EP2797731A2 - Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion - Google Patents

Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion

Info

Publication number
EP2797731A2
EP2797731A2 EP12815714.6A EP12815714A EP2797731A2 EP 2797731 A2 EP2797731 A2 EP 2797731A2 EP 12815714 A EP12815714 A EP 12815714A EP 2797731 A2 EP2797731 A2 EP 2797731A2
Authority
EP
European Patent Office
Prior art keywords
fiber
aliphatic
plastic film
vacuum
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12815714.6A
Other languages
English (en)
French (fr)
Inventor
Martin Kaune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Priority to EP12815714.6A priority Critical patent/EP2797731A2/de
Publication of EP2797731A2 publication Critical patent/EP2797731A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2867/00Use of polyesters or derivatives thereof as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades

Definitions

  • the present invention relates to the use of plastic films in processes for producing fiber-reinforced plastics by means of vacuum infusion, and to corresponding processes using such plastic films.
  • Vacuum infusion processes are currently used in the manufacture of large composite fiber components such as in the manufacture of rotor blades for wind turbines.
  • the vacuum infusion process in so-called sandwich construction is now a very common production method of rotor blades.
  • the largest and most modern wings consist of glued glass and carbon fiber mats, into which epoxy resin is injected under vacuum.
  • the high-tech construction provides the required exceptional stability and flexibility, while keeping the wings thin and light at the same time.
  • the mold consisting of two heatable shells is subjected to release agent. Then, if necessary, the shell is covered with an inmould gelcoat and, after its hardening, laid out with glass fiber mats and other reinforcing material such as balsa wood and PU foams. Then special hoses are used, from which then flows the mixture of epoxy resin, hardeners and additives. This is followed by a plastic film that seals the whole thing airtight. This is laid double-layered to ensure airtightness. In the next step, all the air is drawn out between the tool and the film.
  • the resulting vacuum sucks the liquid resin and hardener mixture through the hoses into the mold and soaks the reinforcing material.
  • Advantage of this method is the uniform impregnation of the fibers and thus the high quality of the produced components and their reproducibility.
  • the half-shells are then heated to about 40 to 50 ° C in order to solidify the component so far that it can be transported safely.
  • the Vacuum foil, tnfusions bamboon and the like removed and then the rotor blade halves are cured at about 70 degrees Celsius. This is followed by the gluing of both halves of the sheet.
  • the coating Prior to the multi-level coating, the coating, the blade surface is ground to remove the release agent.
  • plastic film used before the application of the vacuum which serves the airtight sealing prior to the aspiration of the resin and hardener mixture can be used only once due to the method and must then be disposed of.
  • Such two-layer films used are usually made of polyamide,
  • the object of the present invention was inter alia to overcome the above-mentioned disadvantages associated with the use of the previously used films.
  • biodegradable plastic films that meet the stringent requirements of the binding European standard for biodegradable plastics (EN 13432) have proven to be suitable for replacing the previously used films based on polyamide. This was particularly surprising because such films usually tend to thermal decomposition at the elevated curing temperatures of about 50 ° C.
  • the Ecoflex® films from BASF SE, Ludwigshafen, Germany, have proved to be particularly suitable.
  • the main basic properties, in addition to the temperature resistance consist in the airtightness and elasticity of the films in order to compensate for possible stresses during vacuum drawing.
  • the films can also be additionally optimized by an appropriate surface treatment, such as a nanoscale dephase dephase plasma layer.
  • the present invention thus relates to the use of biodegradable plastic films as vacuum films in processes for the production of fiber-reinforced plastics by means of vacuum infusion.
  • Another object of the invention is a process for the production of fiber-reinforced plastics or plastic components by means of vacuum infusion, in which (a) a heated mold is optionally applied with a release agent, (b) fiber material and optionally further reinforcing material is introduced into the mold, (c) a or several tubes are inserted, which serve the subsequent supply of a liquid mixture comprising at least one resin and at least one resin-reactive hardener, (d) a plastic film is applied, which allows an airtight completion of the mold, and (e) the air between Tool mold and plastic film is pulled out, for example, by pumping, the resulting vacuum sucks the liquid mixture through the hoses in the mold and the fiber material and any other reinforcing materials are impregnated, and connect nd (f) a hardening of the liquid mixture to the fiber-reinforced plastic takes place, characterized in that the plastic film used in step (d) is a biodegradable plastic film.
  • This method is referred to below as the method according to the invention.
  • plastic films used in the inventive use or in the process according to the invention are preferably plastic films based on aliphatic-aromatic copolyesters.
  • Suitable copolyesters are those which are obtainable using short-chain aliphatic diols having 2 to 8 carbon atoms, in particular 4 carbon atoms such as 1,4-butanediol, aliphatic dicarboxylic acids having 3 to 8 carbon atoms, their anhydrides, esters or halides, such as adipic acid, and aromatic dicarboxylic acids, their anhydrides, esters or halides, such as terephthalic acid, terephthalic anhydride or terephthalic acid ester.
  • copolyesters are, for example, those in the journal Chemosphere 44 (2001) 289-299 by Witt et al. aliphatic-aromatic copolyester described. Such copolyesters are available, for example, under the trade name Ecoflex® from BASF SE (Ludwigshafen, DE).
  • biodegradable films can be used directly. However, it may also be advantageous, for example, to physically pretreat the film at higher infusion temperatures or higher temperatures during the first curing step, for example, by a low pressure plasma technique to facilitate containment from the workpiece after curing.
  • the liquid mixture drawn in process step (e), comprising resin and hardener, is preferably sucked in at a pre-tempered temperature.
  • this temperature is preferably 35-45 ° C.
  • the curing step (f) is preferably carried out in several stages, particularly preferably in two stages.
  • a pre-curing is preferably carried out at a temperature which is 5 to 15 ° C above the infusion temperature.
  • this temperature is typically in the range of 40 to 60 ° C, preferably 45 to 55 ° C.
  • the duration of which is usually several hours, for example 2 to 8 hours, preferably 4 to 6 hours, the plastic film applied in step (d) is removed. This is preferably done by peeling off the plastic film.
  • the pre-cured fiber-reinforced plastic is fully cured.
  • the complete cure is usually carried out at a temperature which is 20 to 40 ° C, preferably 25 to 35 ° C above the infusion temperature.
  • this temperature is typically in the range of 60 to 80 ° C, preferably 65 to 75 ° C.
  • the temperature of the second curing stage (also referred to as the temperature stage) is higher than that of the first stage.
  • the temperature is preferably at least 5 ° C when carrying out the second stage, more preferably at least 10 ° C and very particularly preferably at least 15 ° C higher than when carrying out the first stage.
  • the curing time in this step is preferably 5 to 15, more preferably 7 to 12 hours.
  • the molds for use in the process of the invention usually consist of glass fiber reinforced plastic, carbon fiber reinforced plastic or steel.
  • the release agents used in step (a) of the process according to the invention are, if necessary, usually silicone-containing, water-dilutable or solvent-containing release agents, such as Frekote NC 55 (containing solvents, Henkel KGaA, Dusseldorf, Germany) and Mono Coat 1001 W (water-dilutable; ChemTrend, Maisach, Germany).
  • the fiber materials used to make the fiber-reinforced plastics are preferably glass fibers or carbon fibers, for example in the form of individual fibers, but especially in the form of glass fiber mats or bundles and carbon fiber mats or bundles. Other suitable reinforcing materials are balsa wood and polyurethane foams, as well as metal mesh.
  • vacuum hoses for example, pressure- and vacuum-stable polyethylene hoses can be used.
  • the plastic component of the fiber-reinforced plastic usually comprises an epoxy resin or a polyester resin as well as the resins to suitable hardeners (crosslinkers), which react chemically with the resins.
  • Epoxy resins are preferably cured by means of amine curing agents.
  • epoxy resin-amine hardener systems which can be used in the vacuum infusion technique are described inter alia in WO 2010/010048 A1.
  • Particularly preferred epoxy resins have an epoxy equivalent weight of 150 to 200 » preferably 160 to 190 g / equivalent.
  • Particularly suitable amine hardeners for the abovementioned epoxy resins are those having an amine number of between 350 and 750 mg KOH / g, very particularly preferably an amine number of 400 to 700 mg KOH / g and in particular 450 to 650 mg KOH / g.
  • the ratio of the epoxy resin to the amine curing agent is preferably 100: 25 to 100: 35 (m / m) in the aforementioned cases.
  • Such resin-hardener systems may contain other additives such as flow agents, defoamers and deaerators, as well as surface additives.
  • the curing of the epoxy resin-amine hardener systems in step (f) of the process according to the invention is usually carried out at temperatures between 50 and 90 ° C, preferably between 60 and 80 ° C, particularly preferably at 65 to 75 ° C.
  • An epoxy resin system which is outstandingly suitable for use in the process according to the invention is obtainable under the name Baxxodur® (BASF SE, Ludwigshafen, DE). Polyester resins are usually cured by means of peroxidic polymerization initiators.
  • polyester resin systems that can be used in vacuum infusion technology are disclosed, inter alia, in the corresponding technical data sheets of BÜFA (Rastede, Germany). Such resin systems may contain other additives such as flow agents, antioxidants, as well as anti-foaming and surface additives.
  • the curing of the polyester resin systems in step (f) of the process according to the invention is usually carried out at temperatures between 50 and 90 ° C, preferably between 60 and 80 ° C, particularly preferably 65 to 75 ° C.
  • the process according to the invention is usually followed by a coating of the hardened and optionally tempered workpiece.
  • two workpieces are first produced by the method according to the invention in a mold consisting of two heatable half-shells or in two molds, which are then glued together before coating. Bonding usually takes place via connecting webs.
  • workpieces made of fiber-reinforced plastics of any desired shape and size can be produced in an efficient and environmentally friendly manner using the method according to the invention.
  • large and or complex shaped workpieces such as rotor blades, especially those for wind turbines, aircraft or helicopter parts or automotive components and serial components, such. Bonnet and fenders, can be prepared by the process of the invention.
  • GFRP plate glass-fiber-reinforced plastic plate
  • Infusion resin RIM 135 (Momentive) (100 parts by weight)
  • the Ecoflex® film is placed on top of the glass layer, the inlet and outlet channels are made and connected, and the infusion is started.
  • Hardening step 1 about 50 ° C (5h)
  • Hardening step 2 about 70 ° C (7-10 h)
  • the curing step 1 is aerated and the vacuum film from the 50 ° C warm surface removed by peeling. Subsequently, in the second curing step (also referred to as annealing step), the complete curing of the FRP plate.
  • Infusion resin RIM 135 (Momentive) (100 parts by weight)
  • the Ecovio® film is placed on top of the glass layer, the inlet and outlet channels are made and connected, and the infusion is started.
  • Hardening step 1 about 50 ° C (5h)
  • Hardening step 2 about 70 ° C (7-10 h)
  • the FRP plate produced in Example 1 by means of an Ecoflex® film can be freed of the vacuum infiltration film without residue.
  • the Ecovio® film withstands vacuum infusion but can not be removed from the GFRP surface without residue. This is without the use of a surface treatment by e.g. a release agent such as e.g. Frekote NC 55 of a nanoscale plasma layer not possible.

Abstract

Die vorliegende Erfindung betrifft die Verwendung von biologisch abbaubaren Kunststofffolien als Vakuumfolien in Verfahren zur Herstellung faserverstärkter Kunststoffe oder faserverstärkter Kunststoffbauteile mittels Vakuuminfusion. Darüber hinaus betrifft die Erfindung ein Verfahren zur Herstellung faserverstärkter Kunststoffe oder faserverstärkter Kunststoffbauteile, insbesondere faserverstärkter Rotorblätter für Windkraftanlagen, mittels Vakuuminfusion unter Einsatz biologisch abbaubarer Folien.

Description

Verwendung von biologisch abbaubaren Kunststofffolien in Verfahren zur Herstellung faserverstärkter Kunststoffe mittels Vakuuminfusion
Die vorliegende Erfindung betrifft die Verwendung von Kunststofffolien in Verfahren zur Herstellung faserverstärkter Kunststoffe mittels Vakuuminfusion sowie entsprechende Verfahren unter Verwendung solcher Kunststofffolien.
Vakuuminfusionsverfahren werden derzeit bei der Herstellung großer Faserverbundbauteile wie zum Beispiel bei der Herstellung von Rotorblättern für Windkraftanlagen eingesetzt. Das Vakuuminfusionsverfahren in sogenannter Sandwichbauweise ist inzwischen eine sehr verbreitete Herstellungsmethode von Rotorblättern. Die größten und modernsten Flügel bestehen aus verklebten Glas- und Kohlefasermatten, in die unter Vakuum Epoxidharz injiziert wird. Die Hightech- Bauweise sorgt für die benötigte außergewöhnliche Stabilität und Flexibilität, hält die Flügel aber gleichzeitig dünn und leicht.
Das Prinzip der Blätterfertigung funktioniert wie im Folgenden dargestellt wird. Zunächst wird die aus zwei beheizbaren Haibschalen bestehende Werkzeugform mit Trennmittel beaufschlagt. Dann wird die Schale gegebenenfalls mit einem Inmould- Gelcoat belegt und nach dessen Aushärtung mit Glasfasermatten und anderem Verstärkungsmaterial wie beispielsweise Balsaholz und PU Schäumen ausgelegt. Anschließend werden spezielle Schläuche eingesetzt, aus denen dann die Mischung aus Epoxidharz, Härtern und Additiven fließt. Darauf folgt eine Kunststofffolie, die das Ganze luftdicht verschließt. Diese wird dabei doppellagig verlegt um die Luftdichtigkeit sicherzustellen. Im nächsten Schritt wird die gesamte Luft zwischen Werkzeug und Folie herausgezogen. Das so entstehende Vakuum saugt die flüssige Harz- und Härtermischung durch die Schläuche ins Werkzeug und tränkt das Verstärkungsmaterial. Vorteil dieses Verfahrens ist die gleichmäßige Tränkung der Fasern und somit die hohe Qualität der produzierten Bauteile sowie deren Reproduzierbarkeit. In einem zumeist ersten Temperschritt werden die Halbschalen anschließend auf ca. 40 bis 50 °C aufgeheizt um das Bauteil soweit zu verfestigen, dass es gefahrlos transportiert werden kann. Nach diesem Schritt werden dann die Vakuumfolie, tnfusionshilfen und dergleichen entfernt und anschließend werden die Rotorblatthälften bei etwa 70 Grad Celsius gehärtet. Danach folgt das Verkleben beider Blatthälften. Vor der mehrstufigen Lackierung, der Beschichtung, wird die Blattoberfläche zum Entfernen des Trennmittels geschliffen. Ein Gelcoat» der im ersten Schritt auf das Rotorblatt aufgetragen wird, schützt es vor Umwelteinflüssen wie Feuchtigkeit und Licht. Kleine Unebenheiten auf der Oberfläche gleicht die Spachtelmasse aus. Vor Verschleiß schützender Kantenschutz sowie Decklack kommen bei der Lackierung der Flügel zuletzt zum Einsatz.
Die vor der Anlegung des Vakuums eingesetzte Kunststofffolie, welche dem luftdichten Verschließen vor dem Ansaugen der Harz- und Härtermischung dient, kann aufgrund des Verfahrens nur einmal verwendet werden und muss anschließend entsorgt werden. Derartige zweischichtig eingesetzte Folien bestehen in der Regel aus Polyamid,
Bei der Herstellung sehr großer Bauteile wie den obengenannten Rotorblättern für Windenergieanlagen werden teilweise einige hundert Quadratmeter an Kunststofffolie benötigt. Die mit der Entsorgung der Folien verbundenen Kosten und Abfallmengen sind enorm und bedürfen einer Senkung bei gleichzeitiger Verbesserung der Energiebilanz.
Die Aufgabe der vorliegenden Erfindung bestand unter anderem darin, die mit dem Einsatz der bisher verwendeten Folien verbundenen, oben genannten Nachteile zu überwinden.
Überraschenderweise haben sich biologisch abbaubare Kunststofffolien, welche die strengen Anforderungen der bindenden europäischen Norm für biologisch abbaubare Kunststoffe (EN 13432) erfüllen, als geeignet erwiesen, die bisher verwendeten Folien auf Basis von Polyamid zu ersetzen. Dies war insbesondere deshalb überraschend, weil solche Folien bei den erhöhten Härtungstemperaturen von ca. 50°C üblicherweise zur thermischen Zersetzung neigen. Als besonders gut geeignet haben sich die Ecoflex®-Folien der Firma BASF SE, Ludwigshafen, Deutschland erwiesen. Die wesentlichen Grundeigenschaften, neben der Temperaturfestigkeit bestehen in der Luftdichtigkeit und Elastizität der Folien, um auch mögliche Spannungen während des Vakuumziehens auszugleichen. Die Folien können auch zusätzlich noch durch eine entsprechende Oberflächenbehandlung, wie z.B. einer nanoskaligen dehäsiven Plasmaschicht optimiert werden.
Gegenstand der vorliegenden Erfindung ist somit die Verwendung biologisch abbaubarer Kunststofffolien als Vakuumfolien in Verfahren zur Herstellung von faserverstärkten Kunststoffen mittels Vakuuminfusion.
Diese Verwendung wird im Folgenden als erfindungsgemäße Verwendung bezeichnet.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von faserverstärkten Kunststoffen beziehungsweise Kunststoffbauteilen mittels Vakuuminfusion, in welchem (a) eine beheizbare Werkzeugform gegebenenfalls mit einem Trennmittel beaufschlagt wird, (b) Fasermaterial und gegebenenfalls weiteres Verstärkungsmaterial in die Werkzeugform eingebracht wird, (c) ein oder mehrere Schläuche eingelegt werden, die der nachfolgenden Zuleitung einer flüssigen Mischung umfassend mindestens ein Harz und mindestens einen gegenüber dem Harz reaktiven Härter dienen, (d) eine Kunststofffolie aufgebracht wird, die einen luftdichten Abschluss der Werkzeugform erlaubt, und (e) die Luft zwischen Werkzeugform und Kunststofffolie beispielsweise durch Abpumpen herausgezogen wird, wobei das entstehende Vakuum die flüssige Mischung durch die Schläuche in die Werkzeugform saugt und das Fasermaterial und gegebenenfalls vorhandene weitere Verstärkungsmaterialen getränkt werden, und anschließend (f) eine Härtung der flüssigen Mischung zum faserverstärkten Kunststoff erfolgt, dadurch gekennzeichnet, dass es sich bei der in Schritt (d) eingesetzten Kunststofffolie um eine biologisch abbaubare Kunststofffolie handelt.
Dieses Verfahren wird im Folgenden als erfindungsgemäßes Verfahren bezeichnet.
Bei den in der erfindungsgemäßen Verwendung beziehungsweise im erfindungsgemäßen Verfahren eingesetzten biologisch abbaubaren Kunststofffolien handelt es sich vorzugsweise um Kunststofffolien auf der Basis aliphatisch- aromatischer Copolyester.
Geeignete Copolyester sind solche, die erhältlich sind unter Verwendung von kurzkettigen aliphatischen Diolen mit 2 bis 8 Kohlenstoffatomen, insbesondere 4 Kohlenstoffatomen wie beispielsweise 1 ,4-Butandiol, aliphatischen Dicarbonsäuren mit 3 bis 8 Kohlenstoffatomen, deren Anhydriden, Estern oder Halogeniden, wie beispielsweise Adipinsäure, und aromatischen Dicarbonsäuren, deren Anhydriden, Estern oder Halogeniden, wie beispielsweise Terephthalsäure, Terephthalsäureanhydrid oder Terephthalsäureester. Bei der Herstellung derartiger Copolyester können neben den vorgenannten aliphatischen Diolen, aliphatischen Dicarbonsäuren und aromatischen Dicarbonsäuren auch höherfunktionelle Monomere, wie insbesondere Triole, Tetraole und Tricarbonsäuren oder Tetracarbonsäuren eingesetzt werden, die zu verzweigten Polymerstrukturen führen, Beispiele für geeignete Polyole sind Trimethylolpropan (TMP) und Pentaerythrit.
Besonders geeignete Copolyester sind beispielsweise die in der Zeitschrift Chemosphere 44 (2001) 289-299 von Witt et al. beschriebenen aliphatisch- a romatischen Copolyester. Derartige Copolyester sind beispielsweise unter dem Handelsnamen Ecoflex ® von der BASF SE (Ludwigshafen, DE) erhältlich.
Es war insbesondere eine zusätzliche Herausforderung solche biologisch abbaubaren Folienmaterialien zu finden, die neben der Vakuumdichtigkeit bei der Herstellung großer Werkstücke wie beispielsweise Rotorblättern für Windkraftanlagen (diese können 80 m und länger sein), auch eine hervorragende Verträglichkeit zum eingesetzten Harz- und Härter-System (üblicherweise ein Epoxyharz-Aminhärter-System) aufweisen. Gerade die vorgenannten aliphatisch- a romatischen Copolyester haben sich als ganz besonders gut für diese Zwecke geeignet herausgestellt.
Die biologisch abbaubaren Folien lassen sich direkt verwenden. Es kann jedoch auch vorteilhaft sein, z.B. bei höheren Infustonstemperaturen oder höheren Temperaturen beim ersten Härtungsschritt die Folie physikalisch vorzubehandeln, beispielsweise durch eine Niederdruckplasmatechnik, um eine Enthaltung vom Werkstück nach dem Härten zu erleichtern.
Die in Verfahrensschritt (e) angesaugte flüssige Mischung umfassend Harz und Härter wird vorzugsweise vortemperiert angesaugt. Bei Epoxyharz-Aminhärter- Mischungen beträgt diese Temperatur (Infusionstemperatur) vorzugsweise 35-45°C.
Der Härtungsschritt (f) erfolgt vorzugsweise mehrstufig, besonders bevorzugt zweistufig. In einer ersten Stufe erfolgt eine Vorhärtung vorzugsweise bei einer Temperatur, die 5 bis 15°C oberhalb der Infusionstemperatur liegt. Bei Epoxyharz- Aminhärter-Mischungen liegt diese Temperatur typischerweise im Bereich von 40 bis 60°C, vorzugsweise 45 bis 55°C. Nach dieser Vorhärtung, deren Dauer üblicherweise mehrstündig ist, beispielsweise 2- bis 8-stündig, vorzugsweise 4- bis 6- stündig, wird die in Schritt (d) aufgebrachte Kunststofffolie entfernt. Dies erfolgt vorzugsweise durch Abziehen der Kunststofffolie. Anschließend wird in einer zweiten Stufe der vorgehärtete faserverstärkte Kunststoff vollständig gehärtet. Die vollständige Härtung erfolgt üblicherweise bei einer Temperatur, die 20 bis 40° C vorzugsweise 25 bis 35°C oberhalb der Infusionstemperatur liegt. Bei Epoxyharz- Aminhärter-Mischungen liegt diese Temperatur typischerweise im Bereich von 60 bis 80°C, vorzugsweise 65 bis 75°C. Die Temperatur der zweiten Härtungsstufe (auch als Temperaturstufe bezeichnet) ist dabei höher als die der ersten Stufe. Vorzugsweise liegt die Temperatur bei Durchführung der zweiten Stufe mindestens 5°C, besonders bevorzugt mindestens 10°C und ganz besonders bevorzugt mindestens 15°C höher als bei Durchführung der ersten Stufe. Die Härtungsdauer in diesem Schritt beträgt vorzugsweise 5 bis 15, besonders bevorzugt 7 bis 12 Stunden.
Die Werkzeugformen zur Anwendung im erfindungsgemäßen Verfahren bestehen üblicherweise aus glasfaserverstärktem Kunststoff, kohlenstofffaserverstärktem Kunststoff oder Stahl. Als Trenn mittel werden in Schritt (a) des erfindungsgemäßen Verfahrens, soweit nötig, üblicherweise silikonhaitige, wasserverdünnbare oder lösungsm ittel haltige Trennmittel verwendet, wie z.B. Frekote NC 55 (lösungsmittelhaltig; Henkel KGaA, Düsseldorf, Deutschland) und Mono Coat 1001 W (wasserverdünnbar; ChemTrend, Maisach, Deutschland) eingesetzt. Bei den Fasermaterialen, die zur Herstellung der faserverstärkten Kunststoffe eingesetzt werden, handelt es sich vorzugsweise um Glasfasern oder Kohlenstofffasern, beispielsweise in Form einzelner Fasern, insbesondere jedoch in Form von Glasfasermatten oder -bündeln und Kohlefasermatten oder -bündeln. Weitere geeignete Verstärkungsmaterialien sind Balsaholz und Polyurethan- Schäume, sowie Metallgewebe.
Als Vakuumschläuche können beispielsweise druck- und vakuumstabile Polyethylenschläuche eingesetzt werden.
Der Kunststoffbestandteil des faserverstärkten Kunststoffs umfasst üblicherweise ein Epoxyharz oder ein Polyesterharz sowie den Harzen gegenüber geeignete Härter (Vernetzer), die mit den Harzen chemisch reagieren.
Epoxyharze werden vorzugsweise mittels Aminhärtern gehärtet. Beispiele für Epoxyharz-Aminhärter-Systeme, die in der Vakuuminfusionstechnik eingesetzt werden können sind unter anderem in der WO 2010/010048 A1 beschrieben. Besonders bevorzugte Epoxyharze besitzen ein Epoxyäquivalentgewicht von 150 bis 200» vorzugsweise 160 bis 190 g/Äquivalent. Als Aminhärter für vorgenannte Epoxyharze eignen sich besonders solche mit einer Aminzahl zwischen 350 und 750 mg KOH/g, ganz besonders bevorzugt einer Aminzahl von 400 bis 700 mg KOH/g und insbesondere 450 bis 650 mg KOH/g. Das Verhältnis des Epoxyharzes zum Aminhärter beträgt in den vorgenannten Fällen vorzugsweise 100:25 bis 100:35 (m/m). Derartige Harz-Härter-Systeme können noch weitere Additive enthalten wie beispielsweise Fließmittel, Entschäumer und Entlüfter, sowie Oberflächenadditive. Die Härtung der Epoxyharz-Aminhärter-Systeme in Schritt (f) des erfindungsgemäßen Verfahrens erfolgt üblicherweise bei Temperaturen zwischen 50 und 90°C, vorzugsweise zwischen 60 und 80°C, besonders bevorzugt bei 65 bis 75°C. Ein hervorragend für den Einsatz im erfindungsgemäßen Verfahren geeignetes Epoxyharzsystem ist unter dem Namen Baxxodur® (BASF SE, Ludwigshafen, DE) erhältlich. Polyesterharze werden üblicherweise mittels peroxidischen Polymerisations- initiatioren gehärtet. Beispiele für Polyesterharz-Systeme, die in der Vakuuminfusionstechnik eingesetzt werden können, sind unter anderem in den entsprechenden Technischen Datenblättern der Fa. BÜFA (Rastede, Deutschland) offenbart. Derartige Harz-Systeme können noch weitere Additive enthalten wie beispielsweise Fließmittel, Antioxidantien, sowie Antischaum- und Oberflächenadditive. Die Härtung der Polyesterharz -Systeme in Schritt (f) des erfindungsgemäßen Verfahrens erfolgt üblicherweise bei Temperaturen zwischen 50 und 90°C, vorzugsweise zwischen 60 und 80°C, besonders bevorzugt 65 bis 75°C.
An das erfindungsgemäße Verfahren schließt sich üblicherweise eine Beschichtung des gehärteten und gegebenenfalls getemperten Werkstücks an. Ein eventuell eingesetztes Trennmittel wird vor der Beschichtung beispielsweise durch Abschleifen entfernt.
Im Falle der Herstellung von Rotorblättern für Windenergieanlagen, werden nach dem erfindungsgemäßen Verfahren zunächst zwei Werkstücke in einer aus zwei beheizbaren Halbschalen bestehenden Werkzeugform oder in zwei Werkzeugformen hergestellt, die dann vor der Beschichtung miteinander verklebt werden. Die Verklebung erfolgt hierbei normalerweise über verbindende Stege.
Mit dem erfindungsgemäßen Verfahren lassen sich prinzipiell Werkstücke aus faserverstärkten Kunststoffen beliebiger Form und Größe in effizienter und umweltschonender Weise produzieren. Insbesondere große und oder komplex geformte Werkstücke wie beispielsweise Rotorblätter, vor allem solche für Windkraftanlagen, Flugzeug- oder Helikopterteile oder aber Automobilanbauteile und Serienbauteile, wie z.B. Motorhaube und Kotflügel, lassen sich nach dem erfindungsgemäßen Verfahren herstellen.
Im Folgenden soll die Erfindung durch Beispiele näher erläutert werden. BEISPIELE
Beispiel1 :
Herstellung einer glasfaserverstärkten Kunststoffplatte (GFK-Platte) im Vakuuminfusionsverfahren, Erstellung des Vakuumsackes mitteis Ecoflex®-Folie.
Material;
- Infusionsharz: RIM 135 (Momentive) (100 Gew. Teile)
- Infusionshärter: RIM 137i-134 (Momentive) (30 Gew. Teile)
- Glasgelege: Bi-axial layer OFC, 821 g/m2, 635 mm
- Anzahl der Glasgelege: 8
- Trennmittel: Mono Coat 1001 W (wasserverdünnbar;
ChemTrend, Maisach, Deutschland)
Auf die letzte Schicht auf die Glasgelege wird die Ecoflex®-Folie aufgelegt, die Zu- und Ablaufkanäle hergestellt und angeschlossen und die Infusion gestartet.
Herstelibedingungen:
- Infusionstemperatur: ca 40°C
- Härtungsschritt 1 : ca. 50°C (5h)
- Härtungsschritt 2: ca. 70°C (7-10 h)
Direkt nach dem Härtungsschritt 1 wird belüftet und die Vakuumfolie von der 50°C warmen Oberfläche durch Abziehen entfernt. Anschließend erfolgt im zweiten Härtungsschritt (auch als Temperschritt bezeichnet) die vollständige Aushärtung der GFK-Platte.
Beispiel:
Herstellung einer GFK-Platte im Vakuuminfusionsverfahren, Erstellung des Vakuumsackes mittels Ecovio®-Folie. Material;
- Infusionsharz: RIM 135 (Momentive) (100 Gew. Teile)
- Infusionshärter; RIM 137i-134 (Momentive)( 30 Gew.Teile)
- Glasgelege: Bi-axiai layer OFC, 821 g/m2, 635 mm
- Anzahl der Glasgelege: 8
- Trennmittel: Mono Coat 1001 W (wasserverdünnbar;
ChemTrend, Maisach, Deutschland)
Auf die letzte Schicht auf die Glasgelege wird die Ecovio®-Folie aufgelegt, die Zu- und Ablaufkanäle hergestellt und angeschlossen und die Infusion gestartet.
Herstellbedingungen:
- Infusionstemperatur: ca 40°C
- Härtungsschritt 1 : ca. 50 °C (5h)
- Härtungsschritt 2: ca. 70°C (7-10 h)
Direkt nach dem Härtungsschritt 1 wird belüftet und die Vakuumfolie von der 50°C warmen Oberfläche durch Abziehen entfernt. Diese Folie war jedoch so elastisch, dass sie nur schwer entfernbar war und z.T. Rückstände hinterließ. Anschließend erfolgt im zweiten Härtungsschritt die vollständige Aushärtung der GFK-Platte.
Die in Beispiel 1 mittels einer Ecoflex®-Folie hergestellte GFK-Platte kann rückstandsfrei von der Vakuuminfusionsfolie befreit werden. Die Ecovio®-Folie hält einer Vakuuminfusion stand ist aber nicht rückstandslos von der GFK-Oberfläche zu entfernen. Dies ist ohne die Verwendung einer Oberflächenbehandlung durch z.B. ein Trenn mittel wie z.B. Frekote NC 55 einer nanoskaligen Plasmaschicht nicht möglich.

Claims

Patentansprüche
1. Verwendung von biologisch abbaubaren Kunststofffolien als Vakuumfolien in Verfahren zur Herstellung faserverstärkter Kunststoffe oder faserverstärkter Kunststoffbauteile mittels Vakuuminfusion.
2. Verwendung gemäß Anspruch 1 , wobei die biologisch abbaubare Kunststofffolie aus einem Copolyester aufgebaut ist, der unter Verwendung aliphatischer und aromatischer Monomere synthetisiert wird.
3. Verwendung nach Anspruch 2, wobei die aliphatischen und aromatischen Monomere gewählt sind aus der Gruppe umfassend aliphatische Diole mit 2 bis 8 Kohlenstoffatomen, aliphatische Dicarbonsäuren mit 3 bis 8 Kohlenstoffatomen, deren Anhydride, Ester oder Halogenide und aromatische Dicarbonsäuren, deren Anhydride, Ester oder Halogenide.
4. Verwendung nach Anspruch 3, wobei zur Synthese des Copolyesters weitere Monomere gewählt aus der Gruppe der Triol, Tetraole, Tricarbonsäuren und Tetracarbonsäuren eingesetzt werden.
5. Verfahren zur Herstellung von faserverstärkten Kunststoffen oder faserverstärkten Kunststoffbauteilen mittels Vakuuminfusion, in welchem
(a) eine beheizbare Werkzeugform gegebenenfalls mit einem Trennmittel beaufschlagt wird,
(b) ein Fasermateriaf und gegebenenfalls weiteres Verstärkungsmaterial in die Werkzeugform eingebracht wird,
(c) ein oder mehrere Schläuche in die Werkzeugform eingelegt werden, die der nachfolgenden Zuleitung einer flüssigen Mischung umfassend mindestens ein Harz und mindestens einen gegenüber dem Harz reaktiven Härter dienen, (d) eine Kunststofffolie aufgebracht wird, die einen luftdichten Abschluss der Werkzeugform erlaubt» und
(e) die Luft zwischen Werkzeugform und Kunststofffolie herausgezogen wird, wobei das entstehende Vakuum die flüssige Mischung durch die Schläuche in die Werkzeugform saugt und das Fasermaterial und das gegebenenfalls vorhandene weitere Verstärkungsmaterial getränkt wird, und anschließend
(f) eine Härtung der flüssigen Mischung zum faserverstärkten Kunststoff oder Kuststoffbauteil erfolgt,
dadurch gekennzeichnet, dass
die in Schritt (d) eingesetzte Kunststofffolie eine biologisch abbaubare Kunststofffolie ist.
6. Verfahren nach Anspruch 5, wobei die biologisch abbaubare Kunststofffolie aus einem Copolyester aufgebaut ist, der unter Verwendung aliphatischer und aromatischer Monomere synthetisiert wird.
7. Verfahren nach Anspruch 6, wobei die aliphatischen und aromatischen Monomere gewählt sind aus der Gruppe umfassend aliphatische Diole mit 2 bis 8 Kohlenstoffatomen, aliphatische Dicarbonsäuren mit 3 bis 8 Kohlenstoffatomen, deren Anhydride, Ester oder Halogenide und aromatische Dicarbonsäuren, deren Anhydride, Ester oder Halogenide.
8. Verfahren nach Anspruch 7, wobei zur Synthese des Copolyesters weitere Monomere gewählt aus der Gruppe der Triol, Tetraole, Tricarbonsäuren und Tetracarbonsäuren eingesetzt werden.
9. Verfahren nach einem der Ansprüche 5 bis 8, wobei die flüssige Mischung aus Harz und Härter ein Epoxyharz und einen Aminhärter umfasst.
10. Verfahren nach Anspruch 9, wobei das Epoxyharz ein Epoxyäquivalentgewicht von 150 bis 200 g/Äquivalent aufweist und der Aminhärter eine Aminzahl zwischen 350 und 750 mg KOH/g.
11. Verfahren nach einem oder mehreren der Ansprüche 5 bis 10, wobei es sich beim Kunststoffbauteil um das Rotorblatt einer Windkraftanlage oder Flugzeugteile oder Helikopterteile handelt,
12. Verfahren nach einem oder mehreren der Ansprüche 5 bis 11 , wobei die Härtung während des Verfahrensschritts (f) zweistufig erfolgt und nach der ersten Stufe der Härtung die Kunststofffolie entfernt wird.
13. Verfahren nach Anspruch 12, wobei als flüssige Mischung die Mischung aus Anspruch 9 eingesetzt wird und die erste Stufe der Härtung bei einer Temperatur im Bereich von 45 bis 55°C und die zweite Stufe bei einer Temperatur im Bereich von 60 bis 80°C erfolgt.
EP12815714.6A 2011-12-29 2012-12-28 Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion Withdrawn EP2797731A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12815714.6A EP2797731A2 (de) 2011-12-29 2012-12-28 Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161581140P 2011-12-29 2011-12-29
EP11196091 2011-12-29
PCT/EP2012/077053 WO2013098392A2 (de) 2011-12-29 2012-12-28 Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion
EP12815714.6A EP2797731A2 (de) 2011-12-29 2012-12-28 Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion

Publications (1)

Publication Number Publication Date
EP2797731A2 true EP2797731A2 (de) 2014-11-05

Family

ID=48698720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12815714.6A Withdrawn EP2797731A2 (de) 2011-12-29 2012-12-28 Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion

Country Status (6)

Country Link
US (1) US20150021835A1 (de)
EP (1) EP2797731A2 (de)
CN (1) CN104039536A (de)
BR (1) BR112014015772A8 (de)
CA (1) CA2852377A1 (de)
WO (1) WO2013098392A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3209008A1 (en) * 2021-04-09 2022-10-13 Nicholas SERUNTINE A wind turbine blade with a fairing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123985A (en) * 1986-09-02 1992-06-23 Patricia Evans Vacuum bagging apparatus and method including a thermoplastic elastomer film vacuum bag
EP0350633B1 (de) * 1988-06-13 1994-09-14 Honda Giken Kogyo Kabushiki Kaisha Form und Verfahren zum Formpressen von faserverstärkten Kunststoffteilen
US20020094444A1 (en) * 1998-05-30 2002-07-18 Koji Nakata Biodegradable polyester resin composition, biodisintegrable resin composition, and molded objects of these
CN101234531B (zh) * 2008-02-15 2010-09-29 无锡天奇竹风科技有限公司 竹制复合材料风力发电机叶片叶根预成型灌输工艺
ATE540022T1 (de) * 2008-07-22 2012-01-15 Basf Se Blends enthaltend epoxidharze und mischungen von aminen mit guanidin-derivaten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013098392A2 *

Also Published As

Publication number Publication date
WO2013098392A3 (de) 2013-09-19
CN104039536A (zh) 2014-09-10
WO2013098392A2 (de) 2013-07-04
CA2852377A1 (en) 2013-07-04
BR112014015772A8 (pt) 2017-07-04
BR112014015772A2 (pt) 2017-06-13
US20150021835A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
EP2509790B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
DE69926527T3 (de) Formmassen
EP2422077B1 (de) Reparaturverfahren für ein Rotorblattelement
EP3365166B1 (de) Mehrschichtiges verbundbauteil
EP2828051B1 (de) Lagerstabile harzfilme und daraus hergestellte faserverbundbauteile
EP2619242B1 (de) Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung in lösung
EP2885331B1 (de) Faserverstärkte verbundbauteile und deren herstellung
EP2956498B1 (de) Silikonbeschichtete trennfolien mit besonderer vakuumtiefziehfähigkeit
EP2606079B1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
DE102006048920B3 (de) Elektrisch leitendes Leichtbauteil und Verfahren zu seiner Herstellung
WO2012038201A1 (de) Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung mit fixierter folie sowie die daraus hergestellten composite-bauteil
EP2229421B1 (de) Textiles halbzeug mit wengistens einer mit einem kleber versehenen oberfläche
EP2678151B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
DE102013217128A1 (de) Rotorblattelement für eine Windenergieanlage, Rotorblatt, sowie ein Herstellungsverfahren dafür und Windenergieanlage mit Rotorblatt
EP2714759A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
DE60319039T2 (de) Verbundwerkstoffe und daraus geformte Artikel
WO2017129483A1 (de) Neuartiger hetero-diels-alder-vernetzer und deren verwendung in reversibel vernetzenden polymersystemen
WO2013174362A1 (de) Gelcoat auf epoxidharzbasis zur oberflächenvergütung von bauteilen aus faserverstärkten kunststoffen
WO2013098392A2 (de) Verwendung von biologisch abbaubaren kunststofffolien in verfahren zur herstellung faserverstärkter kunststoffe mittels vakuuminfusion
DE102016213206A1 (de) Mehrschichtiges Verbundbauteil
DE102011054969B4 (de) Verfahren zur Herstellung eines dreidimensional geformten Schichtkörpers mit mindestens je einer aus PU-Harz und aus glasfaserverstärktem Kunststoff ausgebildeten Schicht.
DE102015220672A1 (de) Mehrschichtiges Verbundbauteil
EP4122986A1 (de) Uv-harz, mit diesem harz hergestellte verbundwerkstoffe und herstellungsverfahren dafür
EP2000494A1 (de) Nanoverstärkungs-Prepreg-Verfahren und Produkt daraus
WO2011117186A1 (de) Verkleidungen für windkraftanlagen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140729

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170406