EP2814704A1 - Method for determining an emergency braking situation of a vehicle - Google Patents
Method for determining an emergency braking situation of a vehicleInfo
- Publication number
- EP2814704A1 EP2814704A1 EP13704350.1A EP13704350A EP2814704A1 EP 2814704 A1 EP2814704 A1 EP 2814704A1 EP 13704350 A EP13704350 A EP 13704350A EP 2814704 A1 EP2814704 A1 EP 2814704A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- acceleration
- speed
- criterion
- evaluation method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000011156 evaluation Methods 0.000 claims abstract description 109
- 230000001133 acceleration Effects 0.000 claims abstract description 91
- 230000033001 locomotion Effects 0.000 claims abstract description 72
- 230000035484 reaction time Effects 0.000 claims description 40
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 230000000977 initiatory effect Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
- B60T7/22—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0134—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
- B60K31/0008—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
- B60K2031/0033—Detecting longitudinal speed or acceleration of target vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/804—Relative longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
Definitions
- the invention relates to a method for determining an emergency braking situation of a vehicle, a control device for carrying out such a method and a driving dynamics control system with such a control device.
- the invention relates to a method for assessing the risk of a rear impact when driving on a road, on which a preceding object, in particular a vehicle, is located.
- EP 1 539 523 B1 or DE10258617B4 describes a method and a device for triggering an automatic emergency braking operation of a vehicle.
- the own speed and the own acceleration of the vehicle are determined and a minimum distance is set as the target safety distance.
- a target relative speed between the two vehicles is set, which is to be achieved with the completion of the automatic emergency braking operation.
- the determined currently existing relative acceleration between the two vehicles is used.
- DE 10 2006 019 848 B4 describes a device for reducing the effects of a vehicle collision, in which an obstacle with its relative distance and its relative speed detected and a possible collision or accident is assessed, whereupon optionally an occupant protection means can be activated. Such systems are also known as pre-crash systems.
- JP 2004038245 A1 shows an obstacle detector for vehicles in which additionally a detected steering wheel actuation is used.
- EP 0 891 903 B1 describes an automatic emergency braking function in which the possibility of bypassing the obstacle is also assessed.
- EP 1 625 979 B1 describes a method and a device for triggering emergency braking, in which a collision probability and furthermore a risk to one's own vehicle in the event of an emergency brake release are determined and the triggering threshold for the emergency braking can be changed as a function of this determined hazard.
- EP 1 803 109 B1 describes a method for determining relevant objects in the vicinity of a vehicle, in which collision-relevant values from vehicle and / or environmental sensor data are calculated taking into account possible avoidance maneuvers or braking processes.
- a disadvantage of such conventional methods is generally that they are often limited only to specific driving situations and thus do not always contribute in time to accident prevention of autonomous braking. Furthermore, the triggering of emergency braking may possibly also occur too early and thus possibly unnecessarily.
- the Bendix-Wingman Adaptive Cruise ACB Adaptive Cruise System incorporates a distance system to keep the distance to a preceding vehicle constant.
- warning display signals and also emergency braking signals can be output for the automatic execution of an emergency braking method.
- the distance to the preceding vehicle is measured, for example, with radar.
- the invention has for its object to provide a method, a corresponding control device for its implementation and a vehicle dynamics control system that allow safe detection of an emergency braking situation and keep the probability of unauthorized emergency braking low.
- a first evaluation method which represents a motion equation evaluation method
- equations of motion of both the own vehicle and the object in front of the vehicle are set up and evaluated depending on whether an emergency braking situation exists.
- a demand delay can be calculated below.
- the equations of motion can be set up in particular in the second order of the time, ie with initial value, linear term and quadratic term, so that a common equation system or a common equation of motion of the own vehicle and front object can be formed, from which a subsequent undershooting of a minimum distance and / or a collision can be determined.
- a second evaluation method a braking distance analysis is carried out in which the braking distance of at least one's own vehicle can be determined and evaluated.
- an emergency braking situation can be determined by equations of motion of the driver's vehicle and of the vehicle's front object.
- second-order equations of motion may be formed in time, i. with a relative distance as a zero-order term of time, the velocities (or the relative velocity) as first-order terms in time, and the accelerations as second-order terms in time.
- a system of equations can thus be formed from these equations of motion, with which it is determined whether an approximation to a permissible minimum distance (for example a minimum distance of 1 meter or also zero) will subsequently follow.
- reaction times of the brake systems of the vehicle eg for ventilating the brakes
- / or of the driver can be included in particular, since changes due to active interventions will only have an effect after the reaction time.
- Equations of motion of second order in the time with negative acceleration ie a deceleration or deceleration of one's own vehicle or of the preceding object, mathematically also include a fictitious reverse drive following a complete standstill of the vehicle or of the object.
- the equation of motion evaluation method is only used if it is considered useful.
- criteria for determining different situations are used to select the appropriate rating method.
- a braking distance of the own vehicle is preferably determined and evaluated without the inclusion of the exact equations of motion of the own vehicle and the front object.
- a time-dependent admissibility criterion is defined, which compares the intrinsic deceleration time of the first, own vehicle with the object deceleration time of the front, second object, which represents a particularly simple determination and determination of the admissibility of the first or second evaluation method.
- the self-braking time can be up to the achievement determine the minimum distance while simultaneously reducing the relative speed of the own, first vehicle to the front, second object.
- the object deceleration time is the time it takes the front, second object to standstill.
- an upstream criterion can also be used in advance, whether the relative distance after the reaction time does not already reach or falls below the minimum distance, and thus an emergency braking situation already exists; this can be considered as an upstream ("zeroth") assessment procedure, so that the first and second assessment procedures do not even become relevant.
- the own first acceleration can be measured by a longitudinal acceleration sensor and / or determined by temporal derivation of the own, first speed.
- the relative distance to the front object can be determined in particular by a distance sensor. From this, therefore, the second speed of the object can be determined at least from the temporal behavior of the signal of the relative distance and its second acceleration as the time derivative thereof.
- the second speed of the object may also be e.g. be detected by a Radardoppler measurement.
- the evaluation of the emergency braking situation according to the invention can then be determined in particular by determining the demand delay of the own vehicle.
- the fictitious case can be excluded that the front vehicle at a negative acceleration, i. Delay or braking, in a subsequent fictitious backward movement after its stoppage triggers a collision with the own vehicle.
- a negative acceleration i. Delay or braking
- the first evaluation method can be applied.
- the equation of motion evaluation method is advantageously not used, since a fictitious collision case is determined on subsequent reversing of the front object. This results in a criterion of admissibility for the equation of motion equation method, whereby the second evaluation method is subsequently used in the event of non-compliance.
- the second method of evaluation basically uses the braking distances, but not the dynamics of the vehicles until their standstill, ie their exact equations of motion.
- the first and second evaluation methods complement each other ideally.
- Such collisions can already be detected by the motion equation evaluation method. If, therefore, the admissibility criterion for the motion equation evaluation method is fulfilled and the motion equation evaluation method can be used, collisions until the standstill are reliably detected.
- both an automatic emergency braking triggered by the method or a warning indication signal can be issued to the driver.
- reaction times can be included, which thus include the apparatus-related times for filling the brakes and actuating the actuators in an automatic emergency brake system and also take into account the reaction time of the driver when a warning indication signal is output to the driver.
- different cases are hierarchically subdivided.
- a first case can first of all check whether the relative distance between the own vehicle and the front object after the reaction time is smaller than a minimum distance to be maintained; if this first criterion is met, emergency braking is always initiated immediately. Only then will z.
- the motion equation evaluation method may first be checked, and if this is not the case then the second evaluation method is used. In two other cases, e.g. only the equations of motion evaluation method or the second evaluation method are used. Furthermore, there may be a case in which the acceleration of the front object is positive and also the differential or relative speed is positive, so that it can be recognized that altogether there is no danger of collision.
- the control device according to the invention can in particular cut off the engine torque depending on the result of the method according to the invention, for which purpose it can be used, for example.
- B. outputs control signals to an engine control unit.
- Figure 1 shows the representation of a street scene with two vehicles driving one behind the other.
- Fig. 2 to 7 diagrams of the distances and speeds of the two vehicles and their relative distance according to different initial conditions.
- a first, own vehicle 1 drives behind a front object 2, in this case a second, front vehicle 2, on a roadway 3.
- the first own vehicle 1 is at a position x1 and travels at a speed vi and an acceleration a1.
- a braking process thus represents an acceleration a1 with a negative value.
- the second, front vehicle 2 is at a position x2, runs at a second speed v2 and a second acceleration a2.
- All quantities x1, vi, a1; x2, v2, a2 are time dependent.
- the own vehicle 1 has a distance sensor 4 for determining a relative distance dx between the first, own vehicle 1 and the front vehicle 2, a vehicle dynamics system 5 with a control device 6, a speed sensor 7 and the vehicle 6 controllable vehicle brakes 8.
- the distance sensor 4 outputs a relative distance measuring signal M1
- the speed sensor 7 outputs a speed measuring signal M2 to the control device 6.
- the speed sensor 7 can also be provided by the ABS wheel speed sensors be formed.
- the control device 6 outputs brake control signals M3 to the vehicle brakes 8.
- reaction time t1 can be used.
- a shorter reaction time t1 must be used, which is essentially determined by the time required to build up brake pressure in the brakes (brake ventilation).
- FCW forward collision warning
- evaluation methods for the braking criterion ie the determination of a time at which the emergency braking is to be initiated.
- the basic idea here is, if possible, to set up the second-order equations of motion of the first, own vehicle 1 and of the second, front vehicle 2 and to determine from this whether emergency braking should be initiated.
- a trajectory or movement parabola is set up, which may possibly lead to a standstill in the case of negative acceleration, but mathematically also describes a backward travel of the respective first own vehicle 1 and / or of the relevant second front vehicle 2 in the subsequent time values.
- This equation thus describes the relative movement between the first, own vehicle 1 and the second, front vehicle 2.
- a1_d_1 a2 - Equation 4.
- the value a1_d_1 is referred to as "first” target acceleration and provided with the suffix "_1", since after the first evaluation process BV1, i. the equation of motion valuation method.
- dx_t1 dx_0 + dv * t1 + (a2-a1) ⁇ Equation 6.
- a1_d_1 a2 ( ⁇ v - f1 ) 2 Equation 7.
- This equation 7 is used to calculate the required first target acceleration a1_d_1 in the following example.
- the minimum distance dx_min is set to 1 m
- the speed curves of the first speed vi and the second speed v2 thus fall linearly and reach the zero line.
- the path curves x1 and x2 form parabolas open at the bottom, which initially increase to their respective vertex S1 or S2, at which vi and v2 also become 0; the right side of the parabolas becomes According to the invention evaluated as physically nonsensical, since they each corresponds to a fictitious backward movement.
- equation 7 leads to a first desired acceleration a1_d_1 of -7.3 m / s 2 .
- the movement curves are shown in FIG.
- equation 7 leads to a value a1_d_1 of -5.2 m / s 2 .
- the resulting movements are shown in FIG.
- the result represents a time that is within the allowed range; equations 3 and 4 represent realistic motions of both vehicles 1, 2 with vi, v2> 0.
- the value a1_d_1 calculated on the basis of equation 7, in this situation of figure 4 represents an allowable value to be evaluated the situation can be used.
- equation 7 delivers permissible values as long as both vehicles 1, 2 are still driving, ie. H. have not yet come to a standstill.
- the results become inadmissible when one of the vehicles 1, 2 comes to a standstill.
- an impermissible range thus begins when the paraboloidal path curve x1 or x2 of one of the vehicles 1, 2 reaches its vertex S1 or S2; Correspondingly, the velocity lines then intersect the zero point and the zero axis, respectively.
- an admissibility criterion Zk1 is set in order to check the admissibility of this first evaluation method.
- the object deceleration time t2_stop is calculated based on its current second speed v2 and second acceleration a2:
- the own deceleration time t1_dv required by the own vehicle 1 is based on the result for a1_d_1 of equation 7 and can be calculated as ung 9
- the second evaluation method BV2 calculates the distance that the own vehicle 1 has to standstill behind the front vehicle 2 available.
- the second target acceleration a1_d_2 is calculated, which is required to standstill within this distance, starting from the current speed vi of the own vehicle 1. All parts that contribute to this calculation are included in this calculation. These parts or sections are:
- This equation 13 thus indicates the speed of the own vehicle 1 after the reaction time t1.
- the required acceleration of the own vehicle 1 is determined as a second setpoint acceleration a1_d_2
- the second setpoint acceleration a1_d_2 determined in equation 14 thus represents the demand delay of the second evaluation method BV2 and is used in the following example.
- the driving situation of this example is similar to Example 1 of Figure 2, to allow a direct comparison of the two approaches for calculating the desired acceleration or demand delay.
- the reaction time t1 is 1 s.
- the second evaluation method BV2 according to equation 14 leads to a demand delay (second set acceleration) a1_d_2 of -3.9 m / s 2 .
- the equation of motion evaluation method BV1 according to Equation 7 resulted in a value of the first setpoint acceleration of a1_d_1 of -4.3 m / s 2 , which, as described above, should be regarded as an invalid result, since Equation 7 reproduces a result, whose time is after the standstill of the first own vehicle 1 and the second front vehicle 2, in which the first own vehicle 1 and the second front vehicle 2 drive backwards.
- these relations are represented by the curves or graphs already known from FIG. 2, and the further curves.
- the second evaluation method BV2 thus takes into account only the end points of the situation when the first own vehicle 1 and the second front vehicle 2 have come to a standstill; the deceleration phases are not considered separately for the first own vehicle 1 and the front vehicle 2.
- the deceleration path s2_stop of the front vehicle 2 is used for the calculation of s1_br. Explicit calculation of this value avoids unwanted consideration of the rearward movement of the front vehicle 2.
- a standstill of the front, second vehicle 2 is considered after the deceleration process. This is represented by the curve x2 in FIG. It represents this standstill or this fixed position.
- Equation 14 represents the correct value for the target acceleration in this situation, since it represents exactly the acceleration required to collide with to avoid the front vehicle 2 and to stop the first, own vehicle 1 at a distance of 1 m behind the front vehicle
- the second example of the motion equation evaluation method BV1 shown above shows another situation in which the motion equation evaluation method BV1 leads to an excessively high value for the first target acceleration a1_d_1.
- These situations are generally characterized by a large relative distance dx between the first own vehicle 1 and the second, front vehicle 2 and a strong deceleration a2 of the front vehicle 2.
- Equation 7 resulted in a first target acceleration of a1_d_1 of -7.3 m / s 2 .
- the resulting motions according to the two delay values are shown in FIG.
- the value for a1_d_1 according to the motion equation evaluation method BV1 described above is too large and gives a standstill distance of 45.1 m, as stated above.
- the second evaluation method BV2 leads to a value of the second target acceleration a1_d_2 of -3.6 m / s 2 , which corresponds to the minimum delay that is required. to avoid the collision with the front vehicle 2 of this situation.
- the example 3 shown above in connection with the equation of motion evaluation method BV1 supplies a correct result for the first setpoint acceleration a1_d_1 with the motion equation evaluation method BV1.
- the own vehicle 1 has an initial speed of 90 km / h.
- the value for dx_min is set to 1 m and the initial relative distance dx_0 between the first own vehicle 1 and the second front vehicle 2 is 40 m.
- the resulting motions for both acceleration values are shown in FIG.
- the relative distance dx_2 between the own, first vehicle 1 and the front, second vehicle 2 determined by the second evaluation method BV2 becomes smaller than 0. This means that one's own Vehicle 1 collides with the front vehicle 2 before the own vehicle 1 and the front vehicle 2 reach the standstill.
- the value of the second evaluation method BV2 for the second setpoint acceleration a1_d_2 in this example is not correct. rect or does not lead to a correct calculation of the deceleration value in order to avoid a collision with the front vehicle 2. Rather, in such a case, the equation of motion evaluation method BV1, ie a1_d_1 according to equation 7, is to be used.
- the second evaluation method BV2 therefore only considers the end points of the braking situation when both vehicles 1, 2 have come to a standstill. However, it does not check the crossing points of the trajectories of both vehicles 1, 2 possibly occurring during the deceleration process, i. intermittent collisions.
- both evaluation methods BV1, BV2 are used for a correct calculation of the braking criterion.
- a first criterion K1 it is checked whether the distance dx_t1 between the vehicles 1 and 2 after the reaction time t1 is smaller than the minimum distance dx_min: dx_t1 ⁇ dx_min.
- the first criterion K1 is not correct, four cases are distinguished and checked in a further criterion K2: K2a, K2b, K2c, K2d.
- K2a, K2b, K2c, K2d the accelerations a2 of the front vehicle 2 and the relative speed after the reaction time dv_t1 are used in each case.
- the second criterion K2a is checked if a2 ⁇ 0 and dv_t1 ⁇ 0.
- the equation of motion evaluation method BV1 is checked. If not, the second rating method BV2 is used.
- the third criterion K2b is checked if a2 ⁇ 0 and dv_t1-i0. Here is always checked only with the help of the second evaluation BV2. This avoids the weakness of the equation of motion evaluation method BV1 in those situations where there is a strong deceleration of the front vehicle 2. If the third criterion K2b is satisfied, ie, the determined second setpoint acceleration a1_d_2 exceeds a limit value, the necessity of an automatic deceleration of the own vehicle 1 arises, since the driver does not respond after the end of his reaction time will be able to adjust the necessary amount of delay automatically.
- the fourth criterion K2c is checked if a250 and dv_t1 ⁇ 0. Here, it is always checked only with the aid of the equation of motion evaluation method BV1, since only evaluation method BV1 is relevant.
- the second evaluation method BV2 is not applicable here, since with a positive acceleration a2 of the front vehicle 2, no deceleration path s2_stop can be determined.
- the weakness of the motion equation evaluation method BV1 in situations characterized by a strong deceleration of the front vehicle 2 is not relevant in such situations, since only positive values for a2 are considered. If the fourth criterion K2c is satisfied, i. the determined first target acceleration a1_d_1 exceeds a limit, the need for an automatic braking of the own vehicle 1, since the driver will not be able to set the necessary amount of delay automatically after his reaction time.
- the fifth criterion K2d is checked if a2> 0 and dv_t1 - 0.
- the front vehicle 2 accelerates away from the own vehicle 1. This case is therefore safe overall, so that there is no need to initiate automatic emergency braking.
- a control algorithm can be formed according to which the first criterion K1 is first checked and subsequently the case distinction is made in the criteria K2a, K2b, K2c and K2d, in which then the desired acceleration (as described). loading may delay) is determined as either a1_d_1 according to Equation 7 or as a1_d_2 according to Equation 14.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Transportation (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Regulating Braking Force (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13704350T PL2814704T5 (en) | 2012-02-14 | 2013-02-01 | Method for determining an emergency braking situation of a vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012002695.1A DE102012002695B4 (en) | 2012-02-14 | 2012-02-14 | Procedure for determining an emergency braking situation of a vehicle |
PCT/EP2013/000305 WO2013064705A1 (en) | 2012-02-14 | 2013-02-01 | Method for determining an emergency braking situation of a vehicle |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2814704A1 true EP2814704A1 (en) | 2014-12-24 |
EP2814704B1 EP2814704B1 (en) | 2016-07-20 |
EP2814704B2 EP2814704B2 (en) | 2019-11-06 |
Family
ID=47715966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13704350.1A Active EP2814704B2 (en) | 2012-02-14 | 2013-02-01 | Method for determining an emergency braking situation of a vehicle |
Country Status (11)
Country | Link |
---|---|
US (1) | US9566959B2 (en) |
EP (1) | EP2814704B2 (en) |
JP (1) | JP6195578B2 (en) |
KR (1) | KR101661047B1 (en) |
CN (1) | CN104114423B (en) |
CA (1) | CA2860892C (en) |
DE (1) | DE102012002695B4 (en) |
ES (1) | ES2596277T5 (en) |
PL (1) | PL2814704T5 (en) |
RU (1) | RU2624974C2 (en) |
WO (1) | WO2013064705A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018210500A1 (en) | 2017-05-19 | 2018-11-22 | Wabco Europe Bvba | Method for determining autonomous emergency braking, method for performing the emergency braking, and control device for a driving-dynamics system |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10254764B2 (en) | 2016-05-31 | 2019-04-09 | Peloton Technology, Inc. | Platoon controller state machine |
US10520581B2 (en) | 2011-07-06 | 2019-12-31 | Peloton Technology, Inc. | Sensor fusion for autonomous or partially autonomous vehicle control |
US20170242443A1 (en) | 2015-11-02 | 2017-08-24 | Peloton Technology, Inc. | Gap measurement for vehicle convoying |
US9582006B2 (en) | 2011-07-06 | 2017-02-28 | Peloton Technology, Inc. | Systems and methods for semi-autonomous convoying of vehicles |
WO2013150600A1 (en) * | 2012-04-02 | 2013-10-10 | トヨタ自動車株式会社 | Collision avoidance assist apparatus |
US11294396B2 (en) | 2013-03-15 | 2022-04-05 | Peloton Technology, Inc. | System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles |
US20180210463A1 (en) | 2013-03-15 | 2018-07-26 | Peloton Technology, Inc. | System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles |
DE102013207113A1 (en) * | 2013-04-19 | 2014-10-23 | Continental Teves Ag & Co. Ohg | A method and system for avoiding a launching of a follower vehicle to an immediate preceding vehicle and use of the system |
US10373259B1 (en) | 2014-05-20 | 2019-08-06 | State Farm Mutual Automobile Insurance Company | Fully autonomous vehicle insurance pricing |
US10599155B1 (en) | 2014-05-20 | 2020-03-24 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle operation feature monitoring and evaluation of effectiveness |
US11669090B2 (en) | 2014-05-20 | 2023-06-06 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle operation feature monitoring and evaluation of effectiveness |
US9972054B1 (en) | 2014-05-20 | 2018-05-15 | State Farm Mutual Automobile Insurance Company | Accident fault determination for autonomous vehicles |
US10223479B1 (en) | 2014-05-20 | 2019-03-05 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle operation feature evaluation |
US10540723B1 (en) | 2014-07-21 | 2020-01-21 | State Farm Mutual Automobile Insurance Company | Methods of providing insurance savings based upon telematics and usage-based insurance |
US20210118249A1 (en) | 2014-11-13 | 2021-04-22 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle salvage and repair |
US20160280190A1 (en) * | 2015-03-23 | 2016-09-29 | Bendix Commercial Vehicle Systems Llc | Pre-computed and optionally cached collision mitigation braking system |
US9805601B1 (en) | 2015-08-28 | 2017-10-31 | State Farm Mutual Automobile Insurance Company | Vehicular traffic alerts for avoidance of abnormal traffic conditions |
US9764718B2 (en) * | 2015-09-15 | 2017-09-19 | International Business Machines Corporation | Management of vehicle braking |
CN106546434B (en) * | 2015-09-16 | 2019-03-12 | 上海汽车集团股份有限公司 | Automobile automatic emergency brake test device |
JP6567376B2 (en) | 2015-09-25 | 2019-08-28 | パナソニック株式会社 | apparatus |
DE102015219465A1 (en) | 2015-10-08 | 2017-04-13 | Volkswagen Aktiengesellschaft | Method and device for determining the adaptive reaction time of the driver of a motor vehicle |
CN105355087A (en) * | 2015-11-19 | 2016-02-24 | 深圳前海达闼云端智能科技有限公司 | Control method, apparatus, and system of vehicle in internet of vehicles, and vehicle |
CN105501220B (en) * | 2015-11-24 | 2018-11-06 | 东软集团股份有限公司 | The method, apparatus and vehicle of vehicle collision prewarning |
CN105539404B (en) * | 2015-12-31 | 2018-05-04 | 清华大学苏州汽车研究院(吴江) | It is a kind of for the target detection early warning parked and auxiliary braking system |
US11242051B1 (en) | 2016-01-22 | 2022-02-08 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle action communications |
US10134278B1 (en) | 2016-01-22 | 2018-11-20 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle application |
US11719545B2 (en) | 2016-01-22 | 2023-08-08 | Hyundai Motor Company | Autonomous vehicle component damage and salvage assessment |
US10395332B1 (en) | 2016-01-22 | 2019-08-27 | State Farm Mutual Automobile Insurance Company | Coordinated autonomous vehicle automatic area scanning |
US11441916B1 (en) | 2016-01-22 | 2022-09-13 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle trip routing |
US10324463B1 (en) | 2016-01-22 | 2019-06-18 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle operation adjustment based upon route |
US10308246B1 (en) | 2016-01-22 | 2019-06-04 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle signal control |
US9632507B1 (en) | 2016-01-29 | 2017-04-25 | Meritor Wabco Vehicle Control Systems | System and method for adjusting vehicle platoon distances based on predicted external perturbations |
CN105539440A (en) * | 2016-02-04 | 2016-05-04 | 成都跟驰科技有限公司 | Emergency brake distance judgment system and method based on following motorcade |
US10303166B2 (en) * | 2016-05-23 | 2019-05-28 | nuTonomy Inc. | Supervisory control of vehicles |
US10126136B2 (en) | 2016-06-14 | 2018-11-13 | nuTonomy Inc. | Route planning for an autonomous vehicle |
US10309792B2 (en) | 2016-06-14 | 2019-06-04 | nuTonomy Inc. | Route planning for an autonomous vehicle |
US11092446B2 (en) | 2016-06-14 | 2021-08-17 | Motional Ad Llc | Route planning for an autonomous vehicle |
JP6778872B2 (en) * | 2016-06-28 | 2020-11-04 | パナソニックIpマネジメント株式会社 | Driving support device and driving support method |
CN106114480A (en) * | 2016-06-29 | 2016-11-16 | 成都生辉电子科技有限公司 | A kind of automobile safety control method based on two-way range rate measurement |
CN105946765A (en) * | 2016-06-30 | 2016-09-21 | 成都生辉电子科技有限公司 | Automobile collision avoidance control method |
US10829116B2 (en) | 2016-07-01 | 2020-11-10 | nuTonomy Inc. | Affecting functions of a vehicle based on function-related information about its environment |
DE102016213015A1 (en) * | 2016-07-15 | 2018-01-18 | Robert Bosch Gmbh | A method and apparatus for creating a hazard map for identifying at least one danger location for a vehicle |
US10369998B2 (en) | 2016-08-22 | 2019-08-06 | Peloton Technology, Inc. | Dynamic gap control for automated driving |
EP3500940A4 (en) * | 2016-08-22 | 2020-03-18 | Peloton Technology, Inc. | Automated connected vehicle control system architecture |
CN106153976A (en) * | 2016-08-25 | 2016-11-23 | 何嘉颖 | A kind of speed responsive device and speed responsive method |
CN106205170B (en) * | 2016-08-30 | 2020-06-12 | 上海交通大学 | Intersection accurate parking device and method for automatic driving |
DE102016011325A1 (en) | 2016-09-21 | 2018-03-22 | Wabco Gmbh | A method for determining a dynamic vehicle distance between a follower vehicle and a front vehicle of a platoon |
US10473470B2 (en) | 2016-10-20 | 2019-11-12 | nuTonomy Inc. | Identifying a stopping place for an autonomous vehicle |
US10857994B2 (en) | 2016-10-20 | 2020-12-08 | Motional Ad Llc | Identifying a stopping place for an autonomous vehicle |
US10331129B2 (en) | 2016-10-20 | 2019-06-25 | nuTonomy Inc. | Identifying a stopping place for an autonomous vehicle |
US10681513B2 (en) | 2016-10-20 | 2020-06-09 | nuTonomy Inc. | Identifying a stopping place for an autonomous vehicle |
DE102017202172B4 (en) | 2017-02-10 | 2022-12-15 | Cosmin Tudosie | Method for displaying safety-related information on a vehicle display device |
DE102017203739A1 (en) * | 2017-03-07 | 2018-09-13 | Continental Teves Ag & Co. Ohg | Automatic emergency braking system |
DE102017111004A1 (en) * | 2017-05-19 | 2018-11-22 | Wabco Europe Bvba | Method and control device for autonomous emergency braking of an own vehicle |
CN107399343A (en) * | 2017-07-24 | 2017-11-28 | 中国联合网络通信集团有限公司 | Operation control method for train, device, system and train |
FR3070655B1 (en) * | 2017-09-06 | 2019-08-23 | Renault S.A.S | METHOD AND DEVICE FOR CONTROLLING EMERGENCY BRAKE DISTANCE |
CN112026758B (en) * | 2017-09-30 | 2021-06-15 | 上海蔚来汽车有限公司 | Front collision avoidance method and system for vehicle |
CN109878518B (en) * | 2017-12-04 | 2021-08-17 | 京东方科技集团股份有限公司 | Apparatus and method for controlling vehicle travel |
CN109969116B (en) * | 2017-12-28 | 2021-01-29 | 大众汽车(中国)投资有限公司 | Anti-collision method and system for vehicle |
US10960880B2 (en) | 2018-03-28 | 2021-03-30 | Intel Corporation | Vehicle slack distribution |
EP3842304B1 (en) * | 2018-08-14 | 2024-09-18 | Mobileye Vision Technologies Ltd. | Systems and methods for navigating with safe distances |
DE102018122865A1 (en) * | 2018-09-18 | 2020-03-19 | Wabco Gmbh | Procedure for emergency braking of an own vehicle and emergency braking system |
US20220041162A1 (en) * | 2018-09-25 | 2022-02-10 | Nissan Motor Co., Ltd. | Vehicle control method and vehicle control device |
DE102018218844A1 (en) * | 2018-11-05 | 2020-05-20 | Volkswagen Aktiengesellschaft | Method and arrangement for determining a target deceleration for a first-person vehicle |
US11340623B2 (en) * | 2019-01-04 | 2022-05-24 | Toyota Research Institute, Inc. | Driver-centric model predictive controller |
TR201900981A2 (en) | 2019-01-22 | 2020-08-21 | Ford Otomoti̇v Sanayi̇ Anoni̇m Şi̇rketi̇ | EMERGENCY BRAKING SYSTEM AND METHOD |
CN113424242B (en) * | 2019-02-18 | 2023-03-28 | 三菱电机株式会社 | Information processing apparatus, computer-readable recording medium, and information processing method |
CN110171404B (en) * | 2019-06-24 | 2020-09-11 | 爱驰汽车有限公司 | Driving safety distance control method, system, equipment and storage medium |
GB201916026D0 (en) * | 2019-11-04 | 2019-12-18 | Five Ai Ltd | Adaptive cruise control |
US11198418B2 (en) * | 2019-11-19 | 2021-12-14 | GM Global Technology Operations LLC | Method and subsystem for controlling an autonomous braking system for a vehicle |
EP3882813A1 (en) | 2020-03-20 | 2021-09-22 | Aptiv Technologies Limited | Method for generating a dynamic occupancy grid |
US11364883B2 (en) * | 2020-03-27 | 2022-06-21 | Nvidia Corporation | Leveraging rear-view sensors for automatic emergency braking in autonomous machine applications |
EP3888988B1 (en) * | 2020-03-30 | 2024-09-04 | Aptiv Technologies AG | Method and system for determining a usable distance in front of a vehicle |
DE102020109623A1 (en) | 2020-04-07 | 2021-10-07 | Bayerische Motoren Werke Aktiengesellschaft | Means of locomotion, device and method for outputting a warning to a driver of a means of locomotion before the intervention of a vehicle dynamics control system |
EP3905105A1 (en) | 2020-04-27 | 2021-11-03 | Aptiv Technologies Limited | Method for determining a collision free space |
EP3905106A1 (en) | 2020-04-27 | 2021-11-03 | Aptiv Technologies Limited | Method for determining a drivable area |
KR20230156768A (en) * | 2021-03-15 | 2023-11-14 | 모셔널 에이디 엘엘씨 | break arbitration |
CN113405812B (en) * | 2021-06-16 | 2022-04-19 | 吉利汽车研究院(宁波)有限公司 | Test method and test system for vehicle collision early warning system |
CN113246932A (en) * | 2021-06-18 | 2021-08-13 | 东风柳州汽车有限公司 | Emergency braking auxiliary control method, device, equipment and storage medium |
IT202100017156A1 (en) | 2021-06-30 | 2022-12-30 | Tp Automotive S R L | SAFETY SYSTEM FOR COLLECTIVE TRANSPORT MEANS |
FR3131570B1 (en) * | 2022-01-05 | 2024-08-02 | Psa Automobiles Sa | Method for assisting in driving a motor vehicle, associated device and vehicle |
CN114566038B (en) * | 2022-02-28 | 2023-10-24 | 长安大学 | Vehicle-road cooperative multi-stage early warning system and method for internet-connected freight vehicle team |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3724520C2 (en) | 1986-07-31 | 1996-01-11 | Madaus Ag | New 3-aryl-3-cycloalkyl-piperidine-2,6-dione derivatives |
US4833469A (en) * | 1987-08-03 | 1989-05-23 | David Constant V | Obstacle proximity detector for moving vehicles and method for use thereof |
JPH0558319A (en) * | 1991-08-27 | 1993-03-09 | Mazda Motor Corp | Contact preventive device for vehicle |
JP3014823B2 (en) * | 1991-09-19 | 2000-02-28 | マツダ株式会社 | Vehicle integrated control device |
DE4326051A1 (en) * | 1992-08-03 | 1994-02-10 | Mazda Motor | Safety system for autonomous motor vehicle - contains detector of changes in detection region of obstruction detector eg ultrasound radar |
US5983161A (en) * | 1993-08-11 | 1999-11-09 | Lemelson; Jerome H. | GPS vehicle collision avoidance warning and control system and method |
US6768944B2 (en) † | 2002-04-09 | 2004-07-27 | Intelligent Technologies International, Inc. | Method and system for controlling a vehicle |
US7085637B2 (en) * | 1997-10-22 | 2006-08-01 | Intelligent Technologies International, Inc. | Method and system for controlling a vehicle |
US7110880B2 (en) * | 1997-10-22 | 2006-09-19 | Intelligent Technologies International, Inc. | Communication method and arrangement |
JP3319984B2 (en) * | 1997-07-09 | 2002-09-03 | 本田技研工業株式会社 | Vehicle collision avoidance device |
EP0891903B1 (en) | 1997-07-17 | 2009-02-11 | Volkswagen Aktiengesellschaft | Automatic emergency brake function |
DE19814574B4 (en) * | 1998-04-01 | 2005-03-10 | Bosch Gmbh Robert | System for generating a signal for controlling the brake lights of a motor vehicle |
JP3714116B2 (en) * | 1999-08-09 | 2005-11-09 | トヨタ自動車株式会社 | Steering stability control device |
JP3473563B2 (en) * | 2000-08-17 | 2003-12-08 | 日産自動車株式会社 | Braking control device |
ITTO20010282A1 (en) * | 2001-03-26 | 2002-09-26 | Fiat Ricerche | VEHICLE DRIVING AID SYSTEM. |
JP3918656B2 (en) | 2002-06-28 | 2007-05-23 | 日産自動車株式会社 | Obstacle detection device for vehicle |
DE50303235D1 (en) | 2002-09-20 | 2006-06-08 | Daimler Chrysler Ag | METHOD AND DEVICE FOR TRIGGERING AN AUTOMATIC EMERGENCY BRAKE OPERATION OF A VEHICLE |
DE10258617B4 (en) | 2002-09-20 | 2007-06-14 | Daimlerchrysler Ag | Method and device for triggering an automatic emergency braking operation of a vehicle |
US6882923B2 (en) * | 2002-10-17 | 2005-04-19 | Ford Global Technologies, Llc | Adaptive cruise control system using shared vehicle network data |
JP4082177B2 (en) * | 2002-10-30 | 2008-04-30 | トヨタ自動車株式会社 | Vehicle safety device |
JP4267294B2 (en) * | 2002-11-05 | 2009-05-27 | トヨタ自動車株式会社 | Brake control device for vehicle |
WO2004085220A1 (en) | 2003-03-26 | 2004-10-07 | Continental Teves Ag & Co. Ohg | Electronic control system for a vehicle and method for determining at least one driver-independent intervention in a vehicle system |
JP2004039245A (en) † | 2003-07-23 | 2004-02-05 | Hitachi Maxell Ltd | Disk cartridge |
DE102004008894A1 (en) * | 2004-02-24 | 2005-09-08 | Robert Bosch Gmbh | Safety system for a means of transportation and related method |
DE102004038734A1 (en) | 2004-08-10 | 2006-02-23 | Robert Bosch Gmbh | Method and device for triggering emergency braking |
DE112005001904A5 (en) * | 2004-10-20 | 2007-05-31 | Adc Automotive Distance Control Systems Gmbh | Method for determining relevant objects |
DE102004052519A1 (en) * | 2004-10-29 | 2006-05-04 | Robert Bosch Gmbh | Device for avoiding a collision |
DE102004058663A1 (en) * | 2004-12-06 | 2006-06-14 | Robert Bosch Gmbh | Method and device for controlling an automatic emergency braking |
DE102005003274A1 (en) * | 2005-01-25 | 2006-07-27 | Robert Bosch Gmbh | Collision occurrence preventing or reducing method for use in vehicle, involves identifying obstacle using field sensor, determining data of obstacle, and determining vehicle deceleration based on the data of obstacle and data of vehicle |
DE602005001615T2 (en) * | 2005-04-29 | 2008-04-10 | Ford Global Technologies, LLC, Dearborn | Method and system for forward collision prevention for a motor vehicle |
JP4163205B2 (en) | 2005-11-15 | 2008-10-08 | 三菱電機株式会社 | Vehicle collision mitigation device |
EP2095351B1 (en) * | 2006-10-13 | 2014-06-25 | Continental Teves AG & Co. oHG | System for determining objects |
EP1961639A1 (en) * | 2007-02-22 | 2008-08-27 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Vehicle driving assistance |
US8355852B2 (en) * | 2007-05-04 | 2013-01-15 | GM Global Technology Operations LLC | Slow or stopped vehicle ahead advisor with digital map integration |
JP2009120116A (en) * | 2007-11-16 | 2009-06-04 | Hitachi Ltd | Vehicle collision avoidance support device |
SE531835C2 (en) * | 2007-12-03 | 2009-08-25 | Scania Cv Abp | Procedure and apparatus for supporting a control strategy for the performance of a vehicle |
DE102007060862B4 (en) * | 2007-12-18 | 2021-08-12 | Man Truck & Bus Se | Emergency braking system |
EP2085279B1 (en) * | 2008-01-29 | 2011-05-25 | Ford Global Technologies, LLC | A system for collision course prediction |
DE102008011228A1 (en) * | 2008-02-26 | 2009-08-27 | Robert Bosch Gmbh | Method for assisting a user of a vehicle, control device for a driver assistance system of a vehicle and vehicle having such a control device |
DE102008045481A1 (en) * | 2008-08-28 | 2009-05-20 | Daimler Ag | Automatic emergency brake action triggering method for e.g. bus, involves implementing driver warning in form of partial brake actions of vehicle with predetermined, continuous increasing partial brake delay |
DE102008045181B3 (en) † | 2008-08-30 | 2010-01-07 | Sauter Feinmechanik Gmbh | tool turret |
BRPI0914388A2 (en) * | 2008-10-30 | 2015-10-20 | Ford Global Tech Llc | "vehicle and method of warning a driver of a vehicle" |
WO2010117308A1 (en) * | 2009-04-07 | 2010-10-14 | Volvo Technology Corporation | Method and system to enhance traffic safety and efficiency for vehicles |
RU2402445C1 (en) * | 2009-10-16 | 2010-10-27 | Осман Мирзаевич Мирза | Method of preventing tf collision with object moving in tf front lateral zone in direction crossing that of tf |
US8738228B2 (en) * | 2009-10-30 | 2014-05-27 | Ford Global Technologies, Llc | Vehicle and method of tuning performance of same |
US8633810B2 (en) * | 2009-11-19 | 2014-01-21 | Robert Bosch Gmbh | Rear-view multi-functional camera system |
US20110190972A1 (en) * | 2010-02-02 | 2011-08-04 | Gm Global Technology Operations, Inc. | Grid unlock |
US8825345B2 (en) * | 2010-07-16 | 2014-09-02 | Honda Motor Co., Ltd. | Engine control for a motor vehicle |
DE102010027449A1 (en) * | 2010-07-17 | 2012-01-19 | Man Truck & Bus Ag | Method for carrying out an emergency braking operation of a vehicle |
DE102010051203B4 (en) * | 2010-11-12 | 2022-07-28 | Zf Active Safety Gmbh | Method for detecting critical driving situations in trucks or passenger vehicles, in particular for avoiding collisions |
US9399455B2 (en) * | 2012-12-11 | 2016-07-26 | Nissan Motor Co., Ltd. | Device for controlling distribution force in a four-wheel drive vehicle |
DE102013001228A1 (en) * | 2013-01-25 | 2014-07-31 | Wabco Gmbh | A method for determining a triggering criterion for a braking and emergency braking system for a vehicle |
-
2012
- 2012-02-14 DE DE102012002695.1A patent/DE102012002695B4/en active Active
-
2013
- 2013-02-01 JP JP2014555968A patent/JP6195578B2/en active Active
- 2013-02-01 RU RU2014137111A patent/RU2624974C2/en active
- 2013-02-01 US US14/376,727 patent/US9566959B2/en active Active
- 2013-02-01 WO PCT/EP2013/000305 patent/WO2013064705A1/en active Application Filing
- 2013-02-01 EP EP13704350.1A patent/EP2814704B2/en active Active
- 2013-02-01 CN CN201380009448.3A patent/CN104114423B/en active Active
- 2013-02-01 PL PL13704350T patent/PL2814704T5/en unknown
- 2013-02-01 KR KR1020147024946A patent/KR101661047B1/en active IP Right Grant
- 2013-02-01 CA CA2860892A patent/CA2860892C/en active Active
- 2013-02-01 ES ES13704350T patent/ES2596277T5/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018210500A1 (en) | 2017-05-19 | 2018-11-22 | Wabco Europe Bvba | Method for determining autonomous emergency braking, method for performing the emergency braking, and control device for a driving-dynamics system |
Also Published As
Publication number | Publication date |
---|---|
JP2015508726A (en) | 2015-03-23 |
EP2814704B1 (en) | 2016-07-20 |
PL2814704T3 (en) | 2017-01-31 |
WO2013064705A1 (en) | 2013-05-10 |
JP6195578B2 (en) | 2017-09-13 |
ES2596277T3 (en) | 2017-01-05 |
CA2860892C (en) | 2017-05-09 |
CN104114423A (en) | 2014-10-22 |
PL2814704T5 (en) | 2020-06-29 |
CN104114423B (en) | 2017-05-03 |
KR101661047B1 (en) | 2016-10-10 |
ES2596277T5 (en) | 2020-06-22 |
KR20140129115A (en) | 2014-11-06 |
EP2814704B2 (en) | 2019-11-06 |
US20150012204A1 (en) | 2015-01-08 |
CA2860892A1 (en) | 2013-05-10 |
US9566959B2 (en) | 2017-02-14 |
RU2014137111A (en) | 2016-04-10 |
RU2624974C2 (en) | 2017-07-11 |
DE102012002695B4 (en) | 2024-08-01 |
DE102012002695A1 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2814704B1 (en) | Method for determining an emergency braking situation of a vehicle | |
DE102004004918B4 (en) | Method for collision warning in a motor vehicle | |
EP1625979B1 (en) | Method and device for triggering an emergency braking | |
DE102007039039B4 (en) | Control of safety means of a motor vehicle | |
DE102010006214A1 (en) | Emergency brake assistant for automatic braking of a vehicle for collision avoidance or collision consequence reduction | |
DE102013001228A1 (en) | A method for determining a triggering criterion for a braking and emergency braking system for a vehicle | |
DE102014215980A1 (en) | Motor vehicle with cooperative autonomous driving mode | |
WO2006072342A1 (en) | Method for operating a collision avoidance system or collision sequence reducing system of a vehicle, and collision avoidance system or collision sequence reducing system | |
DE102010004625A1 (en) | Method and device for assisting a driver in an overtaking process | |
DE102007060862A1 (en) | Emergency brake assistance system for e.g. passenger car, has control unit triggering driver warning i.e. haptic warning, when determined collision time period falls below emergency brake time period | |
DE102009012226A1 (en) | Method for avoiding or reducing collision of vehicle with e.g. road user, involves determining trigger load, where trigger load depends upon maximum transverse acceleration parameter that depends upon velocity of vehicle | |
DE102005012037A1 (en) | A method of operating a collision avoidance or collision sequence mitigation system of a vehicle and collision avoidance or collision mitigation system | |
WO2011101014A1 (en) | Method for preventing collisions or reducing a collision severity of a vehicle | |
DE102010006215A1 (en) | Method for automatic braking of a vehicle for collision avoidance or collision following reduction | |
DE102014215274A1 (en) | Method and device for operating a vehicle | |
DE102013015028A1 (en) | Method for operating a vehicle | |
DE102014008487A1 (en) | Method for operating a vehicle | |
DE102013021813A1 (en) | Driver assistance system with adaptive reaction threshold | |
EP2054281B1 (en) | Actuation of safety means of a motor vehicle | |
DE102012014624A1 (en) | Method for collision prevention or collision sequence reduction for person guided motor vehicle, involves triggering warning and/or autonomous emergency braking at object when presence of straight-on driving position of vehicle is detected | |
DE102014220300A1 (en) | Rangierassistent and Rangierassistenzverfahren for a motor vehicle | |
EP3079959B1 (en) | Motor vehicle with collision warning | |
EP2054280B1 (en) | Actuation of safety means of a motor vehicle | |
DE102004053754A1 (en) | Method for detecting rear-end collision situations in convoy traffic | |
DE102011115878A1 (en) | Method for warning driver of motor car before threatening collision, involves delivering warning to driver by consideration of driver response time, and downwardly limiting actual driver response time by minimum driver response time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160420 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BREUER, KARSTEN Inventor name: SANDKUEHLER, DIRK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 813787 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013003788 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2596277 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161120 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161020 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161121 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161021 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502013003788 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161020 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 Ref country code: BE Ref legal event code: MM Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130201 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
27A | Patent maintained in amended form |
Effective date: 20191106 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502013003788 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2596277 Country of ref document: ES Kind code of ref document: T5 Effective date: 20200622 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013003788 Country of ref document: DE Owner name: ZF CV SYSTEMS EUROPE BV, BE Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013003788 Country of ref document: DE Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013003788 Country of ref document: DE Owner name: ZF CV SYSTEMS EUROPE BV, BE Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230317 Year of fee payment: 11 Ref country code: AT Payment date: 20230215 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230131 Year of fee payment: 11 Ref country code: IT Payment date: 20230228 Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231214 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231213 Year of fee payment: 12 Ref country code: NL Payment date: 20231215 Year of fee payment: 12 Ref country code: FR Payment date: 20231212 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231213 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231205 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 813787 Country of ref document: AT Kind code of ref document: T Effective date: 20240201 |