des compositions à base de ciment sulfo-alumineux ou renfermant exclusivement du ciment sulfo-alumineux.
Il est bien connu que l'utilisation de superplastifiants de la famille des polycarboxylates permet d'obtenir des compositions cimentaires fluides avec des quantités d'eau raisonnables. De façon surprenante, il a été découvert que ces composés permettent également de retarder fortement la prise, et donc d'augmenter le temps d'ouvrabilité de compositions cimentaires à base de ciments sulfo-alumineux. Il est ainsi possible d'obtenir la combinaison d'un effet fluidifiant et retardateur de prise, à l'aide d'un seul adjuvant. La présente invention concerne donc l'utilisation d'un polymère polycarboxylate en tant que fluidifiant et retardateur de prise d'un liant hydraulique comprenant majoritairement un clinker sulfo-alumineux, le clinker sulfo-alumineux renfermant au moins 30 % en masse de phase Yeelimite. Cette utilisation permet de nombreux avantages, notamment un avantage technique, car elle permet d'éviter tout risque d'incompatibilité entre adjuvants ; un avantage de coût, car les adjuvants peuvent être onéreux ; un avantage logistique, car il n'est plus nécessaire de stocker différents produits. L'expression "retarder la prise" signifie repousser dans le temps le moment où le liant hydraulique devient solide. En effet, les réactions d'hydratation qui ont lieu dans la composition cimentaire entraînent la formation d'hydrates solides, notamment de l'ettringite dans le cas des ciments sulfo-alumineux. L'accroissement de la quantité de ces hydrates provoque une rigidification du liant hydraulique, conduisant à la prise. Dans le cadre de la présente invention le temps de prise est mesuré à l'aide d'un texturomètre.
L'expression "polycarboxylate" désigne ici un composé organique constitué d'une chaîne hydrocarbonée principale et fonctionnalisé notamment par des groupements carboxylates. Ces composés sont bien connus dans le domaine de l'adjuvantation des ciments en tant que superplastifiants, les superplastifiants étant une catégorie d'adjuvants fluidifiants. L'expression "liant hydraulique" s'interprète au sens de la norme EN 206-1 (mars 2006). C'est-à-dire qu'elle désigne un matériau minéral finement moulu qui, après avoir été mélangé avec de l'eau, forme une pâte qui fait prise et durcit par effet de réaction chimique et processus d'hydratation, et qui, après durcissement, conserve sa résistance et sa stabilité même sous l'eau. Dans la présente invention, le liant hydraulique est synonyme de "ciment". Ce ciment est la combinaison, finement moulue, d'au moins un clinker, éventuellement d'au moins un sulfate de calcium, et éventuellement d'un ou plusieurs ajouts minéraux pouzzolaniques, tel que du laitier de haut fourneau, de la cendre volante, de la fumée de silice ou des pouzzolanes. L'expression "clinker" désigne le produit de cuisson à haute température d'un mélange de minéraux. Dans le cadre de la présente invention, un clinker sulfo-alumineux est le produit résultant de la cuisson à environ 1300°C, d'un mélange composé notamment de calcaire, de bauxite et de gypse. La "yeelimite", ou ye'elimite, est une phase minéralogique de formule Ca4AI60i2(S04) présente dans le clinker sulfo-alumineux et désignée en notation cimentaire par le symbole C4A3$.
Les effets des adjuvants changent en fonction de la composition des liants hydrauliques et particulièrement des clinkers qui les composent. Il est important dans le cadre de la présente invention que la proportion massique de clinker sulfo- alumineux dans le liant hydraulique reste au moins majoritaire, c'est-à-dire supérieure à 50 % en masse du liant hydraulique. Tous les pourcentages indiqués dans le présent texte sont des pourcentages massiques.
De préférence l'utilisation d'un polymère selon la présente invention est telle que ledit liant hydraulique comprend au moins 60 % en masse, notamment au moins 80 % en masse, préférentiellement au moins 90 % en masse de clinker sulfo-alumineux.
Il est également possible d'utiliser le polycarboxylate comme fluidifiant et retardateur de prise d'un liant hydraulique composé de différents types de clinkers, par exemple du clinker sulfo-alumineux mélangé à du clinker Portland, et/ou du clinker alumineux.
Un clinker Portland est le produit de la cuisson à environ 1450°C d'un mélange composé notamment de calcaire et d'argile. Un clinker alumineux est le produit de la cuisson à environ 1500-1600°C d'un mélange composé notamment de calcaire et de bauxite.
Dans ce cas, ledit liant hydraulique peut ainsi comprendre moins de 50 %, de préférence au plus 40 %, de préférence encore de 10 à 20 % de clinker Portland, ou encore une proportion massique inférieure à 10 % de ciment Portland.
Ledit liant hydraulique peut comprendre moins de 50 %, de préférence au plus 40 %, préférentiellement de 10 à 20 % de clinker alumineux, ou encore une proportion massique inférieure à 10 % de clinker alumineux.
Selon un mode de réalisation particulier, le liant hydraulique selon la présente invention peut ne pas comprendre de clinker Portland et/ou de clinker alumineux.
L'utilisation du polycarboxylate est plus particulièrement efficace lorsque ledit clinker sulfo-alumineux comprend au moins 40 %, notamment de 40 à 80 %, préférentiellement de 50 à 70 % massique de Yeelimite.
La yeelimite est une phase minéralogique essentielle au sens de la présente invention, mais elle ne constitue pas l'intégralité du clinker sulfo-alumineux. A titre d'exemple le clinker sulfo-alumineux contient également de la bélite, désignée C2S suivant la notation cimentaire.
L'utilisation d'un polymère selon la présente invention est également caractérisé en ce que ledit polymère polycarboxylate présente une structure de type peigne. L'expression "type peigne" fait référence à la structure moléculaire générale du polymère qui présente la même forme que l'objet, à savoir une chaîne principale et des groupements latéraux. Ces groupements latéraux carboxylates peuvent être engagés dans des liaisons chimiques ester ou amide avec des groupements fonctionnalisants. Le taux de fonctionnalisation indique le pourcentage des groupements latéraux carboxylates engagés dans de telles liaisons chimiques. Plus particulièrement ledit polymère polycarboxylate, selon l'invention, présente avantageusement un taux de fonctionnalisation de 1 à 80%, notamment de 10 à 80 %, encore notamment de 10 à 50 %, préférentiellement de 15 à 50 %, et de préférence encore de 15 à 30 %.
De préférence, ledit polymère polycarboxylate présente une fonctionnalisation par des chaînes de type polyoxyde d'alkyle, notamment polyoxyde d'éthylène. Les groupements fonctionnalisants de type polyoxyde d'éthylène permettent d'accroître la solubilité du polymère en phase aqueuse, tandis que les groupements latéraux carboxylates non fonctionnalisés interagissent électrostatiquement avec la surface des particules de ciment. La masse moléculaire des chaînes fonctionnalisant les groupements latéraux est corrélée à la répulsion stérique que le polymère va provoquer. Ce phénomène de répulsion stérique permet d'éloigner les particules de ciments les unes des autres, et d'assurer un effet superplastifiant. Ledit polymère polycarboxylate présente donc avantageusement une fonctionnalisation par des chaînes ayant une masse moléculaire moyenne variant de 750 à 7000 g/mol, de préférence de 1000 à 6000 g/mol.
L'utilisation de l'adjuvant polycarboxylate selon la présente invention est notamment mise en œuvre pour la réalisation de mortier, de chape traditionnelle, ou de chape fluide auto plaçante.
L'expression "chape traditionnelle" désigne dans le cadre de la présente invention une couche de mortier comprenant notamment du ciment, de l'eau, du sable, éventuellement des additions minérales, et éventuellement au moins un adjuvant, avec ou sans treillis. Le mortier ne s'étale pas par lui-même sous l'action de la gravité, et n'est pas pompable. L'expression "chape fluide auto-plaçante" désigne un mortier comprenant notamment du ciment, de l'eau, du sable, éventuellement des additions minérales (ou filler) et éventuellement au moins un adjuvant, avec ou sans treillis. Le mortier est fluide et s'étale de lui-même sous l'action de la gravité. Par "sable" on désigne des granulats de diamètre inférieur ou égal à 4mm. Par "addition minérales" ou "filler" on désigne des particules minérales finement divisées utilisées dans le béton afin d'améliorer certaines propriétés ou pour lui conférer des propriétés particulières (Norme EN 206-1 paragraphe 3.1.23, mars 2006 ; Norme NF P 18-501, paragraphe 3, mars 1992).
L'utilisation du polycarboxylate peut également être mise en œuvre pour la réalisation de béton, tel qu'un béton prêt à l'emploi, notamment un béton auto plaçant.
L'expression "béton" désigne un mélange comprenant du ciment, de l'eau, du sable, des gravillons, éventuellement des additions minérales et éventuellement au moins un adjuvant. Par "gravillons" on désigne des granulats de diamètre supérieur à 4 mm.
L'expression "béton prêt à l'emploi", ou "BPE", désigne un béton délivré frais à l'utilisateur (Norme NF EN 206.1, mars 2006).
L'expression "béton auto-plaçant", ou "BAP", désigne un béton qui s'écoule et se compacte par seul effet gravitaire, capable de remplir un coffrage tout en conservant son homogénéité (Norme NF EN 206.9, juin 2010). Plus particulièrement, le polycarboxylate est utilisé dans ledit liant hydraulique dans une proportion massique comprise entre 0,01 et 3%, notamment 0,05 et 3 %, encore notamment comprise entre 0,05 et 1,5 %, particulièrement comprise entre 0, 1 et 1 % par rapport au liant hydraulique.
Dans un mode de réalisation particulier, la présente invention porte sur l'utilisation d'une combinaison de plusieurs polycarboxylates, de structures différentes, mais ayant chacun individuellement à la fois un effet fluidifiant et un effet retardateur de prise. L'utilisation de polycarboxylate(s) selon la présente invention s'est révélée particulièrement intéressante pour fluidifier, et retarder la prise du liant hydraulique pendant au moins 90 minutes, notamment de 120 à 300 minutes, particulièrement de 120 à 240 minutes. A titre indicatif, le temps de début de prise d'un ciment sulfo- alumineux sans retardateur de prise peut varier entre 10 et 60 minutes environ.
Le liant hydraulique tel que décrit précédemment peut comprendre, en plus du polymère polycarboxylate, au moins un adjuvant complémentaire choisi parmi les entraîneurs d'air, les épaississants, les agents d'adhésion et de ductilité les accélérateurs de durcissement, les anti-mousses, les colorants, ou les retardateurs complémentaires autres que polycarboxylate.
On citera à titre d'exemple de retardateur complémentaire les acides carboxyliques notamment l'acide tartrique et l'acide citrique, les hydrates de carbone notamment le glucose ; à titre d'exemple d'entraîneur d'air les tensioactifs notamment les éthers de glycol, les laurylsulfates ; à titre d'exemple d'épaississant notamment les dérivés cellulosiques et les polyacrylamides ; à titre d'exemple agent d'adhésion et de ductilité notamment les latex ; à titre d'exemple d'accélérateur de durcissement notamment les carbonates de lithium et de sodium ; à titre d'exemple d'anti-mousse notamment les copolymères polyoxydes d'éthylène polypropylène, les triisobutylphosphates et les alcools gras.
Il n'est pas nécessaire d'utiliser une trop grande quantité d'adjuvant. Ces composés ont un coût économique important, et s'ils sont présents en trop grande quantité ils risquent de modifier les caractéristiques de la matrice cimentaire. De préférence, la proportion massique totale des adjuvants complémentaires et de l'adjuvant polycarboxylate ne dépasse pas 5 % (Norme EN 206-1 paragraphe 5.2.6, mars 2006).
L'invention sera bien comprise à la lecture de la description suivante d'exemples de réalisation, en référence à la figure unique annexée, qui montre l'effet fluidifiant, induit par le polymère polycarboxylate sur deux types de ciments.
EXEMPLES Deux types de liants hydrauliques ont été testés: un ciment sulfo-alumineux et un ciment Portiand.
Ciments
Les caractéristiques du ciment sulfo-alumineux utilisé (ciment industriel produit en Italie) sont indiquées dans le tableau 1. Il contient 60 % massique de Yeelimite, 11 % massique de Bélite et 23 % massique d'anhydrite.
Tableau 1 - Principales caractéristiques du ciment sulfo-alumineux utilisé.
A titre comparatif a été utilisé un ciment Portiand.
Le ciment Portiand utilisé ici est un CEM I industriel. Ses caractéristiques sont indiquées dans le tableau 2. Sa composition est typique d'un ciment Portiand avec une teneur moyenne en alcalin. Tableau 2 - Principales caractéristiques du ciment Portiand utilisé.
Adjuvant selon l'invention
Le polycarboxylate utilisé provient de la société AXIM France. Il s'agit d'un polycarboxylate avec un taux de greffage proche de 20 %. Il est fonctionnalisé par des chaînes polyéthylèneglycol longues (environ 5000 g/mol). Adjuvant comparatif
L'acide citrique est un agent retardateur communément utilisé dans le cadre des ciments Portiand, alumineux et sulfo-alumineux. L'acide citrique provient de la société Sigma-AIdrich. Tous les essais ont été réalisés à 20°C sur des pâtes de ciments ayant un rapport eau/ciment (E/C) égal à 0,44. Les pâtes ont été obtenues en mélangeant l'eau avec le ciment durant 3 minutes à l'aide d'un malaxeur à hélice Bioblock scientific.
Temps de prise
L'évaluation du temps de prise initial a été réalisée à l'aide d'un analyseur texturométrique TA-XT2L Ce test consiste à mesurer une "force de pénétration" à une profondeur finie dans une pâte de ciment à un temps donné. Une aiguille de 7 mm2 est enfoncée sur une distance de 10 mm et la force appliquée nécessaire est mesurée.
Le temps de prise de la pâte de ciment est déduit en considérant que le début de prise intervient quand la force nécessaire est de 10 N, et que la fin de prise intervient quand la force nécessaire est de 100 N.
Mini cône
Les mesures d'étalement ont été effectuées sur une plaque de verre sèche posée sur un plan horizontal. L'eau, le ciment et les différents adjuvants (à E/C=0,44) sont mélangés, puis l'ensemble est malaxé pendant 1 minute à petite vitesse (200 tours/min) et 2 minutes à grande vitesse (850 tours/min). Deux minutes avant la mesure d'étalement, la formulation est mélangée à nouveau à grande vitesse (850 tours/min) pendant 1 minute. En fin de mélange, la formulation est mise en place dans le mini-cône (1/5 du cône d'Abrams, hauteur 6 cm, rayon haut 1 cm, rayon bas 2 cm), vibrée et arasée. A l'échéance considérée, le cône est soulevé lentement et l'étalement mesuré (diamètre).
Résultats
Effet fluidifiant
La figure 1 représente l'effet fluidifiant induit par le polycarboxylate, à un temps de mise en œuvre de 15 minutes, sur deux types de ciments : un ciment Portland (résultats schématisés par des ronds) et un ciment sulfo-alumineux (carrés).
En abscisse est indiqué le pourcentage massique de polymère polycarboxylate par rapport au ciment (liant hydraulique), en ordonnée l'étalement relatif (valeur sans dimension, correspondant à l'étalement mesuré au mini cône en présence du polymère polycarboxylate divisé par le résultat obtenu sans polymère).
On observe que le polymère polycarboxylate a effectivement un effet fluidifiant sur les deux ciments, et que pour un dosage en polymère supérieur à 0,05 % (en masse) par rapport au ciment (liant hydraulique), l'effet fluidifiant est environ deux fois plus important pour un ciment sulfo-alumineux que pour un ciment Portland.
Retard de prise
Le tableau 3 indique les temps de début de prise, exprimés en minutes, des ciments Portland, et sulfo-alumineux étudiés.
Tableau 3 - Temps de début de prise (en minutes) mesurés par texturométrie
On observe que sans adjuvant le temps de prise du ciment sulfo-alumineux est très rapide.
L'acide citrique, un retardateur connu du ciment Portland a un effet important sur le ciment Portland (+ 190 minutes) mais relativement faible sur le ciment sulfo- alumineux (+ 15 minutes),
Les résultats du tableau 3 montrent clairement que le superplastifiant polycarboxylate a un effet retardateur de prise beaucoup plus important (+ 195 minutes) sur le ciment sulfo-alumineux que sur le ciment Portland (+ 100 minutes).

Claims

Revendications
1. Utilisation d'un polymère polycarboxylate en tant que fluidifiant et retardateur de prise d'un liant hydraulique comprenant majoritairement un clinker sulfo-alumineux, le clinker sulfo-alumineux renfermant au moins 30 % en masse de phase Yeelimite.
2. Utilisation selon la revendication 1, caractérisée en ce que ledit liant hydraulique comprend au moins 60 %, notamment au moins 80 % en masse, préférentiel lement au moins 90 % en masse de clinker sulfo-alumineux.
3. Utilisation selon les revendications 1 ou 2, caractérisée en ce que ledit clinker sulfo- alumineux renferme au moins 40 % en masse de phase Yeelimite, notamment de 40 à 80 %, préférentiel lement de 50 à 70 % en masse de phase Yeelimite.
4. Utilisation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit polymère polycarboxylate présente une structure de type peigne et un taux de fonctionnalisation de 1 à 80 %, notamment de 10 à 50 %, préférentiel lement de 15 à 30 %.
5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit polymère polycarboxylate présente une fonctionnalisation par des chaînes de type polyoxyde d'alkyle, notamment polyoxyde d'éthylène, lesdites chaînes ayant une masse moléculaire moyenne comprise entre 750 et 7000 g/mol, notamment comprise entre 1000 et 6000 g/mol.
6. Utilisation selon l'une quelconque des revendications 1 à 5, pour la réalisation d'un mortier, d'une chape traditionnelle, ou d'une chape fluide auto plaçante.
7. Utilisation selon l'une quelconque des revendications 1 à 5, pour la réalisation d'un béton, notamment d'un béton prêt à l'emploi, tel qu'un béton prêt à l'emploi, notamment un béton auto plaçant.
8. Utilisation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la proportion massique de polymère polycarboxylate par rapport au liant hydraulique est comprise entre 0,01 et 3 %, notamment comprise entre 0,05 et 1,5 %, particulièrement comprise entre 0,1 et 1 % en masse.
9. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit liant hydraulique comprend, en plus du polymère polycarboxylate, au moins un adjuvant choisi parmi les entraîneurs d'air, les épaississants, les agents d'adhésion et de ductilité, les accélérateurs de durcissement, les anti-mousses, les colorants, ou les retardateurs autres que polycarboxylate.
EP13711076.3A 2012-03-01 2013-02-28 Retardateur de prise pour ciment sulfo-alumineux Withdrawn EP2819970A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251881A FR2987619B1 (fr) 2012-03-01 2012-03-01 Retardateur de prise pour ciment sulfo-alumineux
PCT/FR2013/050419 WO2013128130A1 (fr) 2012-03-01 2013-02-28 Retardateur de prise pour ciment sulfo-alumineux

Publications (1)

Publication Number Publication Date
EP2819970A1 true EP2819970A1 (fr) 2015-01-07

Family

ID=47913465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13711076.3A Withdrawn EP2819970A1 (fr) 2012-03-01 2013-02-28 Retardateur de prise pour ciment sulfo-alumineux

Country Status (3)

Country Link
EP (1) EP2819970A1 (fr)
FR (1) FR2987619B1 (fr)
WO (1) WO2013128130A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626918A (zh) * 2019-01-01 2019-04-16 中国人民解放军63653部队 缓凝型低碱度复合胶凝材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394765B2 (ja) * 1999-02-15 2010-01-06 Basfポゾリス株式会社 セメント添加剤
US7572328B2 (en) * 2005-06-14 2009-08-11 United States Gypsum Company Fast drying gypsum products
US8096359B2 (en) * 2006-11-17 2012-01-17 Baker Hughes Incorporated Method of cementing using polymeric retarder
EP2234934B1 (fr) * 2008-01-31 2019-06-26 ITALCEMENTI S.p.A. Mélange solide et revêtement à base d'un clinker sulfo-alumineux ou sulfo-ferroalumineux et conduits à base de ciment ainsi revêtus
FR2943665B1 (fr) * 2009-03-27 2011-05-06 Kerneos Mortier dense auto-nivelant presentant une resistance amelioree a l'usure
FR2955104B1 (fr) * 2010-01-13 2014-08-08 Kerneos Materiau pour isolation thermique et son procede de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013128130A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626918A (zh) * 2019-01-01 2019-04-16 中国人民解放军63653部队 缓凝型低碱度复合胶凝材料及其制备方法
CN109626918B (zh) * 2019-01-01 2021-12-31 中国人民解放军63653部队 缓凝型低碱度复合胶凝材料及其制备方法

Also Published As

Publication number Publication date
WO2013128130A1 (fr) 2013-09-06
FR2987619A1 (fr) 2013-09-06
FR2987619B1 (fr) 2015-04-24

Similar Documents

Publication Publication Date Title
EP2401240B1 (fr) Composition seche comprenant un liant et une huile vegetale modifiee
FR2958931A1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton
CA2751577C (fr) Liant hydraulique rapide pour pieces et ouvrages en beton contenant un sel de calcium
EP2819970A1 (fr) Retardateur de prise pour ciment sulfo-alumineux
EP3066060B1 (fr) Composition fluidifiante sous forme de poudre et son procédé de préparation
EP1032545A1 (fr) Agent modificateur d'hydratation pour mortier ou beton a retrait limite
FR2948930A1 (fr) Agent anti-pellicule de surface
FR3065455B1 (fr) Utilisation d’un agent entraineur d’air pour diminuer le temps de sechage d’une chape a base de sulfate de calcium
FR3069547B1 (fr) Composition polymerique aqueuse et copolymere
JP2010100457A (ja) 高温用グラウト組成物
WO2016097648A1 (fr) Composition hydraulique pour la réalisation de chaussées
EP2895438A2 (fr) Nouvelle chape à base de liant hydraulique avec une conductivité thermique améliorée
FR3094712A1 (fr) Composition de liant hydraulique
FR3069548A1 (fr) Composition polymerique aqueuse et copolymere
FR3069546A1 (fr) Composition polymerique aqueuse et copolymere
FR2893324A1 (fr) Procede de collage sur chape a base de sulfate de calcium.
FR3097865A1 (fr) Copolymère et composition de liant hydraulique
EP1252119A1 (fr) Compositions a base de derives phenoliques et leur utilisation comme adjuvants des liants mineraux
WO2017202801A1 (fr) Utilisation de platre pour la fabrication d'une chape fluide destinee aux pays chauds
FR3079514A1 (fr) Procede de pulverisation d'une composition liquide sur une poudre sulfate de calcium
FR2986523A1 (fr) Nouvelle chape a base de sulfate de calcium
FR2740445A1 (fr) Additif pour controler la sedimentation des conglomerats

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CIMENTS FRANCAIS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CIMENTS FRANCAIS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ITALCEMENTI S.P.A.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230901