EP2791509B1 - Pumping unit - Google Patents

Pumping unit Download PDF

Info

Publication number
EP2791509B1
EP2791509B1 EP12809164.2A EP12809164A EP2791509B1 EP 2791509 B1 EP2791509 B1 EP 2791509B1 EP 12809164 A EP12809164 A EP 12809164A EP 2791509 B1 EP2791509 B1 EP 2791509B1
Authority
EP
European Patent Office
Prior art keywords
pump unit
pump
chamber
unit
connection chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12809164.2A
Other languages
German (de)
French (fr)
Other versions
EP2791509A1 (en
Inventor
Uwe Hammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2791509A1 publication Critical patent/EP2791509A1/en
Application granted granted Critical
Publication of EP2791509B1 publication Critical patent/EP2791509B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/023Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms double acting plate-like flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/007Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves

Definitions

  • NOx nitrogen oxides
  • SCR selective Catalytic Reduction
  • a special SCR catalytic converter which is integrated into the exhaust pipe of the internal combustion engine, NOx is converted into N 2 and H 2 O with the aid of NH 3, the NH 3 preferably being in the form of an aqueous urea solution (“AdBlue®”) via the SCR catalyst Injector is supplied.
  • electrical feed pumps such as diaphragm pumps, are used to convey urea.
  • a major problem of the aqueous urea solution is that it freezes at temperatures below about -12 ° C, resulting in an increase in volume of the urea-water solution. This can lead to frost-related burst damage to the SCR system.
  • these systems are usually equipped with a 4/2-way valve. After the vehicle has been switched off, it is actuated while the SCR pump is running, allowing the urea-water solution in the SCR system to be pumped out of the system back into the storage tank.
  • the SCR (diaphragm) pump and the 4/2-way valve are formed as two separate components, which are connected to each other via a complex line system.
  • the line system leads in particular to increased installation and maintenance costs.
  • the availability of the entire SCR system is reduced due to the individual components to be coupled, whereby at the same time the total weight and the claimed installation space increase.
  • the document DE102009055375 discloses a pump unit according to the preamble of claim 1.
  • a pump unit for conveying a reducing fluid in particular for conveying a urea-water solution for the reduction of nitrogen oxides in an exhaust stream of an internal combustion engine, disclosed with a housing cover, a housing top and a housing lower part, wherein between the housing cover and the housing upper part operable by means of a drive unit membrane is received, and in the lower housing part, a first and a second connection chamber are provided.
  • the conveying direction by means of an integrated valve unit, in particular by means of a 4/2-way valve, reversible.
  • the pump unit can be easily switched from the normal conveying operation in the remindsaug congress after stopping the engine to frost damage within the SCR system at temperatures in the range of -12 ° C or below.
  • the pump unit itself can be designed, for example, as a diaphragm pump.
  • the internal combustion engine is preferably a diesel engine.
  • a development of the pumping unit provides that a membrane chamber is separated from a pumping chamber by the membrane.
  • valve unit is formed, inter alia, with a rotary valve.
  • the rotary valve is pivotally received between the upper housing part and the lower housing part.
  • the bearing of the pivotable rotary valve can be done for example by means of a ball which is received in a ball socket with slight press-fit.
  • the pivoting movement is due to the elastic deformability of the elastomer, so that an arrangement ball / ball socket, as described above, could be dispensed with.
  • the rotary valve For pivoting the rotary valve has this over an extension, which is guided out laterally, for example, from the upper housing part or the lower housing part and which is actuated by means of an actuator for changing between the first and the second angular position of the rotary valve.
  • an actuator for changing between the first and the second angular position of the rotary valve.
  • a rotary valve other shut-off devices can be used to realize the operation of a conventional 4/2-way valve.
  • the pump unit in a first angular position of the rotary valve, the reducing liquid is conveyed in the conveying operation of the first connection chamber into the second connection chamber.
  • the reducing agent in the normal operation of the internal combustion engine, can be conveyed with the aid of the pumping unit from a storage tank to an injector in the region of the SCR catalytic converter within the exhaust gas line of the internal combustion engine.
  • the reducing fluid in a second angular position of the rotary valve, can be conveyed from the second connecting chamber into the first connecting chamber in the suck-back operation.
  • At least two non-return valves are arranged in the upper housing part and at least two check valves in the lower housing part, wherein the non-return valves in the upper housing part are arranged opposite to the check valves in the lower housing part.
  • the rotary valve in the first angular position closes a first pumping chamber bore and a second connection chamber bore and releases a first connection chamber bore and a second pumping chamber bore.
  • the normal conveying operation of the pump unit is set in the first angular position of the rotary valve during operation of the internal combustion engine.
  • the rotary valve releases the first pumping chamber bore and the second connecting chamber bore and closes the first connecting chamber bore and the second pumping chamber bore.
  • the sudsaug congress the pump unit is effected in the second angular position of the rotary valve in the case of longer periods of stoppage of the internal combustion engine.
  • FIG. 1 shows the basic structure of an SCR system with a pump unit according to the invention.
  • the pump unit 14 includes, for example, a diaphragm pump 18, a drive unit 20 for the Diaphragm pump and an inventively integrated valve unit 22, which is exemplified here as a 4/2-way valve.
  • the drive unit 20 may be realized, for example, with an electric motor, with a periodically controlled by a control unit, not shown, electromagnet or the like.
  • the pump unit 14 is in the so-called "delivery mode", that is, the reducing liquid is sucked from the storage tank 12 and conveyed into the injector 16.
  • the pumping unit 14 can be switched from the conveying operation into a so-called "suck-back operation".
  • the conveying direction of the pump unit 14 is reversed and the reducing agent is - as indicated by the small dashed black arrows in the valve unit 22 - starting from the injector 16, via the diaphragm pump 18 to the storage tank 12 back.
  • the FIG. 2 illustrates in a schematic cross-sectional representation of a possible embodiment of a pump unit according to the invention.
  • the pump unit 30 includes, inter alia, a housing cover 32, an upper housing part 34 and a lower housing part 36, which are connected to each other pressure-tight. Between the housing cover 32 and the housing upper part 34, an elastic membrane 38 is clamped. By means of a drive unit 40, not shown, the membrane 38 can move vertically oscillating in motion. Through the membrane 38, a diaphragm chamber 42 is separated from a pumping chamber 44.
  • the drive unit 40 may be, for example, a periodically energized electromagnet or an eccentric driven by an electric motor.
  • a rotary valve 46 is pivotally received between the upper housing part 34 and the lower housing part 36.
  • the bearing of the rotary valve 46 for example, by means of a non-designated ball, which is received in a likewise not designated calotte under preferably slight press-fit, be realized.
  • the pivotable rotary valve 46 it is possible to form the pivotable rotary valve 46 as an elastomeric part, which is provided with a metal insert. This makes it possible to clamp the elastomer of the rotary valve 46 in the housing 32, 34, 36 and thus a To achieve sealing effect.
  • a pivoting movement is given by the elastic properties of the elastomeric material in this embodiment.
  • the rotary valve 46 is located in the in the FIG. 1 shown state of the pump unit 30 in a first angular position, which allows the normal production operation, in which the reducing liquid is sucked during operation of the internal combustion engine from the storage tank and conveyed by the pump unit 30 to the injector in the region of the exhaust line and the SCR catalyst.
  • a first and a second intermediate chamber 48, 50 are limited, which are separated from each other pressure-tight.
  • the pump unit 30 is in the remindsaug compassion.
  • the conveying direction of the pump unit 30 is reversed, so that the reducing liquid, starting from the injector via the pump unit 30, can be conveyed back into the storage tank.
  • This avoids damage to the SCR system due to the freezing of the reducing fluid at temperatures in the range of -12 ° C. or below during prolonged engine downtimes.
  • the switching between the conveying operation and the suck-back operation takes place by the pivoting of the rotary valve 46 in the direction of the non-designated black, arcuate double arrow or by a change between the first and second angular position.
  • an unspecified pivot angle ⁇ of the rotary valve 46 is in the range of ⁇ 10 °.
  • the rotary valve 46 has an axial extension, not shown, which protrudes from the upper housing part 34 and the lower housing part 36 so that in a simple manner between the first and second angular position of the rotary valve 46, for example by means of an actuator, and thus between the Conveying and sudsaug réelle the pump unit can be switched.
  • the upper housing part 34 are also a first upper and a second upper check valve 52, 54 in not designated holes.
  • a first and second, lower check valve 56, 58 added in likewise not designated holes.
  • the check valves 52, 54 and 56, 58 respectively opposite.
  • first and a second connection chamber 60, 62 are also a first and a second connection chamber 60, 62, each in Depending on the current operating state (angular position of the rotary valve) of the pump unit 30 can serve both for the supply and for the derivation of the reducing liquid (bidirectional connections).
  • a first pumping chamber bore 64 and a second pumping chamber bore 66 are introduced, while in the lower housing part 36, a first connection chamber bore 68 and a second connection chamber bore 70 are provided.
  • the upper housing part 34 has an approximately frustoconical sealing surface 72 in the area of the rotary valve 46, while the lower housing part 36 has a sealing surface 74 designed to be complementary thereto.
  • the membrane 38, the diaphragm chamber 42, the pumping chamber 44 and the two upper check valves 52, 54 together with the housing cover 32, the upper housing part 34 and the lower housing part 36, a diaphragm pump initially fixed conveying direction.
  • the rotary valve 46, the sealing surfaces 72,74, the two lower check valves 56, 58 and the pumping chamber and connection chamber bores 64 to 70 represent the valve unit 22 and the 4/2-way valve, by means of the functionality of the diaphragm pump to the Switching possibility of conveying direction is extended.
  • the operation of the pump unit 30 in the conveying operation as in the FIG. 2 shown, explained in more detail.
  • the rotary valve 46 closes the first pumping chamber bore 64 and the second Terminal chamber bore 70, while the first connection chamber bore 68 and the second pumping chamber bore 66 are released from the rotary valve.
  • the pressure-tight completion of the holes is carried out by appropriately machined, not designated upper sides and lower sides of the rotary valve 46 in cooperation with the two sealing surfaces 72, 74.
  • a pressure-tight termination can also be achieved by means of elastic attached to the rotary valve 46 contours.
  • the reducing liquid is sucked as a result of the oscillating up and down movement of the diaphragm 38 in the direction of a white arrow 76 in the first connection chamber 60, passes from there through the open first connection chamber bore 68 and, since the check valve 56 blocks in this flow direction, into the From there, the reducing fluid passes through the first, upper non-return valve 52 which is permeable in this flow direction into the pumping chamber 44.
  • the reducing fluid can not flow through the first pumping chamber bore 64, since these are pressure-tightly sealed by the rotary valve 46 in the first angular position shown is.
  • the reducing fluid is due to the pulsating effect of the membrane through the second pumping chamber bore 66, which is released in this angular position of the rotary valve 46, promoted to the second intermediate chamber 50 inside.
  • the reducing fluid can not flow via the second, upper non-return valve 54 in the upper housing part 34, which closes in this flow direction.
  • the reducing fluid passes via the second non-return valve 58 in the housing lower part 36 into the second connecting chamber 62, from where the reducing fluid in the direction of the white arrow 78 to the injector of the SCR system not shown here to be led.
  • the reducing liquid passes through the second, released by the rotary valve 46 connection chamber bore 70 into the intermediate chamber 50.
  • the reducing liquid can not flow through the second, lower check valve 58 in the lower housing part 36, since this is acted upon by the reducing liquid in the reverse direction.
  • the reducing liquid flows through the opening in this flow direction second upper check valve 54 in the upper housing part 34 into the Pumping chamber 44 into it.
  • the reduction fluid can not flow through the second pumping chamber bore 66, since this is closed by the rotary valve 46.
  • the reducing fluid flows through the first pump chamber bore 64 also released from the rotary valve 46 into the first intermediate chamber 48.
  • the flow through the first, upper non-return valve 52 in the upper housing part 34 is also not possible, since this is flowed in the reverse direction.
  • the reducing liquid passes through the first lower check valve 56 in the lower housing part 36 into the first connecting chamber 60 in the flow direction.
  • the reducing fluid finally flows in the direction of the dashed white arrow 82 in the here Not shown storage tank for the reducing fluid.
  • the pump unit 30 enables a complete emptying of the SCR system, in particular for the preparation for longer downtimes of the internal combustion engine. Any bursting damage due to the freezing at temperatures of -12 ° C or below reducing fluid can be avoided. Due to the integral design of pump and 4/2-valve unit, which together form the pump unit 30, simplify the assembly and maintenance, while reducing the probability of failure of the SCR system due to the smaller number of necessary connecting lines. In addition, due to the dispensable connection lines between the (diaphragm) pump and the 4/2-way valve, the space available for the SCR system is reduced, which is of particular importance in applications in the field of automotive engineering. In addition, results from no longer necessary connecting lines, fasteners, etc., a weight reduction.
  • valve unit by means of a pivotable rotary valve 46 allows rapid switching between the conveying operation and the remindsaug Lust the pump unit 30, the actuation of the rotary valve by means of an axial extension, not shown, by means of an actuator, such as an electromagnet, a compressed air or hydraulic cylinder, a motor eccentric drive or the like is actuated.
  • an actuator such as an electromagnet, a compressed air or hydraulic cylinder, a motor eccentric drive or the like is actuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Stand der TechnikState of the art

Bei Kraftfahrzeugen mit Brennkraftmaschinen, insbesondere mit Dieselmotoren, müssen aufgrund der zunehmend strengeren Abgasgrenzwerte unter anderem Stickoxide (NOx) im Abgasstrom reduziert werden. Ein bekanntes Verfahren, das in diesem Zusammenhang verbreitet zur Anwendung kommt, ist die katalytische Reduktion ("Selective Catalytic Reduction"), das heißt das so genannte SCR-Verfahren.
In einem speziellen SCR-Katalysator, der in das Abgasrohr der Brennkraftmaschine integriert ist, wird NOx mit Hilfe von NH3 in N2 und H20 umgewandelt, wobei das NH3 bevorzugt in Form einer wässrigen Harnstofflösung (s.g. "AdBlue®") dem SCR-Katalysator über einen Injektor zugeführt wird. Zur Harnstoffförderung werden vielfach elektrische Förderpumpen, wie zum Beispiel Membranpumpen, eingesetzt. Ein Hauptproblem der wässrigen Harnstofflösung ist, dass diese bei Temperaturen unterhalb von ca. -12 °C gefriert, was zu einer Volumenzunahme der Harnstoff-Wasserlösung führt. Dies kann zu frostbedingten Berstschäden am SCR-System führen. Um die notwendige Frostsicherheit bei Temperaturen unterhalb von -12 °C zu erreichen und eine Beschädigung des SCR-Systems durch die Volumenzunahme der Harnstoff-Wasserlösung zu verhindern, sind diese Systeme üblicherweise mit einem 4/2- Wegeventil ausgerüstet. Nach dem Abstellen des Fahrzeuges wird dieses bei laufender SCR-Pumpe betätigt, wodurch die sich im SCR-System befindende Harnstoff-Wasserlösung aus dem System zurück in den Vorratstank fördern lässt.
Bei vorbekannten SCR-Systemen für Kraftfahrzeuge mit Brennkraftmaschine sind die SCR-(Membran-)Pumpe und das 4/2-Wegeventil als zwei separate Bauteile ausgebildet, welche über ein aufwändiges Leitungssystem miteinander verbunden sind. Das Leitungssystem führt insbesondere zu einem erhöhten Montage- und Wartungsaufwand. Zugleich verringert sich aufgrund der zu koppelnden Einzelbauteile die Verfügbarkeit des ganzen SCR-Systems, wobei zugleich das Gesamtgewicht und der beanspruchte Einbauraum zunehmen. Das Dokument DE102009055375 offenbart eine Pumpeinheit nach dem Oberbegriff des Anspruchs 1.
In motor vehicles with internal combustion engines, in particular with diesel engines, nitrogen oxides (NOx) must be reduced in the exhaust gas flow due to increasingly stringent exhaust gas limit values, among other things. A well-known process, which is widely used in this context, is the catalytic reduction ("Selective Catalytic Reduction"), that is, the so-called SCR process.
In a special SCR catalytic converter, which is integrated into the exhaust pipe of the internal combustion engine, NOx is converted into N 2 and H 2 O with the aid of NH 3, the NH 3 preferably being in the form of an aqueous urea solution ("AdBlue®") via the SCR catalyst Injector is supplied. In many cases, electrical feed pumps, such as diaphragm pumps, are used to convey urea. A major problem of the aqueous urea solution is that it freezes at temperatures below about -12 ° C, resulting in an increase in volume of the urea-water solution. This can lead to frost-related burst damage to the SCR system. In order to achieve the necessary frost protection at temperatures below -12 ° C and to prevent damage to the SCR system by the increase in volume of the urea-water solution, these systems are usually equipped with a 4/2-way valve. After the vehicle has been switched off, it is actuated while the SCR pump is running, allowing the urea-water solution in the SCR system to be pumped out of the system back into the storage tank.
In prior art SCR systems for motor vehicles with internal combustion engine, the SCR (diaphragm) pump and the 4/2-way valve are formed as two separate components, which are connected to each other via a complex line system. The line system leads in particular to increased installation and maintenance costs. At the same time, the availability of the entire SCR system is reduced due to the individual components to be coupled, whereby at the same time the total weight and the claimed installation space increase. The document DE102009055375 discloses a pump unit according to the preamble of claim 1.

Offenbarung der ErfindungDisclosure of the invention

Es wird eine Pumpeinheit zum Fördern einer Reduktionsflüssigkeit, insbesondere zum Fördern einer Harnstoff-Wasserlösung zur Reduktion von Stickoxiden in einem Abgasstrom einer Brennkraftmaschine, mit einem Gehäusedeckel, einem Gehäuseoberteil und einem Gehäuseunterteil offenbart, wobei zwischen dem Gehäusedeckel und dem Gehäuseoberteil eine mittels einer Antriebseinheit betätigbare Membran aufgenommen ist, und im Gehäuseunterteil eine erste und eine zweite Anschlusskammer vorgesehen sind. Erfindungsgemäß ist die Förderrichtung mittels einer integrierten Ventileinheit, insbesondere mittels eines 4/2-Wegeventils, umkehrbar.
Infolge der unmittelbar in die Pumpeinheit integrierten Ventileinheit verringert sich die Anzahl der zu koppelnden Bauteile des SCR-Systems und die Ausfallsicherheit erhöht sich beträchtlich. Insbesondere entfallen die ansonsten zwischen der SCR-Pumpeinheit und einem separaten 4/2-Wegeventil notwendigen Leitungsverbindungen. Mittels der Ventileinheit lässt sich die Pumpeinheit auf einfache Weise vom normalen Förderbetrieb in den Rücksaugbetrieb nach dem Abstellen der Brennkraftmaschine umschalten, um Frostschäden innerhalb des SCR-Systems bei Temperaturen im Bereich von -12 °C oder darunter zu vermeiden. Die Pumpeinheit selbst kann beispielsweise als Membranpumpe ausgebildet sein. Bei der Brennkraftmaschine handelt es sich bevorzugt um einen Dieselmotor.
Eine Weiterbildung der Pumpeinheit sieht vor, dass eine Membrankammer von einer Pumpkammer durch die Membran separiert ist.
Infolge der Ausführung der Pumpeinheit als Membranpumpe ergibt sich insbesondere ein konstruktiv einfacher und zugleich betriebssicherer Aufbau der Pumpeinheit.
Nach Maßgabe einer weiteren vorteilhaften Ausgestaltung ist vorgesehen, dass die Ventileinheit unter anderem mit einem Drehschieber gebildet ist.
Hierdurch erreicht die Ventileinheit innerhalb der Pumpeinheit eine hohe Betriebssicherheit und es ist eine schnelle Umschaltung der Pumpeinheit zwischen Förder- und Rücksaugbetrieb möglich.
It is a pump unit for conveying a reducing fluid, in particular for conveying a urea-water solution for the reduction of nitrogen oxides in an exhaust stream of an internal combustion engine, disclosed with a housing cover, a housing top and a housing lower part, wherein between the housing cover and the housing upper part operable by means of a drive unit membrane is received, and in the lower housing part, a first and a second connection chamber are provided. According to the invention the conveying direction by means of an integrated valve unit, in particular by means of a 4/2-way valve, reversible.
As a result of the directly integrated into the pump unit valve unit, the number of components to be coupled to the SCR system and the reliability increases considerably. In particular, eliminates the otherwise necessary between the SCR pumping unit and a separate 4/2-way valve line connections. By means of the valve unit, the pump unit can be easily switched from the normal conveying operation in the Rücksaugbetrieb after stopping the engine to frost damage within the SCR system at temperatures in the range of -12 ° C or below. The pump unit itself can be designed, for example, as a diaphragm pump. The internal combustion engine is preferably a diesel engine.
A development of the pumping unit provides that a membrane chamber is separated from a pumping chamber by the membrane.
As a result of the design of the pump unit as a diaphragm pump results in particular a structurally simple and at the same time reliable construction of the pump unit.
In accordance with a further advantageous embodiment, it is provided that the valve unit is formed, inter alia, with a rotary valve.
As a result, the valve unit within the pump unit reaches a high level of operational safety and it is possible to quickly switch the pump unit between conveying and Rücksaugbetrieb.

Gemäß einer weiteren Ausführungsform der Erfindung ist der Drehschieber zwischen dem Gehäuseoberteil und dem Gehäuseunterteil verschwenkbar aufgenommen.
Die Lagerung des verschwenkbaren Drehschiebers kann beispielsweise mittels einer Kugel erfolgen, die unter leichtem Pressschluss in einer Kugelpfanne aufgenommen ist. Alternativ besteht die Möglichkeit, den verschwenkbaren Drehschieber als ein Elastomerbauteil auszubilden, in welches ein Metalleinlegeteil eingebettet ist. Dadurch besteht in vorteilhafter Weise die Möglichkeit, den Elastomer des verschwenkbaren Drehschiebers im Gehäuse zu verklemmen und somit eine Dichtwirkung zu erzielen. Die Schwenkbewegung erfolgt aufgrund der elastischen Verformbarkeit des Elastomers, so dass auf eine Anordnung Kugel/Kugelpfanne, wie vorstehend beschrieben, verzichtet werden könnte. Zum Verschwenken des Drehschiebers verfügt dieser über eine Verlängerung, welche zum Beispiel aus dem Gehäuseoberteil oder dem Gehäuseunterteil seitlich heraus geführt ist und die mittels eines Aktuators zum Wechsel zwischen der ersten und der zweiten Winkelstellung des Drehschiebers betätigbar ist. Anstelle eines Drehschiebers können andere Absperrorgane zur Realisation der Funktionsweise eines konventionellen 4/2-Wegeventils eingesetzt werden.
Bei einer weiteren Fortbildung der Pumpeinheit ist vorgesehen, in einer ersten Winkelstellung des Drehschiebers die Reduktionsflüssigkeit im Förderbetrieb von der ersten Anschlusskammer in die zweite Anschlusskammer förderbar ist.
Hierdurch kann im normalen Betrieb der Brennkraftmaschine das Reduktionsmittel mit Hilfe der Pumpeinheit aus einem Vorratstank bis zu einem Injektor im Bereich des SCR-Katalysators innerhalb des Abgasstrangs der Brennkraftmaschine gefördert werden.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass in einer zweiten Winkelstellung des Drehschiebers die Reduktionsflüssigkeit im Rücksaugbetrieb von der zweiten Anschlusskammer in die erste Anschlusskammer förderbar ist.
Hierdurch wird es möglich, nach längerfristigem Abstellen der Brennkraftmaschine durch Umkehren der Förderrichtung der Pumpeinheit die Reduktionsflüssigkeit bzw. die Harnstoff-Wasserlösung vollständig aus dem SCR-System abzusaugen, um eine Beschädigung desselben bei Temperaturen von -12 °C oder darunter zu verhindern. Gemäß der Erfindung sind im Gehäuseoberteil mindestens zwei Rückschlagventile und im Gehäuseunterteil mindestens zwei Rückschlagventile angeordnet, wobei die Rückschlagventile im Gehäuseoberteil entgegengesetzt wirkend zu den Rückschlagventilen im Gehäuseunterteil angeordnet sind.
Hierdurch wird der Pumpbetrieb und in Verbindung mit dem Drehschieber ein schneller Wechsel zwischen dem Förderbetrieb und dem Rücksaugbetrieb ermöglicht.
According to a further embodiment of the invention, the rotary valve is pivotally received between the upper housing part and the lower housing part.
The bearing of the pivotable rotary valve can be done for example by means of a ball which is received in a ball socket with slight press-fit. alternative it is possible to form the pivotable rotary valve as an elastomeric component, in which a metal insert part is embedded. As a result, there is advantageously the possibility to jam the elastomer of the pivotable rotary valve in the housing and thus to achieve a sealing effect. The pivoting movement is due to the elastic deformability of the elastomer, so that an arrangement ball / ball socket, as described above, could be dispensed with. For pivoting the rotary valve has this over an extension, which is guided out laterally, for example, from the upper housing part or the lower housing part and which is actuated by means of an actuator for changing between the first and the second angular position of the rotary valve. Instead of a rotary valve other shut-off devices can be used to realize the operation of a conventional 4/2-way valve.
In a further development of the pump unit is provided, in a first angular position of the rotary valve, the reducing liquid is conveyed in the conveying operation of the first connection chamber into the second connection chamber.
In this way, in the normal operation of the internal combustion engine, the reducing agent can be conveyed with the aid of the pumping unit from a storage tank to an injector in the region of the SCR catalytic converter within the exhaust gas line of the internal combustion engine.
According to a further embodiment, it is provided that, in a second angular position of the rotary valve, the reducing fluid can be conveyed from the second connecting chamber into the first connecting chamber in the suck-back operation.
This makes it possible, after long-term shutdown of the internal combustion engine by reversing the conveying direction of the pump unit, the reducing liquid or the urea-water solution completely sucked out of the SCR system to prevent damage thereof at temperatures of -12 ° C or below. According to the invention, at least two non-return valves are arranged in the upper housing part and at least two check valves in the lower housing part, wherein the non-return valves in the upper housing part are arranged opposite to the check valves in the lower housing part.
As a result, the pumping operation and in conjunction with the rotary valve a quick change between the delivery mode and the Rücksaugbetrieb is possible.

Bei einer Ausgestaltung verschließt der Drehschieber in der ersten Winkelstellung eine erste Pumpkammerbohrung sowie eine zweite Anschlusskammerbohrung und gibt eine erste Anschlusskammerbohrung sowie eine zweite Pumpkammerbohrung frei.
Hierdurch wird der normale Förderbetrieb der Pumpeinheit in der ersten Winkelstellung des Drehschiebers während des Betriebs der Brennkraftmaschine eingestellt.
Entsprechend gibt der Drehschieber in der zweiten Winkelstellung die erste Pumpkammerbohrung sowie die zweite Anschlusskammerbohrung frei und verschließt die erste Anschlusskammerbohrung sowie die zweite Pumpkammerbohrung.
Hierdurch wird der Rücksaugbetrieb der Pumpeinheit in der zweiten Winkelstellung des Drehschiebers im Fall von längeren Stillstandsphasen der Brennkraftmaschine bewirkt.
In one embodiment, the rotary valve in the first angular position closes a first pumping chamber bore and a second connection chamber bore and releases a first connection chamber bore and a second pumping chamber bore.
As a result, the normal conveying operation of the pump unit is set in the first angular position of the rotary valve during operation of the internal combustion engine.
Accordingly, in the second angular position, the rotary valve releases the first pumping chamber bore and the second connecting chamber bore and closes the first connecting chamber bore and the second pumping chamber bore.
As a result, the Rücksaugbetrieb the pump unit is effected in the second angular position of the rotary valve in the case of longer periods of stoppage of the internal combustion engine.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Anhand der Zeichnung soll die Erfindung nachstehend eingehender beschrieben werden.With reference to the drawing, the invention will be described below in more detail.

Es zeigen:

Figur 1
eine Prinzipskizze eines SCR-Systems mit einer erfindungsgemäßen Pumpeinheit; und
Figur 2
eine vereinfachte Querschnittsdarstellung einer Pumpeinheit mit integrierter Ventileinheit;
Show it:
FIG. 1
a schematic diagram of an SCR system with a pump unit according to the invention; and
FIG. 2
a simplified cross-sectional view of a pump unit with integrated valve unit;

Ausführungsformenembodiments

Die Figur 1 zeigt den prinzipiellen Aufbau eines SCR-Systems mit einer erfindungsgemäßen Pumpeinheit.The FIG. 1 shows the basic structure of an SCR system with a pump unit according to the invention.

Ein SCR-System 10 zur katalytischen Reduktion von NOx in einem Abgasstrom einer nicht dargestellten Brennkraftmaschine, insbesondere eines Dieselmotors, umfasst unter anderem einen Vorratstank 12 für die nicht bezeichnete Reduktionsflüssigkeit, insbesondere eine Harnstoff-Wasserlösung (s.g. "AdBlue®"), eine erfindungsgemäße Pumpeinheit 14 sowie einen Injektor 16 zum Eindüsen der Reduktionsflüssigkeit in den gleichfalls nicht dargestellten Abgasstrang der Brennkraftmaschine. Die Pumpeinheit 14 umfasst unter anderem beispielsweise eine Membranpumpe 18, eine Antriebseinheit 20 für die Membranpumpe sowie eine erfindungsgemäß integrierte Ventileinheit 22, die hier exemplarisch als ein 4/2-Wegeventil ausgeführt ist. Die Antriebseinheit 20 kann beispielsweise mit einem Elektromotor, mit einem periodisch von einem nicht dargestellten Steuergerät angesteuerten Elektromagneten oder dergleichen realisiert sein.An SCR system 10 for the catalytic reduction of NOx in an exhaust gas stream of an internal combustion engine, not shown, in particular a diesel engine, inter alia, a storage tank 12 for the unnamed reducing liquid, in particular a urea-water solution (sg "AdBlue®"), a pump unit according to the invention 14 and an injector 16 for injecting the reducing liquid in the likewise not shown exhaust gas line of the internal combustion engine. The pump unit 14 includes, for example, a diaphragm pump 18, a drive unit 20 for the Diaphragm pump and an inventively integrated valve unit 22, which is exemplified here as a 4/2-way valve. The drive unit 20 may be realized, for example, with an electric motor, with a periodically controlled by a control unit, not shown, electromagnet or the like.

In dem in der Figur 1 illustrierten Zustand befindet sich die Pumpeinheit 14 im so genannten "Förderbetrieb", das heißt die Reduktionsflüssigkeit wird aus dem Vorratstank 12 angesaugt und bis in den Injektor 16 gefördert. Durch horizontales Verschieben der Ventileinheit 22 gegen die Wirkung der nicht bezeichneten Feder in Richtung des weißen Pfeils, kann die Pumpeinheit 14 vom Förderbetrieb in einen so genannten "Rücksaugbetrieb" umgeschaltet werden. Im Rücksaugbetrieb kehrt sich die Förderrichtung der Pumpeinheit 14 um und das Reduktionsmittel wird - wie durch die kleinen gestrichelten schwarzen Pfeile in der Ventileinheit 22 angedeutet - ausgehend vom Injektor 16, über die Membranpumpe 18 bis in den Vorratstank 12 zurück gefördert.In the in the FIG. 1 illustrated state, the pump unit 14 is in the so-called "delivery mode", that is, the reducing liquid is sucked from the storage tank 12 and conveyed into the injector 16. By horizontally displacing the valve unit 22 against the action of the unsigned spring in the direction of the white arrow, the pumping unit 14 can be switched from the conveying operation into a so-called "suck-back operation". In Rücksaugbetrieb the conveying direction of the pump unit 14 is reversed and the reducing agent is - as indicated by the small dashed black arrows in the valve unit 22 - starting from the injector 16, via the diaphragm pump 18 to the storage tank 12 back.

Die Figur 2 illustriert in einer schematischen Querschnittsdarstellung ein mögliches Ausführungsbeispiel einer erfindungsgemäßen Pumpeinheit.
Die Pumpeinheit 30 umfasst unter anderem einen Gehäusedeckel 32, ein Gehäuseoberteil 34 sowie ein Gehäuseunterteil 36, die miteinander druckdicht verbunden sind. Zwischen dem Gehäusedeckel 32 und dem Gehäuseoberteil 34 ist eine elastische Membran 38 eingespannt. Mittels einer nicht näher dargestellten Antriebseinheit 40 lässt sich die Membran 38 vertikal oszillierend in Bewegung versetzen. Durch die Membran 38 ist eine Membrankammer 42 von einer Pumpkammer 44 separiert. Bei der Antriebseinheit 40 kann es sich beispielsweise um einen periodisch bestromten Elektromagneten oder einen von einem Elektromotor angetriebenen Exzenter handeln. Infolge der periodisch-oszillierenden Auf- und Abwärtsbewegung der Membran 38 verringert und vergrößert sich ein nicht bezeichnetes Volumen der Pumpkammer 44, wodurch die gewünschte Pumpwirkung eintritt. Zwischen dem Gehäuseoberteil 34 und dem Gehäuseunterteil 36 ist ein Drehschieber 46 verschwenkbar aufgenommen. Die Lagerung des Drehschiebers 46 kann beispielsweise mittels einer nicht bezeichneten Kugel, die in einer ebenfalls nicht bezeichneten Kalotte unter bevorzugt leichtem Pressschluss aufgenommen ist, realisiert sein. Daneben besteht die Möglichkeit, den verschwenkbaren Drehschieber 46 als ein Elastomerteil auszubilden, welches mit einem Metalleinlegeteil versehen ist. Dadurch besteht die Möglichkeit, den Elastomer des Drehschiebers 46 im Gehäuse 32, 34, 36 zu verklemmen und somit eine Dichtwirkung zu erzielen. Eine Verschwenkbewegung ist durch die elastischen Eigenschaften des Elastomermaterials in dieser Ausführungsmöglichkeit gegeben.
The FIG. 2 illustrates in a schematic cross-sectional representation of a possible embodiment of a pump unit according to the invention.
The pump unit 30 includes, inter alia, a housing cover 32, an upper housing part 34 and a lower housing part 36, which are connected to each other pressure-tight. Between the housing cover 32 and the housing upper part 34, an elastic membrane 38 is clamped. By means of a drive unit 40, not shown, the membrane 38 can move vertically oscillating in motion. Through the membrane 38, a diaphragm chamber 42 is separated from a pumping chamber 44. The drive unit 40 may be, for example, a periodically energized electromagnet or an eccentric driven by an electric motor. As a result of the periodically oscillating up and down movement of the diaphragm 38, an unnamed volume of the pumping chamber 44 decreases and increases, which results in the desired pumping action. Between the upper housing part 34 and the lower housing part 36, a rotary valve 46 is pivotally received. The bearing of the rotary valve 46, for example, by means of a non-designated ball, which is received in a likewise not designated calotte under preferably slight press-fit, be realized. In addition, it is possible to form the pivotable rotary valve 46 as an elastomeric part, which is provided with a metal insert. This makes it possible to clamp the elastomer of the rotary valve 46 in the housing 32, 34, 36 and thus a To achieve sealing effect. A pivoting movement is given by the elastic properties of the elastomeric material in this embodiment.

Der Drehschieber 46 befindet sich in dem in der Figur 1 gezeigten Zustand der Pumpeinheit 30 in einer ersten Winkelstellung, die den normalen Förderbetrieb ermöglicht, bei dem die Reduktionsflüssigkeit während des Betriebs der Brennkraftmaschine aus dem Vorratstank angesaugt und mittels der Pumpeinheit 30 zum Injektor im Bereich des Abgasstrangs bzw. des SCR-Katalysators gefördert wird. Durch das Gehäuseoberteil 34, das Gehäuseunterteil 36 und den Drehschieber 46 werden eine erste und eine zweite Zwischenkammer 48, 50 begrenzt, die voneinander druckdicht getrennt sind. In einer zweiten, mit einer gestrichelten Linie angedeuteten Winkelstellung des Drehschiebers 46 befindet sich die Pumpeinheit 30 im Rücksaugbetrieb. Im Rücksaugbetrieb kehrt sich die Förderrichtung der Pumpeinheit 30 um, so dass die Reduktionsflüssigkeit ausgehend vom Injektor über die Pumpeinheit 30 zurück bis in den Vorratstank gefördert werden kann. Hierdurch wird bei längeren Stillstandszeiten der Brennkraftmaschine eine Beschädigung des SCR-Systems durch das Gefrieren der Reduktionsflüssigkeit bei Temperaturen im Bereich von -12 °C oder darunter vermieden. Das Umschalten zwischen dem Förderbetrieb und dem Rücksaugbetrieb erfolgt durch das Verschwenken des Drehschiebers 46 in Richtung des nicht bezeichneten schwarzen, bogenförmigen Doppelpfeils bzw. durch einen Wechsel zwischen der ersten und zweiten Winkelstellung. Hierbei liegt ein nicht bezeichneter Schwenkwinkel α des Drehschiebers 46 im Bereich von ± 10°.
Der Drehschieber 46 verfügt über eine nicht dargestellte axiale Verlängerung, die aus dem Gehäuseoberteil 34 bzw. dem Gehäuseunterteil 36 herausragt, so dass auf einfache Art und Weise zwischen der ersten und zweiten Winkelstellung des Drehschiebers 46, zum Beispiel mittels eines Aktuators, und damit zwischen dem Förder- und Rücksaugbetrieb der Pumpeinheit umgeschaltet werden kann. Im Gehäuseoberteil 34 befinden sich ferner ein erstes oberes und ein zweites oberes Rückschlagventil 52, 54 in nicht bezeichneten Bohrungen. Korrespondierend hierzu sind im unteren Gehäuseteil 36 ein erstes und zweites, unteres Rückschlagventil 56, 58 in gleichfalls nicht bezeichneten Bohrungen aufgenommen. Im gezeigten Ausführungsbeispiel der Figur 2 wirken die Rückschlagventile 52, 54 sowie 56, 58 jeweils entgegengesetzt. Dies bedeutet, dass die beiden unteren Rückschlagventile 56, 58 im Gehäuseunterteil 36 jeweils eine von unten nach oben gerichtete Strömung der Reduktionsflüssigkeit sperren, während die beiden oberen Rückschlagventile 52, 54 in der entgegengesetzten Strömungsrichtung blockierend wirken. Im Gehäuseunterteil 36 befinden sich darüber hinaus eine erste und eine zweite Anschlusskammer 60, 62, die jeweils in Abhängigkeit vom aktuellen Betriebszustand (Winkelstellung des Drehschiebers) der Pumpeinheit 30 sowohl für die Zuleitung als auch für die Ableitung der Reduktionsflüssigkeit dienen können (bidirektionale Anschlüsse).
In das Gehäuseoberteil 34 sind eine erste Pumpkammerbohrung 64 sowie eine zweite Pumpkammerbohrung 66 eingebracht, während im Gehäuseunterteil 36 eine erste Anschlusskammerbohrung 68 und eine zweite Anschlusskammerbohrung 70 vorgesehen sind. Darüber hinaus verfügt das Gehäuseoberteil 34 im Bereich des Drehschiebers 46 über eine näherungsweise kegelstumpfförmige Dichtfläche 72, während das Gehäuseunterteil 36 eine hierzu komplementär ausgestaltete Dichtfläche 74 aufweist. Die Dichtflächen 72, 74 bilden im Zusammenwirken mit dem Drehschieber 46 einen druckdichten Abschluss des Gehäuseoberteils 34 bzw. des Gehäuseunterteils 36. Beim Verschwenken des Drehschiebers 46 werden jeweils über Kreuz die erste Pumpkammerbohrung 64 und die zweite Anschlusskammerbohrung 70 sowie die zweite Pumpkammerbohrung 66 und die erste Anschlussbohrung 68 druckdicht verschlossen.
Insbesondere die Membran 38, die Membrankammer 42, die Pumpkammer 44 sowie die beiden oberen Rückschlagventile 52, 54 bilden zusammen mit dem Gehäusedeckel 32, dem Gehäuseoberteil 34 und dem Gehäuseunterteil 36 eine Membranpumpe mit zunächst fester Förderrichtung. Unter anderem der Drehschieber 46, die Dichtflächen 72,74, die beiden unteren Rückschlagventile 56, 58 sowie die Pumpkammer- und Anschlusskammerbohrungen 64 bis 70 stellen die Ventileinheit 22 bzw. das 4/2-Wegeventil dar, mittels der die Funktionalität der Membranpumpe um die Umschaltmöglichkeit der Förderrichtung erweitert wird.
The rotary valve 46 is located in the in the FIG. 1 shown state of the pump unit 30 in a first angular position, which allows the normal production operation, in which the reducing liquid is sucked during operation of the internal combustion engine from the storage tank and conveyed by the pump unit 30 to the injector in the region of the exhaust line and the SCR catalyst. Through the upper housing part 34, the lower housing part 36 and the rotary valve 46, a first and a second intermediate chamber 48, 50 are limited, which are separated from each other pressure-tight. In a second, indicated by a dashed line angle position of the rotary valve 46, the pump unit 30 is in the Rücksaugbetrieb. In the suck-back operation, the conveying direction of the pump unit 30 is reversed, so that the reducing liquid, starting from the injector via the pump unit 30, can be conveyed back into the storage tank. This avoids damage to the SCR system due to the freezing of the reducing fluid at temperatures in the range of -12 ° C. or below during prolonged engine downtimes. The switching between the conveying operation and the suck-back operation takes place by the pivoting of the rotary valve 46 in the direction of the non-designated black, arcuate double arrow or by a change between the first and second angular position. Here, an unspecified pivot angle α of the rotary valve 46 is in the range of ± 10 °.
The rotary valve 46 has an axial extension, not shown, which protrudes from the upper housing part 34 and the lower housing part 36 so that in a simple manner between the first and second angular position of the rotary valve 46, for example by means of an actuator, and thus between the Conveying and Rücksaugbetrieb the pump unit can be switched. In the upper housing part 34 are also a first upper and a second upper check valve 52, 54 in not designated holes. Corresponding to this, in the lower housing part 36, a first and second, lower check valve 56, 58 added in likewise not designated holes. In the illustrated embodiment of the FIG. 2 act the check valves 52, 54 and 56, 58 respectively opposite. This means that the two lower check valves 56, 58 in the lower housing part 36 each block a bottom-up flow of the reducing liquid, while the two upper check valves 52, 54 act blocking in the opposite flow direction. In the lower housing part 36 are also a first and a second connection chamber 60, 62, each in Depending on the current operating state (angular position of the rotary valve) of the pump unit 30 can serve both for the supply and for the derivation of the reducing liquid (bidirectional connections).
In the upper housing part 34, a first pumping chamber bore 64 and a second pumping chamber bore 66 are introduced, while in the lower housing part 36, a first connection chamber bore 68 and a second connection chamber bore 70 are provided. In addition, the upper housing part 34 has an approximately frustoconical sealing surface 72 in the area of the rotary valve 46, while the lower housing part 36 has a sealing surface 74 designed to be complementary thereto. When pivoting the rotary valve 46, the first pumping chamber bore 64 and the second connecting chamber bore 70 as well as the second pumping chamber bore 66 and the first Connection bore 68 closed pressure-tight.
In particular, the membrane 38, the diaphragm chamber 42, the pumping chamber 44 and the two upper check valves 52, 54 together with the housing cover 32, the upper housing part 34 and the lower housing part 36, a diaphragm pump initially fixed conveying direction. Among other things, the rotary valve 46, the sealing surfaces 72,74, the two lower check valves 56, 58 and the pumping chamber and connection chamber bores 64 to 70 represent the valve unit 22 and the 4/2-way valve, by means of the functionality of the diaphragm pump to the Switching possibility of conveying direction is extended.

Im weiteren Fortgang der Beschreibung soll zunächst die Funktionsweise der Pumpeinheit 30 im Förderbetrieb, wie in der Figur 2 dargestellt, näher erläutert werden.
In der gezeigten Winkelstellung, das heißt im Förderbetrieb der Pumpeinheit, verschließt der Drehschieber 46 die erste Pumpkammerbohrung 64 und die zweite
Anschlusskammerbohrung 70, während die erste Anschlusskammerbohrung 68 und die zweite Pumpkammerbohrung 66 vom Drehschieber freigegeben sind. Der druckdichte Abschluss der Bohrungen erfolgt durch entsprechend bearbeitete, nicht bezeichnete Oberseiten und Unterseiten des Drehschiebers 46 im Zusammenwirken mit den beiden Dichtflächen 72, 74. Ein druckdichter Abschluss kann auch mit Hilfe von elastischen am Drehschieber 46 angebrachten Konturen erreicht werden.
In the further progress of the description, the operation of the pump unit 30 in the conveying operation, as in the FIG. 2 shown, explained in more detail.
In the angular position shown, that is in the conveying operation of the pump unit, the rotary valve 46 closes the first pumping chamber bore 64 and the second
Terminal chamber bore 70, while the first connection chamber bore 68 and the second pumping chamber bore 66 are released from the rotary valve. The pressure-tight completion of the holes is carried out by appropriately machined, not designated upper sides and lower sides of the rotary valve 46 in cooperation with the two sealing surfaces 72, 74. A pressure-tight termination can also be achieved by means of elastic attached to the rotary valve 46 contours.

Die Reduktionsflüssigkeit wird infolge der oszillierenden Auf- und Abbewegung der Membran 38 zunächst in Richtung eines weißen Pfeils 76 in die erste Anschlusskammer 60 eingesaugt, gelangt von dort durch die offene erste Anschlusskammerbohrung 68 und, da das Rückschlagventil 56 in dieser Fließrichtung sperrt, bis in die erste Zwischenkammer 48. Von dort aus gelangt die Reduktionsflüssigkeit durch das in dieser Fließrichtung durchlässige erste, obere Rückschlagventil 52 bis in die Pumpkammer 44. Durch die erste Pumpkammerbohrung 64 kann die Reduktionsflüssigkeit nicht fließen, da diese vom Drehschieber 46 in der gezeigten ersten Winkelstellung druckdicht verschlossen ist. Ausgehend von der Pumpkammer 44 wird die Reduktionsflüssigkeit aufgrund der pulsierenden Wirkung der Membran durch die zweite Pumpkammerbohrung 66, die in dieser Winkelstellung vom Drehschieber 46 freigegeben ist, bis in die zweite Zwischenkammer 50 hinein gefördert. Die Reduktionsflüssigkeit kann hierbei nicht über das in dieser Strömungsrichtung sperrende zweite, obere Rückschlagventil 54 im Gehäuseoberteil 34 fließen. Von der zweiten Zwischenkammer 50 aus gelangt die Reduktionsflüssigkeit über das in dieser Richtung durchgängige zweite Rückschlagventil 58 im Gehäuseunterteil 36 bis in die zweite Anschlusskammer 62 hinein, von wo aus die Reduktionsflüssigkeit in Richtung des weißen Pfeils 78 zu dem hier nicht eingezeichneten Injektor des SCR-Systems geführt wird.The reducing liquid is sucked as a result of the oscillating up and down movement of the diaphragm 38 in the direction of a white arrow 76 in the first connection chamber 60, passes from there through the open first connection chamber bore 68 and, since the check valve 56 blocks in this flow direction, into the From there, the reducing fluid passes through the first, upper non-return valve 52 which is permeable in this flow direction into the pumping chamber 44. The reducing fluid can not flow through the first pumping chamber bore 64, since these are pressure-tightly sealed by the rotary valve 46 in the first angular position shown is. Starting from the pumping chamber 44, the reducing fluid is due to the pulsating effect of the membrane through the second pumping chamber bore 66, which is released in this angular position of the rotary valve 46, promoted to the second intermediate chamber 50 inside. In this case, the reducing fluid can not flow via the second, upper non-return valve 54 in the upper housing part 34, which closes in this flow direction. From the second intermediate chamber 50, the reducing fluid passes via the second non-return valve 58 in the housing lower part 36 into the second connecting chamber 62, from where the reducing fluid in the direction of the white arrow 78 to the injector of the SCR system not shown here to be led.

Wird der Drehschieber 46 entgegen des Uhrzeigersinns in die mit einer gestrichelten Linie angedeutete zweite Winkelstellung verschwenkt, kehrt sich die Förderrichtung der Pumpeinheit 30 um, so dass die Reduktionsflüssigkeit vollständig aus dem SCR-System abgesaugt werden kann.
In dieser zweiten Winkelstellung sind die erste Anschlusskammerbohrung 68 und die zweite Pumpkammerbohrung 66 durch den Drehschieber 46 im Zusammenwirken mit den Dichtflächen 72, 74 druckdicht verschlossen und die Pumpeinheit 30 ist im Rücksaugbetrieb. Infolge der pulsierenden Auf- und Abwärtsbewegung der elastischen Membran 38 wird die Reduktionsflüssigkeit ausgehend vom hier nicht eingezeichneten Injektor in Richtung eines gestrichelten Pfeils 80 nunmehr in die zweite Anschlusskammer 62 eingesaugt. Von dort aus gelangt die Reduktionsflüssigkeit durch die zweite, vom Drehschieber 46 freigegebene Anschlusskammerbohrung 70 in die Zwischenkammer 50. Die Reduktionsflüssigkeit kann nicht durch das zweite, untere Rückschlagventil 58 im Gehäuseunterteil 36 strömen, da dieses von der Reduktionsflüssigkeit in Sperrrichtung beaufschlagt wird. Ausgehend von der zweiten Zwischenkammer 50 strömt die Reduktionsflüssigkeit durch das in dieser Fließrichtung öffnende zweite obere Rückschlagventil 54 im Gehäuseoberteil 34 bis in die Pumpkammer 44 hinein. Die Reduktionsflüssigkeit kann die zweite Pumpkammerbohrung 66 nicht durchfließen, da diese vom Drehschieber 46 verschlossen ist. Von der Pumpkammer 44 fließt die Reduktionsflüssigkeit durch die vom Drehschieber 46 ebenfalls freigegebene erste Pumpkammerbohrung 64 bis in die erste Zwischenkammer 48. Das Durchströmen des ersten, oberen Rückschlagventils 52 im Gehäuseoberteil 34 ist gleichfalls nicht möglich, da dieses in Sperrrichtung angeströmt wird. Ausgehend von der ersten Zwischenkammer 48 gelangt die Reduktionsflüssigkeit durch das in dieser Fließrichtung durchgängige erste untere Rückschlagventil 56 im Gehäuseunterteil 36 bis in die erste Anschlusskammer 60. Von der ersten Anschlusskammer 60 aus strömt die Reduktionsflüssigkeit schließlich weiter in Richtung des gestrichelten weißen Pfeils 82 in den hier nicht dargestellten Vorratstank für die Reduktionsflüssigkeit.
If the rotary valve 46 is pivoted counterclockwise in the direction indicated by a dashed line second angular position, the conveying direction of the pump unit 30 is reversed, so that the reducing liquid can be completely sucked out of the SCR system.
In this second angular position, the first connection chamber bore 68 and the second pumping chamber bore 66 are pressure-tightly sealed by the rotary valve 46 in cooperation with the sealing surfaces 72, 74, and the pumping unit 30 is in the suck-back mode. As a result of the pulsating upward and downward movement of the elastic membrane 38, the reducing liquid, starting from the injector not shown here in the direction of a dashed arrow 80, is now sucked into the second connecting chamber 62. From there, the reducing liquid passes through the second, released by the rotary valve 46 connection chamber bore 70 into the intermediate chamber 50. The reducing liquid can not flow through the second, lower check valve 58 in the lower housing part 36, since this is acted upon by the reducing liquid in the reverse direction. Starting from the second intermediate chamber 50, the reducing liquid flows through the opening in this flow direction second upper check valve 54 in the upper housing part 34 into the Pumping chamber 44 into it. The reduction fluid can not flow through the second pumping chamber bore 66, since this is closed by the rotary valve 46. From the pumping chamber 44, the reducing fluid flows through the first pump chamber bore 64 also released from the rotary valve 46 into the first intermediate chamber 48. The flow through the first, upper non-return valve 52 in the upper housing part 34 is also not possible, since this is flowed in the reverse direction. Starting from the first intermediate chamber 48, the reducing liquid passes through the first lower check valve 56 in the lower housing part 36 into the first connecting chamber 60 in the flow direction. From the first connecting chamber 60, the reducing fluid finally flows in the direction of the dashed white arrow 82 in the here Not shown storage tank for the reducing fluid.

Die erfindungsgemäße Pumpeinheit 30 ermöglicht eine vollständige Restentleerung des SCR-Systems, insbesondere zur Vorbereitung auf längere Stillstandszeiten der Brennkraftmaschine. Etwaige Berstschäden infolge der bei Temperaturen von -12 °C oder darunter gefrierenden Reduktionsflüssigkeit werden vermieden. Aufgrund der integralen Ausbildung von Pumpe und 4/2-Ventileinheit, die zusammen die Pumpeinheit 30 bilden, vereinfachen sich die Montage sowie die Wartung, wobei sich zugleich die Ausfallwahrscheinlichkeit des SCR-Systems aufgrund der geringeren Anzahl der notwendigen Verbindungsleitungen reduziert. Darüber hinaus verringert sich aufgrund der entbehrlichen Verbindungsleitungen zwischen der (Membran-)Pumpe und dem 4/2-Wegeventil der vorzuhaltende Einbauraum für das SCR-System, was insbesondere bei Anwendungen im Bereich der Kraftfahrzeugtechnik von herausgehobener Bedeutung ist. Zusätzlich ergibt sich durch nicht mehr notwendige Verbindungsleitungen, Befestigungsmittel etc. eine Gewichtsreduktion.
Hierbei ermöglicht die Ausgestaltung der Ventileinheit mittels eines schwenkbaren Drehschiebers 46 die schnelle Umschaltung zwischen dem Förderbetrieb und dem Rücksaugbetrieb der Pumpeinheit 30, wobei die Betätigung des Drehschiebers mittels einer nicht dargestellten axialen Verlängerung erfolgt, die mittels eines Aktuators, wie zum Beispiel eines Elektromagneten, eines Druckluft- oder Hydraulikzylinders, eines motorischen Exzenterantriebs oder dergleichen betätigt wird.
The pump unit 30 according to the invention enables a complete emptying of the SCR system, in particular for the preparation for longer downtimes of the internal combustion engine. Any bursting damage due to the freezing at temperatures of -12 ° C or below reducing fluid can be avoided. Due to the integral design of pump and 4/2-valve unit, which together form the pump unit 30, simplify the assembly and maintenance, while reducing the probability of failure of the SCR system due to the smaller number of necessary connecting lines. In addition, due to the dispensable connection lines between the (diaphragm) pump and the 4/2-way valve, the space available for the SCR system is reduced, which is of particular importance in applications in the field of automotive engineering. In addition, results from no longer necessary connecting lines, fasteners, etc., a weight reduction.
In this case, the design of the valve unit by means of a pivotable rotary valve 46 allows rapid switching between the conveying operation and the Rücksaugbetrieb the pump unit 30, the actuation of the rotary valve by means of an axial extension, not shown, by means of an actuator, such as an electromagnet, a compressed air or hydraulic cylinder, a motor eccentric drive or the like is actuated.

Claims (8)

  1. Pump unit (14, 30) for conveying a reduction liquid, in particular for conveying a urea-water solution for the reduction of nitrogen oxides in an exhaust-gas flow of an internal combustion engine, having a housing cover (32), having a housing upper part (34) and having a housing lower part (36), wherein, between the housing cover (32) and the housing upper part (34), there is held a diaphragm (38) which can be actuated by means of a drive unit (40), and a first and a second connection chamber (60, 62) are provided in the housing lower part (36), wherein the conveying direction is reversible by means of an integrated valve unit (22), in particular by means of a 4/2-way valve, characterized in that at least two check valves (52, 54) are arranged in the housing upper part (34) and at least two check valves (56, 58) are arranged in the housing lower part (36), wherein the check valves (52, 54) in the housing upper part (34) are arranged so as to act oppositely to the check valves (56, 58) in the housing lower part (36).
  2. Pump unit (14, 30) according to Claim 1, characterized in that a diaphragm chamber (42) is separated from a pump chamber (44) by the diaphragm (38) .
  3. Pump unit (14, 30) according to Claim 1 or 2, characterized in that the valve unit (22) is formed inter alia with a rotary slide (46).
  4. Pump unit (14, 30) according to one of Claims 1 to 3, characterized in that the rotary slide (46) is held pivotably between the housing upper part (34) and the housing lower part (36).
  5. Pump unit (14, 30) according to one of Claims 1 to 4, characterized in that, in a first angular position of the rotary slide (46), the reduction liquid can, during conveying operation, be conveyed from the first connection chamber (60) into the second connection chamber (62).
  6. Pump unit (14, 30) according to one of Claims 1 to 4, characterized in that, in a second angular position of the rotary slide (46), the reduction liquid can, during back-suction operation, be conveyed from the second connection chamber (62) into the first connection chamber (60).
  7. Pump unit (14, 30) according to one of Claims 1 to 6, characterized in that, in the first angular position, the rotary slide (46) closes off a first pump chamber bore (64) and a second connection chamber bore (70) and opens up a first connection chamber bore (68) and a second pump chamber bore (66).
  8. Pump unit according to one of Claims 1 to 6, characterized in that, in the second angular position, the rotary slide (46) opens up the first pump chamber bore (64) and the second connection chamber bore (70) and closes off the first connection chamber bore (68) and the second pump chamber bore (66).
EP12809164.2A 2011-12-15 2012-12-12 Pumping unit Active EP2791509B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011088679A DE102011088679A1 (en) 2011-12-15 2011-12-15 pump unit
PCT/EP2012/075170 WO2013087668A1 (en) 2011-12-15 2012-12-12 Pumping unit

Publications (2)

Publication Number Publication Date
EP2791509A1 EP2791509A1 (en) 2014-10-22
EP2791509B1 true EP2791509B1 (en) 2018-02-21

Family

ID=47471730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12809164.2A Active EP2791509B1 (en) 2011-12-15 2012-12-12 Pumping unit

Country Status (3)

Country Link
EP (1) EP2791509B1 (en)
DE (1) DE102011088679A1 (en)
WO (1) WO2013087668A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218026A1 (en) 2018-10-22 2020-04-23 Robert Bosch Gmbh Reversing valve for changing the flow direction of a fluid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20116531U1 (en) * 2001-10-08 2002-02-28 Seybert & Rahier GmbH + Co Betriebs-KG, 34376 Immenhausen Oscillating displacement machine
DE102007057446A1 (en) * 2007-11-29 2009-06-04 Robert Bosch Gmbh Fluid delivery device and valve device and method for operating a fluid delivery device
EP2194270B1 (en) * 2008-12-05 2013-06-12 ebm-papst St. Georgen GmbH & Co. KG Dosing pump
DE102009055375A1 (en) * 2009-12-29 2011-06-30 Robert Bosch GmbH, 70469 Diaphragm pump for use in fluid conveyor system for conveying and returning aqueous urea solutions to/from catalytic converter of motor vehicle, has bodies pushed toward seats, respectively for conveying fluid in returning direction

Also Published As

Publication number Publication date
EP2791509A1 (en) 2014-10-22
DE102011088679A1 (en) 2013-06-20
WO2013087668A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
EP2748439B1 (en) Metering system for a liquid reducing agent
EP2093397B1 (en) Metering system with improved icing protection
EP2157295B1 (en) Metering system for a fluid medium, in particular urea-water solution
EP2661545B1 (en) Delivery device for providing an exhaust gas purification system of an internal combustion engine with a reducing agent and corresponding method
EP2505804B1 (en) Metering system for a fluid medium, in particular urea-water solution
DE102016218497A1 (en) Reductant supply system for exhaust aftertreatment
EP2729674B1 (en) Dosing system and 3/2 directional valve for a dosing system
EP2791509B1 (en) Pumping unit
DE102012207181A1 (en) Diaphragm pump for use as metering device, for conveying e.g. aqueous urea water solution, for exhaust gas after-treatment device in motor car, has working piston whose end is connected with membrane based on deformation
DE102009055375A1 (en) Diaphragm pump for use in fluid conveyor system for conveying and returning aqueous urea solutions to/from catalytic converter of motor vehicle, has bodies pushed toward seats, respectively for conveying fluid in returning direction
EP2864602B1 (en) Metering system for introducing a reducing agent into an exhaust conduit of an internal combustion engine
WO2012019879A1 (en) Injection device for introducing a urea solution into the exhaust tract of an internal combustion engine
DE102010039103A1 (en) Metering system for metering aqueous urea solution in exhaust line of exhaust gas after-treatment system of diesel engine for motor vehicle, has valve assembly provided with 3/2-way valve, shuttle valve or two controllable check valves
DE102012211112A1 (en) Check valve for exhaust aftertreatment system of internal combustion engine, has pressure-controlled shuttle valve that actuates two-two-way valve and comprising two valve seats for closing element
EP2582939A1 (en) Injection and metering device
DE102012221492B4 (en) Diaphragm pump with eccentric drive and integrated shut-off valve
EP3631179B1 (en) Fluid valve
DE102013223908A1 (en) diaphragm pump
DE102016102995A1 (en) peristaltic pump
DE102016214136A1 (en) Reducing agent pump
EP1348865A2 (en) High pressure fuel pump for a fuel system of an internal combustion engine
DE102019206291A1 (en) Fluid delivery device
DE102009021815B4 (en) feed pump
DE102014211218A1 (en) pumping device
DE102017210228A1 (en) Delivery module and injection system for exhaust gas reduction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012220

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 972041

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012220

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 972041

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121212

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 12