EP2794835A1 - Produits de lavage et de nettoyage à efficacité améliorée - Google Patents

Produits de lavage et de nettoyage à efficacité améliorée

Info

Publication number
EP2794835A1
EP2794835A1 EP12798297.3A EP12798297A EP2794835A1 EP 2794835 A1 EP2794835 A1 EP 2794835A1 EP 12798297 A EP12798297 A EP 12798297A EP 2794835 A1 EP2794835 A1 EP 2794835A1
Authority
EP
European Patent Office
Prior art keywords
acid
stains
purple
red
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12798297.3A
Other languages
German (de)
English (en)
Other versions
EP2794835B1 (fr
Inventor
Christian Kropf
Mareile Job
Christian Umbreit
Siglinde Erpenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL12798297T priority Critical patent/PL2794835T3/pl
Publication of EP2794835A1 publication Critical patent/EP2794835A1/fr
Application granted granted Critical
Publication of EP2794835B1 publication Critical patent/EP2794835B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/32Amides; Substituted amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3263Amides or imides

Definitions

  • the present invention relates to the use of Oligohydroxybenzoeklareamiden in detergents and cleaners to improve the washing or cleaning performance.
  • soilings which are normally at least partially removed by the peroxygen bleaching agent are often even intensified and / or worsened in the removal of soiling due to the washing process, not least due to initiated chemical reactions occurring, for example, in the polymerization certain dyes contained in the stains can exist.
  • the polymerizable substances are, above all, polyphenolic dyes, preferably flavonoids, in particular from the class of anthocyanidins or anthocyanins.
  • the soiling can in particular by
  • the stains can be, in particular, stains of fruits or vegetables or even red wine stains, which in particular contain polyphenolic dyes, especially those from the class of anthocyanidins or anthocyanins.
  • Gallic acid esters such as propyl gallate are known in detergents for the improved removal of soils containing polymerizable substances.
  • Gallic acid esters of polyhydric alcohols and their use as inhibitors of plasminogen activator 1 (PAI-1) are known from international patent application WO 2008/131047 A2.
  • Detergent can be significantly improved, especially in relation to bleachable stains.
  • a first subject of the present invention is therefore the use of compounds of general formula (I),
  • R, R 2 , R 3 , R 4 and R 5 independently of one another are H or OH
  • R and R 'independently of one another are H, OH or a cyclic or acyclic, straight-chain or
  • branched-chain, aliphatic or aromatic hydrocarbon radical having 1 to 50, preferably 1 to 20 carbon atoms, which may be mono- or polysubstituted with hydrophilic groups such as NRR ', COOR, CONRR' or OR and / or its skeleton by one or more non-adjacent Heteroatoms, in particular selected from O and / or N, may be broken in detergents or cleaners to improve the washing or cleaning performance against bleachable stains.
  • the bleachable stains usually contain polymerizable substances, in particular polymerizable dyes, wherein the polymerizable dyes are preferably polyphenolic dyes, in particular flavonoids, especially
  • Anthocyanidins or anthocyanins or oligomers of these compounds In addition to removing stains in the colors green, yellow, red or blue, stains in intermediate colors, in particular violet, purple, brown, purple or pink, as well as stains, which are green, yellow, red and violet, come into consideration purple, brown, purple, pink or blue tint without essentially being complete to consist of this color.
  • the colors mentioned can also be light or dark in each case.
  • stains in particular stains of grass, fruits or vegetables, in particular soiling by food products, such as spices, sauces, chutneys, curries, purees and jams, or drinks, such as coffee, tea, wines and Juices containing the corresponding green, yellow, red, purple, purple, brown, purple, pink and / or blue dyes.
  • the stains to be removed according to the invention can be caused in particular by cherry, morelle, grape, apple, pomegranate, aronia, plum, sea buckthorn, agai, kiwi, mango, grass, or berries, especially by red or black currants, elderberries, blackberries, raspberries , Blueberries, cranberries, cranberries, strawberries or blueberries, with coffee, tea, red cabbage, blood orange, eggplant, tomato, carrot, beetroot, spinach, paprika, red meat or potato, or red onion.
  • R is a hydroxyalkyl group such as hydroxyethyl, hydroxypropyl or hydroxybutyl, or a polyhydroxysubstituted alkyl group such as trishydroxymethylmethyl, or a polyoxyalkylene group such as polyoxyethylene and / or polyoxypropylene, optionally in
  • R ' is preferably hydrogen, an alkyl group such as methyl, ethyl, and propyl, an aromatic group such as phenyl or benzyl, or a group as defined for R.
  • Gallic acid amide of polyoxyethylene / oxypropyleneamine eg JEFFAMINE® from Huntsman
  • polyoxyethylene / oxypropyleneamine eg JEFFAMINE® from Huntsman
  • the use according to the invention of the compound of the general formula (I) is preferably carried out in detergents or cleaners by adding them in an amount of 0.001% by weight to 5% by weight, in particular in an amount of 0.1% by weight 4% by weight, where the statements of "% by weight” in each case relate to the weight of the entire washing or cleaning agent Wt .-% to 5 wt .-%, in particular 0, 1 wt .-% to 4 wt .-% of compound of general formula (I), wherein the above or below described preferred embodiments also apply to this subject of the invention ,
  • the washing or cleaning agent may be present in any of the prior art and / or any convenient dosage form. These include, for example, solid, powdered, liquid, gel or pasty dosage forms, optionally also consisting of several phases; further include, for example: extrudates, granules, tablets or pouches, packed both in large containers and in portions.
  • Containing hydrogen peroxide substances preferably, it also has no
  • the detergent is in a particularly preferred embodiment, a liquid laundry detergent.
  • the detergent is a powdered or liquid color detergent, ie a textile detergent for colored textiles.
  • the detergents and cleaning agents may moreover comprise conventional other constituents of detergents or cleaners, in particular laundry detergents, in particular selected from the group of builders, surfactants, polymers, enzymes,
  • the builders include in particular the zeolites, silicates, carbonates, organic cobuilders and - if there are no ecological prejudices against their use - also the phosphates.
  • the fine crystalline, synthetic and bound water-containing zeolite is
  • Zeolite P is, for example, zeolite MAP® (commercial product from Crosfield).
  • zeolite X is also suitable
  • zeolite A, X and / or P Mixtures of zeolite A, X and / or P.
  • a co-crystals of zeolite X and zeolite A which is represented by the formula n Na 2 0 ⁇ (1 -n) K 2 0 ⁇ Al 2 0 3 ⁇ (2 - 2,5) Si0 2 ⁇ (3,5 - 5,5) H 2 0 can be described.
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of a granular mixture,
  • Zeolites may have an average particle size of less than 10 ⁇ (volume distribution, measuring method: Coulter Counter) and preferably contain from 18% by weight to 22% by weight, in particular from 20% by weight to 22% by weight, of bound water.
  • Na-SKS-2 Na2 Sii 4 0 2 9 ⁇ x H 2 0, magadiite
  • Na-SKS-3 Na 2 Si 8 0i 7 ⁇ x H 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 ⁇ x H 2 O, makatite
  • Crystalline layer silicates of the formula NaMSi x 0 2x + are preferred i ⁇ y H 2 0, in which x stands for 2 h.
  • x stands for 2 h.
  • Detergents or cleaning agents preferably contain a proportion by weight of the crystalline layered silicate of the formula
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which preferably delayed release and have secondary washing properties.
  • the dissolution delay compared to conventional amorphous sodium silicates can in various ways, for example by surface treatment, compounding, compaction / compaction or by
  • amorphous is understood to mean that the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most cause one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle.
  • X-ray-amorphous silicates whose silicate particles produce blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size of ten to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such X-ray amorphous silicates also have a dissolution delay compared to the conventional water glasses.
  • Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • silicate (s) preferably alkali metal silicates, particularly preferably crystalline or amorphous alkali metal disilicates, if present, are present in detergents or cleaners in amounts of from 3% by weight to 60% by weight, preferably 8% by weight. % to 50 wt .-% and in particular from 20 wt .-% to 40 wt .-%. It is also possible to use the generally known phosphates as builders, if such use is not to be avoided for ecological reasons. Among the large number of commercially available phosphates, the alkali metal phosphates have particular
  • Pentakaliumtriphosphat sodium or potassium tripolyphosphate
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids in which one
  • Metaphosphoric acids (HP0 3 ) n and orthophosphoric acid H 3 P0 4 can distinguish in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Technically particularly important phosphates are the pentasodium triphosphate, Na 5 P 3 Oi 0 (sodium tripolyphosphate) and the corresponding potassium salt Pentakaliumtriphosphat, K 5 P 3 Oi 0 (potassium tripolyphosphate). Preference is furthermore given to using the sodium potassium tripolyphosphates. If phosphates are used in detergents or cleaning agents, preferred agents contain this phosphate (s), preferably
  • Alkalimetallphosphat particularly preferably pentasodium or Pentakaliumtriphosphat (sodium or potassium tripolyphosphate), in amounts of from 5 wt .-% to 80 wt .-%, preferably from 15 wt .-% to 75 wt .-% and in particular from 20% to 70% by weight.
  • alkali carriers are alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali metal silicates mentioned, alkali metal silicates, and mixtures of the abovementioned substances, preference being given to the alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or
  • Sodium sesquicarbonate can be used.
  • Particularly preferred may be a builder system containing a mixture of tripolyphosphate and sodium carbonate.
  • the alkali metal hydroxides are usually only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 Wt .-% and in particular below 2 wt .-%, used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • organic builders are in particular polycarboxylates / polycarboxylic acids, polymers
  • Polycarboxylates aspartic acid, polyacetals, dextrins and phosphonates to call.
  • Useful are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • NTA nitrilotriacetic acid
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • an acidifying component for example, citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • Further suitable builders are polymeric polycarboxylates, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative
  • polyacrylates which preferably have a molecular weight of from 2000 g / mol to 20 000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 g / mol to 10,000 g / mol, and particularly preferably from 3000 g / mol to 5000 g / mol, may again be preferred from this group. Also suitable are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50% by weight to 90% by weight of acrylic acid and 50% by weight to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally from 2000 g / mol to 70000 g / mol, preferably from 20 000 g / mol to 50 000 g / mol and in particular from 30 000 g / mol to 40 000 g / mol.
  • the polymers can also be also be used to be particularly suitable.
  • Allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
  • the (co) polymeric polycarboxylates can be used as a solid or in aqueous solution.
  • the content of detergents or cleaning agents in (co) polymeric polycarboxylates is preferably from 0.5% by weight to 20% by weight and in particular from 3% by weight to 10% by weight.
  • biodegradable polymers of more than two
  • various monomer units for example those containing as monomers, salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers, salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which have as their monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polyaspartic acids and / or their salts.
  • phosphonates are the salts of, in particular, hydroxyalkane or aminoalkanephosphonic acids.
  • hydroxyalkanephosphonic acids 1-hydroxyethane-1,1-diphosphonic acid (HEDP) is of particular importance. It is used in particular as the sodium salt, the disodium salt neutral and the tetrasodium salt alkaline.
  • Particularly suitable aminoalkanephosphonic acids are ethylenediamine tetramethylenephosphonic acid (EDTMP), diethylenetriaminepentamethylenephosphonic acid (DTPMP) and their higher homologs.
  • the neutral-reacting sodium salts for example as the hexasodium salt of EDTMP or as the hepta- and octa-sodium salt of DTPMP.
  • Mixtures of the mentioned phosphonates can also be used as organic builders.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are selected from dialdehydes such as glyoxal,
  • organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • they are hydrolysis products with middle
  • Alcohol function of the saccharide ring to oxidize the carboxylic acid function is Alcohol function of the saccharide ring to oxidize the carboxylic acid function.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Detergents or cleaning agents with particular preference contain nonionic surfactants from the group of alkoxylated alcohols. Become as nonionic surfactants
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • nonionic surfactants it is also possible to use fatty alcohols with more than 12 EO. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • other nonionic surfactants also alkyl glycosides of the general formula RO (G) x can be used, in which R is a primary straight-chain or methyl branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C-atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8
  • Carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or a Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, where C
  • 4- alkyl or phenyl radicals are preferred and [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical. [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants from the group of alkoxylated alcohols, more preferably from the group of mixed alkoxylated alcohols and in particular from the group of EO / AO / EO-nonionic surfactants, or the PO / AO / PO nonionic surfactants, especially the PO / EO / PO nonionic surfactants are particularly preferred.
  • Such PO / EO / PO nonionic surfactants are characterized by good foam control.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type preferably come here C 9 .i 3 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and Hydroxyalkansulfonaten and disulfonates, such as those from C 12 -i8 monoolefins with terminal or internal double bond by sulfonation with gaseous Sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids are also suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as in the preparation by esterification of a monoglycerol with 1 to 3 mol of fatty acid or in the transesterification of triglycerides with 0.3 to 2 mol Glycerol can be obtained.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal and in particular the sodium salts of
  • Sulfuric acid semi-esters of Ci 2 -C 8 fatty alcohols for example from coconut fatty alcohol,
  • Tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the Ci 0 -C 2 o-Oxoalkohole and those half-esters of secondary alcohols of these chain lengths are preferred.
  • alk (en) ylsulfates of said chain length which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 2 -C 6 alkyl sulfates and C 2 -C 5 alkyl sulfates and preferably C14-C15 alkyl sulphates are suitable anionic surfactants.
  • 2 alcohols such as 2-methyl-branched with on average 3.5 moles of ethylene oxide (EO) or Ci 2 -i 8 -Fettalkohole with 1 to 4 EO, are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1% by weight to 5% by weight.
  • alkylsulfosuccinic acid which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 . 18- fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain one
  • Fatty alcohol residue derived from ethoxylated fatty alcohols which in themselves constitute nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • cationic active substances for example, cationic compounds of the following formulas can be used:
  • Textile softening compounds can be used to care for the textiles and to improve the textile properties, such as a softer feel and reduced electrostatic charge (increased wear comfort)
  • the active ingredients of these formulations are quaternary ammonium compounds having two hydrophobic radicals, such as
  • Disteraryldimethylammoniumchlorid which, however, due to its insufficient biodegradability increasingly replaced by quaternary ammonium compounds containing ester groups in their hydrophobic residues as predetermined breaking points for biodegradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then reacting the reaction products in a manner known per se
  • Enzymes can be used to increase the performance of detergents or cleaners. These include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Detergents or cleaning agents contain enzymes preferably in
  • Protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases examples include the ⁇ -amylases from Bacillus licheniformis, from
  • Amylases Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases because of their triglyceride-splitting activity.
  • lipases or cutinases include, for example, the lipases originally obtainable from or developed from Humicola lanuginosa (Thermomyces lanuginosus), in particular those with the
  • enzymes can be used which are termed hemicellulases
  • oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used to increase the bleaching effect.
  • organic, particularly preferably aromatic, compounds which interact with the enzymes in order to enhance the activity of the relevant oxidoreductases (enhancers) or in the case of strong
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core with a water, air and / or
  • Chemical-impermeable protective layer is coated.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • perfume oils or fragrances individual perfume compounds, for example synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures, such as those obtainable from vegetable sources, eg pine, citrus, jasmine, Patchouly, rose or ylang-ylang oil.
  • a fragrance In order to be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical
  • fragrances have molecular weights up to about 200 g / mol, while molar masses of 300 g / mol and above are more of an exception.
  • the smell of a perfume or fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “middle note” or “body note” ) and “base note” (end note or dry out). Since odor perception is also largely due to odor intensity, the top note of a perfume does not consist solely of volatile compounds, while the base note is largely made up of less volatile, i. adherent fragrances.
  • fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • fixatives for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • colorants may have different stabilities to oxidation.
  • water-insoluble colorants are more stable to oxidation than water-soluble colorants.
  • concentration of the colorant in the detergents or cleaners varies. In the case of readily water-soluble colorants, it is typical to choose colorant concentrations in the range of a few 10 -2 % by weight to 10 3 % by weight.
  • the appropriate concentration of the coloring agent in washing or cleaning agents is typically a few 10 3 wt .-% to 10 "4 wt .-%.
  • Suitable examples are anionic colorants, for example anionic nitrosofarbstoffe.
  • detergents or cleaners may contain other ingredients which are performance and / or aesthetic
  • Preferred agents contain one or more substances from the group of electrolytes, pH adjusters, fluorescers, hydrotopes,
  • Foam inhibitors silicone oils, anti redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, antistatic agents, ironing aids, repellents and impregnating agents, swelling and anti-slip agents and UV absorbers.
  • Alkaline earth metals preferred anions are the halides and sulfates.
  • pH adjusters In order to bring the pH of detergents or cleaners into the desired range, the use of pH adjusters may be indicated. Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 1% by weight of the total formulation.
  • Suitable carrier materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the abovementioned materials.
  • preferred agents include paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are constructed according to the scheme (R 2 SiO) x and are also referred to as silicone oils.
  • silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids having a molecular weight between 1000 g / mol and 150000 g / mol and viscosities between 10 mPa.s and 1000000 mPa.s.
  • Suitable anti-redeposition agents are, for example, nonionic cellulose ethers, such as
  • Methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30 wt .-% and hydroxypropyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ether.
  • soil repellents are known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalate and / or polyethylene glycol terephthalate or anionic and / or nonionic modified
  • Derivatives of these are the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners may in particular be added to the detergents in order to eliminate graying and yellowing of the treated textiles. These substances attract to the fiber and cause lightening and fake bleaching by making them invisible
  • Suitable compounds for example, originate from the substance classes of the 4,4 'diamino-2,2-stilbenedisulfonic acids (flavonic),' -Distyryl 4,4-biphenylene, Methylumbelliferone, coumarins, dihydroquinolinones, 1, 3- diarylpyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimidazole systems as well as heterocyclic substituted pyrene derivatives.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations can be used, e.g. degraded starch, aldehyde levels, etc. Also polyvinylpyrrolidone is useful.
  • graying inhibitors are cellulose ethers, such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof.
  • synthetic anti-crease agents can be used. These include, for example, synthetic products based on
  • hydrophobing Waterproofing the fabric pores are not closed, so the fabric remains breathable (hydrophobing).
  • the water repellents used for hydrophobizing coat textiles, leather, paper, wood, etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups.
  • Suitable hydrophobizing agents are e.g. Paraffins, waxes, metal soaps etc. with additions of aluminum or zirconium salts, quaternary
  • Antimicrobial agents can be used to combat microorganisms. Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostats and bactericides, fungistatics and fungicides, etc. Substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenolmercuric acetate, although it is entirely possible to do without these compounds.
  • Lauryl (or stearyl) dimethylbenzylammonium chlorides are also suitable as antistatic agents for textiles or as an additive to detergents, wherein additionally a softening effect is achieved.
  • silicone derivatives can be used in textile detergents. These additionally improve the rinsing out of detergents or cleaning agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated. Preferred silicones are
  • UV absorbers which are applied to the treated textiles and improve the light resistance of the fibers. Connections that these UV absorbers are applied to the treated textiles and improve the light resistance of the fibers.
  • phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins). Protein hydrolysates of both vegetable and animal origin can be used. animal
  • Protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • the use is preferred of protein hydrolysates of vegetable origin, for example soya, almond, rice, pea, potato and wheat protein hydrolysates.
  • the use of the protein hydrolyzates is preferred as such, other amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyroglutamic acid, may also be used in their place.
  • derivatives of protein hydrolysates for example in the form of their fatty acid condensation products.
  • wash liquor W1 consisting of 79 g of liquid detergent and 1.6 g of 3,4,5-trihydroxy-N- (tris (hydroxy) methyl) methyl) benzamide in 17 l of water at 16 ° dH.
  • W1 otherwise identical wash liquor V2 were used, which contained only the liquid detergent, and with W1 otherwise identical wash liquor V2, instead of 3,4,5-trihydroxy-N- (tris (hydroxymethyl) methyl) benzamide the same amount to gallic acid ester of Tetraethylengylkolmono- methyl ether contained.
  • the evaluation was carried out by means of color difference measurement according to the L * a * b * values and the Y values calculated therefrom as a measure of the brightness.
  • the following table shows the dY values that resulted from the difference Y (after washing) - Y (before washing).
  • Blueberry 37, 1 31, 4 33.5 The dY values when using the substance essential to the invention were significantly greater than those which result when using only the liquid detergent or the comparison substance, which corresponds to a higher degree of whiteness and thus improved stain removal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne l'utilisation d'amides de l'acide oligohydroxybenzoïque dans des produits de lavage et de nettoyage pour améliorer l'efficacité de lavage ou de nettoyage sur des taches blanchissables.
EP12798297.3A 2011-12-19 2012-12-10 Produits de lavage et de nettoyage à efficacité améliorée Active EP2794835B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12798297T PL2794835T3 (pl) 2011-12-19 2012-12-10 Środek piorący i czyszczący o polepszonej sprawności

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011088982A DE102011088982A1 (de) 2011-12-19 2011-12-19 Wasch- und Reinigungsmittel mit verbesserter Leistung
PCT/EP2012/074886 WO2013092263A1 (fr) 2011-12-19 2012-12-10 Produits de lavage et de nettoyage à efficacité améliorée

Publications (2)

Publication Number Publication Date
EP2794835A1 true EP2794835A1 (fr) 2014-10-29
EP2794835B1 EP2794835B1 (fr) 2017-02-08

Family

ID=47324156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798297.3A Active EP2794835B1 (fr) 2011-12-19 2012-12-10 Produits de lavage et de nettoyage à efficacité améliorée

Country Status (7)

Country Link
US (1) US20140303064A1 (fr)
EP (1) EP2794835B1 (fr)
DE (1) DE102011088982A1 (fr)
ES (1) ES2618635T3 (fr)
HU (1) HUE032807T2 (fr)
PL (1) PL2794835T3 (fr)
WO (1) WO2013092263A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222833A1 (de) * 2014-11-10 2016-05-12 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel mit verbesserter Leistung
DE102016214660A1 (de) 2016-08-08 2018-02-08 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel mit verbesserter Leistung
DE102018217398A1 (de) 2018-10-11 2020-04-16 Henkel Ag & Co. Kgaa Flüssigwaschmittel mit Dihydroxyterephthalsäurediamid-Verbindung
DE102018217397A1 (de) 2018-10-11 2020-04-16 Henkel Ag & Co. Kgaa Verwendung von übergangsmetallfreien Abtönungsfarbstoffen in Kombination mit Catecholderivaten
DE102018217392A1 (de) 2018-10-11 2020-04-16 Henkel Ag & Co. Kgaa Mehrkomponenten-Waschmittel mit Catechol-Metallkomplex
DE102019204792A1 (de) 2019-04-04 2020-10-08 Henkel Ag & Co. Kgaa Verwendung von Mannanase-Enzym in Kombination mit Catecholderivaten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289391A (en) * 1941-04-10 1942-07-14 Procter & Gamble Process of preparing wetting, sudsing, and detergent agents
US3706796A (en) * 1970-11-25 1972-12-19 Monsanto Co Substituted amides
GB8609883D0 (en) * 1986-04-23 1986-05-29 Procter & Gamble Softening detergent compositions
WO2008131047A2 (fr) 2007-04-16 2008-10-30 The Regents Of The University Of Michigan Inhibiteurs de l'activateur 1 du plasminogène et procédés d'utilisation de ceux-ci pour moduler le métabolisme lipidique
DE102009028891A1 (de) 2009-08-26 2011-03-03 Henkel Ag & Co. Kgaa Verbesserte Waschleistung durch Radikalfänger

Also Published As

Publication number Publication date
WO2013092263A1 (fr) 2013-06-27
EP2794835B1 (fr) 2017-02-08
US20140303064A1 (en) 2014-10-09
HUE032807T2 (en) 2017-11-28
DE102011088982A1 (de) 2013-06-20
ES2618635T3 (es) 2017-06-21
PL2794835T3 (pl) 2017-08-31

Similar Documents

Publication Publication Date Title
EP3218462B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
EP3497198B1 (fr) Produit de lavage et de nettoyage à efficacité améliorée
DE102009028891A1 (de) Verbesserte Waschleistung durch Radikalfänger
EP2794835B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
DE102009028892A1 (de) Verbesserte Waschleistung durch Polymere mit aromatischen Gruppen
WO2015028395A1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
EP3083921B1 (fr) Composition détergente
EP2794834B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
EP3743496B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
EP2753682B1 (fr) Compositions détergentes offrant une performance améliorée
EP3041920B1 (fr) Compositionds détergentes d'efficacité améliorée
EP3036315B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
EP3218464B1 (fr) Produits de lavage et de nettoyage à efficacité améliorée
DE102011082917A1 (de) Wasch- und Reinigungsmittel mit verbesserter Leistung
WO2020094532A1 (fr) Détergents et produits de nettoyage d'efficacité améliorée
WO2023099154A1 (fr) Dérivés d'anthracène-9,10-dione utilisés comme photoactivateurs dans des détergents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/30 20060101ALI20160810BHEP

Ipc: C11D 11/00 20060101ALI20160810BHEP

Ipc: C11D 3/32 20060101AFI20160810BHEP

Ipc: C11D 7/32 20060101ALI20160810BHEP

INTG Intention to grant announced

Effective date: 20160902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 866880

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012009515

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2618635

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012009515

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E032807

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 866880

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 12

Ref country code: HU

Payment date: 20231222

Year of fee payment: 12

Ref country code: FR

Payment date: 20231221

Year of fee payment: 12

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12

Ref country code: CZ

Payment date: 20231204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240126

Year of fee payment: 12