EP2807117A1 - Precipitated-silica production method - Google Patents
Precipitated-silica production methodInfo
- Publication number
- EP2807117A1 EP2807117A1 EP13701979.0A EP13701979A EP2807117A1 EP 2807117 A1 EP2807117 A1 EP 2807117A1 EP 13701979 A EP13701979 A EP 13701979A EP 2807117 A1 EP2807117 A1 EP 2807117A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- concentration
- weight
- silicate
- reaction medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 68
- 239000000377 silicon dioxide Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 239000002253 acid Substances 0.000 claims abstract description 134
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000012429 reaction media Substances 0.000 claims abstract description 54
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 50
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 39
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 26
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 22
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 13
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 13
- 235000019253 formic acid Nutrition 0.000 claims abstract description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 51
- 230000008569 process Effects 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 15
- 239000002585 base Substances 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 5
- 238000000889 atomisation Methods 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 abstract description 4
- 239000007858 starting material Substances 0.000 abstract 1
- 239000001117 sulphuric acid Substances 0.000 abstract 1
- 235000011149 sulphuric acid Nutrition 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- -1 metasilicates Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000012763 reinforcing filler Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000019743 Choline chloride Nutrition 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 2
- 229960003178 choline chloride Drugs 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229940034610 toothpaste Drugs 0.000 description 2
- 239000000606 toothpaste Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229910052700 potassium Chemical group 0.000 description 1
- 239000011591 potassium Chemical group 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/126—Preparation of silica of undetermined type
- C01B33/128—Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/187—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
- C01B33/193—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
Definitions
- the present invention relates to a new process for the preparation of precipitated silica.
- precipitated silicas as a catalyst support, as an absorbent of active substances (in particular liquid carriers, for example used in foodstuffs, such as vitamins (vitamin E in particular), choline chloride), as a viscosifying, texturizing or anti-caking agent, as an element for battery separators, as an additive for toothpaste, for paper.
- active substances in particular liquid carriers, for example used in foodstuffs, such as vitamins (vitamin E in particular), choline chloride
- a viscosifying, texturizing or anti-caking agent as an element for battery separators, as an additive for toothpaste, for paper.
- precipitated silicas as reinforcing filler in silicone matrices (for example for coating electrical cables) or in compositions based on polymer (s), natural or synthetic, in particular elastomer (s), especially diene, for example for shoe soles, floor coverings, gas barriers, fire-retardant materials and also technical parts such as ropeway rollers, appliance seals, liquid or gas line joints, brake system seals, ducts, cables and transmission belts.
- the main object of the present invention is to provide a new process for the preparation of precipitated silica, which is an alternative to known processes for the preparation of precipitated silica.
- one of the aims of the present invention is to provide a process having improved productivity, in particular at the level of the precipitation reaction, in particular with respect to the methods of the state of the art implementing as a acid, a dilute acid, which makes it possible to obtain precipitated silicas having physicochemical characteristics and properties comparable to those of the precipitated silicas obtained by these preparative methods of the state of the art.
- Another object of the invention preferably consists, at the same time, in reducing the quantity of energy consumed and / or the quantity of water used in the preparation of precipitated silica, especially with respect to the methods of the state of the art using as acid a dilute acid.
- the object of the invention is a new process for the preparation of precipitated silica, comprising the reaction of a silicate with at least one acid, whereby a suspension of silica is obtained, followed by the separation and drying of this silica. suspension, in which the reaction of the silicate with the acid is carried out according to the following successive stages: (i) an initial aqueous base stock comprising alkali metal silicate M is formed, the silicate concentration (expressed in S102) of said foot less than 20 g / l, preferably at most 15 g / l,
- alkali metal silicate M and acid are added to the reaction medium in such a way that the ratio of the amount of silicate added (expressed as SiO 2) / amount of silicate present in the initial base stock ( expressed in S102) is greater than 4 and not more than 100, preferably between 12 and 100, in particular between 12 and 50,
- step (v) the reaction medium obtained at the end of step (iv) is brought into contact (mixture) (thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2 ) with acid and silicate, such that the pH of the reaction medium is maintained between 2.5 and 5.3, preferably between 2.8 and 5.2, in which process:
- step (iii) in at least a part of step (iii) (i.e. in at least some or all of step (iii))
- the acid used is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight, acetic acid or formic acid having a concentration of at least 90% by weight, the nitric acid having a concentration of at least 60% by weight, the phosphoric acid having a concentration of at least 75% by weight, the acid hydrochloric acid having a concentration of at least 30% by mass.
- said concentrated acid is concentrated sulfuric acid, that is to say sulfuric acid having a concentration of at least 80% by weight, preferably at least 90% by weight.
- step (vi) sulfuric acid having a concentration of at least 1400 g / l, in particular at least 1650 g / l. It is possible, in a subsequent step (vi), to add, in the reaction medium obtained at the end of step (v), an alkaline agent, preferably a silicate, until it reaches pH value of the reaction medium of between 4.7 and 6.3, preferably between 5.0 and 5.8, for example between 5.0 and 5.4.
- an alkaline agent preferably a silicate
- the acid used in step (v) is a concentrated acid as defined above.
- the acid used in steps (ii), (iii) and (iv) can then be, for example, a dilute acid, advantageously dilute sulfuric acid, that is to say having a concentration much lower than 80% by weight, in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, especially not more than 10% by weight, for example between 5 and 10% by weight.
- the invention is a new process for the preparation of precipitated silica comprising the reaction of a silicate with at least one acid, whereby a suspension of silica is obtained. , then separating and drying this suspension, in which the reaction of the silicate with the acid is carried out according to the following successive steps:
- alkali metal silicate M and acid are added to the reaction medium in such a way that the ratio of the amount of silicate added (expressed as SiO 2) / amount of silicate present in the initial base stock ( expressed in S102) is greater than 4 and not more than 100, preferably between 12 and 100, in particular between 12 and 50,
- step (v) the reaction medium obtained at the end of step (iv) is brought into contact (mixture) (thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2 ) with acid and silicate, so that the pH of the reaction medium is maintained between 2.5 and 5.3, preferably between 2.8 and 5.2, in which process in at least a portion of step (iii) (i.e., in at least a portion or all of step (iii)), the acid used is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight, the acetic acid or formic acid having a concentration of at least 90% by weight, nitric acid having a concentration of at least 60% by weight, the phosphoric acid having a concentration of at least 75% by weight, the hydrochloric acid having a concentration of at least 30% by weight.
- the acid used is a concentrated acid, preferably selected from the group consisting of sulfuric acid having
- said concentrated acid is concentrated sulfuric acid, that is to say sulfuric acid having a concentration of at least 80% by weight, preferably at least 90% by weight.
- the acid used in a part of step (iii), preferably in step (iii) (this is in all of step (iii)), is a concentrated acid, preferably selected from the group consisting of sulfuric acid having a concentration of at least 80% by weight, in particular at least 90% by weight.
- acetic acid or formic acid having a concentration of at least 90% by weight
- the nitric acid having a concentration of at least 60% by weight
- the phosphoric acid having a concentration of at least 75% by mass
- hydrochloric acid having a concentration of at least 30% by mass.
- said concentrated acid is concentrated sulfuric acid, that is to say sulfuric acid having a concentration of at least 80% by weight (and generally at most 98% by weight). ), preferably at least 90% by weight; in particular, its concentration is between 90 and 98% by weight, for example between 91 and 97% by weight.
- the concentrated acid as defined above is used only in step (iii).
- the acid used in steps (ii), (iv) and (v) can then be for example a dilute acid, advantageously dilute sulfuric acid, that is to say having a concentration much lower than 80% by weight, in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, especially not more than 10% by weight, for example between 5 and 10% by weight.
- a dilute acid advantageously dilute sulfuric acid, that is to say having a concentration much lower than 80% by weight, in this case a concentration of less than 20% by weight (and in general of at least 4% by weight), in particular less than 14% by weight, especially not more than 10% by weight, for example between 5 and 10% by weight.
- the acid used in step (iv) is also a concentrated acid as mentioned above.
- the acid used in steps (iv) and (v) is also a concentrated acid as mentioned above.
- the acid used in the whole of step (ii) may then be for example a diluted acid as described above
- the acid used in the whole of step (ii) may also be a concentrated acid as mentioned above, advantageously acid concentrated sulfuric acid, that is to say having a concentration of at least 80% by weight, preferably at least 90% by weight, in particular between 90 and 98% by weight.
- acid concentrated sulfuric acid that is to say having a concentration of at least 80% by weight, preferably at least 90% by weight, in particular between 90 and 98% by weight.
- water in the initial stock especially before step (ii) or during step (ii).
- the choice of the acid, the optional alkaline agent and the alkali metal silicate M is in a manner well known per se.
- the acid (s) is generally an organic acid such as acetic acid, formic acid or carbonic acid or, preferably, a mineral acid such as sulfuric nitric acid, phosphoric acid or hydrochloric acid.
- concentrated acetic acid or concentrated formic acid is used as the concentrated acid, then their concentration is at least 90% by weight.
- concentrated nitric acid is used as concentrated acid, then its concentration is at least 60% by weight.
- concentrated concentrated phosphoric acid If concentrated concentrated phosphoric acid is used, then its concentration is at least 75% by weight.
- concentrated hydrochloric acid is used as concentrated acid, then its concentration is at least 30% by weight.
- the acid (s) used is sulfuric acid (s), the concentrated sulfuric acid then used having a concentration as already mentioned in the above discussion.
- silicate any common form of silicates such as metasilicates, disilicates and advantageously an alkali metal silicate M in which M is sodium or potassium.
- the silicate may have a concentration (expressed as SiO 2) of between 2 and 330 g / l, for example between 3 and 300 g / l, in particular between 4 and 260 g / l.
- the silicate used is sodium silicate.
- sodium silicate In the case where sodium silicate is used, it generally has a weight ratio SiO 2 / Na 2 O of between 2.5 and 4, for example between 3.2 and 3.8.
- the alkaline agent employed in the optional step (vi) may be, for example, a solution of sodium hydroxide, potassium hydroxide or ammonia.
- this alkaline agent is silicate, in particular silicate as used in the preceding steps.
- the reaction of the silicate with the acid is in a very specific manner according to the following steps.
- First (step (i)) is formed an aqueous stock which comprises silicate.
- the silicate concentration (expressed in S102) of this initial base stock is less than 20 g / l.
- This concentration is preferably at most 15 g / l, in particular at most 1 1 g / l, for example at most 8 g / l.
- the vessel stock formed in step (i) may optionally comprise an electrolyte. Nevertheless, preferably, no electrolyte is added during the preparation process, in particular in step (i).
- electrolyte is here understood in its normal acceptation, that is to say that it signifies any ionic or molecular substance which, when in solution, decomposes or dissociates to form ions or charged particles.
- electrolyte mention may be made of a salt of the group of alkali and alkaline earth metal salts, in particular the salt of the starting silicate metal and of the acid, for example sodium chloride in the case of the reaction of a silicate of sodium with hydrochloric acid or, preferably, sodium sulfate in the case of the reaction of a sodium silicate with sulfuric acid.
- the second step (step (ii)) is to add acid in the initial stock.
- step (Ni) acid is added to said initial base stock until at least 50%, in particular 50% to 99%, of the quantity of M 2 O present in said initial base stock. neutralized.
- step (Ni) a simultaneous addition (step (Ni)) of acid and an amount of alkali metal silicate M such as the consolidation rate are then carried out.
- the ratio amount of silicate added (expressed as SiO 2 ) / amount of silicate present in the initial stock (expressed in SiO 2 ) is greater than 4 and at most 100.
- this simultaneous addition of acid and a quantity of alkali metal silicate M is carried out so that the consolidation ratio is preferably between 12 and 100, in particular between 12 and 50, especially between 13 and 40.
- this simultaneous addition of acid and a quantity of alkali metal silicate M is carried out in such a way that the consolidation ratio is rather greater than 4 and less than 12, particular between 5 and 1 1, 5, especially between 7.5 and 1 1.
- This variant is, in general, implemented when the silicate concentration in the initial stock is at least 8 g / l, in particular between 10 and 15 g / l, for example between 11 and 15 g. / L.
- the amount of added acid is such that 80 to 99%, for example 85 to 97%, of the amount of M 2 O added are neutralized.
- step (iii) it is possible to proceed to the simultaneous addition of acid and silicate at a first pH level of the reaction medium, ⁇ - ⁇ , then at a second pH level of the reaction medium, pH 2 , such as 7 ⁇ pH 2 ⁇ pHi ⁇ 9.
- a step (iv) the addition of the silicate is stopped while continuing the addition of acid in the reaction medium so as to obtain a pH value of the reaction medium of between 2.5 and 5.3 (for example between 3.0 and 5.3), preferably between 2.8 and 5.2 (for example between 4.0 and 5.2), in particular between 3.5 and 5.1 (or even between 3, 5 and 5.0).
- this curing can for example last from 2 to 45 minutes, in particular from 5 to 20 minutes, and preferably does not include any addition of acid or addition of silicate.
- step (v) the reaction medium obtained at the end of stage (iv), said reaction medium thus having a pH of between 2.5 and 5.3, preferably between 2.8 and 5.2, for example between 3, 5 and 5.1 (or between 3.5 and 5.0),
- Said pH of the reaction medium may vary within the range 2.5-5.3, preferably in the range 2.8-5.2, for example in the range 3.5-5.1 (even 3 , 5-5,0), or, preferably, remain (substantially) constant within these ranges.
- step (v) the contacting of the reaction medium resulting from step (iv) with the acid and the silicate (for example the alkali metal silicate M) is carried out by adding acid. and silicate said reaction medium.
- the silicate for example the alkali metal silicate M
- step (v) the acid and then the silicate are added to said reaction medium.
- step (v) the acid and the silicate (for example the alkali metal silicate M) are added simultaneously to said reaction medium; preferably, this simultaneous addition is carried out with regulation of the pH of the reaction medium obtained during this addition to a value (substantially) constant within the aforementioned ranges.
- the silicate for example the alkali metal silicate M
- Step (v) is generally carried out with stirring.
- step (vi) of the process according to the invention consists of an addition, in the reaction medium obtained at the end of step (v), of an alkaline agent, preferably of silicate (in particular of silicate of alkali metal M), until a pH value of the reaction medium is between 4.7 and 6.3, preferably between 5.0 and 5.8, for example between 5.0 and 5.4. .
- an alkaline agent preferably of silicate (in particular of silicate of alkali metal M)
- This step (vi) is usually carried out with stirring.
- step (i) to (v), or (vi) if necessary) is carried out with stirring.
- All steps (i) to (v), or (vi) where appropriate are usually carried out between 75 and 97 ° C, preferably between 80 and 96 ° C. According to a variant of the process of the invention, all the steps are carried out at a constant temperature.
- the end-of-reaction temperature is higher than the Reaction start temperature: thus, the temperature is maintained at the start of the reaction (for example during steps (i) and (ii)) preferably between 75 and 90 ° C, then the temperature is increased, preferably until at a value between 90 and 97 ° C, the value at which it is maintained (for example during steps (iii) to (vi)) until the end of the reaction.
- step (v) it may be advantageous to proceed at the end of step (v) or of the optional step (vi) to a maturation of the reaction medium obtained, in particular at the pH obtained at the end of this step (v) ( or step (vi)), and in general with stirring.
- This curing can for example last from 2 to 30 minutes, in particular from 3 to 20 minutes and can be carried out between 75 and 97 ° C., preferably between 80 and 96 ° C., in particular at the temperature at which the reaction was carried out.
- step (v) (or step (vi) It preferably does not include any addition of acid or addition of silicate.
- step (v) may be carried out in a fast mixer or in a turbulent flow zone, which may allow better control of the characteristics of the precipitated silicas obtained.
- step (v) the acid then the silicate (for example metal silicate) is added to the reaction mixture obtained at the end of step (iv). alkali M), then the contacting of said silicate with the medium resulting from the addition of the acid to the reaction medium obtained at the end of step (iv) can be carried out in a fast mixer or in a zone d turbulent flow.
- the silicate for example metal silicate
- step (v) the acid and the silicate (for example alkali metal silicate M) are added simultaneously to the reaction medium obtained at the end of step (iv). , then bringing said acid and said silicate into contact with said reaction medium can be carried out in a fast mixer or in a turbulent flow zone.
- the acid and the silicate for example alkali metal silicate M
- the reaction medium obtained in the fast mixer or in a turbulent flow zone feeds a reactor, preferably subjected to agitation, reactor in which the optional step (vi) is implemented.
- step (v) it is possible to use a fast mixer chosen from symmetrical T or Y mixers, asymmetrical T or Y mixers, tangential jet mixers and mixers. Hartridge-Roughton, vortex mixers, rotor-stator mixers.
- T or symmetrical Y are usually made of two opposite tubes (T-tubes) or forming an angle less than 180 ° (Y-tubes), of the same diameter, discharging into a central tube whose diameter is identical to or greater than that of the two previous tubes. They are called "symmetrical" because the two reagent injection tubes have the same diameter and the same angle with respect to the central tube, the device being characterized by an axis of symmetry.
- the central tube has a diameter about twice as large as the diameter of the opposed tubes; similarly the fluid velocity in the central tube is preferably half that in the opposite tubes.
- an asymmetrical T-shaped or Y-shaped mixer or tube
- a symmetrical T-shaped or Y-shaped mixer or tube
- one of the fluids is injected into the central tube by means of a smaller diameter side tube.
- the latter forms with the central tube an angle of 90 ° in general (T-tube); this angle may be different from 90 ° (Y-tube), giving co-current systems (for example 45 ° angle) or counter-current (for example 135 ° angle) relative to the other current.
- a fast mixer As a fast mixer, a tangential jet mixer, a Hartridge-Roughton mixer or a vortex mixer (or precipitator) are preferably used, which are derived from symmetrical T-shaped devices.
- step (v) it is possible to use a tangential jet fast mixer, Hartridge-Roughton or vortex, comprising a chamber having (a) at least two tangential admissions through which enter separately (but at the same time ) on the one hand, the silicate, and on the other hand, the medium resulting from the addition of acid to the reaction medium resulting from step (iv), namely, on the one hand, silicate and the acid, and on the other hand, the reaction medium resulting from step (iv), and (b) an axial outlet through which the reaction medium obtained in this step (v) leaves, preferably to a reactor (tank) arranged in series after said mixer.
- the two tangential admissions are of preferably located symmetrically and oppositely to the central axis of said chamber.
- the mixer chamber with tangential jets, Hartridge-Roughton or vortex optionally used generally has a circular section and is preferably of cylindrical shape.
- Each tangential inlet tube may have an internal diameter d of 0.5 to 80 mm.
- This internal diameter d may be between 0.5 and 10 mm, in particular between 1 and 9 mm, for example between 2 and 7 mm. However, especially on an industrial scale, it is preferably between 10 and 80 mm, in particular between 20 and 60 mm, for example between 30 and 50 mm.
- the internal diameter of the chamber of the tangential jet mixer, Hartridge-Roughton or vortex optionally used may be between 3d and 6d, in particular between 3d and 5d, for example equal to 4d; the internal diameter of the axial outlet tube may be between 1 d and 3d, in particular between 1.5d and 2.5d, for example equal to 2d.
- the flow rates of the silicate and the acid are for example determined so that at the confluence point the two reactant streams come into contact with each other in a sufficiently turbulent flow zone.
- step (v) a silica slurry is obtained, which is optionally followed by maturing. separated (liquid-solid separation).
- the separation used in the preparation process according to the invention usually comprises a filtration, followed by washing if necessary.
- the filtration is carried out by any suitable method, for example by means of a filter press, a belt filter, a vacuum filter.
- the silica suspension thus recovered (filter cake) is then dried.
- This drying can be done by any means known per se.
- the drying is done by atomization.
- any suitable type of atomizer may be used, such as a turbine, nozzle, liquid pressure or two-fluid atomizer.
- a turbine nozzle
- liquid pressure two-fluid atomizer.
- the filter cake is not always under conditions allowing atomization, in particular because of its viscosity. high.
- the cake is then subjected to a disintegration operation.
- This operation can be performed mechanically, by passing the cake in a colloid mill or ball.
- the disintegration is generally carried out in the presence of water and / or in the presence of an aluminum compound, in particular sodium aluminate and, optionally, in the presence of an acid as described above (in the latter case the aluminum compound and the acid are usually added simultaneously).
- the disintegration operation makes it possible in particular to lower the viscosity of the suspension to be dried later.
- the silica that can then be obtained is usually in the form of substantially spherical balls.
- the silica that is then likely to be obtained is generally in the form of a powder.
- the silica that may then be obtained may be in the form of a powder.
- the dried product in particular by a turbine atomizer or milled as indicated above may optionally be subjected to an agglomeration step, which consists, for example, of a direct compression, a wet-path granulation (that is, with the use of a binder such as water, silica suspension, etc.), extrusion or, preferably, dry compaction.
- an agglomeration step which consists, for example, of a direct compression, a wet-path granulation (that is, with the use of a binder such as water, silica suspension, etc.), extrusion or, preferably, dry compaction.
- the silica that can then be obtained by this agglomeration step is generally in the form of granules.
- the powders, as well as the silica beads, obtained by the process according to the invention thus offer the advantage, among others, of having a simple, effective and economical way of accessing granules, in particular by conventional setting operations. shaped, such as for example granulation or compaction.
- the precipitated silicas prepared by the process according to the invention are generally in at least one of the following forms: substantially spherical beads, powder, granules.
- the process according to the invention makes it possible to obtain silicas formed from aggregates of large primary particles of silica, on the surface of which there are small primary particles of silica.
- the implementation of the preparation method according to the invention makes it possible in particular to obtain during said process (at the end of step (v) or of the optional step (vi)) a more concentrated suspension of precipitated silica than that obtained by an identical process using only dilute acid, and therefore a productivity gain in precipitated silica (which can reach for example at least 10 to 40 %), in particular to the precipitation reaction (that is to say at the end of step (v) or of the possible step (vi)), while surprisingly accompanying the obtaining precipitated silicas having, preferably, a particular morphology, particle size and porosity.
- the precipitated silicas obtained by the process according to the invention preferably have good dispersibility in the polymers and give them a compromise of satisfactory properties, for example in terms of their mechanical, dynamic and rheological, comparable to those precipitated silicas obtained by an identical process using only diluted acid.
- the process according to the invention makes it possible, compared to an identical process employing only dilute acid, a gain ( reach for example at least 15 to 60%) on the energy consumption (in the form of live steam for example), in particular the precipitation reaction (that is to say at the end of the step ( v) or possible step (vi)), due to a decrease in the quantities of water involved and the exothermic nature of the use of concentrated acid.
- the use of concentrated acid makes it possible to restrict (for example by at least 15%) the quantity of water required for the reaction, in particular because of the reduction in the quantity of water used for the preparation of acid.
- the precipitated silica prepared by the process according to the invention can be used in various applications. It can be used, for example, as a catalyst support, as an absorbent of active substances (in particular a carrier for liquids, especially used in foodstuffs, such as vitamins (vitamin E), choline chloride), in polymer compositions. (s), in particular elastomer (s), silicone (s), as viscosity agent, texturizing or anti-caking, as an element for battery separators, additive for toothpaste, for concrete, for paper.
- active substances in particular a carrier for liquids, especially used in foodstuffs, such as vitamins (vitamin E), choline chloride
- s in particular elastomer (s), silicone (s), as viscosity agent, texturizing or anti-caking, as an element for battery separators, additive for toothpaste, for concrete, for paper.
- It can be used for reinforcing polymers, natural or synthetic.
- the polymer compositions in which the precipitated silicas prepared by the process according to the invention can be used, in particular as reinforcing filler, are generally based on one or more polymers or copolymers, in particular a or more elastomers, especially thermoplastic elastomers, preferably having at least a glass transition temperature of between -150 and +300 ° C, for example between -150 and +20 ° C.
- diene polymers in particular diene elastomers.
- finished articles based on the polymer compositions described above, such as shoe soles, tires, floor coverings, gas barriers, fireproofing materials and the like. also technical parts such as ropeway rollers, appliance joints, liquid or gas line joints, brake system joints, hoses, ducts (especially cable ducts) , cables, motor mounts, conveyor belts and transmission belts.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200213A FR2985992B1 (en) | 2012-01-25 | 2012-01-25 | NEW PROCESS FOR THE PREPARATION OF PRECIOUS SILICES |
PCT/EP2013/051237 WO2013110658A1 (en) | 2012-01-25 | 2013-01-23 | Precipitated-silica production method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2807117A1 true EP2807117A1 (en) | 2014-12-03 |
EP2807117B1 EP2807117B1 (en) | 2020-05-13 |
Family
ID=47630300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13701979.0A Active EP2807117B1 (en) | 2012-01-25 | 2013-01-23 | Precipitated-silica production method |
Country Status (9)
Country | Link |
---|---|
US (1) | US10011494B2 (en) |
EP (1) | EP2807117B1 (en) |
KR (1) | KR20140116213A (en) |
CN (1) | CN104080736A (en) |
BR (1) | BR112014018051A8 (en) |
CA (1) | CA2862475A1 (en) |
FR (1) | FR2985992B1 (en) |
MX (1) | MX2014009002A (en) |
WO (1) | WO2013110658A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2984870B1 (en) | 2011-12-23 | 2014-03-21 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
JP5868520B2 (en) | 2011-12-23 | 2016-02-24 | ローディア オペレーションズ | Method for producing precipitated silica |
FR2985990B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NOVEL PROCESS FOR THE PREPARATION OF PRECIPITED SILICES WITH PARTICULAR MORPHOLOGY, GRANULOMETRY AND POROSITY |
FR2985993B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
FR2985991B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
FR3018071B1 (en) | 2014-02-28 | 2016-02-26 | Rhodia Operations | NOVEL PROCESS FOR THE PREPARATION OF PRECIPITATED SILICES, NOVEL PRECIPITED SILICES AND THEIR USES, IN PARTICULAR FOR THE STRENGTHENING OF POLYMERS |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2678259B1 (en) * | 1991-06-26 | 1993-11-05 | Rhone Poulenc Chimie | NOVEL PRECIPITATED SILICA IN THE FORM OF GRANULES OR POWDERS, METHODS OF SYNTHESIS AND USE FOR REINFORCING ELASTOMERS. |
PT670813E (en) * | 1993-09-29 | 2003-07-31 | Rhodia Chimie Sa | PRECIPITATED SILICA |
FR2732329B1 (en) * | 1995-03-29 | 1997-06-20 | Rhone Poulenc Chimie | NOVEL PROCESS FOR PREPARING PRECIPITATED SILICA, NOVEL PRECIPITATED SILICA CONTAINING ALUMINUM AND THEIR USE FOR REINFORCING ELASTOMERS |
DE19526476A1 (en) * | 1995-07-20 | 1997-01-23 | Degussa | precipitated silica |
FR2763581B1 (en) * | 1997-05-26 | 1999-07-23 | Rhodia Chimie Sa | PRECIPITATED SILICA FOR USE AS A REINFORCING FILLER FOR ELASTOMERS |
CN1669922A (en) * | 2005-02-22 | 2005-09-21 | 山东海化集团有限公司 | Preparation method of precipitated silicon dioxide |
CN102137813A (en) * | 2008-09-01 | 2011-07-27 | 赢创德固赛有限责任公司 | Process for preparing precipitated silicas, precipitated silicas and their use |
FR2949455B1 (en) * | 2009-09-03 | 2011-09-16 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
FR2949454B1 (en) * | 2009-09-03 | 2011-09-16 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
FR2984870B1 (en) | 2011-12-23 | 2014-03-21 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
JP5868520B2 (en) | 2011-12-23 | 2016-02-24 | ローディア オペレーションズ | Method for producing precipitated silica |
FR2985990B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NOVEL PROCESS FOR THE PREPARATION OF PRECIPITED SILICES WITH PARTICULAR MORPHOLOGY, GRANULOMETRY AND POROSITY |
FR2985993B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
FR2985991B1 (en) | 2012-01-25 | 2014-11-28 | Rhodia Operations | NEW PROCESS FOR THE PREPARATION OF PRECIPITED SILICES |
-
2012
- 2012-01-25 FR FR1200213A patent/FR2985992B1/en not_active Expired - Fee Related
-
2013
- 2013-01-23 KR KR1020147023222A patent/KR20140116213A/en active IP Right Grant
- 2013-01-23 CA CA2862475A patent/CA2862475A1/en not_active Abandoned
- 2013-01-23 EP EP13701979.0A patent/EP2807117B1/en active Active
- 2013-01-23 US US14/373,799 patent/US10011494B2/en active Active
- 2013-01-23 CN CN201380006533.4A patent/CN104080736A/en active Pending
- 2013-01-23 BR BR112014018051A patent/BR112014018051A8/en not_active Application Discontinuation
- 2013-01-23 MX MX2014009002A patent/MX2014009002A/en unknown
- 2013-01-23 WO PCT/EP2013/051237 patent/WO2013110658A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2013110658A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN104080736A (en) | 2014-10-01 |
BR112014018051A8 (en) | 2017-07-11 |
KR20140116213A (en) | 2014-10-01 |
EP2807117B1 (en) | 2020-05-13 |
FR2985992A1 (en) | 2013-07-26 |
US10011494B2 (en) | 2018-07-03 |
FR2985992B1 (en) | 2015-03-06 |
MX2014009002A (en) | 2015-03-03 |
US20150266743A1 (en) | 2015-09-24 |
CA2862475A1 (en) | 2013-08-01 |
WO2013110658A1 (en) | 2013-08-01 |
BR112014018051A2 (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2807115B1 (en) | Method for preparing precipitated silica having a specific morphology, particle size, and porosity | |
EP2807116B1 (en) | Precipitated-silica production method | |
CA2859570C (en) | Precipitated-silica production method | |
EP2807118A1 (en) | Method for preparing precipitated silica | |
CA2804692C (en) | Preparation process for precipitated silicas | |
EP2550237B1 (en) | Method for preparing precipitated silicas containing aluminium | |
EP2807117B1 (en) | Precipitated-silica production method | |
EP2794480B1 (en) | Precipitated-silica production method | |
EP2102104B1 (en) | New method for preparing precipitated silica using a fast blender | |
CA2867569C (en) | Method for the production of precipitated silica, comprising a membrane concentration step | |
WO2011026893A1 (en) | Novel method for preparing precipitated silica | |
WO2013139930A1 (en) | Method for preparing precipitated silica comprising a high compaction step | |
FR2984871A1 (en) | Preparing precipitated silica, useful as catalyst support, comprises reacting silicate with acid to obtain silica suspension and separating and drying suspension, where addition of silicate and acid is performed according to pH value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140807 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ALLAIN, EMMANUELLE Inventor name: NEVEU, SYLVAINE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190614 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013069035 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1270040 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200814 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200913 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RHODIA OPERATIONS |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1270040 Country of ref document: AT Kind code of ref document: T Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013069035 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210123 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210123 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221220 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230123 Year of fee payment: 11 Ref country code: DE Payment date: 20221130 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013069035 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |