EP2795658A1 - Homogeneous hipims coating method - Google Patents

Homogeneous hipims coating method

Info

Publication number
EP2795658A1
EP2795658A1 EP12812516.8A EP12812516A EP2795658A1 EP 2795658 A1 EP2795658 A1 EP 2795658A1 EP 12812516 A EP12812516 A EP 12812516A EP 2795658 A1 EP2795658 A1 EP 2795658A1
Authority
EP
European Patent Office
Prior art keywords
power
power pulse
pulse interval
generator
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12812516.8A
Other languages
German (de)
French (fr)
Inventor
Siegfried Krassnitzer
Helmut Rudigier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Trading AG Truebbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading AG Truebbach filed Critical Oerlikon Trading AG Truebbach
Publication of EP2795658A1 publication Critical patent/EP2795658A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements

Definitions

  • the present invention relates to a HIPIMS method with which homogeneous layers can be deposited over the height of a coating chamber.
  • the HIPIMS process is a physical coating process from the gas phase. More specifically, it is a magnetron-assisted sputtering method in which a very high discharge current density is imposed on the sputtering material-supplying target, so that a high electron density is generated in the plasma and the majority of the sputtered particles are ionized.
  • Power densities between 250W / cm2 and 2000W / cm2 are used and special demands are placed on the generator supplying the power. In particular, it is not possible to permanently affect such a performance on the target, as this would overheat and thus be damaged. The power must therefore be pulsed.
  • the very high, desired discharge densities occur and the target heats up.
  • the target can cool down again.
  • Pulse duration and pulse pause must be coordinated so that the average power applied to the target does not exceed a threshold value. For HIPIMS therefore generators are required, which are able to deliver pulsed very high performance.
  • the workpieces are often distributed over the entire usable coating height. Workpieces are both tools and other components. In many cases, it is important to coat the workpieces with the same layer thickness and with the same layers, whether at the top, in the middle or at the bottom. In particular, if, as in the HIPIMS process, plasmas and their density have a significant influence on the coating rate, this goal is difficult to achieve. One of the reasons for this is that the plasmas themselves are influenced by the surrounding environment, which can lead to different coating rates over the height of the coating chamber. Typically, DC sputtering attempts to compensate for this by adjusting the magnetic fields across the height.
  • the procedure is such that a PVD sputtering cathode comprising a first part cathode and a second part cathode is operated, wherein a maximum average power input is predetermined for the part cathodes and wherein the duration of the power pulse intervals are predetermined and the method comprises the following steps: a) Provision of a generator with a predetermined power output, preferably at least after switching on and after expiry of a power setup interval b) Turning on the generator c) Connecting the first part cathode to the generator, so that the The first partial cathode is supplied with power from the generator.
  • FIG. 1 shows a corresponding situation with 6 partial cathodes and 3 groups.
  • the object is now achieved by individually selecting the length of the individual power pulse intervals and thus achieving a desired coating thickness profile over the height of the coating chamber. That According to the invention, the magnetic fields are not adjusted over the height of the coating chamber, as usual, but the duration of the power pulse intervals. The same is shown in FIG. It can be seen that the power pulse interval connected to the first sub-cathode is significantly longer than the power pulse interval connected to the sub-cathode 5. Due to the longer power pulse interval, the average coating rate starting from the partial cathode 1 becomes longer than the average coating rate starting from the partial cathode 5.
  • the power pulse intervals of all the subcathodes are selected to be the same length, and so a first coating is made for calibration. Subsequently, the coating thicknesses are measured over the height of the coating chamber. If there are differences in the thicknesses, then where the layers are too small in comparison to the average thickness, the power pulse intervals are somewhat prolonged. Where the layers are too large compared to the average thickness, the power pulse intervals are somewhat shortened. By doing so, a balance is achieved, it being clear to the person skilled in the art that several iteration steps can be carried out to further improve the homogenization.

Abstract

The invention relates to a HIPIMS method by means of which homogeneous layers can be deposited over the height of a coating chamber. Two partial cathodes are used for said purpose. According to the invention, the length of the individual power pulse intervals applied to the partial cathodes is chosen individually and thus a required coating thickness profile over the height of the coating chamber is achieved.

Description

Homogenes HIPIMS-Beschichtungsverfahren  Homogeneous HIPIMS coating process
Die vorliegende Erfindung bezieht sich auf ein HIPIMS-Verfahren mit welchem über die Höhe einer Beschichtungskammer homogene Schichten abgeschieden werden können. Beim HIPIMS-Verfahren handelt es sich um ein physikalisches Beschichtungsverfahren aus der Gasphase. Genauer gesagt ist es ein Magnetron-unterstütztes Zerstäubungsverfahren bei dem das Zerstäubungsmaterial liefernde Target eine sehr hoher Entladungsstromdichte aufgezwungen wird, so dass im Plasma eine hohe Elektronendichte generiert wird und die Mehrheit der Zerstäubten Teilchen ionisiert werden. Dabei kommen Leistungsdichten zwischen 250W/cm2 und 2000W/cm2 zum Einsatz und an den die Leistung liefernden Generator sind somit besondere Anforderungen gestellt. Insbesondere ist es nicht möglich dauerhaft eine solche Leistung auf das Target einwirken zu lassen, da dieses überhitzen und somit Schaden nehmen würde. Die Leistung muss daher gepulst werden. Innerhalb des Leistungspulses kommt es zu den sehr hohen, gewünschten Entladungsdichten und das Target erhitzt sich. Während der Pulspause kann das Target wieder abkühlen. Pulsdauer und Pulspause müssen so aufeinander abgestimmt sein, dass die mittlere auf das Target eingebrachte Leistung nicht einen Schwellenwert übersteigt. Für HIPIMS werden daher Generatoren benötigt, welche in der Lage sind gepulst sehr hohe Leistungen abzugeben. The present invention relates to a HIPIMS method with which homogeneous layers can be deposited over the height of a coating chamber. The HIPIMS process is a physical coating process from the gas phase. More specifically, it is a magnetron-assisted sputtering method in which a very high discharge current density is imposed on the sputtering material-supplying target, so that a high electron density is generated in the plasma and the majority of the sputtered particles are ionized. Power densities between 250W / cm2 and 2000W / cm2 are used and special demands are placed on the generator supplying the power. In particular, it is not possible to permanently affect such a performance on the target, as this would overheat and thus be damaged. The power must therefore be pulsed. Within the power pulse, the very high, desired discharge densities occur and the target heats up. During the pulse break, the target can cool down again. Pulse duration and pulse pause must be coordinated so that the average power applied to the target does not exceed a threshold value. For HIPIMS therefore generators are required, which are able to deliver pulsed very high performance.
Wird das HIPIMS-Verfahren zur Beschichtung von Werkstücken eingesetzt, so sind die Werkstücke oftmals über die gesamte nutzbare Beschichtungshöhe verteilt. Mit Werkstücken sind sowohl Werkzeuge als auch andere Komponenten gemeint. In vielen Fällen ist es wichtig, auf den Werkstücken, egal ob oben, in der Mitte oder unten angeordnet, mit derselben Schichtdicke und mit denselben Schichten zu beschichten. Insbesondere wenn, wie beim HIPIMS-Verfahren, Plasmen und deren Dichte einen wesentlichen Einfluss auf die Beschichtungsrate haben, ist dieses Ziel nur schwer zu erreichen. Dies liegt unter anderem daran, dass die Plasmen selbst von dem sie umgebendem Umfeld beeinflusst werden, wodurch es über die Höhe der Beschichtungskammer zu unterschiedlichen Beschichtungsraten kommen kann. Üblicherweise wird beim DC-Sputtern versucht, dies durch die Anpassung der Magnetfelder über die Höhe ausgeglichen. Eingriffe in das Magnetsystem können aber lokal zu veränderten Plasmabedingungen führen, was wiederum zu unterschiedlichen Schichteigenschaften führt. Hohe Anforderungen an die Schichtdickenverteilung bedingen einen eingeschränkten Nutzungsbereich (und dadurch verringerte Wirtschaftlichkeit), da die Wirksamkeit der erwähnten Methode betreffend Verbesserung der Schichtdickenhomogenität beschränkt. Eine weitere Methode der If the HIPIMS process is used to coat workpieces, the workpieces are often distributed over the entire usable coating height. Workpieces are both tools and other components. In many cases, it is important to coat the workpieces with the same layer thickness and with the same layers, whether at the top, in the middle or at the bottom. In particular, if, as in the HIPIMS process, plasmas and their density have a significant influence on the coating rate, this goal is difficult to achieve. One of the reasons for this is that the plasmas themselves are influenced by the surrounding environment, which can lead to different coating rates over the height of the coating chamber. Typically, DC sputtering attempts to compensate for this by adjusting the magnetic fields across the height. However, interventions in the magnet system can locally lead to altered plasma conditions, which in turn leads to different layer properties. High demands on the layer thickness distribution require a limited range of use (and thus reduced economic efficiency), since the effectiveness of the mentioned method limits the improvement of the layer thickness homogeneity. Another method of
BESTÄTIGUNGSKOPIE Korrektur der Schichtdickenverteilung ist die Verwendung von Masken, was allerdings wenig praktikabel ist, falls sich die Beladung oder die Werkstückgeometrie ändert. CONFIRMATION COPY Correction of the layer thickness distribution is the use of masks, which, however, is not practical if the loading or the workpiece geometry changes.
Es wäre wünschenswert ein HIPIMS-Verfahren zur Verfügung zu haben, mit dem es in einfacher Weise möglich ist die Beschichtungsrate über die Höhe der Beschichtungskammer einzustellen und damit insbesondere eine homogene Beschichtung über die gesamte Kammerhöhe zu erreichen ohne nachteilige Beeinflussung der Plasmadichte und deren nachteiligen Auswirkungen auf die Schichteigenschaften. It would be desirable to have available a HIPIMS method with which it is possible in a simple manner to set the coating rate over the height of the coating chamber and thus in particular to achieve a homogeneous coating over the entire chamber height without adversely affecting the plasma density and its adverse effects the layer properties.
Dem liegt die Aufgabe der vorliegenden Erfindung zugrunde. This is the object of the present invention based.
Gemäss einem neuen Verfahren zur Bereitstellung von Leistungspulsen, welches im Rahmen einer anderen Patentanmeldung geschützt wird, wird so vorgegangen, dass eine PVD-Zerstäubungskathode, die eine erste Teilkathode und eine zweite Teilkathode umfasst betrieben wird, wobei für die Teilkathoden eine maximale mittlere Leistungsbeaufschlagung vorgegeben ist und wobei die Dauer der Leistungspulsintervalle vorgegeben werden und das Verfahren folgende Schritte umfasst a) Bereitstellen eines Generators mit vorgegebener vorzugsweise zumindest nach Anschalten und nach Ablauf eines Leistungsaufbauintervalls konstanter Leistungsabgabe b) Anschalten des Generators c) Anschluss der ersten Teilkathode an den Generator, so dass die erste Teilkathode mit Leistung vom Generator beaufschlagt wird d) Trennung des Generators von der ersten Teilkathode nach Ablauf eines vorgegebenen der ersten Teilkathode entsprechenden ersten Leistungspulsintervalls e) Anschluss der zweiten Teilkathode an den Generator so dass die zweite Teilkathode mit Leistung vom Generator beaufschlagt wird f) Trennung des Generators von der zweiten Teilkathode nach Ablauf eines vorgegebenen der zweiten Teilkathode entsprechenden zweiten Leistungspulsintervalls wobei das erste Leistungspulsintervall zeitlich vor dem zweiten Leistungspulsintervall beginnt und das erste Leistungspulsintervall zeitlich vor dem zweiten Leistungspulsintervall endet, und wobei die Schritte d) und e) so ausgeführt werden dass sich erstes Leistungspulsintervall und zweites Leistungspulsintervall zeitlich überlappen und alle Leistungspulsintervalle zusammen eine erste Gruppe bilden, so dass die Leistungsabgabe vom Generator durchgehend ohne Unterbrechung vom Anfang des ersten Leistungspulsintervalls bis zum Ende des zweiten Leistungspulsintervalls bestehen bleibt und es nicht zu einem zweiten Leistungsaufbauintervall kommt. Sind über die Höhe der Beschichtungskammer mehr als zwei Teilkathoden vorgesehen, so kann sich eine Gruppe aus mehr als zwei Leistungspulsintervallen zusammensetzten. Im Verfahren werden dann so viele Gruppen hintereinander geschalten, wie es den einzelnen Teilkathoden bezüglich Temperatureintrag zugemutet werde kann. Es schliesst sich dann eine Pause an. Figur 1 zeigt eine entsprechende Situation mit 6 Teilkathoden und 3 Gruppen. According to a new method for the provision of power pulses, which is protected in the context of another patent application, the procedure is such that a PVD sputtering cathode comprising a first part cathode and a second part cathode is operated, wherein a maximum average power input is predetermined for the part cathodes and wherein the duration of the power pulse intervals are predetermined and the method comprises the following steps: a) Provision of a generator with a predetermined power output, preferably at least after switching on and after expiry of a power setup interval b) Turning on the generator c) Connecting the first part cathode to the generator, so that the The first partial cathode is supplied with power from the generator. d) Separation of the generator from the first partial cathode after the expiration of a predetermined first power pulse interval corresponding to the first partial cathode. e) Connection of the second partial cathode to the generator r) so that the second part of the cathode is supplied with power from the generator f) separation of the generator from the second partial cathode after a predetermined second second cathode corresponding second power pulse interval wherein the first power pulse interval begins before the second power pulse interval and the first power pulse interval in time before the second power pulse interval ends, and wherein steps d) and e) are performed such that the first power pulse interval and the second power pulse interval overlap in time and all power pulse intervals together form a first group such that the power output from the generator remains continuously uninterrupted from the beginning of the first power pulse interval to the end of the second power pulse interval and there is no second power setup interval. If more than two partial cathodes are provided over the height of the coating chamber, then a group may consist of more than two power pulse intervals. In the process, then as many groups are connected in series, as it can be expected of the individual partial cathodes with respect to temperature entry. It then concludes a break. FIG. 1 shows a corresponding situation with 6 partial cathodes and 3 groups.
Erfindungsgemäss wird nun die Aufgabe dadurch gelöst, dass die Länge der einzelnen Leistungspulsintervalle individuell gewählt wird und so ein gewünschtes Beschichtungsdickenprofil über die Höhe der Beschichtungskammer erreicht wird. D.h. erfindungsgemäss wird nicht, wie sonst üblich, die Magnetfelder über die Höhe der Beschichtungskammer angepasst, sondern die Dauer der Leistungspulsintervalle. Entsprechendes ist in der Figur 1 gezeigt. Sichtbar ist, dass das mit der ersten Teilkathode verbundene Leistungspulsintervall deutlich länger ist als das mit der Teilkathode 5 verbundene Leistungspulsintervall. Aufgrund des längeren Leistungspulsintervalls wird die mittlere Beschichtungsrate ausgehend von der Teilkathode 1 länger als die mittlere Beschichtungsrate ausgehend von der Teilkathode 5. According to the invention, the object is now achieved by individually selecting the length of the individual power pulse intervals and thus achieving a desired coating thickness profile over the height of the coating chamber. That According to the invention, the magnetic fields are not adjusted over the height of the coating chamber, as usual, but the duration of the power pulse intervals. The same is shown in FIG. It can be seen that the power pulse interval connected to the first sub-cathode is significantly longer than the power pulse interval connected to the sub-cathode 5. Due to the longer power pulse interval, the average coating rate starting from the partial cathode 1 becomes longer than the average coating rate starting from the partial cathode 5.
In der Praxis kann beispielsweise so vorgegangen werden, dass zunächst die Leistungspulsintervalle sämtlicher Teilkathoden gleich lang gewählt werden und so eine erste Beschichtung zur Kalibierung vorgenommen wird. Anschliessend werden die Beschichtungsdicken über die Höhe der Beschichtungskammer vermessen. Zeigen sich Unterschiede in den Dicken so werden dort, wo die Schichten im Vergleich zur mittleren Dicke zu gering sind die Leistungspulsintervalle etwas verlängert. Dort wo die Schichten im Vergleich zur mittleren Dicke zu gross sind werden die Leistungspulsintervalle etwas verkürzt. Durch dieses Vorgehen wird ein Ausgleich erzielt, wobei dem Fachmann klar ist, dass mehrere Iterationsschritte zur weiteren Verbesserung der Homogenisierung durchgeführt werden können. In practice, for example, it is possible to proceed in such a way that initially the power pulse intervals of all the subcathodes are selected to be the same length, and so a first coating is made for calibration. Subsequently, the coating thicknesses are measured over the height of the coating chamber. If there are differences in the thicknesses, then where the layers are too small in comparison to the average thickness, the power pulse intervals are somewhat prolonged. Where the layers are too large compared to the average thickness, the power pulse intervals are somewhat shortened. By doing so, a balance is achieved, it being clear to the person skilled in the art that several iteration steps can be carried out to further improve the homogenization.
Die Erfindung wurde anhand der Homogenisierung der Schichtdicken über die Höhe der Beschichtungskammer erläutert. Sie sollte allerdings auch so verstanden werden, dass wenn ein insbesondere auch von der Homogenisierung abweichendes Schichdickenprofil erzielt werden soll, die erfindungsgemässen Massnahmen mutatis mutandis angewandt werden können. The invention was explained on the basis of the homogenization of the layer thicknesses over the height of the coating chamber. However, it should also be understood that if a particular from the homogenization deviating Schichdickenprofil is to be achieved, the measures according to the invention can be applied mutatis mutandis.

Claims

Ansprüche claims
1. Verfahren zur physikalischen Beschichtung aus der Gasphase mittels Zerstäuben in einer evakuierten Beschichtungskammer, insbesondere mittels HIPI S, umfassend die Schritte: a) Bereitstellen eines Generators mit vorgegebener vorzugsweise zumindest nach Anschalten und nach Ablauf eines Leistungsaufbauintervalls konstanter1. A method for physical coating from the gas phase by means of sputtering in an evacuated coating chamber, in particular by HIPI S, comprising the steps: a) providing a generator with predetermined preferably at least after switching on and after a power build-up interval constant
, Leistungsabgabe b) Anschalten des Generators c) Anschluss der ersten Teilkathode an den Generator, so dass die erste Teilkathode mit Leistung vom Generator beaufschlagt wird d) Trennung des Generators von der ersten Teilkathode nach Ablauf eines vorgegebenen der ersten Teilkathode entsprechenden ersten Leistungspulsintervalls e) Anschluss der zweiten Teilkathode an den Generator so dass die zweite Teilkathode mit Leistung vom Generator beaufschlagt wird f) Trennung des Generators von der zweiten Teilkathode nach Ablauf eines vorgegebenen der zweiten Teilkathode entsprechenden zweiten Leistungspulsintervalls; dadurch gekennzeichnet, dass die Länge des einen Leistungspulsintervalls derart an die Länge des anderen Leistungspulsintervalls angepasst wird, dass die aus der Beschichtung resultierende Schicht über die Höhe der Beschichtungskammer eine vorgegebene Schichtdickenverteilung aufweist. C) Connection of the first part cathode to the generator so that the first part cathode is supplied with power from the generator d) Separation of the generator from the first part cathode after a predetermined first power pulse interval corresponding to the first part cathode e) Connection the second part cathode to the generator so that the second part cathode is supplied with power from the generator f) separation of the generator from the second part cathode after the expiry of a predetermined second power pulse interval corresponding to the second part cathode; characterized in that the length of the one power pulse interval is adapted to the length of the other power pulse interval such that the layer resulting from the coating has a predetermined layer thickness distribution over the height of the coating chamber.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als vorgegebene Schichtdickenverteilung eine homogene Schichtdickenverteilung gewählt wird. 2. The method according to claim 1, characterized in that a homogeneous layer thickness distribution is selected as the predetermined layer thickness distribution.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das erste Leistungspulsintervall zeitlich vor dem zweiten Leistungspulsintervall beginnt und das erste Leistungspulsintervall zeitlich vor dem zweiten Leistungspulsintervall endet, und wobei die Schritte d) und e) so ausgeführt werden dass sich erstes Leistungspulsintervall und zweites Leistungspulsintervall zeitlich überlappen und alle Leistungspulsintervalle zusammen eine erste Gruppe bilden, so dass die Leistungsabgabe vom Generator durchgehend ohne Unterbrechung vom Anfang des ersten Leistungspulsintervalls bis zum Ende des zweiten Leistungspulsintervalls bestehen bleibt und es nicht zu einem zweiten Leistungsaufbauintervall kommt. 3. The method according to any one of claims 1 and 2, characterized in that the first power pulse interval begins before the second power pulse interval and the first power pulse interval ends before the second power pulse interval, and wherein steps d) and e) are carried out so that first Overlap in time pulse power interval and second power pulse interval and all power pulse intervals together form a first group, so that the power output from the generator continuously without interruption from the beginning of first power pulse interval until the end of the second power pulse interval remains and it does not come to a second power setup interval.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehr als zwei Teilkathoden verwendet werden und die Schritte c) bis f) analog auf diese angewendet werden. 4. The method according to any one of the preceding claims, characterized in that more than two partial cathodes are used and the steps c) to f) are applied analogously to these.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest die relative Länge der Leistungspulsintervalle mittels einer der Beschichtung vorgängigen Kalibrationsbeschichtung ermittelt wird. 5. The method according to any one of the preceding claims, characterized in that at least the relative length of the power pulse intervals is determined by means of a coating of the previous calibration coating.
EP12812516.8A 2011-12-21 2012-11-23 Homogeneous hipims coating method Withdrawn EP2795658A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011121770A DE102011121770A1 (en) 2011-12-21 2011-12-21 Homogeneous HIPIMS coating process
PCT/EP2012/004847 WO2013091761A1 (en) 2011-12-21 2012-11-23 Homogeneous hipims coating method

Publications (1)

Publication Number Publication Date
EP2795658A1 true EP2795658A1 (en) 2014-10-29

Family

ID=47520875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12812516.8A Withdrawn EP2795658A1 (en) 2011-12-21 2012-11-23 Homogeneous hipims coating method

Country Status (13)

Country Link
US (1) US10982321B2 (en)
EP (1) EP2795658A1 (en)
JP (1) JP6180431B2 (en)
KR (1) KR101934141B1 (en)
CN (1) CN104160470B (en)
BR (1) BR112014014793B1 (en)
CA (1) CA2859747C (en)
DE (1) DE102011121770A1 (en)
MX (1) MX341506B (en)
PH (1) PH12014501435B1 (en)
RU (1) RU2633516C2 (en)
SG (1) SG11201403396SA (en)
WO (1) WO2013091761A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117177A1 (en) * 2011-10-28 2013-05-02 Oerlikon Trading Ag, Trübbach Method for providing sequential power pulses
TW202340495A (en) 2019-02-11 2023-10-16 美商應用材料股份有限公司 Physical vapor deposition methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010001497U1 (en) * 2010-01-29 2010-04-22 Hauzer Techno-Coating B.V. Coating device with a HIPIMS power source

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515668A (en) * 1984-04-25 1985-05-07 Honeywell Inc. Method of forming a dielectric layer comprising a gettering material
JPS6141766A (en) * 1984-08-06 1986-02-28 Hitachi Ltd Method and device for sputtering
DE3700633C2 (en) * 1987-01-12 1997-02-20 Reinar Dr Gruen Method and device for the gentle coating of electrically conductive objects by means of plasma
JPH07116596B2 (en) * 1989-02-15 1995-12-13 株式会社日立製作所 Thin film forming method and apparatus thereof
DE19651615C1 (en) * 1996-12-12 1997-07-10 Fraunhofer Ges Forschung Sputter coating to produce carbon layer for e.g. magnetic heads
US9771648B2 (en) * 2004-08-13 2017-09-26 Zond, Inc. Method of ionized physical vapor deposition sputter coating high aspect-ratio structures
US20050103620A1 (en) * 2003-11-19 2005-05-19 Zond, Inc. Plasma source with segmented magnetron cathode
US7718042B2 (en) * 2004-03-12 2010-05-18 Oc Oerlikon Balzers Ag Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
JP2006124753A (en) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O FILM, METHOD FOR FORMING IT, AND SOLAR BATTERY
DE102006017382A1 (en) * 2005-11-14 2007-05-16 Itg Induktionsanlagen Gmbh Method and device for coating and / or treating surfaces
DE102006021565A1 (en) * 2005-12-20 2007-06-28 Itg Induktionsanlagen Gmbh Magnetic field system for a cathode unit, is produced using one or more cluster magnetron cathodes
US7691544B2 (en) * 2006-07-21 2010-04-06 Intel Corporation Measurement of a scattered light point spread function (PSF) for microelectronic photolithography
JP5162464B2 (en) * 2006-10-24 2013-03-13 株式会社アルバック Thin film forming method and thin film forming apparatus
US20080197015A1 (en) * 2007-02-16 2008-08-21 Terry Bluck Multiple-magnetron sputtering source with plasma confinement
JP5037475B2 (en) * 2008-11-11 2012-09-26 株式会社神戸製鋼所 Sputtering equipment
DE102010007516A1 (en) * 2010-02-11 2011-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Large-scale cathode for magnetron sputtering within vacuum chamber, comprises target, and device for producing a magnetic field, which is enclosed itself on the surface of the target in circular manner and is formed in tunnel-shaped manner
DE102010007515A1 (en) * 2010-02-11 2011-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Operating a large-scale cathode for a magnetron sputtering within a vacuum chamber, where the cathode includes a target, comprises producing a magnetic field by a device, and dividing the target into two partial targets
DE102011018363A1 (en) 2011-04-20 2012-10-25 Oerlikon Trading Ag, Trübbach Hochleistungszerstäubungsquelle
DE102011117177A1 (en) 2011-10-28 2013-05-02 Oerlikon Trading Ag, Trübbach Method for providing sequential power pulses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010001497U1 (en) * 2010-01-29 2010-04-22 Hauzer Techno-Coating B.V. Coating device with a HIPIMS power source

Also Published As

Publication number Publication date
KR101934141B1 (en) 2018-12-31
PH12014501435A1 (en) 2014-09-22
JP6180431B2 (en) 2017-08-16
DE102011121770A1 (en) 2013-06-27
BR112014014793A2 (en) 2017-06-13
RU2633516C2 (en) 2017-10-13
US10982321B2 (en) 2021-04-20
WO2013091761A1 (en) 2013-06-27
JP2015508448A (en) 2015-03-19
CN104160470A (en) 2014-11-19
MX341506B (en) 2016-08-22
CN104160470B (en) 2017-01-18
BR112014014793B1 (en) 2021-08-10
RU2014129572A (en) 2016-02-10
PH12014501435B1 (en) 2014-09-22
SG11201403396SA (en) 2014-12-30
CA2859747C (en) 2019-12-31
US20150001063A1 (en) 2015-01-01
CA2859747A1 (en) 2013-06-27
MX2014007668A (en) 2014-11-25
KR20140116102A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2936542B1 (en) Arc extinguishing method and power supply system having a power converter
EP2700083B1 (en) Method for supplying sequential power impulses
DE3700633C1 (en) Method and device for the gentle coating of electrically conductive objects by means of plasma
EP2771901B1 (en) Method for supplying sequential power impulses
WO2012089286A1 (en) Coating apparatus having a hipims power source
WO2012143087A1 (en) High-power sputtering source
EP2777061B1 (en) Hipims-layers
WO2020152097A1 (en) Method for compensating for process fluctuations in a plasma process and closed-loop controller for a power generator for supplying a plasma process
WO2013091761A1 (en) Homogeneous hipims coating method
EP1872637B1 (en) Plasma coating device and method
DE10000019A1 (en) Sputter deposition unit, useful for depositing titanium and titanium nitride coatings on semiconductor wafers, has a non-target material surface for receiving and re-sputtering target material onto a workpiece periphery
WO2010149790A2 (en) Method for coating a substrate in a vacuum chamber having a rotating magnetron
EP1704756B1 (en) Plasma treatment of large-scale components
WO2015007653A1 (en) Plasma-chemical coating apparatus
EP1675155A1 (en) Plasma excitation system
AT15637U1 (en) Process for additive manufacturing
EP3375006B1 (en) Sputtering arrangement and sputtering method for optimized distribution of the energy flow
DE3801309C2 (en)
DD200804A1 (en) METHOD AND DEVICE FOR HIGH-RATE STRAINERING
EP1197580B1 (en) Sputtering apparatus for coating at least one substrate and process for the regulation of the apparatus
WO2014202648A1 (en) Method for pretreating a surface to be coated
DE102018216969A1 (en) Plasma treatment device and method for outputting pulses of electrical power to at least one process chamber
DE102013205936B4 (en) Method for controlling a controlled system with a standardized selection variable
DE102011115145A1 (en) Method for magnetron sputtering with compensation of the target erosion
DE102013114093A1 (en) Plasma source and method for generating a plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON SURFACE SOLUTIONS AG, TRUEBBACH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180802

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190213