EP2802158B1 - Method for adapting useful signals in binaural hearing assistance systems - Google Patents

Method for adapting useful signals in binaural hearing assistance systems Download PDF

Info

Publication number
EP2802158B1
EP2802158B1 EP14155511.0A EP14155511A EP2802158B1 EP 2802158 B1 EP2802158 B1 EP 2802158B1 EP 14155511 A EP14155511 A EP 14155511A EP 2802158 B1 EP2802158 B1 EP 2802158B1
Authority
EP
European Patent Office
Prior art keywords
signal
audio signals
predetermined
hearing aid
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14155511.0A
Other languages
German (de)
French (fr)
Other versions
EP2802158A2 (en
EP2802158A3 (en
Inventor
Walter Kellermann
Stefan Meier
Klaus Reindl
Marc Aubreville
Eghart Fischer
Homayoun Kamkar Parsi
Henning Puder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2802158A2 publication Critical patent/EP2802158A2/en
Publication of EP2802158A3 publication Critical patent/EP2802158A3/en
Application granted granted Critical
Publication of EP2802158B1 publication Critical patent/EP2802158B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility

Definitions

  • the invention relates to a method for operating a hearing aid system and a hearing aid system with at least two hearing aid devices, between which a signal path is provided, and with at least one signal processing unit which is provided for processing audio signals.
  • hearing impairment affects both ears
  • the hearing impaired should be provided binaurally with hearing aids.
  • Modern hearing aids have signal processing algorithms which automatically vary the parameters of the hearing aids as a function of the hearing situation. In the case of binaural care, the hearing situation is assessed on both ears.
  • Noise and noise are omnipresent in everyday life and make speech communication more difficult, especially if there is an impairment of natural hearing. Therefore, techniques are desirable that suppress noise and noise, but change the desired sounds and tones, hereinafter also referred to as useful signals, as little as possible.
  • the known embodiments of techniques for suppressing noise and noise require for effective suppression of noise noises with identical as possible Nutzsignalan tone.
  • the various signals are detected by a plurality of different microphones, which are arranged on the two hearing aids.
  • the useful signals detected by these microphones differ substantially due to ambient reverberation and the acoustic influence of the head of the wearer.
  • downstream noise suppression techniques do not work effectively and especially when it comes to adaptive methods, they converge only very slowly or not at all. This leads to a poor suppression of the noise and additional acoustic artifacts by the noise reduction.
  • a method for blind source separation by means of Wiener filter is from the patent application EP 2211563 A1 known.
  • a hearing aid system with two hearing aids in which input signals by means of a first signal channel with a first filter, and with a second signal channel with a second filter are converted into output signals.
  • the coefficients of at least one of the filters are adjusted so that the difference between the output signals of the first and second signal channels is minimized.
  • the WO 2009/081193 A1 relates to a system for noise suppression, comprising a digital filter with a predetermined filter and with an adaptive filter, and with a signal processing device for generating a control signal for the adaptive filter.
  • the object of the present invention is to provide a method for operating a hearing aid system and a hearing aid system, by which the noise suppression in binaural hearing aid systems is improved.
  • This object is achieved by a method having the features of claim 1.
  • the part of the object relating to the hearing aid system is achieved by the features of claim 12.
  • the method according to the invention relates to a method for operating a hearing aid system with at least two hearing aid devices.
  • the hearing aids have a transducer for receiving an acoustic signal and conversion into a respective first audio signal.
  • the hearing aid system further comprises a signal processing device for processing audio signals, as well as a signal connection for transmitting a first audio signal from each hearing aid device to the signal processing device.
  • the acoustic signal has a useful signal, which arrives from a given spatial direction with respect to the hearing aid system.
  • the signal processing device filters the first audio signals with a filter predetermined for the given spatial direction, so that second audio signals are generated, wherein the predetermined filter is designed such that the components of the useful signal in the second audio signals are matched to one another to a greater degree than in the first audio signals; and Filtering the second audio signals with an adaptive filter, so that third audio signals are generated, wherein the adaptive filter is designed such that the portions of the useful signal in the third audio signals are aligned to a higher degree than in the second audio signals.
  • the method according to the invention provides second audio signals in which the components of the useful signal are matched to one another to a greater degree than in the first audio signals.
  • the adaptive filter of the second step converges much faster and therefore provides third audio signals in which the alignment of the useful signals is further improved. This allows subsequent noise suppression methods from these third audio signals to form better reference signals for the useful and interfering signals and noise almost completely to suppress.
  • the method of the invention allows shorter adaptive filters with less computational power requirement and faster convergence of the adaptive filter, which advantageously allows adaptation to rapidly changing environmental conditions.
  • the hearing aid system according to the invention for carrying out the method according to the invention shares its advantages.
  • the signal processing device has means for dividing the first audio signals into first audio signals in predetermined frequency ranges, wherein the steps of the method according to the invention are performed separately for each audio signal in a frequency range.
  • the predetermined filter is defined by a predetermined number of predetermined coefficients.
  • a filter with a predetermined coefficient number is easy to implement and advantageously requires only a small memory space.
  • the predetermined number of the predetermined coefficients is different in different frequency ranges.
  • the need for computing power for the predetermined filter can be optimized in an advantageous manner by more accurate filtering takes place only in frequency ranges with corresponding noise.
  • the memory requirement for the filter is further reduced.
  • predetermined coefficients for the predetermined filter are predetermined for at least two predetermined spatial directions.
  • this further comprises a step of estimating a spatial direction of the useful signal, wherein in the step of filtering the first audio signals, the predetermined filter is predetermined by the coefficients whose assigned predetermined spatial direction is closest to the estimated spatial direction.
  • the predetermined filter can be set to different predetermined spatial directions, wherein in each case the selected spatial direction of the spatial direction of the source of the useful signal is closest, so that the predetermined filter achieves an optimal filtering effect.
  • a reference signal for a noise is derived from the second and / or third audio signals by subtraction.
  • a reference signal for a useful signal is derived from the second and / or third audio signals by summation.
  • the reference signal is used for a useful signal for detecting a voice activity.
  • the reference signal for the useful signal for example, when used to detect a voice activity (VAD, voice activity detection) allows a safer detection.
  • the predetermined filter is a finite impulse response (FIR) filter.
  • FIR finite impulse response
  • An FIR filter advantageously has no tendency to oscillate and thus ensures a convergence of a provided signal under all circumstances.
  • Fig. 1 shows the basic structure of a hearing aid system 100 according to the invention.
  • the hearing aid system 100 has two hearing aid devices 110, 110 '.
  • a hearing aid housing 1, 1 ' for carrying behind the ear, one or more microphones 2, 2' for receiving the sound or acoustic signals from the environment are installed.
  • a signal processing unit 3, 3 ' which is also integrated in the hearing aid housing 1, 1', processes the first audio signals.
  • the output signal of the signal processing unit 3, 3 ' is transmitted to a loudspeaker or receiver 4, 4', which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular of the signal processing unit 3, 3 ' takes place by means of a likewise integrated into the hearing aid housing 1, 1' battery 5, 5 '.
  • the hearing aid system 100 has a signal connection 6, which is designed to transmit a first acoustic signal from the signal processing device 3 to the signal processing device 3 '. It is provided in the preferred embodiment that also signal processing device 3 'transmits a first acoustic signal to the signal processing device 3 in the opposite direction. Furthermore, it is conceivable to transmit the signals of several or all of the microphones 2, 2 'in each case to the other hearing aid device 110, 110'.
  • a signal connection 6 are wired, optical or wireless connections such. Bluetooth conceivable.
  • Fig. 2 shows a schematic flow diagram of a method according to the invention in the signal processing device 3, 3 '.
  • a spatial direction of a desired signal is estimated by the signal processing device 3, 3 '. This can be done for example by time or phase differences for a prominent signal in the first audio signals. An analysis of the amplitude of this distinctive signal in the first audio signals is also conceivable. From the estimated spatial direction of the useful signal, the signal device selects a spatial direction from a set of predetermined spatial directions which is closest to the estimated spatial direction of the useful signal. If no distinctive signal is present, an estimate of the spatial direction is used at an earlier time or a predetermined direction, e.g. selected in a straight line in front of the face of the wearer of the hearing aid system. It is also conceivable to undertake a new estimation of the spatial direction only in the case of a multiple occurrence of a distinctive signal having the same characteristics.
  • step S20 the first audio signals are filtered by the predetermined filter 31.
  • the predetermined filter 31 uses predetermined filter coefficients for the given one Spatial direction of the wanted signal. For example, for each element of the set of given spatial directions, a set of predetermined filter coefficients for the predetermined filter 31 may be stored in a look-up table.
  • the predetermined filter 31 provides second audio signals.
  • the useful signal is already equalized as a signal component by the use of the predetermined filter 31, ie, the differences in amplitude and phase of the useful signal are smaller between the individual second audio signals than between the corresponding first ones Audio signals. Under real ambient conditions, a compensation in the range of 5 - 10 dB can be achieved.
  • the adaptive filter 32 filters the second audio signals.
  • an adaptive filter for example, the Least Mean Square (LMS) method described by Teutsch and Elko can be used to minimize the noise. Due to the pre-filtering by the predetermined filter 31, the filter effect by the adaptive filter 32 may be smaller. Therefore, for example, a filter with fewer coefficients can be used, and therefore an algorithm for adaptively adapting the filter coefficients to the second audio signals converges faster.
  • LMS Least Mean Square
  • the adaptive filter 32 provides third audio signals.
  • the useful signal is already adjusted by the application of the adaptive filter 32 as a signal component to an increased extent, that is, the differences in amplitude and phase of the useful signal between the individual third audio signals are even lower than between the corresponding second audio signals.
  • a reference signal for a noise can be formed in a conceivable embodiment by subtracting third audio signals, which is used in a step S50 by a noise suppression method is to suppress noise in the audio signals before they are output via the handset 4 as acoustic signals. Due to the filtering, the useful signal in the different parts of the third audio signal is almost identical, so that it almost completely extinguishes during difference formation. Therefore, artefacts which distort the wanted signal hardly occur in the subsequent noise suppression method.
  • a reference signal for the useful signal is generated. Since the components of the useful signal are matched by the filtering, but the disturbances are statistically distributed, addition of the useful signal to the interference is further emphasized. Therefore, the reference signal for the wanted signal obtained in step S60 has a better signal-to-noise ratio and can be used for voice actvity detection in a further step S70.
  • the steps S10 to S70 may be applied to audio signals having a single continuous frequency range.
  • the first audio signals are first divided into different frequency ranges before all or individual steps S10 to S70 are applied to the individual frequency ranges.
  • This has the advantage of using a different gain and other signal processing, such as a dynamic compression in a hearing aid to compensate for a hearing loss of the patient for individual frequency ranges. Means for dividing the audio signals into frequency ranges are therefore usually already present and the steps S10 to S70 can be easily incorporated into the existing processing process.
  • individual steps such as, for example, step S10 for estimating a given spatial direction, take place jointly for all frequencies.
  • Fig. 3 shows a corresponding schematic representation of a hearing aid system 100 according to the invention with a frequency distribution.
  • FIG. 3 On the left is in Fig. 3 the head 200 of a patient is shown with an array of two microphones 2, 2 'on each side of the head. The other functional blocks are then no longer specified in their relative position to the head.
  • the first audio signals of the microphones 2, 2 ' are supplied via a signal connection 6 to both hearing aid devices 110, 110' and the signal processing device 3, 3 '.
  • each of the four first audio signals in each hearing aid device 110, 110 ' is divided into a plurality of frequency bands.
  • the signal processing device 3, 3 ' carries out the step S20, which is represented by the function block of the predetermined filter 31, 31'.
  • the second audio signals are supplied to the adaptive filter 32, 32 ', which performs step S30 on the individual frequency ranges of the second audio signals and provides third audio signals.
  • synthesis of the individual frequency ranges of the third audio signals takes place in the synthesis filter bank 33, 33', so that four third audio signals each comprise a single, at least parts of the audible range Frequency range arise.
  • the analysis filter bank 10, 10 ' which divides the first audio signals into frequency ranges, can be realized for example by a short-time Fourier transformation.
  • the further processing of the second and third audio signals then takes place in the short-time Fourier range, before they are in the synthesis filter bank 33, 33 'in turn assembled by, for example, an inverse short-term Fourier transform to form an audio signal.
  • the signal processing unit 3 configured to carry out steps S10 to S70, while the other signal processing unit 3' is for providing the first audio signals and transmitting the audio signals via the signal connection 6 limited.
  • the energy consumption for a parallel processing of all signals in both hearing aids 110, 110 'could be avoided.
  • Other architectures, for example, with a central, remote signal processing unit 3 are conceivable.
  • Fig. 4 shows a schematic representation of a test setup for determining the direction-dependent predetermined filter coefficients.
  • the filters 31 are predetermined, for example by predetermined filter coefficients. These filter coefficients can either be theoretically determined by a model calculation, or determined by measurements and adaptive methods in the laboratory and stored in tables in the signal processing unit 3, 3 '.
  • an artificial head 200 eg KEMAR
  • a measuring device receives the audio signals of the microphones as a function of the spatial direction of a signal source 120 given by the angle ⁇ , which emits a useful signal as sound.
  • Modeling and optimization methods can then be used to determine a set of coefficients that are suitable for predetermined spatial directions under the idealized conditions the measurement equalizes the components of the useful signal in the second audio signals.
  • a spatial direction of a real useful signal source can later be estimated via the step S10, and in the predetermined filter 31 the corresponding coefficient set for a predetermined spatial direction closest to the estimated spatial direction can be selected and used for filtering. Since the real conditions deviate from the ideal conditions of the measurement, the matching of the components of the useful signal in the second audio signals is not completely achieved, which is why the method according to the invention provides for a subsequent adaptive filter 32, 32 '.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Hörhilfesystems sowie ein Hörhilfesystem mit wenigstens zwei Hörhilfegeräten, zwischen denen ein Signalpfad vorgesehen ist, und mit wenigstens einer Signalverarbeitungseinheit, die zur Verarbeitung von Audiosignalen vorgesehen ist.The invention relates to a method for operating a hearing aid system and a hearing aid system with at least two hearing aid devices, between which a signal path is provided, and with at least one signal processing unit which is provided for processing audio signals.

In vielen Fällen betrifft eine Schwerhörigkeit beide Ohren, der Hörgeschädigte sollte beidohrig (binaural) mit Hörgeräten versorgt werden. Moderne Hörgeräte verfügen dabei über Signalverarbeitungsalgorithmen, die abhängig von der Hörsituation die Parameter der Hörgeräte automatisch variieren. Bei der binauralen Versorgung wird dabei die Hörsituation an beiden Ohren bewertet.In many cases hearing impairment affects both ears, the hearing impaired should be provided binaurally with hearing aids. Modern hearing aids have signal processing algorithms which automatically vary the parameters of the hearing aids as a function of the hearing situation. In the case of binaural care, the hearing situation is assessed on both ears.

Lärm und Störgeräusche sind im täglichen Leben allgegenwärtig und erschweren die Sprachkommunikation, insbesondere wenn eine Beeinträchtigung des natürlichen Hörvermögens vorliegt. Daher sind Techniken wünschenswert, die zwar Lärm und Störgeräusche unterdrücken, aber die erwünschten Geräusche und Töne, im Folgenden auch als Nutzsignale bezeichnet, möglichst wenig verändern.Noise and noise are omnipresent in everyday life and make speech communication more difficult, especially if there is an impairment of natural hearing. Therefore, techniques are desirable that suppress noise and noise, but change the desired sounds and tones, hereinafter also referred to as useful signals, as little as possible.

Die bekannten Ausführungsformen von Techniken zur Unterdrückung von Lärm und Störgeräuschen erfordern zur wirksamen Unterdrückung der Störgeräusche Signale mit möglichst identischen Nutzsignalanteilen. In der Praxis werden die verschiedenen Signale jedoch von einer Mehrzahl unterschiedlicher Mikrofone erfasst, die auf den beiden Hörhilfegeräten angeordnet sind. Die von diesen Mikrofonen erfassten Nutzsignale unterscheiden sich aufgrund von Hall in der Umgebung und durch den akustischen Einfluss des Kopfes des Trägers wesentlich. Die Folge ist, dass nachgeschaltete Verfahren zur Unterdrückung der Störgeräusche nicht effektiv arbeiten und insbesondere, wenn es sich um adaptive Verfahren handelt, diese nur sehr langsam oder gar nicht konvergieren. Dies führt zu einer schlechten Unterdrückung der Störgeräusche und zusätzlichen akustischen Artefakten durch die Störgeräuschunterdrückung.The known embodiments of techniques for suppressing noise and noise require for effective suppression of noise noises with identical as possible Nutzsignalanteilen. In practice, however, the various signals are detected by a plurality of different microphones, which are arranged on the two hearing aids. The useful signals detected by these microphones differ substantially due to ambient reverberation and the acoustic influence of the head of the wearer. The result is that downstream noise suppression techniques do not work effectively and especially when it comes to adaptive methods, they converge only very slowly or not at all. This leads to a poor suppression of the noise and additional acoustic artifacts by the noise reduction.

Ein adaptives Verfahren zur Unterdrückung von Störgeräuschen ist beispielsweise aus der Veröffentlichung von H. Teutsch, G.W. Elko "First- and second-order adaptive differential microphone arrays", 7th International Workshop on Acoustic Echo and Noise Control (IWAENC), pp. 35-38, Darmstadt, Germany Sep. 2001 bekannt, in der ein Least-Mean-Square- (LMS-) Verfahren zur Minimierung der Störgeräusche angewandt wird.An adaptive method for suppressing noise is known, for example, from the publication of H. Teutsch, GW Elko "First and second-order adaptive differential microphone arrays", 7th International Workshop on Acoustic Echo and Noise Control (IWAENC), pp. 35-38, Darmstadt, Germany 2001 in which a Least Mean Square (LMS) method is used to minimize the noise.

Ein Verfahren zur blinden Quellentrennung mittels Wiener Filter ist aus der Patentanmeldung EP 2211563 A1 bekannt.A method for blind source separation by means of Wiener filter is from the patent application EP 2211563 A1 known.

Aus der US 2008/0212811 A1 ist ein Hörhilfesystem mit zwei Hörhilfegeräten bekannt, bei welchem Eingangssignale mittels eines ersten Signalkanals mit einem ersten Filter, und mit einem zweiten Signalkanal mit einem zweiten Filter in Ausgangssignale gewandelt werden. Die Koeffizienten mindestens einer der Filter wird derart angepasst, dass die Differenz zwischen den Ausgangssignalen des ersten und zweiten Signalkanals minimiert wird.From the US 2008/0212811 A1 a hearing aid system with two hearing aids is known in which input signals by means of a first signal channel with a first filter, and with a second signal channel with a second filter are converted into output signals. The coefficients of at least one of the filters are adjusted so that the difference between the output signals of the first and second signal channels is minimized.

Die WO 2009/081193 A1 betrifft ein System zur Störgeräuschunterdrückung, mit einem digitalen Filter mit einem vorbestimmten Filter und mit einem adaptiven Filter, und mit einer Signalverarbeitungsvorrichtung zur Erzeugung eines Steuersignals für das adaptive Filter.The WO 2009/081193 A1 relates to a system for noise suppression, comprising a digital filter with a predetermined filter and with an adaptive filter, and with a signal processing device for generating a control signal for the adaptive filter.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Betrieb eines Hörgerätesystems sowie ein Hörgerätesystem zu schaffen, durch welche die Störgeräuschunterdrückung in binauralen Hörhilfesystemen verbessert wird.The object of the present invention is to provide a method for operating a hearing aid system and a hearing aid system, by which the noise suppression in binaural hearing aid systems is improved.

Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Der das Hörhilfesystem betreffende Teil der Aufgabe wird gelöst durch die Merkmale des Anspruchs 12.This object is achieved by a method having the features of claim 1. The part of the object relating to the hearing aid system is achieved by the features of claim 12.

Das erfindungsgemäße Verfahren betrifft ein Verfahren zum Betrieb eines Hörhilfesystems mit mindestens zwei Hörhilfegeräten. Die Hörhilfegeräte weisen einen Wandler zur Aufnahme eines akustischen Signals und Wandlung in ein jeweils erstes Audiosignal auf. Das Hörhilfesystem weist weiterhin eine Signalverarbeitungsvorrichtung zur Verarbeitung von Audiosignalen auf, sowie eine Signalverbindung zur Übertragung eines ersten Audiosignals von jedem Hörhilfegerät zu der Signalverarbeitungseinrichtung. Das akustische Signal weist ein Nutzsignal auf, welches aus einer gegebenen Raumrichtung bezüglich des Hörhilfesystems eintrifft. In dem erfindungsgemäßen Verfahren filtert die Signalverarbeitungsvorrichtung die ersten Audiosignale mit einem für die gegebene Raumrichtung vorbestimmten Filter, sodass zweite Audiosignale erzeugt werden, wobei das vorbestimmte Filter derart ausgelegt ist, dass die Anteile des Nutzsignals in den zweiten Audiosignalen in einem höheren Maß aneinander angeglichen sind als in den ersten Audiosignalen; und
Filtern der zweiten Audiosignale mit einem adaptiven Filter, sodass dritte Audiosignale erzeugt werden, wobei das adaptive Filter derart ausgelegt ist, dass die Anteile des Nutzsignals in den dritten Audiosignalen in einem höheren Maß aneinander angeglichen sind als in den zweiten Audiosignalen.
The method according to the invention relates to a method for operating a hearing aid system with at least two hearing aid devices. The hearing aids have a transducer for receiving an acoustic signal and conversion into a respective first audio signal. The hearing aid system further comprises a signal processing device for processing audio signals, as well as a signal connection for transmitting a first audio signal from each hearing aid device to the signal processing device. The acoustic signal has a useful signal, which arrives from a given spatial direction with respect to the hearing aid system. In the method according to the invention, the signal processing device filters the first audio signals with a filter predetermined for the given spatial direction, so that second audio signals are generated, wherein the predetermined filter is designed such that the components of the useful signal in the second audio signals are matched to one another to a greater degree than in the first audio signals; and
Filtering the second audio signals with an adaptive filter, so that third audio signals are generated, wherein the adaptive filter is designed such that the portions of the useful signal in the third audio signals are aligned to a higher degree than in the second audio signals.

Das erfindungsgemäße Verfahren liefert in dem ersten Schritt zweite Audiosignale, in denen die Anteile des Nutzsignals in höherem Maß als in den ersten Audiosignalen aneinander angeglichen sind. Auf vorteilhafte Weise konvergiert daher das adaptive Filter des zweiten Schritts wesentlich schneller und liefert daher dritte Audiosignale, in denen die Angleichung der Nutzsignale noch weiter verbessert ist. Dies ermöglicht nachfolgenden Störunterdrückungsverfahren ausgehend von diesen dritten Audiosignalen, bessere Referenzsignale für das Nutz- und Störsignal zu bilden und Störgeräusche fast vollständig zu unterdrücken. Durch die Vorbearbeitung der ersten Audiosignale in dem vorbestimmten Filter erlaubt das erfindungsgemäße Verfahren kürzere adaptive Filter mit geringerem Bedarf an Rechenleistung und eine schnellere Konvergenz des adaptiven Filters, was auf vorteilhafte Weise eine Anpassung an schnell wechselnde Umgebungsbedingungen erlaubt.In the first step, the method according to the invention provides second audio signals in which the components of the useful signal are matched to one another to a greater degree than in the first audio signals. Advantageously, therefore, the adaptive filter of the second step converges much faster and therefore provides third audio signals in which the alignment of the useful signals is further improved. This allows subsequent noise suppression methods from these third audio signals to form better reference signals for the useful and interfering signals and noise almost completely to suppress. By preprocessing the first audio signals in the predetermined filter, the method of the invention allows shorter adaptive filters with less computational power requirement and faster convergence of the adaptive filter, which advantageously allows adaptation to rapidly changing environmental conditions.

Das erfindungsgemäße Hörhilfesystem zur Ausführung des erfindungsgemäßen Verfahrens teilt dessen Vorzüge.The hearing aid system according to the invention for carrying out the method according to the invention shares its advantages.

Vorteilhafte Weiterbildungen des Verfahrens und des Hörgerätesystems sind in den Unteransprüchen angegeben.Advantageous developments of the method and the hearing aid system are specified in the subclaims.

So weist in einer bevorzugten Ausführungsform der Erfindung die Signalverarbeitungsvorrichtung Mittel zum Aufteilen der ersten Audiosignale in erste Audiosignale in vorgegebenen Frequenzbereiche auf, wobei die Schritte des erfindungsgemäßen Verfahrens für jedes Audiosignal in einem Frequenzbereich getrennt ausgeführt werden.Thus, in a preferred embodiment of the invention, the signal processing device has means for dividing the first audio signals into first audio signals in predetermined frequency ranges, wherein the steps of the method according to the invention are performed separately for each audio signal in a frequency range.

Dies ermöglicht es, das vorbestimmte Filter und das adaptive Filter für den jeweiligen Frequenzbereich zu optimieren sowie das Verfahren in die Architektur einer Hörhilfe mit einer Frequenzgang-Korrektur entsprechend der Beeinträchtigung des Patienten zu integrieren.This makes it possible to optimize the predetermined filter and the adaptive filter for the respective frequency range as well as to integrate the method in the architecture of a hearing aid with a frequency response correction corresponding to the impairment of the patient.

In einer möglichen Ausführungsform ist das vorbestimmte Filter durch eine vorbestimmte Anzahl an vorbestimmten Koeffizienten definiert.In one possible embodiment, the predetermined filter is defined by a predetermined number of predetermined coefficients.

Ein Filter mit einer vorbestimmten Koeffizientenzahl ist einfach zu implementieren und benötigt in vorteilhafter Weise nur einen geringen Speicherplatz.A filter with a predetermined coefficient number is easy to implement and advantageously requires only a small memory space.

In einer Ausführungsform ist es denkbar, dass die vorbestimmte Anzahl der vorbestimmten Koeffizienten in unterschiedlichen Frequenzbereichen unterschiedlich ist.In one embodiment, it is conceivable that the predetermined number of the predetermined coefficients is different in different frequency ranges.

So kann auf vorteilhafte Weise der Bedarf an Rechenleistung für das vorbestimmte Filter optimiert werden, indem nur in Frequenzbereichen mit entsprechenden Störgeräuschen eine genauere Filterung erfolgt. Darüber hinaus wird der Speicherbedarf für das Filter weiter reduziert.Thus, the need for computing power for the predetermined filter can be optimized in an advantageous manner by more accurate filtering takes place only in frequency ranges with corresponding noise. In addition, the memory requirement for the filter is further reduced.

In einer bevorzugten Ausführungsform sind vorbestimmte Koeffizienten für das vorbestimmte Filter für mindestens zwei vorbestimmte Raumrichtungen vorbestimmt.In a preferred embodiment, predetermined coefficients for the predetermined filter are predetermined for at least two predetermined spatial directions.

Es ist daher auf einfache Weise möglich, das vorbestimmte Filter von einer Richtung, in die die Filterung besonders effektiv erfolgt, auf eine andere Richtung umzuschalten, wenn beispielsweise die Quelle für das Nutzsignal den Standort ändert.It is therefore easily possible to switch the predetermined filter from one direction in which the filtering is particularly effective to another direction, for example, if the source for the useful signal changes the location.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist dieses weiterhin einen Schritt zur Abschätzung einer Raumrichtung des Nutzsignals auf, wobei in dem Schritt des Filterns der ersten Audiosignale das vorbestimmte Filter durch die Koeffizienten vorbestimmt wird, deren zugeordnete vorbestimmte Raumrichtung am nächsten bei der abgeschätzten Raumrichtung liegt.In a preferred embodiment of the method according to the invention, this further comprises a step of estimating a spatial direction of the useful signal, wherein in the step of filtering the first audio signals, the predetermined filter is predetermined by the coefficients whose assigned predetermined spatial direction is closest to the estimated spatial direction.

So kann auf vorteilhafte Weise das vorbestimmte Filter auf verschiedene vorbestimmte Raumrichtungen eingestellt werden, wobei jeweils die gewählte Raumrichtung der Raumrichtung der Quelle des Nutzsignals am nächsten liegt, sodass das vorbestimmte Filter eine optimale Filterwirkung erzielt.Thus, advantageously, the predetermined filter can be set to different predetermined spatial directions, wherein in each case the selected spatial direction of the spatial direction of the source of the useful signal is closest, so that the predetermined filter achieves an optimal filtering effect.

In einer möglichen Ausführungsform des Verfahrens wird aus den zweiten und/oder dritten Audiosignalen durch Differenzbildung ein Referenzsignal für ein Störgeräusch abgeleitet.In one possible embodiment of the method, a reference signal for a noise is derived from the second and / or third audio signals by subtraction.

Dabei ist es von Vorteil, dass in den zweiten Audiosignalen durch das vorbestimmte Filter beziehungsweise in den dritten Audiosignalen durch das adaptive Filter bereits die Anteile des Nutzsignals in einem höheren Maß aneinander angeglichen sind, sodass sich diese durch die Differenzbildung nahezu vollständig aufheben und ein reineres Referenzsignal für das Störgeräusch bereitgestellt wird. Beispielsweise erzeugen nachfolgende Verfahren zur Unterdrückung von Störgeräuschen bei Verwendung dieser Referenzsignale weniger Artefakte und ein reineres Nutzsignal.It is advantageous that in the second audio signals by the predetermined filter or in the third audio signals by the adaptive filter already the proportions of the useful signal to a higher degree aligned with each other are so that they almost completely cancel each other by the difference and a clearer reference signal for the noise is provided. For example, subsequent noise suppression techniques using these reference signals produce less artifacts and a cleaner payload.

In einer möglichen Ausführungsform des Verfahrens wird aus den zweiten und/oder dritten Audiosignalen durch Summenbildung ein Referenzsignal für ein Nutzsignal abgeleitet.In one possible embodiment of the method, a reference signal for a useful signal is derived from the second and / or third audio signals by summation.

Dabei ist es von Vorteil, dass in den zweiten Audiosignalen durch das vorbestimmte Filter beziehungsweise in den dritten Audiosignalen durch das adaptive Filter bereits die Anteile des Nutzsignals in einem höheren Maß aneinander angeglichen sind, sodass bei Addition ein Signal mit einem besseren Signal-Rauschverhältnis zur Verfügung steht.It is advantageous that in the second audio signals by the predetermined filter or in the third audio signals by the adaptive filter already the proportions of the useful signal are aligned to a higher degree to each other, so when adding a signal with a better signal-to-noise ratio available stands.

In einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens wird das Referenzsignal für ein Nutzsignal zur Erkennung einer Sprachaktivität genutzt.In one possible embodiment of the method according to the invention, the reference signal is used for a useful signal for detecting a voice activity.

Wegen des besseren Signal-Rauschverhältnisses erlaubt das Referenzsignal für das Nutzsignal beispielsweise bei einer Verwendung zur Erkennung einer Sprachaktivität (VAD, voice activity detection) eine sicherere Erkennung.Because of the better signal-to-noise ratio, the reference signal for the useful signal, for example, when used to detect a voice activity (VAD, voice activity detection) allows a safer detection.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das vorbestimmte Filter ein Filter mit endlicher Impulsantwort (Finite Impulse Response, FIR).In a preferred embodiment of the method according to the invention, the predetermined filter is a finite impulse response (FIR) filter.

Ein FIR-Filter weist vorteilhafter weise keine Schwingungsneigung auf und stellt daher unter allen Umständen eine Konvergenz eines bereitgestellten Signals sicher.An FIR filter advantageously has no tendency to oscillate and thus ensures a convergence of a provided signal under all circumstances.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.The above-described characteristics, features, and advantages of this invention, as well as the manner in which they are achieved, become clearer and more clearly understandable with the following description of the embodiments, which are explained in more detail in connection with the drawings.

Es zeigen:

Fig. 1
eine schematische Darstellung eines erfindungsgemäßen Hörhilfesystems;
Fig. 2
ein Ablaufdiagramm eines erfindungsgemäßen Verfahrens;
Fig. 3
eine schematische Darstellung der Funktionsaufteilung einer Ausführungsform des binauralen Hörhilfesystems;
Fig. 4
eine schematische Darstellung für einen Testaufbau zur Bestimmung der richtungsabhängigen vorbestimmten Filterkoeffizienten.
Show it:
Fig. 1
a schematic representation of a hearing aid system according to the invention;
Fig. 2
a flow diagram of a method according to the invention;
Fig. 3
a schematic representation of the functional distribution of an embodiment of the binaural hearing aid system;
Fig. 4
a schematic representation of a test setup for determining the direction-dependent predetermined filter coefficients.

Fig. 1 zeigt den prinzipiellen Aufbau eines erfindungsgemäßen Hörhilfesystems 100. Das Hörhilfesystem 100 weist zwei Hörhilfegeräte 110, 110' auf. In ein Hörgerätegehäuse 1, 1' zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2, 2' zur Aufnahme des Schalls bzw. akustischer Signale aus der Umgebung eingebaut. Die Mikrofone 2, 2' sind Wandler 2, 2' zur Umwandlung des Schalls in erste Audiosignale. Eine Signalverarbeitungseinheit 3, 3', die ebenfalls in das Hörgerätegehäuse 1, 1' integriert ist, verarbeitet die ersten Audiosignale. Das Ausgangssignal der Signalverarbeitungseinheit 3, 3' wird an einen Lautsprecher bzw. Hörer 4, 4' übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3, 3' erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1, 1' integrierte Batterie 5, 5'. Fig. 1 shows the basic structure of a hearing aid system 100 according to the invention. The hearing aid system 100 has two hearing aid devices 110, 110 '. In a hearing aid housing 1, 1 'for carrying behind the ear, one or more microphones 2, 2' for receiving the sound or acoustic signals from the environment are installed. The microphones 2, 2 'are transducers 2, 2' for converting the sound into first audio signals. A signal processing unit 3, 3 ', which is also integrated in the hearing aid housing 1, 1', processes the first audio signals. The output signal of the signal processing unit 3, 3 'is transmitted to a loudspeaker or receiver 4, 4', which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular of the signal processing unit 3, 3 'takes place by means of a likewise integrated into the hearing aid housing 1, 1' battery 5, 5 '.

Weiterhin weist das Hörhilfesystem 100 eine Signalverbindung 6 auf, die ausgelegt ist, ein erstes akustisches Signal von der Signalverarbeitungseinrichtung 3 zu der Signalverarbeitungseinrichtung 3' zu übertragen. Dabei ist es in der bevorzugten Ausführungsform vorgesehen, dass auch Signalverarbeitungseinrichtung 3' ein erstes akustisches Signal zu der Signalverarbeitungseinrichtung 3 in Gegenrichtung überträgt. Weiterhin ist es denkbar, die Signale mehrerer oder aller Mikrofone 2, 2' jeweils zu dem anderen Hörhilfegerät 110, 110' zu übertragen.Furthermore, the hearing aid system 100 has a signal connection 6, which is designed to transmit a first acoustic signal from the signal processing device 3 to the signal processing device 3 '. It is provided in the preferred embodiment that also signal processing device 3 'transmits a first acoustic signal to the signal processing device 3 in the opposite direction. Furthermore, it is conceivable to transmit the signals of several or all of the microphones 2, 2 'in each case to the other hearing aid device 110, 110'.

Als Signalverbindung 6 sind drahtgebundene, optische oder auch drahtlose Verbindungen wie z.B. Bluetooth denkbar.As a signal connection 6 are wired, optical or wireless connections such. Bluetooth conceivable.

Fig. 2 zeigt ein schematisches Ablaufdiagramm eines erfindungsgemäßen Verfahrens in der Signalverarbeitungseinrichtung 3, 3'. Fig. 2 shows a schematic flow diagram of a method according to the invention in the signal processing device 3, 3 '.

In Schritt S10 wird eine Raumrichtung eines Nutzsignals von der Signalverarbeitungseinrichtung 3, 3' abgeschätzt. Dies kann beispielsweise durch Zeit- bzw. Phasenunterschiede für ein markantes Signal in den ersten Audiosignalen erfolgen. Denkbar ist auch eine Analyse der Amplitude dieses markanten Signals in den ersten Audiosignalen. Aus der geschätzten Raumrichtung des Nutzsignals wählt die Signalvorrichtung eine Raumrichtung aus einer Menge von vorgegebenen Raumrichtungen, die der geschätzten Raumrichtung des Nutzsignals am nächsten liegt. Ist kein markantes Signal vorhanden, wird eine Abschätzung der Raumrichtung zu einem früheren Zeitpunkt verwendet oder eine vorbestimmte Richtung, z.B. in gerader Richtung vor dem Gesicht des Trägers des Hörhilfesystems ausgewählt. Auch ist es denkbar, nur bei einem mehrfachen Auftreten eines markanten Signals mit gleichen Merkmalen eine neue Abschätzung der Raumrichtung zu übernehmen.In step S10, a spatial direction of a desired signal is estimated by the signal processing device 3, 3 '. This can be done for example by time or phase differences for a prominent signal in the first audio signals. An analysis of the amplitude of this distinctive signal in the first audio signals is also conceivable. From the estimated spatial direction of the useful signal, the signal device selects a spatial direction from a set of predetermined spatial directions which is closest to the estimated spatial direction of the useful signal. If no distinctive signal is present, an estimate of the spatial direction is used at an earlier time or a predetermined direction, e.g. selected in a straight line in front of the face of the wearer of the hearing aid system. It is also conceivable to undertake a new estimation of the spatial direction only in the case of a multiple occurrence of a distinctive signal having the same characteristics.

In Schritt S20 erfolgt eine Filterung der ersten Audiosignale durch das vorbestimmte Filter 31. Dabei nutzt das vorbestimmte Filter 31 vorbestimmte Filterkoeffizienten für die gegebene Raumrichtung des Nutzsignals. Beispielsweise kann für jedes Element aus der Menge der gegebenen Raumrichtungen ein Satz von vorbestimmten Filterkoeffizienten für das vorbestimmte Filter 31 in einer Look-Up-Tabelle hinterlegt sein. Als Ergebnis des Schrittes S20 stellt das vorbestimmte Filter 31 zweite Audiosignale bereit. In diesen zweiten Audiosignalen ist das Nutzsignal durch die Anwendung des vorbestimmten Filters 31 bereits als Signalanteil in erhöhtem Maß angeglichen (engl. equalize), das heißt, die Unterschiede in Amplitude und Phase des Nutzsignals sind zwischen den einzelnen zweiten Audiosignalen geringer als zwischen den entsprechenden ersten Audiosignalen. Unter realen Umgebungsbedingungen lässt sich damit ein Ausgleich im Bereich von 5 - 10dB erreichen.
In Schritt S30 filtert das adaptive Filter 32 die zweiten Audiosignale. Als adaptives Filter kann beispielsweise das von Teutsch und Elko beschriebene Least-Mean-Square- (LMS-) Verfahren zur Minimierung der Störgeräusche angewandt werden. Aufgrund der Vorfilterung durch das vorbestimmte Filter 31 kann der Filtereffekt durch das adaptive Filter 32 geringer ausfallen. Daher kann beispielsweise ein Filter mit weniger Koeffizienten angewandt werden, weshalb ein Algorithmus zur adaptiven Anpassung der Filterkoeffizienten auf die zweiten Audiosignale schneller konvergiert.
In step S20, the first audio signals are filtered by the predetermined filter 31. In this case, the predetermined filter 31 uses predetermined filter coefficients for the given one Spatial direction of the wanted signal. For example, for each element of the set of given spatial directions, a set of predetermined filter coefficients for the predetermined filter 31 may be stored in a look-up table. As a result of step S20, the predetermined filter 31 provides second audio signals. In these second audio signals, the useful signal is already equalized as a signal component by the use of the predetermined filter 31, ie, the differences in amplitude and phase of the useful signal are smaller between the individual second audio signals than between the corresponding first ones Audio signals. Under real ambient conditions, a compensation in the range of 5 - 10 dB can be achieved.
In step S30, the adaptive filter 32 filters the second audio signals. As an adaptive filter, for example, the Least Mean Square (LMS) method described by Teutsch and Elko can be used to minimize the noise. Due to the pre-filtering by the predetermined filter 31, the filter effect by the adaptive filter 32 may be smaller. Therefore, for example, a filter with fewer coefficients can be used, and therefore an algorithm for adaptively adapting the filter coefficients to the second audio signals converges faster.

Als Ergebnis des Schrittes S30 stellt das adaptive Filter 32 dritte Audiosignale bereit. In diesen dritten Audiosignalen ist das Nutzsignal durch die Anwendung des adaptiven Filters 32 bereits als Signalanteil in erhöhtem Maß angeglichen, das heißt, die Unterschiede in Amplitude und Phase des Nutzsignals sind zwischen den einzelnen dritten Audiosignalen noch geringer als zwischen den entsprechenden zweiten Audiosignalen.As a result of step S30, the adaptive filter 32 provides third audio signals. In these third audio signals, the useful signal is already adjusted by the application of the adaptive filter 32 as a signal component to an increased extent, that is, the differences in amplitude and phase of the useful signal between the individual third audio signals are even lower than between the corresponding second audio signals.

In einem Schritt S40 kann in einer denkbaren Ausführungsform durch Differenzbildung von dritten Audiosignale ein Referenzsignal für ein Störgeräusch gebildet werden, welches in einem Schritt S50 durch ein Störunterdrückungsverfahren genutzt wird, um Störgeräusche in den Audiosignalen zu unterdrücken, bevor diese über den Hörer 4 als akustische Signale ausgegeben werden. Durch die Filterung ist das Nutzsignal in den verschiedenen Anteilen des dritten Audiosignals nahezu identisch, sodass es sich bei der Differenzbildung fast vollständig auslöscht. Daher kommt es bei dem nachfolgenden Störunterdrückungsverfahren kaum zu Artefakten, die das Nutzsignal verzerren.In a conceivable embodiment, a reference signal for a noise can be formed in a conceivable embodiment by subtracting third audio signals, which is used in a step S50 by a noise suppression method is to suppress noise in the audio signals before they are output via the handset 4 as acoustic signals. Due to the filtering, the useful signal in the different parts of the third audio signal is almost identical, so that it almost completely extinguishes during difference formation. Therefore, artefacts which distort the wanted signal hardly occur in the subsequent noise suppression method.

Es ist auch denkbar, dass in einem Schritt S60 durch Summenbildung von dritten Audiosignalen ein Referenzsignal für das Nutzsignal generiert wird. Da die Anteile des Nutzsignals durch das Filtern angeglichen sind, die Störungen aber statistisch verteilt sind, wird durch Addition das Nutzsignal gegenüber den Störungen weiter hervorgehoben. Daher weist das in Schritt S60 gewonnene Referenzsignal für das Nutzsignal ein besseres Signal-Rauschverhältnis auf und kann in einem weiteren Schritt S70 zur Erkennung einer Sprachaktivität (voice actvity detection) herangezogen werden.It is also conceivable that in a step S60 by summation of third audio signals, a reference signal for the useful signal is generated. Since the components of the useful signal are matched by the filtering, but the disturbances are statistically distributed, addition of the useful signal to the interference is further emphasized. Therefore, the reference signal for the wanted signal obtained in step S60 has a better signal-to-noise ratio and can be used for voice actvity detection in a further step S70.

Die Schritte S10 bis S70 können auf Audiosignale angewendet werden, die einen einzigen durchgehenden Frequenzbereich aufweisen. In einer bevorzugten Ausführungsform erfolgt jedoch erst eine Aufteilung der ersten Audiosignale in unterschiedliche Frequenzbereiche, bevor auf die einzelnen Frequenzbereiche alle oder einzelne der Schritte S10 bis S70 angewendet werden. Dies hat den Vorteil, bei einer Hörhilfe zum Ausgleich einer Hörschwäche des Patienten für einzelne Frequenzbereiche eine unterschiedliche Verstärkung und anderweitige Signalverarbeitung, beispielsweise eine Dynamikkompression anzuwenden. Mittel zum Aufteilen der Audiosignale in Frequenzbereiche sind daher meist bereits vorhanden und die Schritte S10 bis S70 lassen sich leicht in den vorhandenen Verarbeitungsprozess einbinden. Es ist aber auch denkbar, dass einzelne Schritte, wie z.B. Schritt S10 zur Abschätzung einer gegebenen Raumrichtung, für alle Frequenzen gemeinsam erfolgt.The steps S10 to S70 may be applied to audio signals having a single continuous frequency range. In a preferred embodiment, however, the first audio signals are first divided into different frequency ranges before all or individual steps S10 to S70 are applied to the individual frequency ranges. This has the advantage of using a different gain and other signal processing, such as a dynamic compression in a hearing aid to compensate for a hearing loss of the patient for individual frequency ranges. Means for dividing the audio signals into frequency ranges are therefore usually already present and the steps S10 to S70 can be easily incorporated into the existing processing process. However, it is also conceivable that individual steps, such as, for example, step S10 for estimating a given spatial direction, take place jointly for all frequencies.

Fig. 3 zeigt eine entsprechende schematische Darstellung eines erfindungsgemäßen Hörhilfesystems 100 mit einer Frequenzaufteilung. Fig. 3 shows a corresponding schematic representation of a hearing aid system 100 according to the invention with a frequency distribution.

Auf der linken Seite ist in Fig. 3 der Kopf 200 eines Patienten mit einer Anordnung von je zwei Mikrofonen 2, 2' auf jeder Seite des Kopfes dargestellt. Die weiteren Funktionsblöcke sind dann nicht mehr in ihrer relativen Position zum Kopf angegeben.On the left is in Fig. 3 the head 200 of a patient is shown with an array of two microphones 2, 2 'on each side of the head. The other functional blocks are then no longer specified in their relative position to the head.

Die ersten Audiosignale der Mikrofone 2, 2' werden über eine Signalverbindung 6 beiden Hörhilfegeräten 110, 110' und der Signalverarbeitungseinrichtung 3, 3' zugeführt. In einer Analysefilterbank 10, 10', die in den Signalverarbeitungseinheiten 3, 3' realisiert ist, wird jedes der vier ersten Audiosignale in jedem Hörhilfegerät 110, 110' in eine Mehrzahl von Frequenzbändern aufgeteilt. Für die einzelnen Frequenzbereiche der ersten Audiosignale führt die Signalverarbeitungseinrichtung 3, 3' den Schritt S20 aus, der durch den Funktionsblock des vorbestimmten Filters 31, 31' dargestellt ist. Die zweiten Audiosignale werden dem adaptiven Filter 32, 32' zugeführt, der den Schritt S30 auf die einzelnen Frequenzbereiche der zweiten Audiosignale ausführt und dritte Audiosignale bereitstellt. Vor einer Wandlung in akustische Signale, die über die Hörer 4, 4' ausgegeben werden, erfolgt in der Synthesefilterbank 33, 33' eine Synthese der einzelnen Frequenzbereiche der dritten Audiosignale, sodass wieder vier dritte Audiosignale mit jeweils einem einzigen, zumindest Teile des Hörbereichs umfassenden Frequenzbereich entstehen.The first audio signals of the microphones 2, 2 'are supplied via a signal connection 6 to both hearing aid devices 110, 110' and the signal processing device 3, 3 '. In an analysis filter bank 10, 10 'realized in the signal processing units 3, 3', each of the four first audio signals in each hearing aid device 110, 110 'is divided into a plurality of frequency bands. For the individual frequency ranges of the first audio signals, the signal processing device 3, 3 'carries out the step S20, which is represented by the function block of the predetermined filter 31, 31'. The second audio signals are supplied to the adaptive filter 32, 32 ', which performs step S30 on the individual frequency ranges of the second audio signals and provides third audio signals. Before conversion into acoustic signals, which are output via the earphones 4, 4 ', synthesis of the individual frequency ranges of the third audio signals takes place in the synthesis filter bank 33, 33', so that four third audio signals each comprise a single, at least parts of the audible range Frequency range arise.

Die Analysefilterbank 10, 10', die die ersten Audiosignale in Frequenzbereiche aufteilt, kann beispielsweise durch eine Kurzzeit-Fouriertransformation realisiert sein. Die weitere Verarbeitung der zweiten und dritten Audiosignale erfolgt dann im Kurzzeit-Fourierbereich, bevor sie in der Synthesefilterbank 33, 33'wiederum durch beispielsweise eine inverse Kurzzeit-Fouriertransformation zu einem Audiosignal zusammengesetzt werden.The analysis filter bank 10, 10 ', which divides the first audio signals into frequency ranges, can be realized for example by a short-time Fourier transformation. The further processing of the second and third audio signals then takes place in the short-time Fourier range, before they are in the synthesis filter bank 33, 33 'in turn assembled by, for example, an inverse short-term Fourier transform to form an audio signal.

Die in Fig. 3 dargestellte Aufteilung der Funktionsblöcke ist dabei nur beispielhaft. So wäre es auch denkbar, dass die Signalverbindung 6 nicht der Signalverarbeitungseinheit 3, 3' vorgeschaltet ist, sondern die Signalverarbeitungseinheit 3, 3' selbst Protokolle, Signalisierung und Schnittstellen bereitstellt, sodass lediglich die physikalische Verbindungsebene der Signalverbindung 6 außerhalb der Signalverarbeitungseinheit 3, 3' stattfindet.In the Fig. 3 shown division of the function blocks is only an example. Thus, it would also be conceivable that the signal connection 6 is not connected upstream of the signal processing unit 3, 3 ', but the signal processing unit 3, 3' itself provides protocols, signaling and interfaces, so that only the physical connection level of the signal connection 6 outside the signal processing unit 3, 3 ' takes place.

Ebenso wäre es möglich, dass lediglich ein Hörhilfegerät 110, 110' des Hörhilfesystems 100 die Signalverarbeitungseinheit 3 zur Durchführung der Schritte S10 bis S70 ausgelegt ist, während sich die andere Signalverarbeitungseinheit 3' auf eine Bereitstellung der ersten Audiosignale und die Übertragung der Audiosignale über die Signalverbindung 6 beschränkt. So könnte beispielsweise der Energieverbrauch für eine parallele Verarbeitung aller Signale in beiden Hörhilfegeräten 110, 110' vermieden werden. Auch andere Architekturen, beispielsweise mit einer zentralen, abgesetzten Signalverarbeitungseinheit 3 sind vorstellbar.It would also be possible for only one hearing aid device 110, 110 'of the hearing aid system 100 to have the signal processing unit 3 configured to carry out steps S10 to S70, while the other signal processing unit 3' is for providing the first audio signals and transmitting the audio signals via the signal connection 6 limited. For example, the energy consumption for a parallel processing of all signals in both hearing aids 110, 110 'could be avoided. Other architectures, for example, with a central, remote signal processing unit 3 are conceivable.

Fig. 4 zeigt noch eine schematische Darstellung für einen Testaufbau zur Bestimmung der richtungsabhängigen vorbestimmten Filterkoeffizienten. Die Filter 31 sind vorbestimmt, beispielsweise durch vorbestimmte Filterkoeffizienten. Diese Filterkoeffizienten können entweder durch eine Modellrechnung theoretisch bestimmt werden, oder durch Messungen und adaptive Verfahren im Labor bestimmt und in der Signalverarbeitungseinheit 3, 3' durch Tabellen abgelegt werden. In Fig. 4 ist ein künstlicher Kopf 200 (z.B. KEMAR) dargestellt, an dem Mikrofone 2, 2' angeordnet sind. Eine nicht dargestellte Messvorrichtung nimmt die Audiosignale der Mikrofone in Abhängigkeit von der durch den Winkel Φ angegebenen Raumrichtung einer Signalquelle 120 auf, die ein Nutzsignal als Schall emittiert. Durch Modellierungs- und Optimierungsverfahren kann dann ein Satz an Koeffizienten bestimmt werden, der für vorbestimmte Raumrichtungen unter den idealisierten Bedingungen der Messung die Anteile des Nutzsignals in den zweiten Audiosignalen angleicht. In dem Hörhilfesystem 100 kann später über den Schritt S10 eine Raumrichtung einer realen Nutzsignalquelle abgeschätzt und in dem vorbestimmten Filter 31 der entsprechende Koeffizientensatz für eine der geschätzten Raumrichtung am nächsten liegende vorbestimmte Raumrichtung ausgewählt und zur Filterung angewendet werden. Da die realen Bedingungen von den idealen Bedingungen der Messung abweichen, wird das Angleichen der Anteile des Nutzsignals in den zweiten Audiosignalen nicht vollständig erreicht, weshalb das erfindungsgemäße Verfahren ein nachfolgendes adaptives Filter 32, 32' vorsieht. Fig. 4 shows a schematic representation of a test setup for determining the direction-dependent predetermined filter coefficients. The filters 31 are predetermined, for example by predetermined filter coefficients. These filter coefficients can either be theoretically determined by a model calculation, or determined by measurements and adaptive methods in the laboratory and stored in tables in the signal processing unit 3, 3 '. In Fig. 4 an artificial head 200 (eg KEMAR) is shown on which microphones 2, 2 'are arranged. A measuring device, not shown, receives the audio signals of the microphones as a function of the spatial direction of a signal source 120 given by the angle Φ, which emits a useful signal as sound. Modeling and optimization methods can then be used to determine a set of coefficients that are suitable for predetermined spatial directions under the idealized conditions the measurement equalizes the components of the useful signal in the second audio signals. In the hearing aid system 100, a spatial direction of a real useful signal source can later be estimated via the step S10, and in the predetermined filter 31 the corresponding coefficient set for a predetermined spatial direction closest to the estimated spatial direction can be selected and used for filtering. Since the real conditions deviate from the ideal conditions of the measurement, the matching of the components of the useful signal in the second audio signals is not completely achieved, which is why the method according to the invention provides for a subsequent adaptive filter 32, 32 '.

Claims (12)

  1. Method for operating a hearing aid system (100) having at least two hearing aid devices (110, 110'), wherein the hearing aid devices (110, 110') have a transducer (2, 2') for picking up an audible signal and converting it into a respective first audio signal, wherein the hearing aid system (110, 110') has a signal processing apparatus (3, 3') for processing audio signals and the hearing aid system has a signal connection (6) for transmitting the respective first audio signal from each hearing aid device (110, 110') to the signal processing apparatus (3, 3'), and wherein the signal processing apparatus (3, 3') has a predetermined filter (31, 31') having predetermined filter coefficients for a given spatial direction,
    characterized
    in that the signal processing apparatus (3, 3') carries out the following steps for aligning components of a useful signal in the picked-up audio signals of the audible signal in third audio signals, wherein the useful signal arrives from the given spatial direction in relation to the hearing aid system:
    filtering (S20) the first audio signals using a filter (31, 31') predetermined for the given spatial direction, so that second audio signals are generated, wherein the predetermined filter (31, 31') is designed such that the components of the useful signal are aligned with one another to a greater extent in the second audio signals than in the first audio signals; and
    filtering (S30) the second audio signals using an adaptive filter (32, 32'), so that third audio signals are generated, wherein the adaptive filter (32, 32') is designed such that the components of the useful signal are aligned with one another to a greater extent in the third audio signals than in the second audio signals.
  2. Method according to Claim 1, wherein the signal processing apparatus has means (10, 10') for splitting the first audio signals into first audio signals in prescribed frequency ranges, and the steps of Claim 1 are carried out separately for each audio signal in a frequency range.
  3. Method according to Claim 1 or 2, wherein the predetermined filter (31, 31') is defined by a predetermined number of predetermined coefficients.
  4. Method according to Claim 2 and 3, wherein the predetermined number of predetermined coefficients is different in different frequency ranges.
  5. Method according to one of the preceding claims, wherein predetermined coefficients for the predetermined filter are predetermined for at least two predetermined spatial directions.
  6. Method according to Claim 5, wherein the method furthermore has a step for estimating a spatial direction of the useful signal, and the step of filtering the first audio signals involves the predetermined filter (31, 31') being predetermined by the coefficients whose associated predetermined spatial direction is closest to the estimated spatial direction.
  7. Method according to one of the preceding claims, wherein a reference signal for a noise is derived from the second and/or third audio signals by means of difference formation.
  8. Method according to one of the preceding claims, wherein a reference signal for a useful signal is derived from the second and/or third audio signals by means of summation.
  9. Method according to Claim 8, wherein the reference signal for a useful signal is used to detect a voice activity.
  10. Method according to one of the preceding claims, wherein the predetermined filter (31, 31') is a finite impulse response filter.
  11. Method according to one of the preceding claims, wherein the adaptive filter (32, 32') uses a least mean square (LMS) method to minimize the noise.
  12. Hearing aid system (100) having at least two hearing aid devices (110, 110'), wherein the hearing aid devices (110, 110') have a transducer (2, 2') for picking up an audible signal and converting it into a respective first audio signal, wherein the hearing aid system has a signal processing apparatus (3, 3') for processing audio signals and the hearing aid system has a signal connection (6) for transmitting the respective first audio signal from each hearing aid device (110, 110') to the signal processing apparatus (3, 3'), wherein the signal processing apparatus (3, 3') is configured to carry out the method according to one of Claims 1 to 11.
EP14155511.0A 2013-04-19 2014-02-18 Method for adapting useful signals in binaural hearing assistance systems Active EP2802158B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013207161.2A DE102013207161B4 (en) 2013-04-19 2013-04-19 Method for use signal adaptation in binaural hearing aid systems

Publications (3)

Publication Number Publication Date
EP2802158A2 EP2802158A2 (en) 2014-11-12
EP2802158A3 EP2802158A3 (en) 2017-07-26
EP2802158B1 true EP2802158B1 (en) 2019-08-14

Family

ID=50112829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14155511.0A Active EP2802158B1 (en) 2013-04-19 2014-02-18 Method for adapting useful signals in binaural hearing assistance systems

Country Status (4)

Country Link
US (1) US9277333B2 (en)
EP (1) EP2802158B1 (en)
DE (1) DE102013207161B4 (en)
DK (1) DK2802158T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211747B4 (en) * 2015-06-24 2017-05-18 Sivantos Pte. Ltd. Method for signal processing in a binaural hearing aid
DE102016225205A1 (en) 2016-12-15 2018-06-21 Sivantos Pte. Ltd. Method for determining a direction of a useful signal source
US10848891B2 (en) * 2019-04-22 2020-11-24 Facebook Technologies, Llc Remote inference of sound frequencies for determination of head-related transfer functions for a user of a headset

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479522A (en) * 1993-09-17 1995-12-26 Audiologic, Inc. Binaural hearing aid

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2157418C (en) * 1994-09-01 1999-07-13 Osamu Hoshuyama Beamformer using coefficient restrained adaptive filters for detecting interference signals
US6603861B1 (en) * 1997-08-20 2003-08-05 Phonak Ag Method for electronically beam forming acoustical signals and acoustical sensor apparatus
WO2000019770A1 (en) * 1998-09-29 2000-04-06 Siemens Audiologische Technik Gmbh Hearing aid and method for processing microphone signals in a hearing aid
US6888949B1 (en) * 1999-12-22 2005-05-03 Gn Resound A/S Hearing aid with adaptive noise canceller
WO2001097558A2 (en) * 2000-06-13 2001-12-20 Gn Resound Corporation Fixed polar-pattern-based adaptive directionality systems
WO2007106399A2 (en) * 2006-03-10 2007-09-20 Mh Acoustics, Llc Noise-reducing directional microphone array
US7218741B2 (en) * 2002-06-05 2007-05-15 Siemens Medical Solutions Usa, Inc System and method for adaptive multi-sensor arrays
US7330556B2 (en) * 2003-04-03 2008-02-12 Gn Resound A/S Binaural signal enhancement system
JP4989967B2 (en) * 2003-07-11 2012-08-01 コクレア リミテッド Method and apparatus for noise reduction
CA2452945C (en) * 2003-09-23 2016-05-10 Mcmaster University Binaural adaptive hearing system
DE10351509B4 (en) * 2003-11-05 2015-01-08 Siemens Audiologische Technik Gmbh Hearing aid and method for adapting a hearing aid taking into account the head position
US20050147258A1 (en) * 2003-12-24 2005-07-07 Ville Myllyla Method for adjusting adaptation control of adaptive interference canceller
CA2621940C (en) * 2005-09-09 2014-07-29 Mcmaster University Method and device for binaural signal enhancement
US8238593B2 (en) * 2006-06-23 2012-08-07 Gn Resound A/S Hearing instrument with adaptive directional signal processing
US8005238B2 (en) * 2007-03-22 2011-08-23 Microsoft Corporation Robust adaptive beamforming with enhanced noise suppression
GB0725115D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Split filter
WO2008104446A2 (en) * 2008-02-05 2008-09-04 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device
US8553901B2 (en) * 2008-02-11 2013-10-08 Cochlear Limited Cancellation of bone-conducted sound in a hearing prosthesis
US8693703B2 (en) * 2008-05-02 2014-04-08 Gn Netcom A/S Method of combining at least two audio signals and a microphone system comprising at least two microphones
EP2211563B1 (en) 2009-01-21 2011-08-24 Siemens Medical Instruments Pte. Ltd. Method and apparatus for blind source separation improving interference estimation in binaural Wiener filtering
WO2012078670A1 (en) * 2010-12-06 2012-06-14 The Board Of Regents Of The University Of Texas System Method and system for enhancing the intelligibility of sounds relative to background noise
US8638960B2 (en) * 2011-12-29 2014-01-28 Gn Resound A/S Hearing aid with improved localization
US9148735B2 (en) * 2012-12-28 2015-09-29 Gn Resound A/S Hearing aid with improved localization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479522A (en) * 1993-09-17 1995-12-26 Audiologic, Inc. Binaural hearing aid

Also Published As

Publication number Publication date
US9277333B2 (en) 2016-03-01
EP2802158A2 (en) 2014-11-12
DE102013207161B4 (en) 2019-03-21
US20140314259A1 (en) 2014-10-23
DE102013207161A1 (en) 2014-11-06
DK2802158T3 (en) 2019-11-18
EP2802158A3 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
EP2180726B2 (en) Sound localization in binaural hearing aids
EP3451705B1 (en) Method and apparatus for the rapid detection of own voice
DE10249416B4 (en) Method for adjusting and operating a hearing aid device and hearing aid device
DE10331956C5 (en) Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable
DE102012204877B3 (en) Hearing device for a binaural supply and method for providing a binaural supply
DE102011087984A1 (en) Hearing apparatus with speaker activity recognition and method for operating a hearing apparatus
DE102005047047A1 (en) Microphone calibration on a RGSC beamformer
DE102006047965A1 (en) Method for the reduction of occlusion effects with acoustic device locking an auditory passage, involves using signal from transmission path of audio signal, and transmission function is observed by output of output converter
EP2840809B1 (en) Control of the strength of the effect of a binaural directional microphone
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
CH694606A5 (en) Method of fitting a hearing aid and hearing aid.
EP2802158B1 (en) Method for adapting useful signals in binaural hearing assistance systems
EP2545717A1 (en) Reverberation reduction for signals in a binaural hearing apparatus
EP2595414B1 (en) Hearing aid with a device for reducing a microphone noise and method for reducing a microphone noise
DE102020207579A1 (en) Method for direction-dependent noise suppression for a hearing system which comprises a hearing device
EP2981099A2 (en) Method and device for suppressing feedback
DE102014218672B3 (en) Method and apparatus for feedback suppression
EP1154674A2 (en) Circuit and method for adaptive noise suppression
EP1962554A2 (en) Hearing device with interference signal separation and corresponding method
EP2606660B1 (en) Method for fitting a hearing device using percentile analysis
EP2982136B1 (en) Method for evaluating a useful signal and audio device
EP2793488B1 (en) Binaural microphone adjustment by means of the user's own voice
EP2373065B1 (en) Hearing aid and method for creating an omnidirectional alignment characteristic
EP2897383B1 (en) Method and device for analysis of hearing aid settings
EP3534624B1 (en) Method for operating a hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20170622BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20171130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190425

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEIER, STEFAN

Inventor name: KELLERMANN, WALTER

Inventor name: KAMKAR PARSI, HOMAYOUN

Inventor name: REINDL, KLAUS

Inventor name: PUDER, HENNING

Inventor name: FISCHER, EGHART

Inventor name: AUBREVILLE, MARC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1168470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012404

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191114

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012404

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1168470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 10

Ref country code: DK

Payment date: 20230220

Year of fee payment: 10

Ref country code: CH

Payment date: 20230307

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230221

Year of fee payment: 10

Ref country code: DE

Payment date: 20230216

Year of fee payment: 10