EP2799045B1 - Dispositif de traitement de tissus oculaires au moyen d'impulsions laser - Google Patents

Dispositif de traitement de tissus oculaires au moyen d'impulsions laser Download PDF

Info

Publication number
EP2799045B1
EP2799045B1 EP13002267.6A EP13002267A EP2799045B1 EP 2799045 B1 EP2799045 B1 EP 2799045B1 EP 13002267 A EP13002267 A EP 13002267A EP 2799045 B1 EP2799045 B1 EP 2799045B1
Authority
EP
European Patent Office
Prior art keywords
mirror
projection optical
optical unit
laser pulses
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13002267.6A
Other languages
German (de)
English (en)
Other versions
EP2799045A1 (fr
Inventor
Christian Rathjen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziemer Ophthalmic Systems AG
Original Assignee
Ziemer Ophthalmic Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziemer Ophthalmic Systems AG filed Critical Ziemer Ophthalmic Systems AG
Priority to EP13002267.6A priority Critical patent/EP2799045B1/fr
Priority to US14/262,257 priority patent/US11992438B2/en
Publication of EP2799045A1 publication Critical patent/EP2799045A1/fr
Application granted granted Critical
Publication of EP2799045B1 publication Critical patent/EP2799045B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00846Eyetracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms

Definitions

  • the present invention relates to an ophthalmological apparatus for processing ocular tissue by means of laser pulses.
  • the present invention relates in particular to an ophthalmological device for processing ocular tissue by means of laser pulses with projection optics for focused projection of the laser pulses into the eye tissue and a scanning device downstream of the projection optics for deflecting the laser pulses projected by the projection optics into at least one deflection direction.
  • Ophthalmic devices for processing of eye tissue by means of laser pulses in which the scanning device of the projection optics is connected downstream, have the advantage of a simple focusing optics.
  • they have the disadvantage that an image field curvature, that is to say a curved processing surface, results from the downstream of the scanning device.
  • the focus of the laser pulses deflected by the scanning device must be corrected.
  • the US 2011/245814 describes a device having a downstream scanning device with a single gimbal-mounted mirror, which allows short working distances and a strong focus, as they are for example in the ophthalmology for lens surgery of interest.
  • a disadvantage of this arrangement is the limited dynamics by co-rotating drives.
  • the mirror surface is according to US 2011/245814 not in the turning center, what a additional distortion of field curvature results because the mirror shifts along the optical axis during scanning.
  • WO 2007/064858 describes an ophthalmic treatment system with a scanner and a downstream mirror.
  • the scanner includes two optical scanning elements for deflecting the beam, eg moving mirrors, wedges and / or lenses that rotate or move in perpendicular X, Y directions.
  • a lens focuses the beam deflected by the scanner on the downstream mirror, which is tilted or (if it has a surface curvature) is moved to serve as a scanner or to improve the already generated by the upstream scanner beam movement. From the mirror, the beam is directed to the target tissue via an ophthalmic lens.
  • the ophthalmological device for processing eye tissue by means of laser pulses comprises a projection optics for focused projection of the laser pulses and a scanning device connected downstream of the projection optics with a movable Mirror for deflecting the projected by the projection optics laser pulses in at least one deflection.
  • the ophthalmic device further comprises a drive system arranged to displace the mirror in parallel.
  • the drive system comprises a drive coupled to the scanning device, which is set up to move the scanning device along the optical axis of the projection optical system or transversely to the optical axis of the projection optical system.
  • the drive system comprises at least one coupled to the mirror drive, which is adapted to move the mirror in parallel.
  • the mirror has a pivot point lying on the optical axis of the projection optical unit, and the drive system is set up to displace the mirror and the pivot point along the optical axis of the projection optics.
  • the drive system comprises a plurality of coupled to the mirror linear drives, which are adapted to move the mirror in parallel, and to rotate the mirror about at least one pivot point.
  • the drive system comprises a plurality of coupled to the mirror linear drives, which are adapted to move the mirror in parallel, and to rotate the mirror about a lying on the optical axis of the projection optics fulcrum.
  • the ophthalmic device comprises a control module which is set up to control the drive system in such a way that the drive system shifts the mirror in parallel to an intersection with the optical axis of the projection optics, which has a defined distance from the focal length of the projection optics.
  • the ophthalmic device comprises a control module that is configured to control the drive system in such a way that the drive system shifts the mirror parallel to an intersection with the optical axis of the projection optics, which has a defined distance from the focal length of the projection optics, and the scanning device in such a way that the Scanning device align the mirror for deflecting the laser pulses in the direction of a defined distance to the intersection point having target in the eye tissue.
  • the ophthalmic device comprises a control module which is configured to control the linear drives such that the linear drives move the mirror parallel to an intersection with the optical axis of the projection optics, which has a defined distance from the focal length of the projection optics, and the mirror rotates about the point of intersection, that the laser pulses are deflected in the direction of a defined distance to the point of intersection point having target in the eye tissue.
  • the displacement and rotation of the mirror need not be performed as sequential steps, but can be performed in parallel or in reverse sequence.
  • control module is set up to control the drive system and the scanning device such that the laser pulses are deflected onto target points of a three-dimensional processing surface in the eye tissue.
  • the ophthalmic system comprises a correction system which is set up, by means of an optical element connected upstream of the projection optics, to make a focal length change which depends on the deflection of the laser pulses.
  • the correction system comprises a divergence modulator which is arranged upstream of the projection optics and which is set up to change the divergence of the laser beam as a function of the deflection of the laser pulses.
  • the divergence modulator comprises two serially arranged optical lenses, wherein at least one of the lenses for the modulation of the divergence of the laser beam, being displaceable on an optical axis, is coupled to a motion driver; a deformable lens; a deformable mirror element; a spatial light modulator for modulating the wavefront of the laser beam; a surface light modulator for modulating the reflection angles at a plurality of points of a reflection surface; a refractive modulator for modulating the refractive index of an optical element at a plurality of points in the cross section of the optical path; and an amplitude modulator for amplitude modulation at a plurality of points in the cross section of the beam path of the laser beam.
  • the ophthalmic device comprises a zoom system which is connected upstream of the projection optics or integrated in the projection optics and which is set up to make a focal length change which depends on the deflection of the laser pulses.
  • the ophthalmic device comprises a compensation system comprising movable masses for compensation of acceleration forces caused by moving optical elements.
  • Reference numeral 1 refers to an ophthalmic device for processing ocular tissue 6 by means of laser pulses.
  • the ophthalmological device 1 comprises a laser source 10 for generating the laser pulses, preferably femtosecond laser pulses, for processing eye tissue 6, and a projection optics 12 for focused projection of the laser pulses.
  • the laser pulses are supplied from the laser source 10 via an optical transmission system 11 of the projection optics 12.
  • the ophthalmic device 1 comprises a scanning device 2, which is the projection optics 12 downstream.
  • the scanning device 2 comprises at least one movable mirror 20 for deflecting the laser pulses projected by the projection optical system 12 in at least one deflection direction by rotation d of the mirror 20 about at least one axis of rotation.
  • the scanning device 2 is preferably set up to move the mirror 20 about a plurality of axes of rotation which run through a pivot point A which lies on the optical axis v of the projection optical system 12.
  • the fulcrum A is displaceable on the optical axis v.
  • the mirror 20 is rotatable about one or more axes of rotation which extend through a lying outside the optical axis v pivot point B.
  • the scanning device 2 comprises in a variant of a drive system with a plurality of linear drives 21, 22, which are coupled to the mirror 20.
  • the drives are designed, for example, as piezoelectric or electromagnetic drives.
  • the ophthalmic device comprises a control module 23, which is arranged to control the linear drives 21, 22 in such a way that they move the mirror 20 via correspondingly opposite translational movements u, w about a preferably on the optical axis v of the projection optics 12 and the reflecting surface of the mirror 20 (Mirror surface) lying pivot point A turn.
  • More than two linear drives 21, 22 allow rotations d about different axes passing through the pivot point A in the x / y / z space.
  • the focus F of a focused through the projection optics 12 laser beam L moves at a rotation d of the mirror 20 about a plane perpendicular to the plane of rotation axis on a circular arc s', respectively, with a rotation d of the mirror by several, by a on the optical axis v lying fulcrum A extending, axes of rotation on a spherical shell, as in the FIG.
  • the ophthalmic device 1 comprises an optical correction element 4 arranged downstream of the scanning device 2 and adapted to image the laser pulses deflected by the scanning device 2 onto a desired processing surface s in the eye tissue 6, for example to a desired processing plane to produce a planar section, as in FIG FIG. 2 is indicated by the corrected laser beams L *, L **.
  • the correction element 4 is designed as an optical lens element.
  • the lens element has, for example, an equidistant to the pivot point A of the mirror 20 lens surface, as in the FIG. 2 is indicated with the radius r.
  • the optical correction element 4 is designed in a variant as a lens element, which is designed so that the deflected by the scanning device 2 laser pulses focused on a lying outside the focal length f of the projection optics 12 target processing surface are mapped , This means that the lens element of the optical correction element 4 effects a defined displacement or enlargement of the focal length f of the projection optics 12.
  • the correction element 4 is additionally set up to increase the refractive power and thus focus the laser beam more intensely, i. to project onto a focus with a reduced spot size.
  • the projection optics 12 and the optical correction element 4 are specifically adapted to one another in a variant in order to achieve a defined spot quality of the projected laser pulse or laser beam as combined projection optics, for example in terms of size and shape (diameter transverse to the projection direction, length in projection direction).
  • the optical correction element 4 is permanently or interchangeably connected to the ophthalmic device 1 or to a patient interface device 5 of the ophthalmic device 1. It is thus possible to use interchangeable different correction elements 4 in the patient interface device 5 and to use for the processing of the eye tissue 6.
  • the patient interface device 5 for example, a vacuum applicator 51, such as a suction ring, for attachment to the eye 60 of the patient.
  • the patient interface device 5 comprises a contact body 52, for example an applanation body, for contacting the cornea of the eye 60, or a liquid-fillable cavity having an opening, which in the mounted on the eye 60 state of the patient interface device 5 through the eye 60 respectively, the cornea is completed.
  • the optical correction element 4 is designed as a contact body, depending on the variant and / or application as applanation body with a flat contact surface or as a contact body with a curved contact surface.
  • the optical correction element 4 and a separate applanation body form an optical Correction system which is set up to image the laser pulses deflected by the scanning device 2 focused on the target processing area s in the eye tissue 6.
  • the patient interface device 5 is connected in a variant with the ophthalmic device 1.
  • the patient interface device 5 is rotatably mounted, for example about two axes of rotation.
  • the patient interface device 5 is rotatably mounted about the pivot point A of the mirror 20, that is, the axes of rotation of the pivot joints of the patient interface device 5 pass through the pivot point A of the mirror 20.
  • One of the axes of rotation of the pivot joints of the patient interface device 5 corresponds for example to the optical axis v of Projection optics 12 and a zoom system 83 described later, so that the patient interface device 5 about the optical axis v (and lying on the optical axis v pivot point A of the mirror 20 is also rotatable about this pivot point A).
  • the scanning device 2 is designed and connected to the ophthalmological device 1 such that it can be moved away from the beam path via an adjusting device, for example via a rotation about a rotary joint or a translation, so that the eye 60 can be viewed.
  • the adjusting device comprises a pivot bearing mounted on the ophthalmological device 1 or a rail, by means of which the scanning device 2 can be moved away from the beam path and coupled back into the beam path, manually or by means of a drive system, so that in the state of the scanning device 2 coupled into the beam path the laser pulses supplied by the projection optics 12 can again be deflected precisely from the mirror 20 of the scanning device 2 to target points F.
  • the ophthalmic device 1 comprises a detection module 9, which is set up to detect the optical correction element 4 and comprises a control module which is set up, the setting of the scanning device 2, with respect to the position or the angle of rotation of the mirror 20, depending on to control a detection of the optical correction element 4.
  • the detection of the optical correction element 4 includes the position of the correction element 4 with respect to the ophthalmic device 1 or the scanning device 2, the type of the correction element 4, optical properties of the correction element 4, which are associated, for example, the type of the correction element 4, and / or dimensions of the correction element 4, in particular the thickness of the correction element 4.
  • the detection module 9 To detect the optical correction element 4, the detection module 9, depending on the embodiment and the parameters to be detected, one or more optical sensors, distance sensors, electrical sensors, electromechanical sensors and / or electromagnetic sensors, eg RFID sensors.
  • the control module of the detection module 9 is in particular configured to control the scanning device 2 as a function of the detected position of the correction element 4 and thereby dynamically adapt the position or angle of rotation of the mirror 20 to changes in position of the correction element 4 or of the patient in order to adjust the laser pulses depending on the position, respectively To deflect position changes to defined target points F in eye tissue 6.
  • the control module of the detection module 9 is also designed to align the pivot point A of the mirror 20 to the patient interface device 5 and by Rotary joints of the patient interface device 5 caused tilting of the patient interface device 5 to compensate.
  • the ophthalmic device 1 has a drive system 200, which is set up to move the mirror 20 in parallel.
  • the drive system 200 is in particular configured to displace the mirror 20 with a translational component of motion t-, t + along the optical axis v.
  • a reduction of the distance of the mirror surface to the projection optics 12 causes an enlargement of the distance of the focus to the mirror surface and thus enables a focused projection of the laser pulses on deeper target points F in the eye tissue 6 (displacement in projection or z direction); an increase in the distance of the mirror surface to the projection optics 12, however, causes a shortening of the distance of the focus to the mirror surface and thus enables a focused projection of the laser pulses to higher target points F in the eye tissue 6 (displacement against the projection or z direction).
  • the drive system 200 for parallel displacement of the mirror 20 comprises a drive 24 coupled to the scanning device 2 and configured to displace the scanning device 2 along the optical axis v of the projection optics 12 or transversely to the optical axis v of the projection optics 12.
  • the drive system 200 comprises at least one drive 21, 22 coupled to the mirror 20 and configured to displace the mirror 20 in parallel.
  • the drive system 200 includes, for example, a plurality of coupled to the mirror 20 linear actuators 21, 22, which are arranged to move the mirror 20 in parallel.
  • the linear drives 21, 22 are also arranged to rotate the mirror 20 by means of correspondingly opposite translational movements u, w to at least one pivot point A, B.
  • the rotation d takes place about a fulcrum B located outside the optical axis v of the projection optical system 12.
  • the rotation d takes place about a fulcrum point A lying on the optical axis v of the projection optics 12 and the mirror surface of the mirror 20.
  • More than two linear drives 21, 22 allow rotations d to be different axes through the fulcrum A, B in the x / y / z -Room.
  • the drive system 200 thus makes it possible to displace the mirror 20 and its pivot point A, B along the optical axis v of the projection optics 12 and to rotate the mirror 20 about the pivot point A, B to the eye tissue 6 by means of focused laser focused to target points F laser pulses to edit.
  • FIG. 7 schematically illustrates the focal length f of the projection optics 12 on the optical axis v and thereby defined circular arc e, on which the deflected laser beam L at a rotation d of the mirror 20 to a normal to the plane through the pivot point A axis of rotation, focused distracted , respectively, defined by the focal length spherical shell on which the deflected laser beam L at rotations d of the mirror 20 to a plurality of through the pivot point A extending axes of rotation, is focused distracted.
  • FIG. 8 schematically illustrates the combination of a rotation d of the mirror 20 about the lying on the optical axis v and on the mirror surface pivot point A and a movement of the mirror 20 and the pivot point A with a translational motion component t-, t + along the optical axis v.
  • the FIG. 8 illustrates the combination of rotation d and displacement of the mirror 20 using the example of the processing of target points F ⁇ , F, F ⁇ , which lie on a processing line c in the eye tissue 6.
  • target points F ⁇ , F, F ⁇ which lie on a processing line c in the eye tissue 6.
  • control module 23 controls the drive system 200 and the linear drives 21, 22 so that the drive system 200 for processing the target points F ⁇ , F, F ⁇ the pivot point or the mirror 20 at a point A-, A, A + on the optical axis v of the projection optics 12 shifts, which has a defined distance d-, d, d + to the focal length f of the projection optics 12.
  • the fulcrum A-, A, A + is thus at an intersection of the mirror surface with the optical axis v, wherein the distance d-, d, d + from the pivot point A-, A, A + respectively from the intersection to the focal length f of the projection optics 12 of the distance of corresponding target point F ⁇ , F, F ⁇ to the pivot point A-, A, A + respectively intersection corresponds.
  • the focal length f of the projection optics 12 and the respective target point F ⁇ , F, F ⁇ are thus each on a common arc e respectively on a common spherical shell around the pivot point A-, A, A + respectively intersection point on the optical axis v.
  • the mirror 20 is rotated about the pivot point A-, A, A + such that the deflected mirror 20 ⁇ , 20, 20 ⁇ deflects the laser beam L ⁇ , L, L ⁇ in the direction of the target point Fa, F, F ⁇ .
  • the laser beam L ⁇ , L, L ⁇ and the laser pulses from the projection optics 12 on the deflected mirror 20 ⁇ , 20, 20 ⁇ focused on the respective target point F ⁇ , F, F ⁇ on the processing line c is projected.
  • the combination of rotation d and displacement is not performed sequentially but preferably in parallel / simultaneously, so that the target points F ⁇ , F, F ⁇ can be focused as quickly as possible and edited.
  • the control module 23 is configured in a variant to control the drive system 200 and the scanning device 2 in such a way that the laser pulses are focused and projected onto target points F ⁇ , F, F ⁇ of a three-dimensional processing surface s in the eye tissue 6. As a result, a three-dimensional processing or volume processing is achieved.
  • FIG. 9 illustrates a variant embodiment in which the ophthalmic device 1 as a further feature in the optical transmission system 11 has a Divergenzmodulator 81 upstream of the projection optics 1 2.
  • the divergence modulator 81 is set up to shift the divergence of the laser beam as a function of the deflection of the laser pulses in such a way that the field curvatures caused by the scanning device 2 are at least partially compensated.
  • the divergence modulation divergence modulator 81 comprises two serially arranged optical lenses, wherein at least one of the lenses for modulating the divergence of the laser beam is slidably coupled to a motion driver on the optical axis v; a deformable lens; a deformable mirror element; a spatial light modulator for modulating the wavefront of the laser beam; a surface light modulator for modulating the reflection angles at a plurality of points of a reflection surface; a refractive modulator for modulating the refractive index of an optical element at a plurality of points in the cross section of the optical path; and / or an amplitude modulator for amplitude modulation at a plurality of points in cross section the beam path of the laser beam.
  • the divergence modulator 81 is controlled by a control module 80 depending on the deflection of the laser pulses performed by the scanning device 2, that is dependent on one or more deflection angles of one or more mirrors 20 of the scanning device 2.
  • the control module 80 uses correction parameters respectively control values for controlling the divergence modulator 81, which are stored in association with different deflection angles and effect a corresponding divergence modulation to compensate for field curvatures at the respectively relevant deflection angle, as in FIG FIG. 9 is indicated by the corrected laser beams L *, L **.
  • FIG. 10 1 illustrates a variant embodiment in which the ophthalmological device 1 has as a further feature in the optical transmission system 11 a zoom system 83 which is connected upstream of the projection optics 12 or integrated in the projection optics 12.
  • the zoom system 83 is set up to make a focal length change dependent on the deflection of the laser pulses in order to at least partially compensate for field curvatures caused by the scanning device 2.
  • the zoom system 83 is also configured to adjust the spot size and / or aberrations.
  • the zoom system 83 comprises at least two individually adjustable optical systems, for example two lens groups each having one or more movable lenses, and / or one or more deformable mirrors / lenses and insertable correction elements.
  • the optical systems are coupled to a drive system which comprises one or more electric motors and is set up to adjust the optical systems individually, for example by moving lenses along the optical axis v and / or normal to the optical axis v (into / out of the beam path).
  • the zoom system 83 is controlled by a control module 82 as a function of the deflection of the laser pulses by the scanning device 2, ie dependent on one or more deflection angles of one or more mirrors 20 of the scanning device 2.
  • the control module 82 uses correction parameters or control values for controlling the zoom system 83, which are stored assigned to different deflection angles and cause a corresponding focal length change to compensate for field curvatures at the respective deflection angle concerned, like in the FIG. 10 is indicated by the corrected laser beams L *, L **.
  • the projection optics 12 is designed as a zoom system 83 or the zoom system 83 is used as projection optics 12.
  • the entire projection optical system 12 is shifted depending on the deflection of the laser pulses in order to obtain a compensating focus shift.
  • a divergence modulator 81 and a zoom system 83 are provided, which are controlled in such a way that they make a focus shift dependent on the deflection of the laser pulses combined by divergence modulation of the laser beam by means of the divergence modulator 81 and zooming by means of the zoom system 83.
  • the ophthalmic device 1 comprises a compensation system 7, which comprises movable masses 70 for compensating for acceleration forces caused by moving optical elements in order to avoid or at least reduce vibrations of the ophthalmological device 1 as far as possible.
  • the compensation system 7 comprises one or more drives 71 coupled to the masses 70, which are set up to move the masses 70 counter to the movements of the optical elements in accordance with the control by a control module.
  • the masses 70 are set up, for example, to compensate for acceleration forces caused by the movements of optical elements of the scanning device 2, eg movements of the mirror 20 and / or the drives 21, 22, the divergence modulator 81 and / or the zoom system 83 are caused.
  • control modules 23, 80, 82 each comprise a circuit, for example a (micro) processor, constituted by computer code of a program stored on a (non-transient) computer readable medium controlled, or another programmed logic unit or control electronics.
  • the control modules 23, 80, 82 generate control signals, for example dependent on control programs and / or feedback signals of the scanning device 2, the divergence modulator 81 or the zoom system 83, for controlling the scanning device 2, the drive system 200, the linear drives 21, 22, the divergence modulator 81, the zoom system 83 and / or the compensation system 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)

Claims (15)

  1. Dispositif ophtalmologique (1) pour le traitement de tissus oculaires (6) au moyen d'impulsions laser, comprenant :
    une optique de projection (12) pour la projection focalisée des impulsions laser dans le tissu oculaire, et
    un dispositif de balayage (2) monté en aval de l'optique de projection (12) et comportant un miroir mobile (20) pour la déviation des impulsions laser projetées par l'optique de projection (12) dans au moins une direction de déviation par rotation du miroir (20) autour d'au moins un axe de rotation,
    caractérisé par un système d'entraînement (200) qui est conçu pour déplacer le miroir (20) parallèlement.
  2. Dispositif ophtalmologique (1) selon la revendication 1, caractérisé en ce que le système d'entraînement (200) comprend un entraînement (24) couplé au dispositif de balayage (2), qui est conçu pour déplacer le dispositif de balayage (2) le long de l'axe optique (v) de l'optique de projection (12) ou transversalement à l'axe optique (v) de l'optique de projection (12).
  3. Dispositif ophtalmologique (1) selon la revendication 1, caractérisé en ce que le système d'entraînement (200) comprend au moins un entraînement (21, 22) couplé au miroir (20), qui est conçu pour déplacer le miroir (20) parallèlement.
  4. Dispositif ophtalmologique (1) selon l'une des revendications 1 à 3, caractérisé en ce que le miroir (20) présente un point de rotation (A) situé sur l'axe optique (v) de l'optique de projection (12), et en ce que le système d'entraînement (200) est conçu pour déplacer le miroir (20) et le point de rotation (A) le long de l'axe optique (v) de l'optique de projection (12).
  5. Dispositif ophtalmologique (1) selon la revendication 1, caractérisé en ce que le système d'entraînement (200) comprend une pluralité d'entraînements linéaires (21, 22) couplés au miroir (20), qui sont conçus pour déplacer le miroir (20) parallèlement et pour faire tourner le miroir (20) autour d'au moins un point de rotation (A, B).
  6. Dispositif ophtalmologique (1) selon la revendication 1, caractérisé en ce que le système d'entraînement (200) comprend une pluralité d'entraînements linéaires (21, 22) couplés au miroir (20), qui sont conçus pour déplacer le miroir (20) parallèlement et pour faire tourner le miroir (20) autour d'un point de rotation (A) situé sur l'axe optique (v) de l'optique de projection (12).
  7. Dispositif ophtalmologique (1) selon l'une des revendications 1 à 6, caractérisé par un module de commande (23) qui est conçu pour commander le système d'entraînement (200) de manière à ce que le système d'entraînement (200) déplace le miroir (20) parallèlement, en un point d'intersection (A-, A, A+) avec l'axe optique (v) de l'optique de projection (12) qui présente une distance définie (d-, d, d+) par rapport à la longueur focale (f) de l'optique de projection (12).
  8. Dispositif ophtalmologique (1) selon l'une des revendications 1 à 6, caractérisé par un module de commande (23) qui est conçu pour commander le système d'entraînement (200) de manière à ce que le système d'entraînement (200) déplace le miroir (20) parallèlement, en un point d'intersection (A-, A, A+) avec l'axe optique (v) de l'optique de projection (12) qui présente une distance définie (d-, d, d+) par rapport à la longueur focale (f) de l'optique de projection (12), et pour commander le dispositif de balayage (2) de manière à ce que le dispositif de balayage (2) oriente le miroir (20) afin de dévier les impulsions laser dans la direction d'un point cible (Fα, F, Fβ) dans le tissu oculaire (6) présentant la distance définie (d-, d, d+) par rapport au point d'intersection (A-, A, A+).
  9. Dispositif ophtalmologique (1) selon l'une des revendications 5 ou 6, caractérisé par un module de commande (23) qui est conçu pour commander les entraînements linéaires (21, 22) de manière à ce que les entraînements linéaires (21, 22) déplacent le miroir (20) parallèlement, en un point d'intersection (A-, A, A+) avec l'axe optique (v) de l'optique de projection (12) qui présente une distance définie (d-, d, d+) par rapport à la longueur focale (f) de l'optique de projection (12), et fait tourner le miroir (20) autour du point d'intersection (A-, A, A+) de manière à ce que les impulsions laser soient déviées vers un point cible (Fα, F, Fβ) dans le tissu oculaire (6) présentant la distance définie (d-, d, d+) par rapport au point d'intersection (A-, A, A+).
  10. Dispositif ophtalmologique (1) selon l'une des revendications 7 à 9, caractérisé en ce que le module de commande (23) est conçu pour commander le système d'entraînement (200) et le dispositif de balayage (2) de manière à ce que les impulsions laser soient déviées dans la direction de points cibles (Fα, F, Fβ) d'une surface de traitement tridimensionnelle dans le tissu oculaire (6) .
  11. Dispositif ophtalmologique (1) selon l'une des revendications 1 à 10, caractérisé par un système de correction qui est conçu pour effectuer une variation de focale en fonction de la déviation des impulsions laser au moyen d'un élément optique monté en amont de l'optique de projection (12).
  12. Dispositif ophtalmologique (1) selon la revendication 11, caractérisé en ce que le système de correction comprend un modulateur de divergence (81) monté en amont de l'optique de projection (12), qui est conçu pour modifier la divergence du faisceau laser en fonction de la déviation des impulsions du laser.
  13. Dispositif ophtalmologique (1) selon la revendication 12, caractérisé en ce que le modulateur de divergence (81) comprend au moins l'un des éléments de la liste suivante : deux lentilles optiques disposées en série, dans lequel au moins l'une des lentilles est couplée à un dispositif pilote de mouvement pour moduler la divergence du faisceau laser et peut être déplacée sur un axe optique (v), une lentille déformable, un élément miroir déformable, un modulateur spatial de lumière pour la modulation du front d'onde du faisceau laser, un modulateur zonal de lumière pour la modulation des angles de réflexion en plusieurs points d'une surface de réflexion, un modulateur de réfraction pour la modulation de l'indice de réfraction d'un élément optique en une pluralité de points dans la section transversale du chemin de faisceau, et un modulateur d'amplitude pour la modulation d'amplitude en une pluralité de points dans la section transversale du chemin de faisceau du faisceau laser.
  14. Dispositif ophtalmologique (1) selon l'une des revendications 1 à 13, caractérisé par un système à focale variable (83) qui est monté en amont de l'optique de projection (12) ou intégré dans l'optique de projection (12), qui est conçu pour effectuer une variation de focale en fonction de la déviation des impulsions du laser.
  15. Dispositif ophtalmique (1) selon l'une quelconque des revendications 1 à 14, caractérisé par un système de compensation (7) qui comprend des masses mobiles (70) pour la compensation de forces d'accélération provoquées par des éléments optiques mobiles.
EP13002267.6A 2013-04-29 2013-04-29 Dispositif de traitement de tissus oculaires au moyen d'impulsions laser Active EP2799045B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13002267.6A EP2799045B1 (fr) 2013-04-29 2013-04-29 Dispositif de traitement de tissus oculaires au moyen d'impulsions laser
US14/262,257 US11992438B2 (en) 2013-04-29 2014-04-25 Device for treating eye tissue using laser pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13002267.6A EP2799045B1 (fr) 2013-04-29 2013-04-29 Dispositif de traitement de tissus oculaires au moyen d'impulsions laser

Publications (2)

Publication Number Publication Date
EP2799045A1 EP2799045A1 (fr) 2014-11-05
EP2799045B1 true EP2799045B1 (fr) 2019-01-23

Family

ID=48326056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13002267.6A Active EP2799045B1 (fr) 2013-04-29 2013-04-29 Dispositif de traitement de tissus oculaires au moyen d'impulsions laser

Country Status (2)

Country Link
US (1) US11992438B2 (fr)
EP (1) EP2799045B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279506A (zh) * 2018-02-05 2018-07-13 中国科学院西安光学精密机械研究所 一种飞秒激光光束调控系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE385328B (sv) * 1972-11-13 1976-06-21 Saab Scania Ab Anordning vid en i ett optiskt vapensikte ingaende i ett kardanskt upphengningsorgan vridbart lagrad utstyrbar spegel
US5219347A (en) * 1991-12-24 1993-06-15 Laser Engineering, Inc. Decoupled dual-beam control system
US6287296B1 (en) * 1995-11-30 2001-09-11 Herbert Schwind Gmbh & Co. Kg Device for the removal of tissue from the cornea of an eye
US7108691B2 (en) * 2002-02-12 2006-09-19 Visx, Inc. Flexible scanning beam imaging system
US7311409B2 (en) * 2004-11-24 2007-12-25 Northrop Grumman Corporation Two axis independent driven single hinged gimbaled mirror beam steerer
US9681985B2 (en) * 2005-12-01 2017-06-20 Topcon Medical Laser Systems, Inc. System and method for minimally traumatic ophthalmic photomedicine
US20080015553A1 (en) * 2006-07-12 2008-01-17 Jaime Zacharias Steering laser treatment system and method of use
US20110319875A1 (en) * 2007-01-19 2011-12-29 Frieder Loesel Apparatus and Method for Morphing a Three-Dimensional Target Surface into a Two-Dimensional Image for Use in Guiding a Laser Beam in Ocular Surgery
EP2120820B1 (fr) * 2007-02-14 2012-04-04 Ziemer Holding AG Dispositif ophthalmologique pour la dissolution du tissu oculaire
US8979264B2 (en) * 2008-09-16 2015-03-17 Sie Ag, Surgical Instrument Engineering Device and method for deflecting a laser beam
US20110024581A1 (en) * 2009-07-28 2011-02-03 Giagni Sr Vincent A Drink holder with utility hook
US8403918B2 (en) 2010-04-01 2013-03-26 John Taboada Automated non-invasive capsulectomy and anterior segment surgical apparatus and method
WO2012135579A2 (fr) * 2011-04-01 2012-10-04 Lensar, Inc. Système et procédé pour des incisions de lentilles cornéenne et cristalline générées par laser à l'aide d'un système optique à f/# variable avec interface de contact asphérique avec la cornée ou optiques rotatives et adaptatives
US9549670B2 (en) * 2012-11-02 2017-01-24 Optimedica Corporation Optical surface identification for laser surgery
WO2015112775A1 (fr) * 2014-01-22 2015-07-30 Swift Control Systems, Inc. Dispositif monture de miroir intelligent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140324029A1 (en) 2014-10-30
EP2799045A1 (fr) 2014-11-05
US11992438B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
EP1880698B1 (fr) Dispositif ophthalmologique
EP4233810B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un faisceau de charge pulsé
EP3427705B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
EP3427707B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
EP2080495B1 (fr) Dispositif destiné au traitement de tissu oculaire
EP2596775B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
EP3928752B1 (fr) Dispositif de traitement du tissu oculaire au moyen d'un rayon laser pulsé
DE102005035870A1 (de) Optisches Scan-System
WO2016030112A1 (fr) Dispositif de balayage de la surface d'un objet à l'aide d'une pluralité de faisceaux laser et procédé pour faire fonctionner le dispositif
EP2799045B1 (fr) Dispositif de traitement de tissus oculaires au moyen d'impulsions laser
EP3501463B1 (fr) Dispositif ophtalmologique de traitement de tissu oculaire à l'aide d'un rayon laser d'usinage pulsé
DE102018221203A1 (de) Laserbearbeitungsmaschine mit einem Wobbelscanner
EP2799044B1 (fr) Dispositif de traitement de tissus oculaires au moyen d'impulsions laser
EP2921146B1 (fr) Dispositif destiné au traitement de tissu oculaire à l'aide d'impulsions laser à femtosecondes
DE102017207512A1 (de) Justage-Verfahren für einen Markierungslaserstrahl, entsprechendes Justage-System und Bildgebungsmodalität
EP2163936A1 (fr) Dispositif et procédé destinés à la déviation d'un rayon laser
EP2596774B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
DE102014012456A1 (de) Optische Strahlführungseinheit und Materialbearbeitungsvorrichtung mit einer optischen Strahlführungseinheit
DE102016217347A1 (de) Sehhilfe mit einer Datenbrille und einer Haftschale
EP2412342A1 (fr) Dispositif destiné au traitement de tissu oculaire à l'aide d'impulsions laser à femtosecondes
EP2756828B1 (fr) Dispositif ophtalmologique destiné à traiter les tissus oculaires
EP2596773B1 (fr) Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
DE102018118699A1 (de) Scanneranordnung für optische Strahlung
EP4117579A1 (fr) Cristallin oculaire artificiel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150224

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 9/008 20060101AFI20180724BHEP

INTG Intention to grant announced

Effective date: 20180822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012082

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1090878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012082

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1090878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130429

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 11

Ref country code: DE

Payment date: 20230420

Year of fee payment: 11

Ref country code: CH

Payment date: 20230502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 11