EP2804709B1 - Control device for the advancing motion of a casting plunger - Google Patents

Control device for the advancing motion of a casting plunger Download PDF

Info

Publication number
EP2804709B1
EP2804709B1 EP13701379.3A EP13701379A EP2804709B1 EP 2804709 B1 EP2804709 B1 EP 2804709B1 EP 13701379 A EP13701379 A EP 13701379A EP 2804709 B1 EP2804709 B1 EP 2804709B1
Authority
EP
European Patent Office
Prior art keywords
casting
chamber
parameter
piston
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13701379.3A
Other languages
German (de)
French (fr)
Other versions
EP2804709A2 (en
Inventor
Norbert Erhard
Peter Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oskar Frech GmbH and Co KG
Original Assignee
Oskar Frech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oskar Frech GmbH and Co KG filed Critical Oskar Frech GmbH and Co KG
Publication of EP2804709A2 publication Critical patent/EP2804709A2/en
Application granted granted Critical
Publication of EP2804709B1 publication Critical patent/EP2804709B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die

Definitions

  • the invention relates to a device for controlling the advancing movement of a casting piston in a casting chamber of a cold chamber die casting machine by means of a control signal. Specifically, the invention is concerned with controlling the plunger feed motion during a time referred to herein as a chamber fill movement portion from a partial fill position of the casting plunger with partially filled pouring chamber initial volume to a full fill position of the casting plunger with filled casting chamber residual volume.
  • a melt to be cast typically a melt of a metal alloy of essentially aluminum and / or magnesium and / or zinc
  • a melt to be cast is known to be introduced into a horizontally arranged casting chamber and then conveyed into a casting mold with a casting piston driven hydraulically or in another way , This process is carried out cyclically for the purpose of multiple production of identical products, with each casting cycle once melt is pressed into the mold.
  • almost exclusively cylindrical casting chambers with a circular cross-section are used.
  • the introduction of the melt into the casting chamber can take place in different ways under atmospheric pressure, superatmospheric or negative pressure, for example by filling via a filling opening of the casting chamber by means of a ladle or by suction by generating a negative pressure in the casting chamber.
  • the quantity of melt introduced into the casting chamber depends on the respective casting mold volume, ie the volume of the part to be cast, so that different fill levels in the casting chamber result depending on the casting and, after introduction of the melt, a certain overlying air volume remains in the horizontally arranged casting chamber cylinder, as long as the casting piston still in an initial position on one casting mold facing away, the rear side of the casting chamber cylinder is located behind a pouring chamber inlet.
  • air volume in the present case generally also includes the case that it is an upper partial volume of the casting chamber filled or evacuated with another gas.
  • the casting piston In a first phase of the casting-piston feed movement, the casting piston is advanced from its initial position, in which the casting chamber is partially filled, as far as the full filling position, in which the casting chamber volume which is successively reduced by the casting-piston advancing movement is completely filled with the filled-in melt.
  • the press-fitting process which is of no further interest in the present case, by means of which the melt from the casting chamber is pressed into the casting mold via a casting-mold outlet facing a casting mold on a front side of the casting-chamber cylinder and the subsequent so-called casting run.
  • Fig. 1 shows the emergence of a Wellenüber Dahls 5, ie an overturning wave of the casting piston 2 in the casting chamber 1 forward, ie in the direction of a mold facing, front side 1b of the casting chamber 1, pressed melt.
  • the invention is based on the technical problem of providing a device of the type mentioned above, with which the advancing movement of the casting piston can be controlled specifically in the chamber filling movement section so that the amount of air / gas inclusions in the melt can be reduced or minimized, which typically too reduced porosity in the finished casting leads.
  • the invention solves this problem by providing a control device having the features of claim 1.
  • a respective course of an actuating signal is provided for different predetermined sets of values of a plurality of process parameters influencing the melt movement in the casting chamber during the chamber filling movement section, here also briefly referred to as parameters, with which it controls the advancing movement of the casting piston during the chamber filling movement section from an initial one Partial filling position with partially filled casting chamber initial volume up to the full filling position with filled residual casting chamber volume controlled.
  • the control waveforms provided are those which determine that one of them best fits the parameter value set in question.
  • “Best fitting” is to be understood here as meaning that the control signal curve assigned to the parameter value set in question leads to that course of the piston feed movement which, in the current situation described by the relevant parameter value set, better than all the other contours of the piston feed motion considered the undesirable effects of wave flashover and Heilvolumenabschnürung reduces or avoids.
  • the definition as "best fitting” of course also taking into account usual, relevant for the casting process criteria, such as the least possible time required for the casting cycle and thus for the piston feed movement.
  • the control device is accordingly set up to apply this best-fitting control signal curve as a function of values of the process parameters present at the beginning of a casting cycle.
  • the possible best-fitting control signal waveforms for different predetermined sets of values of the parameters considered are determined in advance, ie before the runtime of the casting process or casting cycle, and stored in the control device.
  • the control device selects for each casting cycle the best suited to the current parameter value set control waveform for controlling the G confusekolbenvorschub Gay during the Kammer hypolungsiolosabitess out.
  • This preliminary determination of different courses of the piston feed movement ie different courses of the relevant actuating signal, can be carried out empirically on the real object or preferably systematically and thus deterministically by means of appropriate computer simulations with suitable calculation models. The latter makes it possible to carry out a comparatively large number of "trials" with varying values of the relevant process parameters.
  • the computation time is not limited to the typical casting cycle time, which allows the use of a relatively computationally intensive model that comparatively describes the melt flow ratios in the casting chamber during the piston advancement movement.
  • the simulated model system may in particular also be a simulated closed-loop control system with a controller which attempts to correct computationally recorded deviations from a desired melt flow characteristic with corresponding controller interventions.
  • a suitable for the respective initial condition, as described by the currently used parameter value set best fitting control waveform can be determined very accurately using model-based control loop simulation.
  • a direct determination of the provided control signal waveform during the term of the casting process can be provided.
  • the plurality of process parameters influencing the melt movement in the casting chamber during the chamber filling movement section comprises at least one parameter relating to the casting chamber geometry, at least one parameter relating to the fill quantity of melt material in the casting chamber, at least one parameter relating to the casting mold and / or at least one casting chamber and / or the melt temperature parameter. It turns out that taking into account one or more of these parameters already very useful control signal waveforms for the piston feed motion win, which avoid the unwanted effects regarding wave ripples or premature wave separation / wave reflection as far as possible. Depending on the application, one or more additional parameters can be taken into account.
  • each parameter is to be understood in such a way that, depending on the application, it may contain current values and / or values derived from one or more preceding casting cycles and / or values determined from such values, each of which is metrologically or computationally derived values can.
  • the plurality of process parameters more particularly comprises at least one casting chamber length parameter, at least one casting chamber height parameter, at least one casting chamber fill level parameter, at least one melt temperature parameter, at least one pouring chamber temperature parameter and / or at least one melt viscosity parameter and Optionally, one or more additional parameters depending on the application.
  • the geometry parameters describe the spatial boundary conditions for the melt movement in the casting chamber
  • the temperature / viscosity parameters describe the flow behavior of the melt and possibly also any boundary layer problems such as the so-called boundary layer solidification of the melt on the casting chamber inner wall.
  • control signal waveforms provided are grouped into a plurality of types having a different number of successive stages, each stage representing an associated increase in melt height on the casting piston. This shows that, for example, depending on Schmelzen spallmenge and thus filling level of the casting a single or multi-stage control waveform is favorable, each stage includes the melt level on the piston initially by a predetermined amount to raise faster and then to keep substantially constant or possibly slower to change.
  • the grouping of all possible control signal waveforms in a discrete set of courses with different number of stages also has advantages in terms of storage space for storing previously determined, best-fitting control waveforms, with quick access to the stored data to select the best matching control waveform and with respect to the correspondingly stepped feed rate of the casting.
  • each level is set so that it specifies an initially accelerated casting piston movement followed by a casting piston movement with a speed profile, which is determined from a predetermined course of a height of the melt material on the casting piston.
  • this predetermined further course of melt height on the casting piston implies that the melt height, after having been relatively quickly raised to a higher level by the initial accelerated piston advance movement, is then substantially maintained at this new level or at least significantly more slowly increased further. It turns out that this connection of the piston feed movement to a specific time profile of the melt height on the casting piston can lead to very good, best-matching control signal curves for the piston feed movement. In addition, this offers the optional possibility of also intervening in the process of the piston feed movement by ongoing sensory detection of the melt height at the casting piston.
  • control signal waveforms provided are obtained by a model-based closed loop simulation system before or alternatively during a runtime of the casting piston feed movement, with the advantages indicated above.
  • a preliminary determination allows the use of larger computer capacities and thus more accurate computational models.
  • An alternative determination directly at runtime allows the consideration of any current disturbances may still during the casting cycle.
  • the model-based simulation control loop system is integrated into the control device. It is thereby at the site of the control device, i. typically at the location of the associated casting machine, which is particularly favorable for the cases that a determination of the best matching control signal waveform is provided directly to the casting process or the casting machine user is to be able to determine even best-fitting control signal waveforms by model-based control loop simulation for the casting machine system in question.
  • Control device illustrated in block diagram form serves to control the advancing movement of a casting piston of a casting unit of conventional design for a cold chamber die casting machine.
  • a conventional pouring unit includes a typically cylindrical casting chamber of circular cross section, which is arranged with a horizontal cylinder longitudinal axis in the casting machine.
  • the casting chamber and the casting piston may in particular be of the type described above Fig. 1 and 2 is explained.
  • the upper pouring-chamber side 1a has the filling opening 4 at the top, ie the pouring-chamber inlet, via which, for example, the melt material 3 is filled into the pouring chamber 1 in a predetermined metering quantity by means of a ladle.
  • the invention is also suitable for alternative designs of the casting unit, in which the melt material is sucked by means of negative pressure in the casting chamber or pressed by means of positive pressure in the casting chamber.
  • the casting chamber 1 On its front side 1b, the casting chamber 1 has the casting chamber outlet 8 in its upper region.
  • the molten material 3 is moved over the chamber outlet by advancing the casting piston 2 8 and the subsequent casting run pressed into the mold, to form there the casting.
  • the chamber filling movement section explained above forms a first section of this piston movement up to the point in time at which the residual volume of the casting chamber 1 successively reduced by the advancing casting piston 2 substantially corresponds to the volume of filled melt material 3, ie to which the casting chamber residual volume is completely filled Melt material 3 is filled and the previously additionally contained in the casting chamber 1 air / gas volume over the G confusehuntauslass 8, the casting and provided for this purpose vents in the mold was almost completely removed from the casting chamber 1.
  • the invention specifically includes a characteristic design of the piston advancing movement control device in this initial chamber filling moving section.
  • the control device can be realized in any suitable manner, as is known per se for G manen faced in cold chamber die casting machines.
  • the control device to a data memory 10, in which a plurality of possible
  • the control device uses one of these actuating signal courses and thus controls the piston feed movement, in particular in said chamber filling movement section.
  • This casting cycle is in Fig. 3 symbolizes as a real process 11, which is controlled by the selected actuating signal S.
  • the control device selects the actuating signal S as a suitable for the respective casting cycle according to predetermined criteria control signal.
  • a corresponding selection logic 12 is implemented in it.
  • the selection logic 12 for the respective casting cycle becomes a set of values a number m of predeterminable process parameters P 1 , ..., P m supplied, which describes the initial conditions of the upcoming casting cycle, as far as they are relevant for achieving a desired, recognized as favorable course of the piston feed movement in the chamber filling movement section.
  • this desired, optimized control of the piston advance in this section at least largely avoid the above unfavorable explained effects of melt flow dynamics in the casting chamber, which lead to increased air / gas inclusions in the melt material, in particular those in the Fig. 1 and 2 Illustrated effects of Wellenüberschs and premature Wellenables or constriction of a piston-side air / gas volume.
  • Typical casting chamber geometry parameters are, for example, the casting chamber length and the casting chamber height.
  • the at least one filling quantity parameter describes the proportion to which the casting chamber volume is initially filled with the melt material. Specifically, this may be, for example, an initial fill level, a fill level as the ratio of the initial fill level to the maximum possible fill level, ie the casting chamber diameter, or the detected weight or volume of melt material introduced into the casting chamber.
  • the influence of the mold can be described, in particular their minimum or maximum mold venting time, which determines how long the process of air / gas displacement in the casting chamber should last at least or maximum.
  • the temperature and / or viscosity parameters describe the flow behavior of the melt and possibly also boundary layer effects, such as edge solidification or partial solidification of melt material on the casting chamber inner wall or in the interior of the melt.
  • Each such parameter may include, as needed, current values and / or values derived from one or more previous casting cycles and / or combinations of such current and / or past values.
  • the individual parameter values may be measured values and / or calculated or estimated values.
  • the at least one fill quantity parameter comprises an estimate for the current fill level and / or one or more measured or calculated actual fill level values from past casting cycles.
  • control signal waveforms as in the embodiment of Fig. 3 are stored in the memory 10, there are several options, which will be discussed in more detail below.
  • the two alternatives come into consideration to provide the actuating signal for piston movement control to be used for the current casting cycle before or during the runtime of the casting process.
  • the following will first discuss an implementation for a pre-runtime deployment.
  • This computer simulation contains a model control loop, which includes a simple calculation model for precontrol determination and a high-precision calculation model for the real process as well as a model controller.
  • model controller supplements the control signal supplied by the precontrol to the actuating signal for the highly accurate mathematical model as a function of a deviation of a target profile supplied by the precontrol and of an actual course of one or more process variables used by the highly accurate mathematical model.
  • the best-fitting control signals resulting from the mentioned process parameters, as obtained from this model-based control loop simulation, are then stored in the memory 10 as described and are available to the control device at the runtime of the casting process.
  • the simulation is carried out before the process run time, the simulation calculation is not subject to the immediate duration limitation of the real casting cycle. This allows the use of a comparatively accurate calculation model, whereby the quality of the previously determined best-fitting control signal waveforms for the real process can be significantly increased.
  • this run-time simulation using a model control loop can be used to determine very accurate, best-fitting control signal waveforms that can then be used for the real process as part of a pure control.
  • a real regulation of the real process is basically possible in principle, however, is usually excluded in practice for the casting piston feed movement process considered here, if only because e.g. the recovery and return of the necessary control variable actual values is not sufficiently fast or too expensive. This is especially true for smaller machines, which have such short casting cycle times that from today's point of view a collection and control technical utilization of the required measured values is not practicable.
  • An alternative possibility provides for a corresponding model-based control loop simulation during the runtime of the casting process, in which case the control signal obtained by the simulation is used directly for the control the piston feed movement is used in the real process, which eliminates the control signal memory.
  • the simple model for the precontrol and the high-precision computational model depicting the real process are to be selected appropriately, so that the simulation calculations can proceed sufficiently fast. Compared to a simulation before runtime, this means the use of higher computational capacities and / or the use of a simpler computational model or, as a whole, a simpler closed-loop control model.
  • Fig. 3 refers, as mentioned, to the embodiment in which a plurality n of best fitting control signals for a possibly larger number of sets of the considered process parameters P 1 , ..., P m determined beforehand, for example by the mentioned model-based control loop simulation and then in memory 10 has been filed.
  • process parameters P 1 ,..., P m there are such process parameter sets in a correspondingly m-dimensional parameter space even in the case where a special, identical casting is produced in multiple successive casting cycles, since in any case, a part of these process parameters can vary from one casting cycle to a casting cycle due to the process.
  • the selection logic 12 can use appropriate criteria to determine a number p of selection coordinates K 1 ,..., K p for whose combinations the corresponding best-fitting control signals are generated individually beforehand in corresponding simulation processes.
  • the control signal memory 10 then comprises a p-dimensional selection coordinate space for the plurality n of best-fitting control signal waveforms, as in FIG Fig. 3 illustrated, wherein the number p is less than or equal to the number m. It may be expedient to map as many of the parameters P 1 ,..., P m as few selection coordinates K 1 ,..., K p as possible, by the number n of possible ones For reasons of memory requirements and / or the previous computational effort to keep control signal waveforms as low as possible.
  • Each of said excitation stages represents a corresponding part of the piston feed movement, in which initially the piston is advanced relatively quickly in order to raise the Schmelzen spall Love on the piston from a previous level to a predetermined higher level. Thereafter, a speed profile is predetermined for the piston advance, which is determined from a predetermined course of the melt material height at the casting piston, this predetermined course typically includes that the Schmelzen spalliere on the piston is kept substantially constant or at best increased in time relatively slowly.
  • the number of stages to use varies e.g. depending on the degree of filling. In the case of a lower initial melt level in the chamber, a piston advance is selected with more stages than in the case of higher fill levels.
  • Fig. 5 illustrates an example with a two-stage excitation.
  • the example of Fig. 5 is illustrated by the casting chamber 1 and the casting piston 2, as shown in the Fig. 1 and 2 and the description thereof above, to which reference can be made here.
  • the melt material 3 initially before the onset of piston movement a height H 0 in the casting chamber 1, see the top part.
  • the piston 2 initially advances acceleratedly to generate a first stage 3a of wave excitation of the liquid melt material 3, by which the Schmelzen spall Love on the piston 2 is raised from the initial height H 0 to a suitably predetermined greater height H 1 .
  • the piston 2 is advanced with reduced acceleration or at substantially constant speed such that the melt filling level at the piston 2 remains substantially at the height level H 1 of the first stage 3a, with the corresponding wave excitation propagating forward, as shown in the second and third upper part of Fig. 5 seen.
  • a second stage 3b for the wave excitation of the melt material 3 in the chamber 1 is generated by appropriate control of the piston feed.
  • the piston 2 is again initially moved with greater acceleration until the melt level on the piston 2 has reached a predetermined, new, higher level H 2 .
  • the choice of a two-stage control waveform corresponds to this new height H 2 of the total chamber height, ie the diameter D of the casting chamber 1, see the middle part of image in Fig.
  • the piston 2 is then again advanced with less acceleration or at a substantially constant speed such that the melt material 3 on the piston 2 substantially retains the new height level H 2 , with the second wave excitation stage 3 b propagating forward, see the third lowest drawing in FIG Fig. 5 ,
  • the gradual increase in the piston side takes place Melting height such that even at maximum predetermined metering error, the piston-side melt height remains safely below the G moncrodecke in all stages except the last stage.
  • the last stage is relatively insensitive to metering inaccuracies.
  • For a height error of the penultimate stage is all the more uncritical with respect to the presettable by the controller piston speed, the closer this penultimate step height is located on the G confusedecke.
  • the grading is therefore chosen so that the piston-side melt height in the penultimate stage on the one hand even with maximum overdose a predetermined minimum distance from the G confuse screeningdecke complies and on the other hand does not exceed a predetermined maximum distance from the G confuse screeningdecke even at maximum underdosing, so that through the last wave excitation level just desired complete air / gas displacement is achieved from the piston side.
  • This stepped control of the piston feed movement can thus the chamber ceiling the casting chamber cylinder systematically included in the determination of the best-fitting control signal waveform and at the same time a sufficient robustness against dosing errors are ensured.
  • this model-based simulation closed-loop control system can be integrated into the control device, which is typically located at the place of use of the casting machine.
  • the control device according to the invention may in turn be integrated in a central machine control of the die casting machine.
  • the model-based closed-loop control system may be implemented outside the control device according to the invention, in which case the best-fitting control signal waveforms supplied by the model-based closed-loop control system are supplied or provided to the control device, for example by the aforementioned dropping in a control signal memory of the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casting Devices For Molds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Die Erfindung bezieht sich auf eine Vorrichtung zur Steuerung der Vorschubbewegung eines Gießkolbens in einer Gießkammer einer Kaltkammer-Druckgießmaschine mittels eines Stellsignals. Speziell befasst sich die Erfindung mit der Steuerung der Gießkolben-Vorschubbewegung während eines vorliegend als Kammerfüllungsbewegungsabschnitt bezeichneten Zeitraums von einer Teilfüllungsstellung des Gießkolbens mit teilgefülltem Gießkammer-Anfangsvolumen bis zu einer Vollfüllungsstellung des Gießkolbens mit gefülltem Gießkammer-Restvolumen.The invention relates to a device for controlling the advancing movement of a casting piston in a casting chamber of a cold chamber die casting machine by means of a control signal. Specifically, the invention is concerned with controlling the plunger feed motion during a time referred to herein as a chamber fill movement portion from a partial fill position of the casting plunger with partially filled pouring chamber initial volume to a full fill position of the casting plunger with filled casting chamber residual volume.

Beim Kaltkammer-Druckgießen wird bekanntlich eine zu gießende Schmelze, typischerweise eine Schmelze einer Metalllegierung aus im Wesentlichen Aluminium und/oder Magnesium und/oder Zink, in eine horizontal angeordnete Gießkammer eingebracht und anschließend mit einem hydraulisch oder in anderer Weise angetriebenen Gießkolben in eine Gießform gefördert. Dieser Vorgang erfolgt zum Zweck der vielfachen Herstellung identischer Produkte zyklisch, wobei je Gießzyklus einmal Schmelze in die Gießform eingepresst wird. Dabei werden praktisch ausschließlich zylindrische Gießkammern mit kreisrundem Querschnitt eingesetzt. Das Einbringen der Schmelze in die Gießkammer kann auf unterschiedliche Weise unter atmosphärischem Druck, Über- oder Unterdruck erfolgen, z.B. durch Einfüllen über eine Einfüllöffnung der Gießkammer mittels eines Gießlöffels oder durch Ansaugen mittels Erzeugung eines Unterdrucks in der Gießkammer. Die in die Gießkammer eingebrachte Schmelzenmenge hängt vom jeweiligen Gießformvolumen, d.h. dem Volumen des zu gießenden Teils ab, so dass sich je nach Gießteil verschiedene Füllstände in der Gießkammer ergeben und nach dem Einbringen der Schmelze ein gewisses darüberliegendes Luftvolumen im horizontal angeordneten Gießkammerzylinder verbleibt, solange sich der Gießkolben noch in einer Anfangsstellung auf einer gießformabgewandten, hinteren Seite des Gießkammerzylinders hinter einem Gießkammereinlass befindet. Der Begriff Luftvolumen umfasst dabei vorliegend allgemein auch den Fall, dass es sich um ein mit einem anderen Gas gefülltes bzw. evakuiertes oberes Teilvolumen der Gießkammer handelt.In cold chamber die casting, a melt to be cast, typically a melt of a metal alloy of essentially aluminum and / or magnesium and / or zinc, is known to be introduced into a horizontally arranged casting chamber and then conveyed into a casting mold with a casting piston driven hydraulically or in another way , This process is carried out cyclically for the purpose of multiple production of identical products, with each casting cycle once melt is pressed into the mold. In this case, almost exclusively cylindrical casting chambers with a circular cross-section are used. The introduction of the melt into the casting chamber can take place in different ways under atmospheric pressure, superatmospheric or negative pressure, for example by filling via a filling opening of the casting chamber by means of a ladle or by suction by generating a negative pressure in the casting chamber. The quantity of melt introduced into the casting chamber depends on the respective casting mold volume, ie the volume of the part to be cast, so that different fill levels in the casting chamber result depending on the casting and, after introduction of the melt, a certain overlying air volume remains in the horizontally arranged casting chamber cylinder, as long as the casting piston still in an initial position on one casting mold facing away, the rear side of the casting chamber cylinder is located behind a pouring chamber inlet. The term air volume in the present case generally also includes the case that it is an upper partial volume of the casting chamber filled or evacuated with another gas.

In einer ersten Phase der Gießkolben-Vorschubbewegung wird der Gießkolben aus seiner Anfangsstellung, in welcher die Gießkammer wie erläutert teilbefüllt ist, bis zur Vollfüllungsstellung vorbewegt, in welcher das durch die Gießkolben-Vorschubbewegung sukzessiv reduzierte Gießkammervolumen gerade vollständig mit der eingefüllten Schmelze gefüllt ist. Daran schließt sich der vorliegend nicht weiter interessierende Einpressvorgang an, durch den die Schmelze aus der Gießkammer über einen gießformzugewandten Gießkammerauslass an einer vorderen Seite des Gießkammerzylinders und den anschließenden sogenannten Gießlauf in die Gießform gepresst wird. Während des anfänglichen Kammerfüllungsbewegungsabschnitts ergibt sich die Problematik unerwünschter Luft-/Gaseinschlüsse in der Schmelze bei ungünstigem Verlauf der Kolbenvorschubbewegung. Derartige Luft-/Gaseinschlüsse in der Schmelze können zu erhöhter Porosität und damit je nach Verwendung bzw. weiterer Bearbeitung des Gießteils zu unbefriedigender Qualität des Gießteils führen.In a first phase of the casting-piston feed movement, the casting piston is advanced from its initial position, in which the casting chamber is partially filled, as far as the full filling position, in which the casting chamber volume which is successively reduced by the casting-piston advancing movement is completely filled with the filled-in melt. This is followed by the press-fitting process which is of no further interest in the present case, by means of which the melt from the casting chamber is pressed into the casting mold via a casting-mold outlet facing a casting mold on a front side of the casting-chamber cylinder and the subsequent so-called casting run. During the initial Kammerfüllungsbewegungsabschnitts results in the problem of unwanted air / gas inclusions in the melt at unfavorable course of the piston feed movement. Such air / gas inclusions in the melt can lead to increased porosity and thus depending on the use or further processing of the casting to unsatisfactory quality of the casting.

Dafür sind vor allem zwei Effekte verantwortlich, wie sie zur Illustration in je drei Teilbildern mit einem in einem horizontal angeordneten Gießkammerzylinder 1 sukzessiv vorbewegten Gießkolben 2 in Fig. 1 bzw. Fig. 2 veranschaulicht sind, wobei anfänglich gemäß des jeweils obersten Teilbildes die Gießkammer 1 mit einem Schmelzenmaterial 3 teilbefüllt ist und sich der Gießkolben 2 auf einer gießformabgewandten, hinteren Seite 1a der Gießkammer 1 hinter einem Gießkammereinlass 4 befindet. Fig. 1 zeigt das Entstehen eines Wellenüberwurfs 5, d.h. einer sich überschlagenden Welle, der vom Gießkolben 2 in der Gießkammer 1 nach vorn, d.h. in Richtung einer gießformzugewandten, vorderen Seite 1b der Gießkammer 1, gedrückten Schmelze 3. Fig. 2 veranschaulicht den Effekt einer vorzeitigen Wellenablösung vom Gießkolben 2 und/oder vorzeitigen Wellenreflexion an einem gießformzugewandten Stirnende 1c der Gießkammer 1, d.h. bei dieser ungünstigen Steuerung der Kolbenvorschubbewegung beginnt eine Schmelzewelle 6 vom Kolben 2 weg nach vorn zu wandern. Wenn diese Welle 6 die Gießkammerdecke unmittelbar oder auch nach Reflexion erreicht, schnürt sie ein Luft-/Gasvolumen 7 am Gießkolben 2 von einem vorn liegenden Gießkammerauslass 8 ab, wie im unteren Teilbild von Fig. 2 gezeigt. Beide Effekte führen zu erhöhten Luft-/Gaseinschlüssen, wie im untersten Teilbild von Fig. 1 für den Fall des Wellenüberschlags schematisch als Bläschen 9 symbolisiert.Two effects are responsible for this, as illustrated in three sub-images each with a successively advanced in a horizontally arranged casting chamber cylinder 1 casting piston 2 in Fig. 1 respectively. Fig. 2 are illustrated, wherein initially according to the respective uppermost part of the casting chamber 1 is partially filled with a melt material 3 and the casting piston 2 is located on a casting mold facing away, rear side 1a of the casting chamber 1 behind a pouring chamber inlet 4. Fig. 1 shows the emergence of a Wellenüberwurfs 5, ie an overturning wave of the casting piston 2 in the casting chamber 1 forward, ie in the direction of a mold facing, front side 1b of the casting chamber 1, pressed melt. 3 Fig. 2 illustrates the effect of premature wave separation from the casting piston 2 and / or premature wave reflection at a casting facing front end 1c of the casting chamber 1, ie in this unfavorable control of the piston feed movement starts a melt shaft 6 away from the piston 2 to move forward. When this wave 6 reaches the Gießkammerdecke directly or even after reflection, it constricts an air / gas volume 7 on the casting piston 2 from a front Gießkammerauslass 8 from, as in the lower part of Fig. 2 shown. Both effects lead to increased air / gas inclusions, as in the lowest part of Fig. 1 schematically symbolized as bubbles 9 in the case of the wave flashover.

Der Erfindung liegt als technisches Problem die Bereitstellung einer Vorrichtung der eingangs genannten Art zugrunde, mit der sich die Vorschubbewegung des Gießkolbens speziell im Kammerfüllungsbewegungsabschnitt derart steuern lässt, dass die Menge an Luft-/Gaseinschlüssen in der Schmelze reduziert oder minimiert werden kann, was typischerweise zu verminderter Porosität im fertigen Gießteil führt.The invention is based on the technical problem of providing a device of the type mentioned above, with which the advancing movement of the casting piston can be controlled specifically in the chamber filling movement section so that the amount of air / gas inclusions in the melt can be reduced or minimized, which typically too reduced porosity in the finished casting leads.

Die Erfindung löst dieses Problem durch die Bereitstellung einer Steuerungsvorrichtung mit den Merkmalen des Anspruchs 1.The invention solves this problem by providing a control device having the features of claim 1.

In der erfindungsgemäßen Steuerungsvorrichtung wird für unterschiedliche vorgegebene Sätze von Werten einer Mehrzahl von die Schmelzenbewegung in der Gießkammer während des Kammerfüllungsbewegungsabschnitts beeinflussenden Prozessparametern, vorliegend auch kurz als Parameter bezeichnet, je ein zugehöriger Verlauf eines Stellsignals bereitgestellt, mit dem sie die Vorschubbewegung des Gießkolbens während des Kammerfüllungsbewegungsabschnitts von einer anfänglichen Teilfüllungsstellung mit teilgefülltem Gießkammer-Anfangsvolumen bis zur Vollfüllungsstellung mit gefülltem Gießkammer-Restvolumen steuert. Dabei handelt es sich bei den bereitgestellten Stellsignalverläufen um solche, von denen festgelegt ist, dass je einer von ihnen am besten für den betreffenden Parameterwertesatz passt. Unter "bestpassend" ist hierbei zu verstehen, dass der dem betreffenden Parameterwertesatz zugeordnete Stellsignalverlauf zu demjenigen Verlauf der Kolbenvorschubbewegung führt, welcher in der durch den betreffenden Parameterwertesatz beschriebenen, aktuellen Situation besser als alle anderen betrachteten Verläufe der Kolbenvorschubbewegung die erwähnten unerwünschten Effekte von Wellenüberschlag und Luftvolumenabschnürung reduziert bzw. vermeidet. Neben diesem primären Gütekriterium erfolgt die Festlegung als "bestpassend" natürlich auch unter Berücksichtigung üblicher, für den Gießprozess relevanter Kriterien, wie ein möglichst geringer Zeitbedarf für den Gießzyklus und somit für die Kolbenvorschubbewegung. Durch die Wahl dieses bestpassenden Stellsignalverlaufs kann folglich der Luft-/Gaseintrag in die Schmelze und somit die Porosität im Gießteil für jeden Gießzyklus möglichst gering gehalten werden, ohne den Gießzyklus gegenüber herkömmlichen Gießprozesssteuerungen merklich zu verlangsamen.In the control device according to the invention, a respective course of an actuating signal is provided for different predetermined sets of values of a plurality of process parameters influencing the melt movement in the casting chamber during the chamber filling movement section, here also briefly referred to as parameters, with which it controls the advancing movement of the casting piston during the chamber filling movement section from an initial one Partial filling position with partially filled casting chamber initial volume up to the full filling position with filled residual casting chamber volume controlled. The control waveforms provided are those which determine that one of them best fits the parameter value set in question. "Best fitting" is to be understood here as meaning that the control signal curve assigned to the parameter value set in question leads to that course of the piston feed movement which, in the current situation described by the relevant parameter value set, better than all the other contours of the piston feed motion considered the undesirable effects of wave flashover and Luftvolumenabschnürung reduces or avoids. In addition to this primary quality criterion, the definition as "best fitting" of course also taking into account usual, relevant for the casting process criteria, such as the least possible time required for the casting cycle and thus for the piston feed movement. By choosing this best-fitting control waveform, therefore, the air / gas input into the melt and thus the porosity in the casting for each casting cycle can be kept as low as possible without significantly slowing the casting cycle compared to conventional Gießprozesssteuerungen.

Die erfindungsgemäße Steuerungsvorrichtung ist entsprechend dafür eingerichtet, in Abhängigkeit von zu Beginn eines Gießzyklus vorliegenden Werten der Prozessparameter diesen bestpassenden Stellsignalverlauf anzuwenden. Dazu kann vorzugsweise vorgesehen sein, dass die möglichen bestpassenden Stellsignalverläufe für verschiedene vorgegebene Sätze von Werten der berücksichtigten Parameter vorab, d.h. vor der Laufzeit des Gießprozesses bzw. Gießzyklus, ermittelt und in der Steuerungsvorrichtung abgespeichert werden. Die Steuerungsvorrichtung wählt dann für jeden Gießzyklus den zum aktuellen Parameterwertesatz bestpassenden Stellsignalverlauf zur Steuerung der Gießkolben-Vorschubbewegung während des Kammerfüllungsbewegungsabschnitts aus. Diese Vorab-Ermittlung verschiedener Verläufe der Kolbenvorschubbewegung, d.h. verschiedener Verläufe des diesbezüglichen Stellsignals, kann empirisch am realen Objekt oder vorzugsweise systematisch und damit deterministisch anhand entsprechender Computersimulationen mit geeigneten Rechenmodellen erfolgen. Letzteres ermöglicht die Durchführung einer vergleichsweise großen Anzahl an "Versuchen" mit variierenden Werten der relevanten Prozessparameter. Wenn die Simulation vor der Laufzeit des Gießprozesses durchgeführt wird, ist die Rechenzeit nicht auf die typische Gießzyklusdauer beschränkt, was die Verwendung eines relativ rechenintensiven Modells erlaubt, das die Schmelzenströmungsverhältnisse in der Gießkammer während der Kolbenvorschubbewegung vergleichsweise gut beschreibt. Bei dem simulierten Modellsystem kann es sich insbesondere auch um ein simuliertes Regelkreissystem mit einem Regler handeln, der rechnerisch erfasste Abweichungen von einer gewünschten Schmelzenflusscharakteristik mit entsprechenden Reglereingriffen auszuregeln versucht. Auf diese Weise kann ein für die jeweilige Anfangsbedingung, wie sie durch den aktuell herangezogenen Parameterwertesatz beschrieben wird, bestpassender Stellsignalverlauf sehr genau mittels modellgestützter Regelkreissimulation ermittelt werden. Alternativ kann eine direkte Ermittlung des bereitgestellten Stellsignalverlaufs während der Laufzeit des Gießprozesses vorgesehen sein.The control device according to the invention is accordingly set up to apply this best-fitting control signal curve as a function of values of the process parameters present at the beginning of a casting cycle. For this purpose, it can preferably be provided that the possible best-fitting control signal waveforms for different predetermined sets of values of the parameters considered are determined in advance, ie before the runtime of the casting process or casting cycle, and stored in the control device. The control device then selects for each casting cycle the best suited to the current parameter value set control waveform for controlling the Gießkolbenvorschubbewegung during the Kammerfüllungsbewegungsabschnitts out. This preliminary determination of different courses of the piston feed movement, ie different courses of the relevant actuating signal, can be carried out empirically on the real object or preferably systematically and thus deterministically by means of appropriate computer simulations with suitable calculation models. The latter makes it possible to carry out a comparatively large number of "trials" with varying values of the relevant process parameters. When the simulation is performed prior to the runtime of the casting process, the computation time is not limited to the typical casting cycle time, which allows the use of a relatively computationally intensive model that comparatively describes the melt flow ratios in the casting chamber during the piston advancement movement. The simulated model system may in particular also be a simulated closed-loop control system with a controller which attempts to correct computationally recorded deviations from a desired melt flow characteristic with corresponding controller interventions. In this way, a suitable for the respective initial condition, as described by the currently used parameter value set best fitting control waveform can be determined very accurately using model-based control loop simulation. Alternatively, a direct determination of the provided control signal waveform during the term of the casting process can be provided.

Die Mehrzahl von die Schmelzenbewegung in der Gießkammer während des Kammerfüllungsbewegungsabschnitts beeinflussenden Prozessparametern umfasst wenigstens einen die Gießkammergeometrie betreffenden Parameter, wenigstens einen die Füllmenge an Schmelzenmaterial in der Gießkammer betreffenden Parameter, wenigstens einen die Gießform betreffenden Parameter und/oder wenigstens einen die Gießkammer- und/oder die Schmelzentemperatur betreffenden Parameter. Es zeigt sich, dass sich unter Berücksichtigung eines oder mehrerer dieser Parameter bereits sehr brauchbare Stellsignalverläufe für die Kolbenvorschubbewegung gewinnen lassen, welche die unerwünschten Effekte bzgl. Wellenüberschlag bzw. vorzeitiger Wellenablösung/Wellenreflexion weitestgehend vermeiden. Je nach Anwendungsfall können ein oder mehrere weitere Parameter berücksichtigt werden. Jeder Parameter ist hierbei vorliegend so zu verstehen, dass er je nach Anwendungsfall aktuelle Werte und/oder aus einem oder mehreren vorangegangenen Gießzyklen stammende Werte und/oder aus solchen Werten kombiniert ermittelte Werte beinhalten kann, wobei es sich jeweils um messtechnisch oder rechnerisch gewonnene Werte handeln kann.The plurality of process parameters influencing the melt movement in the casting chamber during the chamber filling movement section comprises at least one parameter relating to the casting chamber geometry, at least one parameter relating to the fill quantity of melt material in the casting chamber, at least one parameter relating to the casting mold and / or at least one casting chamber and / or the melt temperature parameter. It turns out that taking into account one or more of these parameters already very useful control signal waveforms for the piston feed motion win, which avoid the unwanted effects regarding wave ripples or premature wave separation / wave reflection as far as possible. Depending on the application, one or more additional parameters can be taken into account. In the present case, each parameter is to be understood in such a way that, depending on the application, it may contain current values and / or values derived from one or more preceding casting cycles and / or values determined from such values, each of which is metrologically or computationally derived values can.

In einer Weiterbildung der Erfindung umfasst die Mehrzahl von Prozessparametern spezieller wenigstens einen Gießkammerlängen-Parameter, wenigstens einen Gießkammerhöhen-Parameter, wenigstens einen Gießkammerfüllgrad-Parameter, wenigstens einen Schmelzentemperatur-Parameter, wenigstens einen Gießkammertemperatur-Parameter und/oder wenigstens einen Schmelzenviskositäts-Parameter und je nach Anwendungsfall optional einen oder mehrere weitere Parameter. Die Geometrieparameter beschreiben die räumlichen Randbedingungen für die Schmelzenbewegung in der Gießkammer, die Temperatur-/Viskositätsparameter beschreiben das Fließverhalten der Schmelze und ggf. auch etwaige Randschichtprobleme wie die sogenannte Randschichterstarrung der Schmelze an der Gießkammerinnenwand.In a further development of the invention, the plurality of process parameters more particularly comprises at least one casting chamber length parameter, at least one casting chamber height parameter, at least one casting chamber fill level parameter, at least one melt temperature parameter, at least one pouring chamber temperature parameter and / or at least one melt viscosity parameter and Optionally, one or more additional parameters depending on the application. The geometry parameters describe the spatial boundary conditions for the melt movement in the casting chamber, the temperature / viscosity parameters describe the flow behavior of the melt and possibly also any boundary layer problems such as the so-called boundary layer solidification of the melt on the casting chamber inner wall.

In einer vorteilhaften Weiterbildung der Erfindung sind die bereitgestellten Stellsignalverläufe in eine Mehrzahl von Typen mit einer unterschiedlichen Anzahl sukzessiver Verlaufsstufen gruppiert, wobei jede Stufe einen zugehörigen Schmelzenhöhenanstieg am Gießkolben repräsentiert. Hierbei zeigt sich, dass z.B. je nach Schmelzenfüllmenge und damit Füllgrad der Gießkammer ein ein- oder mehrstufiger Stellsignalverlauf günstig ist, wobei jede Stufe beinhaltet, den Schmelzenfüllstand am Kolben anfänglich um ein vorgebbares Maß rascher anzuheben und dann im Wesentlichen konstant zu halten oder allenfalls langsamer zu ändern. Die Gruppierung aller möglichen Stellsignalverläufe in eine diskrete Menge von Verläufen mit unterschiedlicher Stufenanzahl hat zudem Vorteile hinsichtlich Speicherplatzbedarf zum Ablegen vorab ermittelter, bestpassender Stellsignalverläufe, hinsichtlich schnellem Zugriff auf die gespeicherten Daten zur Auswahl des jeweils bestpassenden Stellsignalverlaufs und hinsichtlich der entsprechend gestuften Vorschubgeschwindigkeit des Gießkolbens.In an advantageous development of the invention, the control signal waveforms provided are grouped into a plurality of types having a different number of successive stages, each stage representing an associated increase in melt height on the casting piston. This shows that, for example, depending on Schmelzenfüllmenge and thus filling level of the casting a single or multi-stage control waveform is favorable, each stage includes the melt level on the piston initially by a predetermined amount to raise faster and then to keep substantially constant or possibly slower to change. The grouping of all possible control signal waveforms in a discrete set of courses with different number of stages also has advantages in terms of storage space for storing previously determined, best-fitting control waveforms, with quick access to the stored data to select the best matching control waveform and with respect to the correspondingly stepped feed rate of the casting.

In weiterer Ausgestaltung dieses Aspektes der Erfindung ist jede Verlaufsstufe so festgelegt, dass sie eine anfänglich beschleunigte Gießkolbenbewegung gefolgt von einer Gießkolbenbewegung mit einem Geschwindigkeitsverlauf vorgibt, der aus einem vorab bestimmten Verlauf einer Höhe des Schmelzenmaterials am Gießkolben ermittelt wird. Typischerweise beinhaltet dieser vorab bestimmte weitere Verlauf der Schmelzenhöhe am Gießkolben, dass die Schmelzenhöhe, nachdem sie durch die anfängliche beschleunigte Kolbenvorschubbewegung relativ rasch auf ein höheres Niveau angehoben wurde, anschließend im Wesentlichen auf diesem neuen Niveau gehalten oder allenfalls deutlich langsamer weiter angehoben wird. Es zeigt sich, dass diese Anbindung der Kolbenvorschubbewegung an einen bestimmten zeitlichen Verlauf der Schmelzenhöhe am Gießkolben zu sehr guten bestpassenden Stellsignalverläufen für die Kolbenvorschubbewegung führen kann. Zudem bietet dies die optionale Möglichkeit, durch laufende sensorische Erfassung der Schmelzenhöhe am Gießkolben auch noch regelnd in den Vorgang der Kolbenvorschubbewegung einzugreifen.In a further embodiment of this aspect of the invention, each level is set so that it specifies an initially accelerated casting piston movement followed by a casting piston movement with a speed profile, which is determined from a predetermined course of a height of the melt material on the casting piston. Typically, this predetermined further course of melt height on the casting piston implies that the melt height, after having been relatively quickly raised to a higher level by the initial accelerated piston advance movement, is then substantially maintained at this new level or at least significantly more slowly increased further. It turns out that this connection of the piston feed movement to a specific time profile of the melt height on the casting piston can lead to very good, best-matching control signal curves for the piston feed movement. In addition, this offers the optional possibility of also intervening in the process of the piston feed movement by ongoing sensory detection of the melt height at the casting piston.

In Weiterbildung der Erfindung sind die bereitgestellten Stellsignalverläufe von einem modellgestützten Regelkreissimulationssystem vor oder alternativ während einer Laufzeit der Gießkolben-Vorschubbewegung gewonnen, mit den dazu oben angedeuteten Vorteilen. Eine Vorab-ermittlung erlaubt den Einsatz größerer Rechnerkapazitäten und damit genauerer Rechenmodelle. Eine alternative Ermittlung direkt zur Laufzeit erlaubt die Berücksichtigung etwaiger aktueller Störeinflüsse eventuell noch während des jeweiligen Gießzyklus.In a further development of the invention, the control signal waveforms provided are obtained by a model-based closed loop simulation system before or alternatively during a runtime of the casting piston feed movement, with the advantages indicated above. A preliminary determination allows the use of larger computer capacities and thus more accurate computational models. An alternative determination directly at runtime allows the consideration of any current disturbances may still during the casting cycle.

In weiterer Ausgestaltung dieses Aspektes der Erfindung ist das modellgestützte Simulationsregelkreissystem in die Steuerungsvorrichtung integriert. Es befindet sich dadurch am Einsatzort der Steuerungsvorrichtung, d.h. typischerweise am Ort der zugehörigen Gießmaschine, was besonders für die Fälle günstig ist, dass eine Ermittlung des bestpassenden Stellsignalverlaufs direkt zur Laufzeit des Gießprozesses vorgesehen ist oder es dem Gießmaschinenanwender ermöglicht werden soll, selbst vorab bestpassende Stellsignalverläufe durch modellgestützte Regelkreissimulation für das betreffende Gießmaschinensystem zu ermitteln.In a further embodiment of this aspect of the invention, the model-based simulation control loop system is integrated into the control device. It is thereby at the site of the control device, i. typically at the location of the associated casting machine, which is particularly favorable for the cases that a determination of the best matching control signal waveform is provided directly to the casting process or the casting machine user is to be able to determine even best-fitting control signal waveforms by model-based control loop simulation for the casting machine system in question.

Vorteilhafte Ausführungsformen der Erfindung und die oben zu deren besserem Verständnis erläuterten konventionellen Beispiele sind in den Zeichnungen dargestellt. Hierbei zeigen:

Fig. 1
schematische Längsschnittansichten einer Gießkammer einer Kaltkammer-Druckgießmaschine in drei aufeinanderfolgenden Vorschubstellungen eines konventionell gesteuerten Gießkolbens, wobei ein Wellenüberwurf auftritt,
Fig. 2
drei schematische Längsschnittansichten entsprechend Fig. 1 für einen Fall einer konventionellen Gießkolben-Vorschubsteuerung, bei der eine vorzeitige Wellenablösung und/oder Wellenreflexion auftritt,
Fig. 3
ein Blockdiagramm einer erfindungsgemäßen Steuerungsvorrichtung,
Fig. 4
ein Blockdiagramm einer vorteilhaften Realisierung für einen Stellsignaltypen-Speicher der Steuerungsvorrichtung von Fig. 3 und
Fig. 5
schematische Längsschnittansichten einer Gießkammer einer Kaltkammer-Druckgießmaschine in aufeinanderfolgenden Vorschubstellungen eines mit der erfindungsgemäßen Steuerungsvorrichtung vorbewegten Gießkolbens.
Advantageous embodiments of the invention and the conventional examples explained above for better understanding thereof are shown in the drawings. Hereby show:
Fig. 1
schematic longitudinal sectional views of a casting chamber of a cold chamber die casting machine in three successive feed positions of a conventionally controlled casting piston, wherein a Wellenüberwurf occurs,
Fig. 2
three schematic longitudinal sectional views accordingly Fig. 1 for a case of a conventional plunger feed control in which premature shaft separation and / or wave reflection occurs,
Fig. 3
a block diagram of a control device according to the invention,
Fig. 4
a block diagram of an advantageous implementation for a Stellelltignyppen-memory of the control device of Fig. 3 and
Fig. 5
schematic longitudinal sectional views of a casting chamber of a cold chamber die casting machine in successive feed positions of a casting piston advanced with the control device according to the invention.

Nachfolgend werden vorteilhafte Ausführungsformen der Erfindung unter Bezugnahme auf die entsprechenden Figuren näher erläutert. Dabei sind in den Figuren zum leichteren Verständnis identische oder funktionell äquivalente Elemente mit gleichen Bezugszeichen bezeichnet.Hereinafter, advantageous embodiments of the invention will be explained in more detail with reference to the corresponding figures. In the figures, identical or functionally equivalent elements are designated by the same reference numerals for easier understanding.

Die in Fig. 3 in Blockdiagrammform veranschaulichte Steuerungsvorrichtung dient zur Steuerung der Vorschubbewegung eines Gießkolbens einer Gießeinheit herkömmlicher Bauart für eine Kaltkammer-Druckgießmaschine. Eine solche herkömmliche Gießeinheit beinhaltet eine typischerweise zylindrische Gießkammer mit kreisrundem Querschnitt, die mit horizontaler Zylinderlängsachse in der Gießmaschine angeordnet ist. Die Gießkammer und der Gießkolben können insbesondere von der Bauart sein, wie sie oben zu den Fig. 1 und 2 erläutert ist. Bei dieser Bauart befindet sich an der hinteren Gießkammerseite 1a die oben liegende Einfüllöffnung 4, d.h. der Gießkammereinlass, über den z.B. mittels eines Gießlöffels das Schmelzenmaterial 3 in vorgegebener Dosiermenge in die Gießkammer 1 eingefüllt wird. In gleicher Weise eignet sich die Erfindung auch für alternative Bauarten der Gießeinheit, bei denen das Schmelzenmaterial mittels Unterdruck in die Gießkammer gesaugt oder mittels Überdruck in die Gießkammer gedrückt wird. An ihrer vorderen Seite 1b weist die Gießkammer 1 in ihrem oberen Bereich den Gießkammerauslass 8 auf. Beim Einpressvorgang wird durch Vorbewegen des Gießkolbens 2 das Schmelzenmaterial 3 über den Kammerauslass 8 und den anschließenden Gießlauf in die Gießform gedrückt, um dort das Gießteil zu bilden. Dabei bildet der oben erläuterte Kammerfüllungsbewegungsabschnitt einen ersten Abschnitt dieser Kolbenbewegung bis zu dem Zeitpunkt, zu dem das vom vorbewegten Gießkolben 2 sukzessiv reduzierte Restvolumen der Gießkammer 1 gerade im Wesentlichen dem Volumen an eingefülltem Schmelzenmaterial 3 entspricht, d.h. zu dem das Gießkammer-Restvolumen vollständig mit dem Schmelzenmaterial 3 befüllt ist und das zuvor zusätzlich in der Gießkammer 1 enthaltene Luft-/Gasvolumen über den Gießkammerauslass 8, den Gießlauf und hierfür vorgesehene Entlüftungsöffnungen in der Gießform praktisch vollständig aus der Gießkammer 1 abgeführt wurde. Wie bereits erwähnt, beinhaltet die Erfindung speziell eine charakteristische Auslegung der Steuerungsvorrichtung zur Kolbenvorschubbewegung in diesem anfänglichen Kammerfüllungsbewegungsabschnitt. Im übrigen kann die Steuerungsvorrichtung in einer beliebigen geeigneten Weise realisiert sein, wie es zur Gießkolbensteuerung bei Kaltkammer-Druckgießmaschinen an sich bekannt ist.In the Fig. 3 Control device illustrated in block diagram form serves to control the advancing movement of a casting piston of a casting unit of conventional design for a cold chamber die casting machine. Such a conventional pouring unit includes a typically cylindrical casting chamber of circular cross section, which is arranged with a horizontal cylinder longitudinal axis in the casting machine. The casting chamber and the casting piston may in particular be of the type described above Fig. 1 and 2 is explained. In this type of construction, the upper pouring-chamber side 1a has the filling opening 4 at the top, ie the pouring-chamber inlet, via which, for example, the melt material 3 is filled into the pouring chamber 1 in a predetermined metering quantity by means of a ladle. In the same way, the invention is also suitable for alternative designs of the casting unit, in which the melt material is sucked by means of negative pressure in the casting chamber or pressed by means of positive pressure in the casting chamber. On its front side 1b, the casting chamber 1 has the casting chamber outlet 8 in its upper region. During the press-in process, the molten material 3 is moved over the chamber outlet by advancing the casting piston 2 8 and the subsequent casting run pressed into the mold, to form there the casting. In this case, the chamber filling movement section explained above forms a first section of this piston movement up to the point in time at which the residual volume of the casting chamber 1 successively reduced by the advancing casting piston 2 substantially corresponds to the volume of filled melt material 3, ie to which the casting chamber residual volume is completely filled Melt material 3 is filled and the previously additionally contained in the casting chamber 1 air / gas volume over the Gießkammerauslass 8, the casting and provided for this purpose vents in the mold was almost completely removed from the casting chamber 1. As already mentioned, the invention specifically includes a characteristic design of the piston advancing movement control device in this initial chamber filling moving section. Moreover, the control device can be realized in any suitable manner, as is known per se for Gießkolbensteuerung in cold chamber die casting machines.

Wie in Fig. 3 dargestellt, weist die Steuerungsvorrichtung einen Datenspeicher 10 auf, in welchem eine Mehrzahl von möglichen Stellsignalverläufen abgespeichert ist. Für den jeweiligen Gießzyklus verwendet die Steuerungsvorrichtung einen dieser Stellsignalverläufe und steuert damit die Kolbenvorschubbewegung insbesondere im besagten Kammerfüllungsbewegungsabschnitt. Dieser Gießzyklus ist in Fig. 3 als ein realer Prozess 11 symbolisiert, der vom ausgewählten Stellsignal S gesteuert wird.As in Fig. 3 illustrated, the control device to a data memory 10, in which a plurality of possible Stellellsignalverläufen is stored. For the respective casting cycle, the control device uses one of these actuating signal courses and thus controls the piston feed movement, in particular in said chamber filling movement section. This casting cycle is in Fig. 3 symbolizes as a real process 11, which is controlled by the selected actuating signal S.

Die Steuerungsvorrichtung wählt das Stellsignal S als ein für den jeweils anstehenden Gießzyklus gemäß vorgegebenen Kriterien bestpassendes Stellsignal aus. Dazu ist in ihr eine entsprechende Auswahllogik 12 implementiert. Über eine Eingangsstufe 13 der Steuerungsvorrichtung wird der Auswahllogik 12 für den jeweiligen Gießzyklus ein Satz von Werten einer Anzahl m von vorgebbaren Prozessparametern P1, ..., Pm zugeführt, der die Anfangsbedingungen des anstehenden Gießzyklus beschreibt, soweit diese für die Erzielung eines gewünschten, als günstig erkannten Verlaufs der Kolbenvorschubbewegung im Kammerfüllungsbewegungsabschnitt relevant sind. Insbesondere beinhaltet diese gewünschte, optimierte Steuerung des Kolbenvorschubs in diesem Abschnitt eine mindestens weitgehende Vermeidung der oben als ungünstig erläuterten Effekte der Schmelzenfließdynamik in der Gießkammer, die zu erhöhten Luft-/Gaseinschlüssen im Schmelzenmaterial führen, wie insbesondere die in den Fig. 1 und 2 illustrierten Effekte eines Wellenüberwurfs und einer vorzeitigen Wellenablösung bzw. Abschnürung eines kolbenseitigen Luft-/Gasvolumens.The control device selects the actuating signal S as a suitable for the respective casting cycle according to predetermined criteria control signal. For this purpose, a corresponding selection logic 12 is implemented in it. Via an input stage 13 of the control device, the selection logic 12 for the respective casting cycle becomes a set of values a number m of predeterminable process parameters P 1 , ..., P m supplied, which describes the initial conditions of the upcoming casting cycle, as far as they are relevant for achieving a desired, recognized as favorable course of the piston feed movement in the chamber filling movement section. In particular, this desired, optimized control of the piston advance in this section at least largely avoid the above unfavorable explained effects of melt flow dynamics in the casting chamber, which lead to increased air / gas inclusions in the melt material, in particular those in the Fig. 1 and 2 Illustrated effects of Wellenüberwurfs and premature Wellenablösung or constriction of a piston-side air / gas volume.

Die jeweils als relevant berücksichtigten Prozessparameter Pi (i= 1,..., m) werden angepasst an den jeweiligen Anwendungsfall festgelegt und umfassen wenigstens einen Gießkammergeometrieparameter, wenigstens einen Füllmengenparameter, wenigstens einen Gießformparameter und/oder wenigstens einen Gießkammertemperatur- oder Schmelzentemperaturparameter. Typische Gießkammergeometrieparameter sind z.B. die Gießkammerlänge und die Gießkammerhöhe. Mit dem wenigstens einen Füllmengenparameter wird beschrieben, zu welchem Anteil das Gießkammervolumen anfangs mit dem Schmelzenmaterial befüllt ist. Konkret kann dies z.B. eine anfängliche Füllhöhe, ein Füllgrad als Verhältnis der anfänglichen Füllhöhe zur maximal möglichen Füllhöhe, d.h. dem Gießkammerdurchmesser, oder das erfasste Gewicht oder Volumen an in die Gießkammer eingebrachtem Schmelzenmaterial sein. Mit dem wenigstens einen Gießformparameter lässt sich der Einfluss der Gießform beschreiben, insbesondere deren minimale oder maximale Formentlüftungszeit, durch die festgelegt wird, wie lange der Vorgang der Luft-/Gasverdrängung in der Gießkammer mindestens bzw. maximal dauern soll bzw. darf. Die Temperatur- und/oder Viskositätsparameter beschreiben das Fließverhalten der Schmelze und ggf. auch Randschichteffekte, wie Randerstarrung bzw. Teilsolidifikation von Schmelzenmaterial an der Gießkammerinnenwand oder auch im Inneren der Schmelze.The respectively considered as relevant process parameters P i (i = 1, ..., m) are adjusted to the particular application and include at least one Gießkammergeometrieparameter, at least one Füllmengenparameter, at least one Gießformparameter and / or at least one Gießkammertemperatur- or melt temperature parameters. Typical casting chamber geometry parameters are, for example, the casting chamber length and the casting chamber height. The at least one filling quantity parameter describes the proportion to which the casting chamber volume is initially filled with the melt material. Specifically, this may be, for example, an initial fill level, a fill level as the ratio of the initial fill level to the maximum possible fill level, ie the casting chamber diameter, or the detected weight or volume of melt material introduced into the casting chamber. With the at least one Gießformparameter the influence of the mold can be described, in particular their minimum or maximum mold venting time, which determines how long the process of air / gas displacement in the casting chamber should last at least or maximum. The temperature and / or viscosity parameters describe the flow behavior of the melt and possibly also boundary layer effects, such as edge solidification or partial solidification of melt material on the casting chamber inner wall or in the interior of the melt.

Jeder solche Parameter kann je nach Bedarf aktuelle Werte und/oder aus einem oder mehreren vorausgegangenen Gießzyklen stammende Werte und/oder Kombinationen solcher aktueller und/oder früherer Werte umfassen. Bei den einzelnen Parameterwerten kann es sich um gemessene Werte und/oder um berechnete bzw. geschätzte Werte handeln. So kann z.B. der wenigstens eine Füllmengenparameter einen Schätzwert für den aktuellen Füllgrad und/oder einen oder mehrere gemessene oder berechnete Istwerte für den Füllgrad aus vergangenen Gießzyklen umfassen. So lässt sich zur Laufzeit des jeweiligen Gießzyklus je nach aktuellem Maschinenzustand und dessen Historie der aktuelle Anfangszustand, soweit er für die hier betrachtete Kolbenvorschubbewegung relevant ist, als m-dimensionaler Parameterraum ausreichend genau beschreiben und über die Eingangsstufe 13 als Eingangsinformation der Auswahllogik 12 zuführen.Each such parameter may include, as needed, current values and / or values derived from one or more previous casting cycles and / or combinations of such current and / or past values. The individual parameter values may be measured values and / or calculated or estimated values. Thus, e.g. the at least one fill quantity parameter comprises an estimate for the current fill level and / or one or more measured or calculated actual fill level values from past casting cycles. Thus, at the time of the respective casting cycle, depending on the current machine state and its history, the current initial state, insofar as it is relevant for the piston advance movement considered here, can be described sufficiently accurately as an m-dimensional parameter space and fed via the input stage 13 as input information to the selection logic 12.

Für die Bereitstellung der für unterschiedliche Ausgangssituationen bestpassenden Stellsignalverläufe, wie sie beim Ausführungsbeispiel von Fig. 3 im Speicher 10 abgelegt sind, gibt es mehrere Möglichkeiten, worauf nachstehend näher eingegangen wird.For the provision of suitable for different starting situations control signal waveforms, as in the embodiment of Fig. 3 are stored in the memory 10, there are several options, which will be discussed in more detail below.

Grundsätzlich kommen die beiden Alternativen in Betracht, das für den aktuellen Gießzyklus zu verwendende Stellsignal zur Kolbenbewegungssteuerung vor oder während der Laufzeit des Gießprozesses bereitzustellen. Nachstehend wird zuerst eine Implementierung für eine Bereitstellung vor der Laufzeit erläutert. In einer vorteilhaften Realisierung erfolgt die Gewinnung der bestpassenden Stellsignalverläufe, wie sie dann im Stellsignalspeicher 10 abgelegt werden, durch modellgestützte Computersimulation vor der Prozesslaufzeit. Diese Computersimulation enthält einen Modellregelkreis, der ein einfaches Rechenmodell zur Vorsteuerungsermittlung und ein hochgenaues Rechenmodell für den realen Prozess sowie einen Modellregler umfasst. Zwar kommt alternativ zu einem solchen Modellregelkreis auch eine reine Vorsteuerung auf Basis eines einfachen Rechenmodells ohne Regler in Betracht, die Hinzunahme des Reglers ermöglicht jedoch die Erzielung einer höheren Genauigkeit bzw. besseren Approximation des realen Prozesses und die Verwendung eines relativ einfachen Modells für die Vorsteuerung. Der Modellregler ergänzt das von der Vorsteuerung gelieferte Steuersignal zum Stellsignal für das hochgenaue Rechenmodell in Abhängigkeit von einer Abweichung eines von der Vorsteuerung gelieferten Sollverlaufs und eines vom hochgenauen Rechenmodell gelieferten Istverlaufs einer oder mehrerer dazu herangezogener Prozessgrößen. Die sich für die verschiedenen betrachteten Anfangsbedingungen, repräsentiert durch die erwähnten Prozessparameter, ergebenden bestpassenden Stellsignale, wie sie aus dieser modellgestützten Regelkreissimulation erhalten werden, werden dann wie gesagt im Speicher 10 abgelegt und stehen der Steuerungsvorrichtung zur Laufzeit des Gießprozesses zur Verfügung.In principle, the two alternatives come into consideration to provide the actuating signal for piston movement control to be used for the current casting cycle before or during the runtime of the casting process. The following will first discuss an implementation for a pre-runtime deployment. In an advantageous implementation, the acquisition of the best-fitting control signal waveforms, as they are then stored in the control signal memory 10, carried out by model-based computer simulation before the process duration. This computer simulation contains a model control loop, which includes a simple calculation model for precontrol determination and a high-precision calculation model for the real process as well as a model controller. Although, as an alternative to such a model control loop, a pure precontrol on the basis of a simple computational model without controller is possible, but the addition of the controller makes it possible to achieve a higher accuracy or better approximation of the real process and to use a relatively simple model for precontrol. The model controller supplements the control signal supplied by the precontrol to the actuating signal for the highly accurate mathematical model as a function of a deviation of a target profile supplied by the precontrol and of an actual course of one or more process variables used by the highly accurate mathematical model. The best-fitting control signals resulting from the mentioned process parameters, as obtained from this model-based control loop simulation, are then stored in the memory 10 as described and are available to the control device at the runtime of the casting process.

Unter einem bestpassenden Stellsignalverlauf wird, wie bereits oben erwähnt, ein Stellsignalverlauf verstanden, durch den die damit gesteuerte Kolbenvorschubbewegung im Kammerfüllungsbewegungsabschnitt zu einem gemäß vorgegebenen Gütekriterien günstigsten Gießvorgang führt und insbesondere zu einem Verhalten des Schmelzeflusses in der Gießkammer führt, bei dem die oben erwähnten Effekte von Wellenüberwurf und Luft-/Gasabschnürung aufgrund vorzeitiger Wellenablösung und/oder Wellenreflexion ganz oder mindestens großteils vermieden werden, wobei andererseits der Gießzyklus und damit auch die Kolbenvorschubbewegung möglichst schnell ablaufen sollen. Als Grundlage des einfachen Modells für den Vorsteuerungsentwurf kommen geeignete modifizierte Flachwassergleichungen zur Beschreibung der Schmelzenfließdynamik in der Gießkammer in Betracht, wobei Fluidreflexionen am vorderen Gießkammerende und zudem in guter Näherung auch der üblicherweise kreisförmige Gießkammerquerschnitt berücksichtigt werden. Dabei kann auch die Gießkammerdecke als Höhenbeschränkung für die Schmelzenbewegung in den Vorsteuerungsentwurf einbezogen werden, ebenso bei Bedarf die Position der Einfüllöffnung der Gießkammer, um dort ein Austreten von Schmelze bei beginnender Gießkolbenbewegung sicher zu vermeiden.Under a best-fitting control signal waveform is, as already mentioned above, understood a control signal waveform through which thus controlled piston feed movement in Kammerfüllungsbewegungsabschnitt leads to a most favorable according to predetermined quality criteria casting and in particular leads to a behavior of the melt flow in the casting chamber, in which the above-mentioned effects of Wellenüberwurf and air / Gasabschnürung due to premature wave separation and / or wave reflection wholly or at least largely avoided, on the other hand, the casting cycle and thus the piston feed motion should proceed as quickly as possible. As the basis of the simple model for the pilot control design suitable modified shallow water equations come to describe the melt flow dynamics in the casting chamber into consideration, whereby fluid reflections at the front casting chamber end and also, to a good approximation, the usually circular casting chamber cross-section are taken into account. In this case, the Gießkammerdecke can be included as height restriction for the melt movement in the pilot control design, as well as the need for the position of the filling opening of the casting chamber, there to prevent leakage of melt at the beginning of casting piston movement safely.

Da in der hier betrachteten Variante die Simulation vor der Prozesslaufzeit ausgeführt wird, unterliegt die Simulationsrechnung nicht der unmittelbaren Zeitdauerbeschränkung des realen Gießzyklus. Dies erlaubt die Verwendung eines vergleichsweise genauen Rechenmodells, wodurch die Qualität der vorab ermittelten bestpassenden Stellsignalverläufe für den realen Prozess deutlich gesteigert werden kann.Since in the variant considered here the simulation is carried out before the process run time, the simulation calculation is not subject to the immediate duration limitation of the real casting cycle. This allows the use of a comparatively accurate calculation model, whereby the quality of the previously determined best-fitting control signal waveforms for the real process can be significantly increased.

Somit lassen sich durch diese Simulation vor der Laufzeit unter Verwendung eines Modellregelkreises sehr genaue bestpassende Stellsignalverläufe ermitteln, die dann für den realen Prozess im Rahmen einer reinen Steuerung eingesetzt werden können. Eine echte Regelung des realen Prozesses ist alternativ grundsätzlich möglich, scheidet für den hier betrachteten Prozess der Gießkolbenvorschubbewegung in der Praxis jedoch meist aus, schon weil z.B. die Gewinnung und Rückführung der dazu notwendigen Regelgrößen-Istwerte nicht ausreichend schnell möglich bzw. zu aufwändig ist. Dies gilt insbesondere für Maschinen kleineren Typs, die so kurze Gießzykluszeiten besitzen, dass eine Erfassung und regeltechnische Verwertung der benötigten Messwerte aus heutiger Sicht nicht praktikabel ist.Thus, this run-time simulation using a model control loop can be used to determine very accurate, best-fitting control signal waveforms that can then be used for the real process as part of a pure control. A real regulation of the real process is basically possible in principle, however, is usually excluded in practice for the casting piston feed movement process considered here, if only because e.g. the recovery and return of the necessary control variable actual values is not sufficiently fast or too expensive. This is especially true for smaller machines, which have such short casting cycle times that from today's point of view a collection and control technical utilization of the required measured values is not practicable.

Eine alternative Möglichkeit sieht eine entsprechende modellgestützte Regelkreissimulation zur Laufzeit des Gießprozesses vor, wobei dann das durch die Simulation gewonnene Stellsignal direkt zur Steuerung der Kolbenvorschubbewegung im realen Prozess herangezogen wird, was den Stellsignalspeicher erübrigt. Um die Simulation zur Laufzeit zu ermöglichen, sind das einfache Modell für die Vorsteuerung und das den realen Prozess abbildende hochgenaue Rechenmodell geeignet zu wählen, so dass die Simulationsberechnungen ausreichend schnell ablaufen können. Gegenüber einer Simulation vor der Laufzeit bedeutet dies die Verwendung höherer Rechenkapazitäten und/oder die Verwendung eines einfacheren Rechenmodells bzw. insgesamt eines einfacheren Regelkreismodells.An alternative possibility provides for a corresponding model-based control loop simulation during the runtime of the casting process, in which case the control signal obtained by the simulation is used directly for the control the piston feed movement is used in the real process, which eliminates the control signal memory. In order to enable the simulation at runtime, the simple model for the precontrol and the high-precision computational model depicting the real process are to be selected appropriately, so that the simulation calculations can proceed sufficiently fast. Compared to a simulation before runtime, this means the use of higher computational capacities and / or the use of a simpler computational model or, as a whole, a simpler closed-loop control model.

Das Ausführungsbeispiel von Fig. 3 bezieht sich, wie erwähnt, auf die Ausführungsvariante, bei welcher eine Vielzahl n von bestpassenden Stellsignalen für eine möglicherweise auch größere Anzahl von Sätzen der berücksichtigten Prozessparameter P1, ..., Pm vorab z.B. durch die erwähnte modellgestützte Regelkreissimulation ermittelt und dann im Speicher 10 abgelegt worden ist. Wie aus den obigen Erläuterungen zu den Prozessparametern P1, ..., Pm deutlich wird, gibt es solche Prozessparametersätze in einem entsprechend m-dimensionalen Parameterraum auch schon für den Fall, dass ein spezielles gleiches Gießteil in vielfachen sukzessiven Gießzyklen hergestellt wird, da jedenfalls ein Teil dieser Prozessparameter verfahrensbedingt von Gießzyklus zu Gießzyklus variieren kann. Für jeden Gießzyklus kann die Auswahllogik 12 anhand entsprechender Kriterien eine Anzahl p von Auswahlkoordinaten K1, ..., Kp bestimmen, für deren Kombinationen vorab einzeln in entsprechenden Simulationsvorgängen die zugehörigen bestpassenden Stellsignale generiert werden. Der Stellsignalspeicher 10 umfasst dann einen p-dimensionalen Auswahlkoordinatenraum für die Vielzahl n an bestpassenden Stellsignalverläufen, wie in Fig. 3 veranschaulicht, wobei die Anzahl p kleiner oder gleich der Anzahl m ist. Dabei kann es zweckmäßig sein, möglichst viele der Parameter P1, ..., Pm auf möglichst wenige Auswahlkoordinaten K1, ..., Kp abzubilden, um die Anzahl n an möglichen Stellsignalverläufen aus Gründen des Speicherbedarfs und/oder des vorherigen Rechenaufwands möglichst gering zu halten.The embodiment of Fig. 3 refers, as mentioned, to the embodiment in which a plurality n of best fitting control signals for a possibly larger number of sets of the considered process parameters P 1 , ..., P m determined beforehand, for example by the mentioned model-based control loop simulation and then in memory 10 has been filed. As is clear from the above explanations of the process parameters P 1 ,..., P m , there are such process parameter sets in a correspondingly m-dimensional parameter space even in the case where a special, identical casting is produced in multiple successive casting cycles, since in any case, a part of these process parameters can vary from one casting cycle to a casting cycle due to the process. For each casting cycle, the selection logic 12 can use appropriate criteria to determine a number p of selection coordinates K 1 ,..., K p for whose combinations the corresponding best-fitting control signals are generated individually beforehand in corresponding simulation processes. The control signal memory 10 then comprises a p-dimensional selection coordinate space for the plurality n of best-fitting control signal waveforms, as in FIG Fig. 3 illustrated, wherein the number p is less than or equal to the number m. It may be expedient to map as many of the parameters P 1 ,..., P m as few selection coordinates K 1 ,..., K p as possible, by the number n of possible ones For reasons of memory requirements and / or the previous computational effort to keep control signal waveforms as low as possible.

Es sei an dieser Stelle erwähnt, dass insbesondere im Fall einer Simulation vor der Laufzeit des Gießprozesses durch Einsatz eines vergleichsweise hochgenauen Rechenmodells und eines Simulationswerkzeugs hoher Rechenleistung praktisch sämtliche wesentlichen Parameter berücksichtigt werden können, die für den realen Prozess der Kolbenvorschubbewegung während des Kammerfüllungsbewegungsabschnitts relevant sind, insbesondere auch viskose und thermische Effekte wie Viskositätsvariation und Teilsolidifikation. Dabei ist bei Bedarf ein dreidimensionales Geschwindigkeitsfeld zur Beschreibung der Schmelzenfließdynamik in der Gießkammer verwendbar, das den kreisförmigen Gießkammerquerschnitt und vertikale Strömungen praktisch vollständig berücksichtigt.It should be mentioned at this point that, in particular in the case of a simulation prior to the runtime of the casting process, by employing a comparatively high-precision computational model and a high-performance simulation tool, virtually all essential parameters relevant to the real process of the piston-advancing movement during the chamber-filling-movement section can be taken into account. especially viscous and thermal effects such as viscosity variation and partial solidification. If necessary, a three-dimensional velocity field can be used to describe the melt flow dynamics in the casting chamber, which takes the circular casting chamber cross-section and vertical flows into account almost completely.

Untersuchungen der Erfinder haben ergeben, dass die erwähnten ungünstigen Effekte von Wellenüberwurf und Abschnürung eines kolbenseitigen Luft-/Gasvolumens insbesondere durch einen Verlauf der Kolbenvorschubbewegung reduziert bzw. vermieden werden können, der eine gestufte Anhebung der kolbenseitigen Schmelzenfüllhöhe in der Gießkammer zur Folge hat. Diese Ergebnisse ermöglichen es, die Vielzahl n ermittelter bestpassender Stellsignale im p-dimensionalen Raum der Auswahlkoordinaten K1, ..., Kp in Gruppen von Stellsignalverläufen, vorliegend auch als Stellsignal-Trajektorientypen bezeichnet, mit unterschiedlicher Anzahl von derartigen Anregungsstufen zu gruppieren. Dies vereinfacht die Struktur der abzulegenden Stellsignalverlaufsdaten im Speicher 10 und verbessert bzw. beschleunigt die Auswahl des jeweils bestpassenden Stellsignalverlaufs durch die Auswahllogik 12 anhand der Eingangsparameter P1, ..., Pm.Investigations by the inventors have shown that the aforementioned unfavorable effects of wave throwing and constriction of a piston-side air / gas volume can be reduced or avoided in particular by a progression of the piston feed movement, which results in a stepped increase in the piston-side melt fill level in the casting chamber. These results make it possible to group the multiplicity n of determined best-fitting control signals in the p-dimensional space of the selection coordinates K 1 ,..., K p in groups of control signal profiles, in the present case also referred to as control signal trajectory types, with different numbers of such excitation stages. This simplifies the structure of the control signal waveform data to be stored in the memory 10 and improves or accelerates the selection of the respectively best-matching control signal waveform by the selection logic 12 on the basis of the input parameters P 1 ,..., P m .

Dazu wird für jeden Satz der Prozessparameter P1, ..., Pm bei der Vorabermittlung der bestpassenden Stellsignalverläufe festgestellt, welcher Trajektorientyp bestpassend ist, d.h. mit welcher Anzahl solcher Anregungsstufen die Kolbenvorschubbewegung in dieser Situation gesteuert werden soll, um das gewünschte bestmögliche Ergebnis zu erzielen. Entsprechend wird diese Information im Speicher 10 abgelegt, siehe Fig. 4. Während des Gießprozesses entscheidet dann die Auswahllogik 12 anhand der zugeführten Prozessparameter-Eingangsinformation, gemäß welchen Stufentyps des Stellsignalverlaufs die Kolbenvorschubbewegung im aktuellen Gießzyklus erfolgen soll.For this purpose, for each set of process parameters P 1 ,..., P m in the preliminary determination of the best-matching control signal waveforms it is determined which trajectory type is best suited, ie with which number of such excitation stages the piston feed motion is to be controlled in this situation in order to achieve the desired best possible result achieve. Accordingly, this information is stored in the memory 10, see Fig. 4 , During the casting process, the selection logic 12 then decides on the basis of the supplied process parameter input information according to which stage type of the control signal curve the piston feed movement is to take place in the current casting cycle.

Jede dieser besagten Anregungsstufen repräsentiert einen entsprechenden Teil der Kolbenvorschubbewegung, bei dem zunächst der Kolben relativ schnell vorbewegt wird, um die Schmelzenfüllhöhe am Kolben von einem bisherigen Niveau auf ein vorgebbares höheres Niveau anzuheben. Danach wird für den Kolbenvorschub ein Geschwindigkeitsverlauf vorgegeben, der aus einem vorab bestimmten Verlauf der Schmelzenmaterialhöhe am Gießkolben ermittelt wird, wobei dieser vorab bestimmte Verlauf typischerweise beinhaltet, dass die Schmelzenfüllhöhe am Kolben im Wesentlichen konstant gehalten oder allenfalls zeitlich relativ langsam angehoben wird. Die Anzahl von zu verwendenden Stufen variiert z.B. abhängig vom Füllgrad. Im Fall eines niedrigeren anfänglichen Schmelzefüllstands in der Kammer wird eine Kolbenvorschubbewegung mit mehr Stufen gewählt als im Fall höherer Füllgrade.Each of said excitation stages represents a corresponding part of the piston feed movement, in which initially the piston is advanced relatively quickly in order to raise the Schmelzenfüllhöhe on the piston from a previous level to a predetermined higher level. Thereafter, a speed profile is predetermined for the piston advance, which is determined from a predetermined course of the melt material height at the casting piston, this predetermined course typically includes that the Schmelzenfüllhöhe on the piston is kept substantially constant or at best increased in time relatively slowly. The number of stages to use varies e.g. depending on the degree of filling. In the case of a lower initial melt level in the chamber, a piston advance is selected with more stages than in the case of higher fill levels.

Fig. 5 veranschaulicht ein Beispiel mit einer zweistufigen Anregung. Das Beispiel von Fig. 5 ist anhand der Gießkammer 1 und des Gießkolbens 2 veranschaulicht, wie sie in den Fig. 1 und 2 und deren obiger Beschreibung erläutert worden sind, worauf hier Bezug genommen werden kann. Im Beispiel von Fig. 5 nimmt das Schmelzenmaterial 3 anfänglich vor einsetzender Kolbenvorschubbewegung eine Höhe H0 in der Gießkammer 1 ein, siehe das oberste Teilbild. Ausgehend davon wird der Kolben 2 zunächst beschleunigt vorbewegt, um eine erste Stufe 3a einer Wellenanregung des flüssigen Schmelzenmaterials 3 zu generieren, durch welche die Schmelzenfüllhöhe am Kolben 2 von der anfänglichen Höhe H0 auf eine geeignet vorgegebene größere Höhe H1 angehoben wird. Anschließend wird der Kolben 2 mit reduzierter Beschleunigung oder mit im Wesentlichen gleichbleibender Geschwindigkeit derart vorbewegt, dass die Schmelzenfüllhöhe am Kolben 2 im Wesentlichen auf dem Höhenniveau H1 der ersten Stufe 3a bleibt, wobei die entsprechende Wellenanregung sich nach vorn fortpflanzt, wie aus dem zweit- und drittobersten Teilbild von Fig. 5 ersichtlich. Fig. 5 illustrates an example with a two-stage excitation. The example of Fig. 5 is illustrated by the casting chamber 1 and the casting piston 2, as shown in the Fig. 1 and 2 and the description thereof above, to which reference can be made here. In the example of Fig. 5 assumes the melt material 3 initially before the onset of piston movement a height H 0 in the casting chamber 1, see the top part. Starting from that will the piston 2 initially advances acceleratedly to generate a first stage 3a of wave excitation of the liquid melt material 3, by which the Schmelzenfüllhöhe on the piston 2 is raised from the initial height H 0 to a suitably predetermined greater height H 1 . Subsequently, the piston 2 is advanced with reduced acceleration or at substantially constant speed such that the melt filling level at the piston 2 remains substantially at the height level H 1 of the first stage 3a, with the corresponding wave excitation propagating forward, as shown in the second and third upper part of Fig. 5 seen.

Nach einer vorgegebenen Zeitdauer wird eine zweite Stufe 3b für die Wellenanregung des Schmelzenmaterials 3 in der Kammer 1 durch entsprechende Steuerung des Kolbenvorschubs generiert. Dazu wird der Kolben 2 wiederum zunächst mit größerer Beschleunigung bewegt, bis der Schmelzenfüllstand am Kolben 2 ein vorgegebenes, neues, höheres Niveau H2 erreicht hat. Im gezeigten Beispiel der Wahl eines zweistufigen Stellsignalverlaufs entspricht diese neue Höhe H2 der gesamten Kammerhöhe, d.h. dem Durchmesser D der Gießkammer 1, siehe das mittlere Teilbild in Fig. 5. Anschließend wird der Kolben 2 dann wieder mit geringerer Beschleunigung oder mit im Wesentlichen gleichbleibender Geschwindigkeit derart vorbewegt, dass das Schmelzenmaterial 3 am Kolben 2 das neue Höhenniveau H2 im Wesentlichen beibehält, wobei sich die zweite Wellenanregungsstufe 3b nach vorn fortpflanzt, siehe das drittunterste Teilbild in Fig. 5.After a predetermined period of time, a second stage 3b for the wave excitation of the melt material 3 in the chamber 1 is generated by appropriate control of the piston feed. For this purpose, the piston 2 is again initially moved with greater acceleration until the melt level on the piston 2 has reached a predetermined, new, higher level H 2 . In the example shown, the choice of a two-stage control waveform corresponds to this new height H 2 of the total chamber height, ie the diameter D of the casting chamber 1, see the middle part of image in Fig. 5 , Subsequently, the piston 2 is then again advanced with less acceleration or at a substantially constant speed such that the melt material 3 on the piston 2 substantially retains the new height level H 2 , with the second wave excitation stage 3 b propagating forward, see the third lowest drawing in FIG Fig. 5 ,

In der letzten Anregungsstufe, im Beispiel von Fig. 5 die zweite Stufe, wird somit das restliche Luft-/Gasvolumen, das sich kolbenseitig in der Kammer 1 noch zwischen dem Schmelzenmaterial 3 und der Kammerdecke befindet, von der Kolbenseite her in Richtung Gießkammerende, d.h. Gießkammerauslass 8, verdrängt. Durch geeignete Koordination der einzelnen Anregungsstufen, wie sie z.B. durch die erwähnte modellgestützte Regelkreissimulation vor der Laufzeit des Gießprozesses ermittelt werden kann, lässt sich erreichen, dass sich die einzelnen angeregten Wellenstufen, im Beispiel von Fig. 5 die beiden Stufen 3a und 3b, am Gießkammerende treffen bzw. vereinen und auf diese Weise eine praktisch vollständige Verdrängung des Luft-/Gasvolumens aus der Gießkammer 1 bewirkt wird, wie im zweituntersten und untersten Teilbild von Fig. 5 veranschaulicht. Die Ermittlung der zugehörigen bestpassenden Stellsignalverläufe ist hierbei vorab vollständig systematisch möglich, da rechnerisch ermittelt werden kann, mit welcher Geschwindigkeit die einzelnen Wellenanregungsstufen in Abhängigkeit von deren jeweiliger Höhe in der Gießkammer voranschreiten.In the last excitation level, in the example of Fig. 5 the second stage, thus the remaining air / gas volume, which is still the piston side in the chamber 1 between the melt material 3 and the chamber ceiling, from the piston side towards the casting chamber, ie Gießkammerauslass 8, displaced. By suitable coordination of the individual excitation levels, as for example by the mentioned model-based Control cycle simulation can be determined before the duration of the casting process, it can be achieved that the individual excited wave levels, in the example of Fig. 5 the two stages 3a and 3b, meet at the casting chamber end or unite and in this way a virtually complete displacement of the air / gas volume from the casting chamber 1 is effected, as in the second and lowest part of Fig. 5 illustrated. The determination of the associated best-fitting control signal waveforms is in this case completely systematic possible, since it can be computationally determined at what speed the individual wave excitation stages proceed in dependence on their respective height in the casting chamber.

Ein wesentlicher Einflussfaktor, der zu erhöhten Luft-/Gaseinschlüssen in der Schmelze 3 führen kann, ist eine in der Praxis auftretende Dosierungenauigkeit von z.B. ± 5% Volumenfehler der in die Kammer 1 eingebrachten Schmelze 3. Zur Berücksichtigung dieses Faktors erfolgt die gestufte Anhebung der kolbenseitigen Schmelzenhöhe derart, dass auch bei maximalem vorgegebenem Dosierfehler die kolbenseitige Schmelzenhöhe in allen Stufen mit Ausnahme der letzten Stufe sicher unterhalb der Gießkammerdecke bleibt. Die letzte Stufe ist gegenüber Dosierungenauigkeiten relativ unempfindlich. Denn ein Höhenfehler der vorletzten Stufe ist umso unkritischer hinsichtlich der durch die Steuerung vorzugebenden Kolbengeschwindigkeit, je näher diese vorletzte Stufenhöhe an der Gießkammerdecke liegt. Die Stufung wird daher so gewählt, dass die kolbenseitige Schmelzenhöhe in der vorletzten Stufe einerseits selbst bei maximaler Überdosierung einen vorgebbaren Mindestabstand von der Gießkammerdecke einhält und andererseits selbst bei maximaler Unterdosierung einen vorgebbaren Maximalabstand von der Gießkammerdecke nicht überschreitet, so dass durch die letzte Wellenanregungsstufe gerade die gewünschte vollständige Luft-/Gasverdrängung von der Kolbenseite her erzielt wird. Mit dieser gestuften Steuerung der Kolbenvorschubbewegung kann somit die Kammerdecke des Gießkammerzylinders systematisch in die Bestimmung des jeweils bestpassenden Stellsignalverlaufs einbezogen und gleichzeitig eine hinreichende Robustheit gegenüber Dosierfehlern sichergestellt werden.A significant influencing factor, which can lead to increased air / gas inclusions in the melt 3, is a dosage inaccuracy of, for example, ± 5% volume error of the melt 3 introduced into the chamber 1. In order to take account of this factor, the gradual increase in the piston side takes place Melting height such that even at maximum predetermined metering error, the piston-side melt height remains safely below the Gießkammerdecke in all stages except the last stage. The last stage is relatively insensitive to metering inaccuracies. For a height error of the penultimate stage is all the more uncritical with respect to the presettable by the controller piston speed, the closer this penultimate step height is located on the Gießkammerdecke. The grading is therefore chosen so that the piston-side melt height in the penultimate stage on the one hand even with maximum overdose a predetermined minimum distance from the Gießkammerdecke complies and on the other hand does not exceed a predetermined maximum distance from the Gießkammerdecke even at maximum underdosing, so that through the last wave excitation level just desired complete air / gas displacement is achieved from the piston side. With this stepped control of the piston feed movement can thus the chamber ceiling the casting chamber cylinder systematically included in the determination of the best-fitting control signal waveform and at the same time a sufficient robustness against dosing errors are ensured.

Es versteht sich, dass je nach den vorliegenden Anfangswerten für die als einflussrelevant betrachteten Prozessparameter P1, ..., Pm neben der in Fig. 5 gezeigten zweistufigen Steuerung auch eine einstufige oder mehr als zweistufige Steuerung der Kolbenvorschubbewegung vorgesehen sein kann. Neben der erwähnten Einbeziehung von Dosierfehlern können auch die Viskositätseigenschaften der Schmelze und thermische Effekte innerhalb der Gießkammer, wie eine Teilsolidifikation, bei der erstarrte Anteile in der Schmelze die Wellenausbreitung beeinträchtigen, systematisch in die Ermittlung des jeweils bestpassenden Stellsignalverlaufs für die Kolbenvorschubbewegung einbezogen werden.It is understood that, depending on the present values for the beginning considered to be influential relevant process parameters P 1, ..., P m in addition to the Fig. 5 shown two-stage control and a one-stage or more than two-stage control of the piston feed movement can be provided. In addition to the inclusion of metering errors mentioned above, the viscosity properties of the melt and thermal effects within the casting chamber, such as partial solidification, in which solidified fractions in the melt affect wave propagation, can be systematically included in the determination of the respectively best matching control signal curve for the piston feed movement.

In den geschilderten Fällen, in denen die bestpassenden Stellsignalverläufe durch ein modellgestütztes Regelkreissimulationssystem ermittelt werden, kann dieses modellgestützte Simulationsregelkreissystem in die Steuerungsvorrichtung integriert sein, die sich typischerweise am Einsatzort der Gießmaschine befindet. Dabei kann die erfindungsgemäße Steuerungsvorrichtung ihrerseits in eine zentrale Maschinensteuerung der Druckgießmaschine integriert sein. Alternativ kann das modellgestützte Regelkreissimulationssystem außerhalb der erfindungsgemäßen Steuerungsvorrichtung implementiert sein, wobei dann die vom modellgestützten Regelkreissimulationssystem gelieferten bestpassenden Stellsignalverläufe der Steuerungsvorrichtung zugeführt bzw. bereitgestellt werden, beispielsweise durch das erwähnte Ablegen in einem Stellsignalspeicher der Steuerungsvorrichtung.In the described cases, in which the best-fitting control signal waveforms are determined by a model-based closed-loop control system, this model-based simulation closed-loop control system can be integrated into the control device, which is typically located at the place of use of the casting machine. In this case, the control device according to the invention may in turn be integrated in a central machine control of the die casting machine. Alternatively, the model-based closed-loop control system may be implemented outside the control device according to the invention, in which case the best-fitting control signal waveforms supplied by the model-based closed-loop control system are supplied or provided to the control device, for example by the aforementioned dropping in a control signal memory of the control device.

Claims (6)

  1. Device for controlling the advancing movement of a casting plunger (2) in a casting chamber (1) of a cold-chamber die casting machine by means of an actuating signal, the advancing movement comprising a chamber filling movement phase from a partial filling position, with a partially filled casting chamber starting volume, to a full filling position, with a filled casting chamber remaining volume,
    characterized in that
    in the device a respective associated progression of the actuating signal is provided for different specified sets of values of a plurality of process parameters that influence the movement of the molten material in the casting chamber during the chamber filling movement phase, which progression is defined as the most suitable actuating signal progression for the particular set of parameter values,
    and the device is designed to use the most suitable actuating signal progression in dependence on values of this plurality of process parameters pertaining at the beginning of a casting cycle for controlling the casting plunger advancing movement during the chamber filling movement phase, the plurality of process parameters including at least one casting chamber geometry parameter, at least one filling amount parameter, at least one casting mold parameter, and/or at least one casting chamber temperature or molten material temperature parameter.
  2. Control device as claimed in claim 1, further characterized in that the plurality of process parameters include at least one casting chamber length parameter, at least one casting chamber height parameter, at least one casting chamber filling degree parameter, at least one molten material temperature parameter, at least one casting chamber temperature parameter, and/or at least one molten material viscosity parameter.
  3. Control device as claimed in claim 1 or 2, further characterized in that the actuating signal progressions provided are grouped into a plurality of types with a differing number of successive stages of the progression, each stage representing an associated rise in the height of the molten material at the casting plunger.
  4. Control device as claimed in claim 3, further characterized in that each stage of the progression specifies an initially accelerated casting plunger movement followed by a casting plunger movement with a velocity progression that corresponds to a progression determined in advance for a height of the molten material at the casting plunger.
  5. Control device as claimed in any one of claims 1 to 4, further characterized in that the actuating signal progressions provided are obtained by a model-aided closed-loop control simulation system before or during a running time of the advancing movement of the casting plunger.
  6. Control device as claimed in claim 5, further characterized in that it includes the model-aided closed-loop control simulation system in integrated form.
EP13701379.3A 2012-01-16 2013-01-10 Control device for the advancing motion of a casting plunger Active EP2804709B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200568A DE102012200568A1 (en) 2012-01-16 2012-01-16 Control device for casting piston feed movement
PCT/EP2013/050377 WO2013107682A2 (en) 2012-01-16 2013-01-10 Control device for the advancing motion of a casting plunger

Publications (2)

Publication Number Publication Date
EP2804709A2 EP2804709A2 (en) 2014-11-26
EP2804709B1 true EP2804709B1 (en) 2018-08-22

Family

ID=47605474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13701379.3A Active EP2804709B1 (en) 2012-01-16 2013-01-10 Control device for the advancing motion of a casting plunger

Country Status (11)

Country Link
US (1) US9993868B2 (en)
EP (1) EP2804709B1 (en)
KR (1) KR101944862B1 (en)
CN (1) CN104080560B (en)
DE (1) DE102012200568A1 (en)
ES (1) ES2697273T3 (en)
HK (1) HK1202837A1 (en)
PT (1) PT2804709T (en)
RU (1) RU2622504C2 (en)
TR (1) TR201816615T4 (en)
WO (1) WO2013107682A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321258B1 (en) 2017-04-06 2018-05-09 東芝機械株式会社 Injection device and molding machine
JP7234975B2 (en) * 2020-02-27 2023-03-08 トヨタ自動車株式会社 Die casting method and die casting apparatus
CN113814372B (en) * 2021-10-15 2022-12-06 常州艾可特机电科技有限公司 Vacuum die-casting control method, system and equipment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US396453A (en) * 1889-01-22 Johan robert alsing
IT1022285B (en) * 1973-10-08 1978-03-20 Buehler Ag Geb PROCEDURE AND DIE CASTING MACHINE
JPS5922617B2 (en) 1980-03-19 1984-05-28 株式会社日立製作所 Shot plunger speed control method for die casting machine
JPS60124455A (en) 1983-12-08 1985-07-03 Aisan Ind Co Ltd Method and device for injection with die casting machine
JPS60250867A (en) * 1984-05-24 1985-12-11 Nippon Denso Co Ltd Method and device for die casting
DE4112753A1 (en) * 1991-04-19 1992-10-22 Mueller Weingarten Maschf METHOD FOR CONTROLLING CASTING PARAMETERS IN A DIE CASTING MACHINE
RU2026144C1 (en) 1991-06-25 1995-01-09 Государственное предприятие N 36 "Асу Термо" Method of controlling casting machine and apparatus embodying same
DE4123463A1 (en) * 1991-07-16 1993-01-21 Audi Ag METHOD FOR THE PRODUCTION OF CASTING PIECES BY MEANS OF A DIE CASTING MACHINE
DE4310332A1 (en) * 1993-03-31 1994-10-06 Mueller Weingarten Maschf Method for determining optimal parameters of a casting process, especially on die casting machines
DE4434654C2 (en) * 1994-09-28 1996-10-10 Arburg Gmbh & Co Process for influencing cyclical processes
JP3039848B2 (en) 1995-10-04 2000-05-08 本田技研工業株式会社 Die casting method
JP4684446B2 (en) 2001-03-23 2011-05-18 東芝機械株式会社 Injection control method and injection apparatus for die casting machine
JP3817652B2 (en) 2002-02-25 2006-09-06 トヨタ自動車株式会社 Die casting method
RU2252108C2 (en) 2002-08-05 2005-05-20 Владимирский Государственный Университет (ВлГУ) Pressure die casting method and apparatus for performing the same
DE20303812U1 (en) * 2003-03-11 2003-05-08 Electronics GmbH, 70794 Filderstadt die casting
JP2006021470A (en) * 2004-07-09 2006-01-26 Fanuc Ltd Monitoring device and monitoring method of injection molding machine
JP2008188627A (en) 2007-02-05 2008-08-21 Toyo Mach & Metal Co Ltd Method for controlling diecasting machine
JP5691217B2 (en) 2010-03-29 2015-04-01 宇部興産機械株式会社 Casting condition judgment method and judgment device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013107682A2 (en) 2013-07-25
CN104080560B (en) 2017-04-12
KR101944862B1 (en) 2019-02-01
TR201816615T4 (en) 2018-11-21
RU2622504C2 (en) 2017-06-16
BR112014017527A2 (en) 2017-06-13
BR112014017527A8 (en) 2017-07-04
EP2804709A2 (en) 2014-11-26
KR20140112564A (en) 2014-09-23
CN104080560A (en) 2014-10-01
US20150000856A1 (en) 2015-01-01
HK1202837A1 (en) 2015-10-09
ES2697273T3 (en) 2019-01-22
PT2804709T (en) 2018-11-28
RU2014129730A (en) 2016-03-10
DE102012200568A1 (en) 2013-07-18
WO2013107682A3 (en) 2014-04-24
US9993868B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
EP3055116B1 (en) Method for controlling a mold filling process of an injection-molding machine
DE60224967T2 (en) Model-based predictive control apparatus and method for controlling the movement and / or pressure of injection molding machines
DE69515226T2 (en) Method and device for controlling a ram in die casting machines
EP2583811B1 (en) Method for quantifying process fluctuations in the injection process of a injection moulding machine
DE69113128T2 (en) Injection molding control with changeable regulated learning process.
DE69113869T2 (en) Injection molding control with process-variable learning process.
DE69125645T2 (en) Injection molding control device with selectable control functions
DE69617974T2 (en) COMBINATION CONTROL FOR INJECTION MOLDING
EP2804709B1 (en) Control device for the advancing motion of a casting plunger
DE69302555T2 (en) Braking method
EP0576795B2 (en) Method and apparatus to controle the process of a die casting machine
DE10110398A1 (en) Method for regulating the pressure medium supply to a hydraulically operated actuator
EP1645194B1 (en) Process and apparatus for the parallel manufacture of several types of confectionery
EP1791440B3 (en) Method and plant for the production of confectionery
EP0744267B1 (en) Method for monitoring and/or controlling an injection moulding machine
DE19611489B4 (en) Process for creating a program profile for controlling the injection speed of injection molding machines
AT521442B1 (en) Dynamic adjustment of the clamping force
DE3936301A1 (en) METHOD FOR PRODUCING HOLLOW BODIES FROM THERMOPLASTIC PLASTIC
EP2555889B1 (en) Method for setting the position of the liquidus tip in a cast strand
EP3157727B1 (en) Method for operating an injection-moulding machine
EP3988801A1 (en) Method for operating a hydraulic drive
AT522604B1 (en) Injection unit and method of operating such
DE69719195T2 (en) METHOD FOR THE SIMULTANEOUS CONTROL OF MULTIPLE ACCUMULATORS
EP2380791B1 (en) Method for testing the stability of the driving behaviour of a motor vehicle and motor vehicle with a control unit allocated to a driving dynamics management system
DE102022212566A1 (en) Method for creating a manufacturing plan for the additive manufacturing of an object using 3D printing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140815

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1202837

Country of ref document: HK

17Q First examination report despatched

Effective date: 20160208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1031876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010915

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2804709

Country of ref document: PT

Date of ref document: 20181128

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20181116

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180822

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2697273

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240216

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 12

Ref country code: CH

Payment date: 20240202

Year of fee payment: 12

Ref country code: GB

Payment date: 20240124

Year of fee payment: 12

Ref country code: PT

Payment date: 20240109

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240108

Year of fee payment: 12

Ref country code: SE

Payment date: 20240123

Year of fee payment: 12

Ref country code: NO

Payment date: 20240122

Year of fee payment: 12

Ref country code: IT

Payment date: 20240131

Year of fee payment: 12

Ref country code: FR

Payment date: 20240124

Year of fee payment: 12