EP2790059B1 - Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound - Google Patents

Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound Download PDF

Info

Publication number
EP2790059B1
EP2790059B1 EP14000813.7A EP14000813A EP2790059B1 EP 2790059 B1 EP2790059 B1 EP 2790059B1 EP 14000813 A EP14000813 A EP 14000813A EP 2790059 B1 EP2790059 B1 EP 2790059B1
Authority
EP
European Patent Office
Prior art keywords
group
compound
photosensitive member
electrophotographic photosensitive
reactive functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14000813.7A
Other languages
German (de)
French (fr)
Other versions
EP2790059A2 (en
EP2790059A3 (en
EP2790059A8 (en
Inventor
Shinji Takagi
Koichi Nakata
Nobuo Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014032154A external-priority patent/JP6391251B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP14000813.7A priority Critical patent/EP2790059B1/en
Publication of EP2790059A2 publication Critical patent/EP2790059A2/en
Publication of EP2790059A8 publication Critical patent/EP2790059A8/en
Publication of EP2790059A3 publication Critical patent/EP2790059A3/en
Application granted granted Critical
Publication of EP2790059B1 publication Critical patent/EP2790059B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/076Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds having a photoconductive moiety in the polymer backbone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • G03G5/0607Carbocyclic compounds containing at least one non-six-membered ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to an electrophotographic photosensitive member, and an electrophotographic apparatus and a process cartridge including the electrophotographic photosensitive member.
  • the present invention also relates to a novel condensed polycyclic aromatic compound.
  • Japanese Patent Application Laid-Open No. 2010-211031 describes that the outermost surface layer of an electrophotographic photosensitive member contains a polymerized product of a composition including a melamine compound, and a charge transporting compound having a group represented by -OH, -OCH 3 , -NH 2 , -SH or -COOH.
  • Image deletion is considered to be caused as follows: a material in a surface layer of the electrophotographic photosensitive member is degraded due to ozone, nitrogen oxide and the like generated by charging of the electrophotographic photosensitive member, and moisture is adsorbed to the surface of the electrophotographic photosensitive member to reduce the surface resistance of the surface layer. Image deletion tends to remarkably occur particularly under a high-temperature and high-humidity environment.
  • Japanese Patent Application Laid-Open No. HO8-272126 and Japanese Patent Application Laid-Open No. 2001-242656 describe that a specified additive is contained in an electrophotographic photosensitive member to thereby improve permeability to gas, ozone resistance and image density change of the electrophotographic photosensitive member.
  • US 2004/137346 A1 discloses a positively-charged electrophotographic organic photoreceptor including an electrically conductive support, and a charge transport layer and a charge generating layer sequentially stacked thereon.
  • the present invention is directed to providing an electrophotographic photosensitive member high in wear resistance, and also excellent in suppression of image deletion and potential change, as well as an electrophotographic apparatus and a process cartridge including the electrophotographic photosensitive member. Further, the present invention is directed to providing a condensed polycyclic aromatic compound capable of suppressing image deletion and potential change.
  • an electrophotographic photosensitive member as defined in claims 1-11.
  • an electrophotographic apparatus as defined in claim 13.
  • an electrophotographic photosensitive member having high in wear resistance, and also excellent in suppression of image deletion and potential change, as well as a process cartridge and an electrophotographic apparatus including the electrophotographic photosensitive member can be obtained. Furthermore, according to the present invention, a condensed polycyclic aromatic compound capable of suppressing image deletion and potential change can be obtained.
  • a surface layer of an electrophotographic photosensitive member contains a polymerized product of a composition including a hole transporting compound having a first reactive functional group and a compound having a second reactive functional group reactable with the first reactive functional group. Furthermore, a structure other than the first reactive functional group of the hole transporting compound is a structure having only a carbon atom and a hydrogen atom, or a structure having only a carbon atom, a hydrogen atom and an oxygen atom.
  • the present inventors think that image deletion is caused partially due to chemical alternation of an amine structure in a hole transporting compound contained in a surface layer of a usual electrophotographic photosensitive member. Then, the present inventors have searched a hole transporting compound for electrophotographic photosensitive members free from an amine structure, leading to the present invention.
  • an amine compound in particular, an arylamine compound is most frequently used in order to allow holes to be efficiently injected and conveyed. It is considered that hole transporting properties of the arylamine compound is exhibited by electron donating properties of an amine structure and interaction of a nitrogen atom with an aryl group or a group consisting of carbon atoms having sp2 electron orbital (hereinafter, also referred to as sp2 carbon atoms) around the nitrogen atom. It is considered that an arylamine structure tends to undergo a chemical reaction and the like because of being excellent in hole donating/accepting ability. It is considered that particularly in the process of charging on the surface of an electrophotographic photosensitive member, the arylamine structure tends to undergo degradation such as oxidation by the action of an oxidized gas generated by charging, such as ozone and nitrogen oxide.
  • the arylamine structure is oxidized to result in the increase in polar group on a surface member, thereby allowing a discharge product to be easily attached.
  • the discharge product is attached particularly in a high-temperature and high-humidity environment to cause the reduction in the surface resistance of the surface layer and thus the occurrence of image deletion.
  • the present inventors have intensively studied, and as a result, have found that a polymerized product of a composition including the hole transporting compound of the present invention is used to thereby exert the excellent effects of increasing wear resistance and suppressing image deletion and potential change.
  • the reason for this is because the hole transporting compound of the present invention includes no arylamine structure, specifically includes no nitrogen atom, and thus the hole transporting compound is less easily oxidized than an arylamine compound.
  • the structure other than the first reactive functional group preferably has a conjugate structure having 24 or more sp2 carbon atoms, further preferably 28 or more sp2 carbon atoms, from the viewpoint of hole transporting properties.
  • the conjugate structure means a structure in which sp2 carbon atoms are continuously bonded.
  • the conjugate structure has the property of promoting the delocalization of electrons in a molecule, easily performing charge donating/accepting between molecules.
  • the number of sp2 carbon atoms is 120 or less, and more preferably 60 or less.
  • the conjugate structure can have a condensed polycyclic structure therein.
  • the condensed polycyclic structure means a structure in which 2 or more cyclic structures such as benzene rings are adjacent to each other.
  • the condensed polycyclic structure can be a condensed polycyclic structure in which the number of sp2 carbon atoms is 12 or more.
  • the number of sp2 carbon atoms for forming the condensed polycyclic structure is preferably 14 or more, and more preferably 16 or more.
  • the number of sp2 carbon atoms for forming the condensed polycyclic structure is preferably 20 or less and more preferably 18 or less from the viewpoints of film formability and compatibility with a material for constituting the surface layer.
  • the conjugate structure can be planarly extended. Accordingly, in order to form a planar structure, the condensed polycyclic structure can have a 5-membered ring or a 6-membered ring. While the number of rings for forming the condensed polycyclic structure is 2 or more, the number can be 3 or more in order to more suitably exert hole transporting properties.
  • the ring structure for forming the condensed polycyclic structure preferably has 6 or less rings and more preferably 5 or less rings from the viewpoints of film formation ability and flexibility of a molecule. That is, a condensed polycyclic structure having 3 rings or 4 rings is most preferable.
  • the hole transporting compound of the present invention can have at least one unit (one) of the condensed polycyclic structures as a partial structure.
  • the hole transporting compound preferably has two or more units of the condensed polycyclic structures, more preferably 3 units or more of the condensed polycyclic structures.
  • a hole transport substance preferably has 10 units or less of the condensed polycyclic structures, more preferably 4 units or less of the condensed polycyclic structures in one molecule.
  • the hole transport substance When the hole transport substance has 2 or more of the condensed polycyclic structures, the hole transport substance can have a structure, in which the condensed polycyclic structures are connected to each other by a single bond (the condensed polycyclic structures are directly connected to each other), from the viewpoint of stability against chemical alteration.
  • the condensed polycyclic structure is preferably fluorene, anthracene, phenanthrene, fluoranthene or pyrene because the effects of hole transporting properties and suppression of image deletion are higher.
  • the condensed polycyclic structure is more preferably fluorene or pyrene. Such a condensed polycyclic structure may have a substituent.
  • the number of sp2 carbon atoms in the hole transport substance of the present invention does not include the number of sp2 carbon atoms included in the first reactive functional group.
  • the first reactive functional group includes a hydroxy group, an alkoxy group, a carboxy group, an amino group and a thiol group.
  • a hydroxy group, a methoxy group, a carboxy group, an amino group and a thiol group are preferable.
  • a hydroxy group is further preferable.
  • a compound in which the first reactive functional group of the hole transporting compound of the present invention is replaced with a hydrogen atom can be represented by the following formula (1).
  • the molecular structure of the hole transport substance of the present invention can be roughly classified to a structure of the first reactive functional group and a structure other than the first reactive functional group.
  • the structure of the first reactive functional group is, for example, the above-exemplified structure of the first reactive functional group.
  • the structure other than the first reactive functional group means a structure in which the structure of the first reactive functional group is subtracted from the molecular structure of the hole transport substance.
  • a covalent bond remains in a linkage portion of the structure of the first reactive functional group and the structure other than the first reactive functional group.
  • a structure in which a hydrogen atom is bonded to the remaining covalent bond means the compound in which the first reactive functional group is replaced with a hydrogen atom.
  • R 1 to R 6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aryl group
  • R 7 represents a group derived from a substituted or unsubstituted arene by loss of 6 hydrogen atoms
  • n represents an integer of 1 to 10, provided that when n represents 2 to 10, partial structures represented by the following formula (2) in the formula (1) may be the same or different.
  • the alkyl group includes a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a cyclopentyl group, a n-hexyl group, a 1-methylpentyl group, a 4-methyl-2-pentyl group, a 3,3-dimethylbutyl group, a 2-ethylbutyl group, a cyclohexyl group, a 1-methylhexyl group, a cyclohexylmethyl group, a 4-tert-butylcyclohexyl group, a n-heptyl group, a cyclohept
  • the aralkyl group includes a benzyl group, a phenethyl group, an ⁇ -methylbenzyl group, an ⁇ , ⁇ -dimethylbenzyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group, an anthracenylmethyl group, a phenanthrenylmethyl group, a pyrenylmethyl group, a furfuryl group, a 2-methylbenzyl group, a 3-methylbenzyl group, a 4-methylbenzyl group, a 4-ethylbenzyl group, a 4-isopropylbenzyl group, a 4-tert-butylbenzyl group, a 4-n-hexylbenzyl group, a 4-n-nonylbenzyl group, a 3,4-dimethylbenzyl group, a 3-methoxybenzyl group, a 4-methoxybenzyl group, a 4-ethoxybenzyl group
  • the aryl group includes a phenyl group, a biphenylyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthrenyl group, a fluoranthenyl group, a pyrenyl group, a triphenylenyl group, a monovalent group derived from tetracene, a monovalent group derived from chrysene, a monovalent group derived from pentacene, a monovalent group derived from acenaphthene, an acenaphthylenyl group, a monovalent group derived from perylene, a monovalent group derived from corannulene and a monovalent group derived from coronene.
  • the aryl group may be a compound having a structure in which such condensed polycyclic structures having a conjugate structure are linked directly or via a conjugate double bond group.
  • R 7 represents a group in which 6 hydrogen atoms are removed from a substituted or unsubstituted arene.
  • the arene structure in R 7 in addition to a benzene ring, an arene in which a plurality of rings are further linked can be applied.
  • a polycyclic structure having a conjugate structure and having a planar structure can be applied, as described above.
  • the arene structure can be a benzene structure, a naphthalene structure, a fluorene structure, an anthracene structure, a phenanthrene structure, a fluoranthene structure, a pyrene structure, a triphenylene structure, a tetracene structure, a chrysene structure, a pentacene structure, an acenaphthene structure, an acenaphthylene structure, a perylene structure, a corannulene structure or a coronene structure.
  • the arene structure may be a structure in which such arenes are linked to each other directly or via a conjugate double bond group.
  • the arene structure can be in particular a fluorene structure, an anthracene structure, a phenanthrene structure, a fluoranthene structure or a pyrene structure.
  • At least one of R 1 to R 7 preferably represents the condensed polycyclic structure, and two or more of R 1 to R 7 further preferably represent the condensed polycyclic structure.
  • R 7 has a linked structure.
  • Arene structures in R 7 in such a case may be connected to each other directly or via a carbon atom. Arene structures can be connected directly to each other.
  • the condensed polycyclic aromatic compound capable of suppressing image deletion and potential change includes the following compound. That is, a compound having a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group, in which the hydroxy group, the methoxy group, the carboxy group, the amino group or the thiol group of the condensed polycyclic aromatic compound is replaced with a hydrogen atom, corresponds to the compound represented by the formula (1).
  • the substituent may be appropriately selected to thereby allow an sp3 carbon atom to be present in a proper proportion.
  • the hole transporting compound preferably has at least one of the first reactive functional group.
  • the hole transporting compound further preferably has two to four reactive functional groups from the viewpoint of compactness of molecules in a film.
  • the molecular weight of the compound represented by the formula (1) can be 300 or more and 3000 or less. When the molecular weight is in the above range, hole transporting properties and film uniformity are sufficiently achieved.
  • the condensed polycyclic aromatic compound capable of suppressing image deletion and potential change includes a compound characterized by the following: namely, the condensed polycyclic aromatic compound having the first reactive functional group, in which the structure other than the first reactive functional group of the condensed polycyclic aromatic compound is a structure having only a carbon atom and a hydrogen atom or a structure having only a carbon atom, a hydrogen atom and an oxygen atom, and additionally, in which the first reactive functional group is a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group.
  • a reaction represented by the following reaction formula was performed.
  • a three-neck flask was equipped with a nitrogen introduction tube, a cooling tube, an inner thermometer and the like.
  • Toluene (312 parts), 142 parts of ethanol and 180 parts of an aqueous 10% by mass sodium carbonate solution were mixed, and stirred well using a mechanical stirrer at room temperature for 30 minutes or more with nitrogen-gas bubbling, and nitrogen replacement was performed.
  • the flask was heated and a coupling reaction was performed at reflux temperature (about 74°C). After the reaction was performed under reflux conditions for about 3 hours, the reaction mixture was cooled to room temperature. A separating funnel was used to separate an organic layer from an aqueous layer, and the resulting organic layer was further washed with water. The organic layer was taken out, and dehydrated using anhydrous magnesium sulfate. The magnesium sulfate was removed, and an organic solvent was removed from the organic layer to provide a crude product.
  • the content of the hole transporting compound having the first reactive functional group in the surface layer is preferably 95% by mass or more and 99% by mass or less based on the total mass of the composition.
  • the content is further preferably 97% by mass or more and 99% by mass or less.
  • electric characteristics are further enhanced.
  • the solid content concentration can be higher, the solid content concentration is 99% by mass or less for allowing the compound having a second reactive functional group and other additives to effectively function.
  • the compound having a second reactive functional group of the present invention is a compound having a reactive functional group reactable with the first reactive functional group.
  • the compound having a second reactive functional group is preferably a melamine compound, a guanamine compound, a urea compound, an isocyanate compound or an aniline compound.
  • a melamine compound, a guanamine compound, a urea compound or an isocyanate compound is preferable.
  • a melamine compound, a guanamine compound or an isocyanate compound is more preferable.
  • the melamine compound, the guanamine compound, the urea compound and the aniline compound have a group represented by -CH 2 -OH or a group represented by - CH 2 -O-R as the reactive functional group.
  • the groups may be the same as or different from the first reactive functional group.
  • R represents a hydrogen atom, or a linear or branched alkyl group having 1 or more and 10 or less carbon atoms.
  • the content of the compound having a second reactive functional group in the composition is preferably 0.1% by mass or more and 5% by mass or less, and further preferably 1 % by mass or more and 3% by mass or less. When the content is in the above range, the effects of wear resistance and suppression of image deletion are further exerted.
  • the unit for subjecting the hole transporting compound of the present invention and the compound having a second reactive functional group to a polymerization reaction includes the following. That is, a unit for applying energy such as ultraviolet lay, electron beam and heat, or a unit in which an aid such as a polymerization initiator, and a compound such as an acid, an alkali, and a complex are allowed to co-exist can be used.
  • the surface layer can be formed by applying a surface layer-coating liquid, obtained by dissolving the hole transporting compound of the present invention and the compound having a second reactive functional group in an organic solvent, to form a coat, and drying and curing the resulting coat.
  • the method for curing the coat of the surface layer-coating liquid includes a method for polymerizing the hole transporting compound using heat, light (ultraviolet ray or the like) or radiation (electron beam or the like).
  • the electrophotographic photosensitive member of the present invention is an electrophotographic photosensitive member including a support and a photosensitive layer formed on the support, as described above.
  • the photosensitive layer includes a single layer type photosensitive layer in which a charge generation substance and a charge transport substance are contained in the same layer, and a laminated type (functional separation type) photosensitive layer in which a charge generation layer containing a charge generation substance and a charge transport layer containing a charge transport substance are separated.
  • a laminated type photosensitive layer can be adopted.
  • a laminate configuration of a charge generation layer and a charge transport layer can also be adopted.
  • FIG. 2 A schematic configuration that can be used for the electrophotographic photosensitive member of the present invention is illustrated in FIG. 2 .
  • a support 21, an undercoat layer 22 formed on the support, a charge generation layer 23 formed on the undercoat layer, a charge transport layer 24 formed on the charge generation layer and a surface layer 25 formed on the charge transport layer are laminated.
  • the support for use in the present invention can be a conductive support made of a material having conductivity.
  • the material of the support include metals and alloys, such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, an aluminum alloy and stainless.
  • a metallic support having a covering film formed by vacuum vapor deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy or the like, or a resin support can also be used.
  • a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles and silver particles, or a support containing a conductive resin can also be used.
  • the shape of the support includes a cylinder shape, a belt shape, a sheet shape or a plate shape, and a cylinder shape is most commonly used.
  • the surface of the support may be subjected to a cutting treatment, a roughening treatment, an alumite treatment or the like for the purpose of suppressing an interference fringe by scattering of laser light.
  • a conductive layer may also be provided between the support and the undercoat layer or the charge generation layer described later, for the purpose of suppressing an interference fringe by scattering of laser or the like or covering scratch on the support.
  • the conductive layer can be formed by forming a coat of a conductive layer-coating liquid obtained by subjecting carbon black, a conductive pigment, a resistance-regulating pigment, or the like together with a binder resin to a dispersing treatment, and drying the resulting coat.
  • a compound that is to be cured and polymerized by heating, ultraviolet irradiation, radiation irradiation or the like may also be added to the conductive layer-coating liquid.
  • a conductive layer in which a conductive pigment or a resistance-regulating pigment is dispersed tends to have a roughened surface.
  • the solvent of the conductive layer-coating liquid includes an ether-based solvent, an alcohol-based solvent, a ketone-based solvent and an aromatic hydrocarbon solvent.
  • the thickness of the conductive layer is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, further preferably 0.5 ⁇ m or more and 40 ⁇ m or less, and further more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the binder resin for use in the conductive layer includes polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene, a polyvinyl alcohol resin, a polyvinyl acetal resin, a polycarbonate resin, a polyester resin, a polysulfone resin, a polyphenylene oxide resin, a polyurethane resin, a cellulose resin, a phenol resin, a melamine resin, a silicon resin, an epoxy resin and an isocyanate resin.
  • vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene
  • a polyvinyl alcohol resin such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene
  • the conductive pigment and the resistance-regulating pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver and stainless, and a pigment obtained by vapor-depositing such a metal (alloy) on the surface of plastic particles.
  • the pigments may be made of particles of metal oxides such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide and antimony or tantalum-doped tin oxide. Such pigments may be used singly or in combination of two or more.
  • An undercoat layer (intermediate layer) having a barrier function or an adhesion function may also be provided between the support or the conductive layer and the charge generation layer for the purpose of the improvements in adhesiveness of the charge generation layer, in coatability and in hole-injecting properties from the support, and the protection of the charge generation layer from electrical breakdown or the like.
  • the undercoat layer can be formed by forming a coat of an undercoat layer-coating liquid obtained by dissolving a binder resin in a solvent, and drying the resulting coat.
  • the binder resin for use in the undercoat layer includes a polyvinyl alcohol resin, poly-N-vinylimidazole, a polyethylene oxide resin, ethylcellulose, an ethylene-acrylic acid copolymer, casein, a polyamide resin, an N-methoxymethylated 6-nylon resin, a copolymerized nylon resin, a phenol resin, a polyurethane resin, an epoxy resin, an acrylic resin, a melamine resin or a polyester resin.
  • the undercoat layer may further contain metal oxide particles.
  • the metal oxide particles include particles containing titanium oxide, zinc oxide, tin oxide, zirconium oxide or aluminum oxide.
  • the metal oxide particles may be metal oxide particles whose surface is treated with a surface treatment agent such as a silane coupling agent.
  • the solvent for use in the undercoat layer-coating liquid includes organic solvents such as an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic compound.
  • the thickness of the undercoat layer is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and more preferably 1 ⁇ m or more and 25 ⁇ m or less.
  • the undercoat layer may further contain organic resin fine particles and a leveling agent.
  • the charge generation layer can be formed by applying a charge generation layer-coating liquid obtained by subjecting a charge generation substance together with a binder resin and a solvent to a dispersing treatment, and drying the resulting coat.
  • the charge generation layer may be a film by vapor deposition of the charge generation substance.
  • the charge generation substance for use in the charge generation layer includes an azo pigment, a phthalocyanine pigment, an indigo pigment, a perylene pigment, a polycyclic quinone pigment, a squarylium dye, a pyrylium salt, a thiapyrylium salt, a triphenylmethane dye, a quinacridone pigment, an azulenium salt pigment, a cyanine dye, an anthanthrone pigment, a pyranthrone pigment, a xanthene dye, a quinonimine dye and a styryl dye.
  • Such charge generation substances may be used singly or in combination of two or more.
  • a phthalocyanine pigment and an azo pigment are preferable, and in particular a phthalocyanine pigment is more preferable from the viewpoint of sensitivity.
  • phthalocyanine pigment in particular, oxytitanium phthalocyanine, chlorogallium phthalocyanine and hydroxygallium phthalocyanine exhibit an excellent charge generation efficiency. Furthermore, as the hydroxygallium phthalocyanine, hydroxygallium phthalocyanine crystal of a crystal form having strong peaks at Bragg angles 2 ⁇ , 7.4° ⁇ 0.3° and 28.2° ⁇ 0.3°, in CuK ⁇ characteristic X-ray diffraction can be adopted from the viewpoint of sensitivity.
  • binder resin for use in the charge generation layer examples include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene, a polyvinyl alcohol resin, a polyvinyl acetal resin, a polycarbonate resin, a polyester resin, a polysulfone resin, a polyphenylene oxide resin, a polyurethane resin, a cellulose resin, a phenol resin, a melamine resin, a silicon resin and an epoxy resin.
  • vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene
  • a polyvinyl alcohol resin such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene
  • a polyvinyl alcohol resin such as sty
  • the mass ratio of the charge generation substance to the binder resin can be in a range from 1 : 0.3 to 1 : 4.
  • Examples of the dispersing treatment method include a method using a homogenizer, ultrasonic dispersing, a ball mill, a vibration ball mill, a sand mill, Attritor, a roll mill or the like.
  • the solvent for use in the charge generation layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic compound.
  • the charge transport layer is described.
  • the charge transport layer is formed on the charge generation layer.
  • the charge transport layer contains a charge transport substance and a thermoplastic resin.
  • the thermoplastic resin includes a polycarbonate resin and a polyester resin.
  • the thermoplastic resin can be a polycarbonate resin.
  • the charge transport substance for use in the charge transport layer includes a triarylamine-based compound, a hydrazone compound, a stilbene compound, a pyrazoline-based compound, an oxazole-based compound, a triallylmethane-based compound and a thiazole-based compound.
  • Such charge transport substances may be used singly or in combination of two or more.
  • the charge transport layer can be formed by forming a coat of a charge transport layer-coating liquid obtained by dissolving a charge transport substance and a thermoplastic resin in a solvent, and drying the resulting coat.
  • the ratio of the charge transport substance to the thermoplastic resin in the charge transport layer can be 0.3 parts by mass or more and 10 parts by mass or less based on 1 part by mass of the thermoplastic resin.
  • the drying temperature is preferably 60°C or higher and 150°C or lower, and more preferably 80°C or higher and 120°C or lower, from the viewpoint of suppressing cracking of the charge transport layer.
  • the drying time can be 10 minutes or more and 60 minutes or less.
  • the solvent for use in the charge transport layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic hydrocarbon-based solvent.
  • the thickness of the charge transport layer is preferably 5 ⁇ m to 40 ⁇ m, and in particular, more preferably 10 ⁇ m to 35 ⁇ m.
  • the charge transport layer may contain fluorine atom-containing resin particles, silicone-containing resin particles and the like.
  • the charge transport layer may contain metal oxide particles and inorganic particles.
  • the protective layer is described.
  • the protective layer is formed on the charge transport layer, and in such a case, the protective layer is the surface layer.
  • the protective layer contains a polymerized product of a composition including the hole transporting compound having the first reactive functional group, and the compound having a second reactive functional group reactable with the first reactive functional group.
  • the respective compounds are as described above.
  • the thickness thereof is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, and further more preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the solvent for use in the surface layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic hydrocarbon-based solvent.
  • the solvent can be an alcohol-based solvent from the viewpoint of not dissolving the charge transport layer as a lower layer.
  • the surface layer of the electrophotographic photosensitive member may contain a lubricant such as conductive particles, a silicone oil, wax, fluorine atom-containing resin particles including polytetrafluoroethylene particles, silica particles, alumina particles and boron nitride.
  • a lubricant such as conductive particles, a silicone oil, wax, fluorine atom-containing resin particles including polytetrafluoroethylene particles, silica particles, alumina particles and boron nitride.
  • the additives include a coatability improver such as a leveling agent, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide and alumina particles.
  • a coatability improver such as a leveling agent
  • organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles
  • inorganic particles such as silica, titanium oxide and alumina particles.
  • any known coating method such as a dip coating method, a spray coating method, a ring coating method, a spin coating method, a roller coating method, a Meyer bar coating method or a blade coating method can also be used.
  • FIG. 1 illustrates one example of a schematic configuration of an electrophotographic apparatus provided with the electrophotographic photosensitive member and the process cartridge of the present invention.
  • reference number 1 represents a cylindrical electrophotographic photosensitive member, which is rotatably driven at a predetermined circumferential speed around an axis 2 in the direction shown by an arrow.
  • the peripheral surface of the electrophotographic photosensitive member 1 to be rotatably driven is uniformly charged to a predetermined positive or negative potential by a charging unit (primary charging unit: charging roller or the like) 3.
  • a charging unit primary charging unit: charging roller or the like
  • the charged peripheral surface is subjected to exposure light (image exposure light) 4 that is emitted from an exposing unit (not illustrated) such as slit exposure or laser beam scanning exposure.
  • an electrostatic latent image according to the intended image is sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1.
  • the voltage to be applied to the charging unit 3 may be a voltage in which an AC component is superimposed to a DC component, or a voltage of only a DC component.
  • the electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member 1 is developed by a toner contained in a developer of a developing unit 5 to be formed into a toner image. Then, the toner image formed and supported on the peripheral surface of the electrophotographic photosensitive member 1 is sequentially transferred to a transfer material (paper or the like) 7 with a transfer bias from a transferring unit (transfer roller or the like) 6.
  • the transfer material 7 is taken out from a transfer material feed unit (not illustrated) in synchronous with the rotation of the electrophotographic photosensitive member 1, and fed to a portion (abutting portion) between the electrophotographic photosensitive member 1 and the transferring unit 6.
  • the transfer material 7 to which the toner image is transferred is separated from the peripheral surface of the electrophotographic photosensitive member 1 and introduced to a fixing unit 8, and is subjected to a treatment of fixing the toner image and then printed out outside the apparatus as an image-formed material (printed or copied material).
  • the surface of the electrophotographic photosensitive member 1, on which the toner image is transferred, is cleaned by a cleaning unit 9 so that a transfer residual toner is removed. Then, the electrophotographic photosensitive member 1 is subjected to a discharging treatment with pre-exposure light 10 from a pre-exposing unit (not illustrated), and thereafter repeatedly used for image forming.
  • pre-exposure light 10 from a pre-exposing unit (not illustrated)
  • pre-exposing is not necessarily required.
  • a transferring unit of an intermediate transfer system in which a belt-shaped or drum-shaped intermediate transfer body is used may be adopted.
  • a plurality of constituent elements selected from the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, the cleaning unit 9 and the like may be accommodated in a container to be integrally supported as a process cartridge.
  • a process cartridge may be detachably attachable to the main body of the electrophotographic apparatus.
  • the electrophotographic photosensitive member 1, and the charging unit 3, the developing unit 5 and the cleaning unit 9 are integrally supported to be formed into a cartridge, and thus set up to a process cartridge 11 detachably attachable to the main body of the electrophotographic apparatus by using a guiding unit 12 such as a rail provided in the main body of the electrophotographic apparatus.
  • part(s) in Examples means “part(s) by mass”.
  • An aluminum cylinder having a diameter of 30 mm, a length of 357.5 mm and a wall thickness of 1 mm was used as a support (conductive support).
  • silane coupling agent As the silane coupling agent, KBM602 (compound name: N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane) produced by Shin-Etsu Chemical Co., Ltd. was used.
  • the zinc oxide particles surface-treated (80.8 parts) and 0.8 parts of 2,3,4-trihydroxybenzophenone (produced by Wako Pure Chemical Industries, Ltd.) were added to the resulting solution, and were dispersed by a sand mill apparatus using glass beads having a diameter of 0.8 mm at an atmosphere of 23 ⁇ 3°C for 3 hours.
  • the undercoat layer-coating liquid was dip-applied on the aluminum cylinder to form a coat, and the resulting coat was dried at 160°C for 40 minutes to form an undercoat layer having a thickness of 18 ⁇ m.
  • a hydroxygallium phthalocyanine crystal (charge generation substance) of a crystal form having strong peaks at Bragg angles 2 ⁇ ⁇ 0.2°, 7.4° and 28.2°, in CuK ⁇ characteristic X-ray diffraction was prepared.
  • a calixarene compound represented by the following formula (A) 10 parts of a polyvinyl butyral resin (product name: S-Lec BX-1, produced by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were dispersed by a sand mill apparatus using glass beads having a diameter of 1 mm for 4 hours, 700 parts of ethyl acetate was added thereto to prepare a charge generation layer-coating liquid.
  • the charge generation layer-coating liquid was dip-applied on the undercoat layer to form a coat, and the resulting coat was heated and dried at a temperature of 80°C for 15 minutes to thereby form a charge generation layer having a thickness of 0.17 ⁇ m.
  • the surface layer-coating liquid was applied on the charge transport layer to form a coat, and the coat was heat-treated at 160°C for 1 hour for curing, to form a surface layer having a thickness of 5 ⁇ m as a protective layer.
  • an electrophotographic photosensitive member including the support, the undercoat layer, the charge generation layer, the charge transport layer and the surface layer (protective layer) was produced.
  • the electrophotographic photosensitive member produced was mounted on a cyan station in an electrophotographic apparatus (copier) (product name: iR-ADV C5051) altered, manufactured by Canon Inc., as an evaluation apparatus. Then, the initial potential at 30°C/80%RH, the potential after image formation for 1000 sheets, and the image (fine line) reproducibility were evaluated. With respect to the alteration of the apparatus, the process speed was set to 350 mm/sec.
  • an electrophotographic photosensitive member (for control) mounted on the electrophotographic apparatus was used, and the conditions of a charging apparatus and an exposure apparatus were set so that the initial dark portion potential (VD) and the initial light portion potential (VL) of the electrophotographic photosensitive member were -700V and -200V, respectively. Then, the initial dark portion potential (VD) and the initial light portion potential (VL) of the electrophotographic photosensitive member produced were measured. Image formation was performed for 1000 sheets under the conditions, and the dark portion potential (VD) and the light portion potential (VL) after the image formation for 1000 sheets were measured in the same manner.
  • the image reproducibility was evaluated as follows. First, the total discharge current in a charging step was set to 150 ⁇ A, and then a cassette heater in the apparatus was turned OFF. Thereafter, a test chart having an image rate of 5% was used to perform continuous image formation for 5000 sheets, and the sheets were left to stand for 3 days. Thereafter, an A4 horizontal 1 dot-1 space image of an output resolution of 600 dpi was formed, and the image density in the vicinity of the charging apparatus and the image reproducibility on the whole surface of the A4 image were evaluated as follows. Similarly, the total discharge current was set to 200 ⁇ A, and the image reproducibility was evaluated in the same manner.
  • Each of electrophotographic photosensitive members was produced in the same manner as in Example 1 except that the contents of the hole transporting compound and the melamine compound were changed as shown in Table 1, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that (I-8) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a guanamine compound (Nikalac BL-60 produced by Sanwa Chemical Co., Ltd.) was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a blocked isocyanate (product name: Sumijule 3175, produced by Sumika Bayer Urethane Co., Ltd.) was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • a blocked isocyanate product name: Sumijule 3175, produced by Sumika Bayer Urethane Co., Ltd.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a methylolated urea compound obtained by heating urea together with formaldehyde in the presence of a basic catalyst was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • Each of electrophotographic photosensitive members was produced in the same manner as in Example 1 except that one shown in Table 1 was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that a compound represented by the following formula (6) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that a compound represented by the following structural formula (7) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 1 except that 1 part of o-terphenyl (produced by Tokyo Chemical Industry Co., Ltd.) was further added to the components in Comparative Example 1, and the evaluations were performed. The results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to an electrophotographic photosensitive member, and an electrophotographic apparatus and a process cartridge including the electrophotographic photosensitive member. The present invention also relates to a novel condensed polycyclic aromatic compound.
  • Description of the Related Art
  • For the purpose of enhancing durability of an electrophotographic photosensitive member containing an organic photoconductive substance, there is a technique for providing a protective layer on a photosensitive layer of the electrophotographic photosensitive member.
  • Japanese Patent Application Laid-Open No. 2010-211031 describes that the outermost surface layer of an electrophotographic photosensitive member contains a polymerized product of a composition including a melamine compound, and a charge transporting compound having a group represented by -OH, -OCH3, -NH2, -SH or -COOH.
  • However, if durability of the electrophotographic photosensitive member is thus increased, image deletion and potential change tend to occur. Image deletion is considered to be caused as follows: a material in a surface layer of the electrophotographic photosensitive member is degraded due to ozone, nitrogen oxide and the like generated by charging of the electrophotographic photosensitive member, and moisture is adsorbed to the surface of the electrophotographic photosensitive member to reduce the surface resistance of the surface layer. Image deletion tends to remarkably occur particularly under a high-temperature and high-humidity environment.
  • On the other hand, Japanese Patent Application Laid-Open No. HO8-272126 and Japanese Patent Application Laid-Open No. 2001-242656 describe that a specified additive is contained in an electrophotographic photosensitive member to thereby improve permeability to gas, ozone resistance and image density change of the electrophotographic photosensitive member.
  • Recently, ruggedization of an electrophotographic photosensitive member has remarkably progressed, and image deletion and potential change have been demanded to be further improved.
  • US 2004/137346 A1 discloses a positively-charged electrophotographic organic photoreceptor including an electrically conductive support, and a charge transport layer and a charge generating layer sequentially stacked thereon.
  • L. MATTIELLO et al, JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2, no. 11, pages 2243-2247 discloses electrochemistry of 9,9'-spirobifluorene derivatives.
  • E. PROFT et al, JOURNAL FUER PRAKTISCHE CHEMIE, vol. 4, no. 22, pages 47-58 discloses hydroxyethylation of polycyclic aromatics.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to providing an electrophotographic photosensitive member high in wear resistance, and also excellent in suppression of image deletion and potential change, as well as an electrophotographic apparatus and a process cartridge including the electrophotographic photosensitive member. Further, the present invention is directed to providing a condensed polycyclic aromatic compound capable of suppressing image deletion and potential change.
  • According to one aspect of the present invention, there is provided an electrophotographic photosensitive member as defined in claims 1-11.
  • According to another aspect of the present invention, there is provided a process cartridge as defined in claim 12.
  • According to a further aspect of the present invention, there is provided an electrophotographic apparatus as defined in claim 13.
  • According to further another aspect of the present invention, there is provided a condensed polycyclic aromatic compound as defined in claim 14.
  • According to the present invention, an electrophotographic photosensitive member having high in wear resistance, and also excellent in suppression of image deletion and potential change, as well as a process cartridge and an electrophotographic apparatus including the electrophotographic photosensitive member can be obtained. Furthermore, according to the present invention, a condensed polycyclic aromatic compound capable of suppressing image deletion and potential change can be obtained.
  • Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a view illustrating one example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge including an electrophotographic photosensitive member.
    • FIG. 2 is a view for illustrating a layer configuration of an electrophotographic photosensitive member.
    DESCRIPTION OF THE EMBODIMENTS
  • Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
  • In the present invention, a surface layer of an electrophotographic photosensitive member contains a polymerized product of a composition including a hole transporting compound having a first reactive functional group and a compound having a second reactive functional group reactable with the first reactive functional group. Furthermore, a structure other than the first reactive functional group of the hole transporting compound is a structure having only a carbon atom and a hydrogen atom, or a structure having only a carbon atom, a hydrogen atom and an oxygen atom.
  • The present inventors think that image deletion is caused partially due to chemical alternation of an amine structure in a hole transporting compound contained in a surface layer of a usual electrophotographic photosensitive member. Then, the present inventors have searched a hole transporting compound for electrophotographic photosensitive members free from an amine structure, leading to the present invention.
  • As a hole transporting compound for use in an electrophotographic photosensitive member, an amine compound, in particular, an arylamine compound is most frequently used in order to allow holes to be efficiently injected and conveyed. It is considered that hole transporting properties of the arylamine compound is exhibited by electron donating properties of an amine structure and interaction of a nitrogen atom with an aryl group or a group consisting of carbon atoms having sp2 electron orbital (hereinafter, also referred to as sp2 carbon atoms) around the nitrogen atom. It is considered that an arylamine structure tends to undergo a chemical reaction and the like because of being excellent in hole donating/accepting ability. It is considered that particularly in the process of charging on the surface of an electrophotographic photosensitive member, the arylamine structure tends to undergo degradation such as oxidation by the action of an oxidized gas generated by charging, such as ozone and nitrogen oxide.
  • In addition, the arylamine structure is oxidized to result in the increase in polar group on a surface member, thereby allowing a discharge product to be easily attached. As a result, it is considered that the discharge product is attached particularly in a high-temperature and high-humidity environment to cause the reduction in the surface resistance of the surface layer and thus the occurrence of image deletion.
  • It is also considered that the occurrence of an electron transfer reaction of nitrogen oxide with the amine compound allows an ion pair to be formed, to thereby reduce the surface resistance of the surface layer, easily causing image deletion.
  • The present inventors have intensively studied, and as a result, have found that a polymerized product of a composition including the hole transporting compound of the present invention is used to thereby exert the excellent effects of increasing wear resistance and suppressing image deletion and potential change. The reason for this is because the hole transporting compound of the present invention includes no arylamine structure, specifically includes no nitrogen atom, and thus the hole transporting compound is less easily oxidized than an arylamine compound.
  • In the hole transporting compound of the present invention, the structure other than the first reactive functional group preferably has a conjugate structure having 24 or more sp2 carbon atoms, further preferably 28 or more sp2 carbon atoms, from the viewpoint of hole transporting properties. The conjugate structure means a structure in which sp2 carbon atoms are continuously bonded. The conjugate structure has the property of promoting the delocalization of electrons in a molecule, easily performing charge donating/accepting between molecules.
  • From the viewpoints of film formability, compatibility with a material for forming the surface layer, film strength and the like, the number of sp2 carbon atoms is 120 or less, and more preferably 60 or less.
  • In the hole transporting compound of the present invention, the conjugate structure can have a condensed polycyclic structure therein. The condensed polycyclic structure means a structure in which 2 or more cyclic structures such as benzene rings are adjacent to each other.
  • The condensed polycyclic structure can be a condensed polycyclic structure in which the number of sp2 carbon atoms is 12 or more. In order to further exert hole transporting properties, the number of sp2 carbon atoms for forming the condensed polycyclic structure is preferably 14 or more, and more preferably 16 or more.
  • The number of sp2 carbon atoms for forming the condensed polycyclic structure is preferably 20 or less and more preferably 18 or less from the viewpoints of film formability and compatibility with a material for constituting the surface layer.
  • With respect to a ring structure for forming the condensed polycyclic structure, the conjugate structure can be planarly extended. Accordingly, in order to form a planar structure, the condensed polycyclic structure can have a 5-membered ring or a 6-membered ring. While the number of rings for forming the condensed polycyclic structure is 2 or more, the number can be 3 or more in order to more suitably exert hole transporting properties.
  • In addition, the ring structure for forming the condensed polycyclic structure preferably has 6 or less rings and more preferably 5 or less rings from the viewpoints of film formation ability and flexibility of a molecule. That is, a condensed polycyclic structure having 3 rings or 4 rings is most preferable.
  • The hole transporting compound of the present invention can have at least one unit (one) of the condensed polycyclic structures as a partial structure. From the viewpoint of further exerting hole transporting properties, the hole transporting compound preferably has two or more units of the condensed polycyclic structures, more preferably 3 units or more of the condensed polycyclic structures. In addition, a hole transport substance preferably has 10 units or less of the condensed polycyclic structures, more preferably 4 units or less of the condensed polycyclic structures in one molecule.
  • When the hole transport substance has 2 or more of the condensed polycyclic structures, the hole transport substance can have a structure, in which the condensed polycyclic structures are connected to each other by a single bond (the condensed polycyclic structures are directly connected to each other), from the viewpoint of stability against chemical alteration.
  • In addition, the condensed polycyclic structure is preferably fluorene, anthracene, phenanthrene, fluoranthene or pyrene because the effects of hole transporting properties and suppression of image deletion are higher. The condensed polycyclic structure is more preferably fluorene or pyrene. Such a condensed polycyclic structure may have a substituent.
  • Herein, the number of sp2 carbon atoms in the hole transport substance of the present invention does not include the number of sp2 carbon atoms included in the first reactive functional group.
  • The first reactive functional group includes a hydroxy group, an alkoxy group, a carboxy group, an amino group and a thiol group. In particular, a hydroxy group, a methoxy group, a carboxy group, an amino group and a thiol group are preferable. A hydroxy group is further preferable.
  • A compound in which the first reactive functional group of the hole transporting compound of the present invention is replaced with a hydrogen atom can be represented by the following formula (1).
  • The molecular structure of the hole transport substance of the present invention can be roughly classified to a structure of the first reactive functional group and a structure other than the first reactive functional group. The structure of the first reactive functional group is, for example, the above-exemplified structure of the first reactive functional group. The structure other than the first reactive functional group means a structure in which the structure of the first reactive functional group is subtracted from the molecular structure of the hole transport substance. Herein, when the structure of the first reactive functional group is simply subtracted from the molecular structure of the hole transport substance, a covalent bond remains in a linkage portion of the structure of the first reactive functional group and the structure other than the first reactive functional group. A structure in which a hydrogen atom is bonded to the remaining covalent bond means the compound in which the first reactive functional group is replaced with a hydrogen atom.
    Figure imgb0001
  • In the formula (1), R1 to R6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aryl group, R7 represents a group derived from a substituted or unsubstituted arene by loss of 6 hydrogen atoms, and n represents an integer of 1 to 10, provided that when n represents 2 to 10, partial structures represented by the following formula (2) in the formula (1) may be the same or different.
    Figure imgb0002
  • The alkyl group includes a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a cyclopentyl group, a n-hexyl group, a 1-methylpentyl group, a 4-methyl-2-pentyl group, a 3,3-dimethylbutyl group, a 2-ethylbutyl group, a cyclohexyl group, a 1-methylhexyl group, a cyclohexylmethyl group, a 4-tert-butylcyclohexyl group, a n-heptyl group, a cycloheptyl group, a n-octyl group, a cyclooctyl group, a tert-octyl group, a 1-methylheptyl group, a 2-ethylhexyl group, a 2-propylpentyl group, a n-nonyl group, a 2,2-dimethylheptyl group, a 2,6-dimethyl-4-heptyl group, a 3,5,5-trimethylhexyl group, a n-decyl group, a n-undecyl group, a 1-methyldecyl group, a n-dodecyl group, a n-tridecyl group, a 1-hexylheptyl group, a n-tetradecyl group, a n-pentadecyl group, a n-hexadecyl group, a n-heptadecyl group, a n-octadecyl group and a n-eicosyl group.
  • The aralkyl group includes a benzyl group, a phenethyl group, an α-methylbenzyl group, an α,α-dimethylbenzyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group, an anthracenylmethyl group, a phenanthrenylmethyl group, a pyrenylmethyl group, a furfuryl group, a 2-methylbenzyl group, a 3-methylbenzyl group, a 4-methylbenzyl group, a 4-ethylbenzyl group, a 4-isopropylbenzyl group, a 4-tert-butylbenzyl group, a 4-n-hexylbenzyl group, a 4-n-nonylbenzyl group, a 3,4-dimethylbenzyl group, a 3-methoxybenzyl group, a 4-methoxybenzyl group, a 4-ethoxybenzyl group, a 4-n-butyloxybenzyl group, a 4-n-hexyloxybenzyl group and a 4-n-nonyloxybenzyl group.
  • The aryl group includes a phenyl group, a biphenylyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthrenyl group, a fluoranthenyl group, a pyrenyl group, a triphenylenyl group, a monovalent group derived from tetracene, a monovalent group derived from chrysene, a monovalent group derived from pentacene, a monovalent group derived from acenaphthene, an acenaphthylenyl group, a monovalent group derived from perylene, a monovalent group derived from corannulene and a monovalent group derived from coronene. Furthermore, the aryl group may be a compound having a structure in which such condensed polycyclic structures having a conjugate structure are linked directly or via a conjugate double bond group.
  • R7 represents a group in which 6 hydrogen atoms are removed from a substituted or unsubstituted arene. As the arene structure in R7, in addition to a benzene ring, an arene in which a plurality of rings are further linked can be applied. Among such arene structures, a polycyclic structure having a conjugate structure and having a planar structure can be applied, as described above. The arene structure can be a benzene structure, a naphthalene structure, a fluorene structure, an anthracene structure, a phenanthrene structure, a fluoranthene structure, a pyrene structure, a triphenylene structure, a tetracene structure, a chrysene structure, a pentacene structure, an acenaphthene structure, an acenaphthylene structure, a perylene structure, a corannulene structure or a coronene structure. Furthermore, the arene structure may be a structure in which such arenes are linked to each other directly or via a conjugate double bond group. The arene structure can be in particular a fluorene structure, an anthracene structure, a phenanthrene structure, a fluoranthene structure or a pyrene structure.
  • At least one of R1 to R7 preferably represents the condensed polycyclic structure, and two or more of R1 to R7 further preferably represent the condensed polycyclic structure.
  • When n represents 2 or more, R7 has a linked structure. Arene structures in R7 in such a case may be connected to each other directly or via a carbon atom. Arene structures can be connected directly to each other.
  • The condensed polycyclic aromatic compound capable of suppressing image deletion and potential change includes the following compound. That is, a compound having a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group, in which the hydroxy group, the methoxy group, the carboxy group, the amino group or the thiol group of the condensed polycyclic aromatic compound is replaced with a hydrogen atom, corresponds to the compound represented by the formula (1).
  • In the hole transport substance of the present invention, the substituent may be appropriately selected to thereby allow an sp3 carbon atom to be present in a proper proportion.
  • The hole transporting compound preferably has at least one of the first reactive functional group. The hole transporting compound further preferably has two to four reactive functional groups from the viewpoint of compactness of molecules in a film.
  • In the hole transporting compound of the present invention, the molecular weight of the compound represented by the formula (1) can be 300 or more and 3000 or less. When the molecular weight is in the above range, hole transporting properties and film uniformity are sufficiently achieved.
  • In the present invention, the condensed polycyclic aromatic compound capable of suppressing image deletion and potential change includes a compound characterized by the following: namely, the condensed polycyclic aromatic compound having the first reactive functional group, in which the structure other than the first reactive functional group of the condensed polycyclic aromatic compound is a structure having only a carbon atom and a hydrogen atom or a structure having only a carbon atom, a hydrogen atom and an oxygen atom, and additionally, in which the first reactive functional group is a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group.
  • Specific examples of the hole transporting compound having the first reactive functional group of the present invention are shown below.
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    Figure imgb0071
    Figure imgb0072
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
    Figure imgb0095
    Figure imgb0096
    Figure imgb0097
    Figure imgb0098
    Figure imgb0099
    Figure imgb0100
    Figure imgb0101
    Figure imgb0102
    Figure imgb0103
    Figure imgb0104
    Figure imgb0105
    Figure imgb0106
    Figure imgb0107
    Figure imgb0108
  • A representative synthesis example of the hole transport substance for use in the present invention is shown below.
  • A reaction represented by the following reaction formula was performed. A three-neck flask was equipped with a nitrogen introduction tube, a cooling tube, an inner thermometer and the like. Toluene (312 parts), 142 parts of ethanol and 180 parts of an aqueous 10% by mass sodium carbonate solution were mixed, and stirred well using a mechanical stirrer at room temperature for 30 minutes or more with nitrogen-gas bubbling, and nitrogen replacement was performed. Then, 12.2 parts of 7-tert-butylpyrene-1-boronic acid pinacol ester (MW = 384.32), 7.0 parts of 9,9-di-1-propanol-2,7-dibromofluorene (MW = 440.17) and 0.74 parts of tetrakis (triphenylphosphine) palladium were charged into the flask and further well stirred at room temperature, and dissolution and nitrogen replacement were performed.
  • Then, the flask was heated and a coupling reaction was performed at reflux temperature (about 74°C). After the reaction was performed under reflux conditions for about 3 hours, the reaction mixture was cooled to room temperature. A separating funnel was used to separate an organic layer from an aqueous layer, and the resulting organic layer was further washed with water. The organic layer was taken out, and dehydrated using anhydrous magnesium sulfate. The magnesium sulfate was removed, and an organic solvent was removed from the organic layer to provide a crude product.
  • The crude product was purified by column chromatography using silica gel. A mixed solvent of toluene/ethyl acetate was used for developing to remove impurities, collecting an objective product (I-28, Mw = 795.06). The yield was 11.2 parts, and the percent yield was 83%.
    Figure imgb0109
  • The content of the hole transporting compound having the first reactive functional group in the surface layer is preferably 95% by mass or more and 99% by mass or less based on the total mass of the composition. The content is further preferably 97% by mass or more and 99% by mass or less. When the content is in the above range, electric characteristics are further enhanced. Herein, while the solid content concentration can be higher, the solid content concentration is 99% by mass or less for allowing the compound having a second reactive functional group and other additives to effectively function.
  • The compound having a second reactive functional group of the present invention is a compound having a reactive functional group reactable with the first reactive functional group. The compound having a second reactive functional group is preferably a melamine compound, a guanamine compound, a urea compound, an isocyanate compound or an aniline compound. Among these, a melamine compound, a guanamine compound, a urea compound or an isocyanate compound is preferable. A melamine compound, a guanamine compound or an isocyanate compound is more preferable.
    The melamine compound, the guanamine compound, the urea compound and the aniline compound have a group represented by -CH2-OH or a group represented by - CH2-O-R as the reactive functional group. The groups may be the same as or different from the first reactive functional group. R represents a hydrogen atom, or a linear or branched alkyl group having 1 or more and 10 or less carbon atoms.
    The content of the compound having a second reactive functional group in the composition is preferably 0.1% by mass or more and 5% by mass or less, and further preferably 1 % by mass or more and 3% by mass or less. When the content is in the above range, the effects of wear resistance and suppression of image deletion are further exerted.
    The unit for subjecting the hole transporting compound of the present invention and the compound having a second reactive functional group to a polymerization reaction includes the following. That is, a unit for applying energy such as ultraviolet lay, electron beam and heat, or a unit in which an aid such as a polymerization initiator, and a compound such as an acid, an alkali, and a complex are allowed to co-exist can be used.
  • The surface layer can be formed by applying a surface layer-coating liquid, obtained by dissolving the hole transporting compound of the present invention and the compound having a second reactive functional group in an organic solvent, to form a coat, and drying and curing the resulting coat.
  • The method for curing the coat of the surface layer-coating liquid (method for polymerizing the hole transporting compound of the present invention) includes a method for polymerizing the hole transporting compound using heat, light (ultraviolet ray or the like) or radiation (electron beam or the like).
  • Electrophotographic Photosensitive Member
  • The electrophotographic photosensitive member of the present invention is an electrophotographic photosensitive member including a support and a photosensitive layer formed on the support, as described above.
  • The photosensitive layer includes a single layer type photosensitive layer in which a charge generation substance and a charge transport substance are contained in the same layer, and a laminated type (functional separation type) photosensitive layer in which a charge generation layer containing a charge generation substance and a charge transport layer containing a charge transport substance are separated. In the present invention, a laminated type photosensitive layer can be adopted. In addition, a laminate configuration of a charge generation layer and a charge transport layer can also be adopted.
  • A schematic configuration that can be used for the electrophotographic photosensitive member of the present invention is illustrated in FIG. 2. In an electrophotographic photosensitive member illustrated in FIG. 2, a support 21, an undercoat layer 22 formed on the support, a charge generation layer 23 formed on the undercoat layer, a charge transport layer 24 formed on the charge generation layer and a surface layer 25 formed on the charge transport layer are laminated.
  • The support for use in the present invention can be a conductive support made of a material having conductivity. Examples of the material of the support include metals and alloys, such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, an aluminum alloy and stainless. In addition, a metallic support having a covering film formed by vacuum vapor deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy or the like, or a resin support can also be used. In addition, a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles and silver particles, or a support containing a conductive resin can also be used. The shape of the support includes a cylinder shape, a belt shape, a sheet shape or a plate shape, and a cylinder shape is most commonly used.
  • The surface of the support may be subjected to a cutting treatment, a roughening treatment, an alumite treatment or the like for the purpose of suppressing an interference fringe by scattering of laser light.
  • A conductive layer may also be provided between the support and the undercoat layer or the charge generation layer described later, for the purpose of suppressing an interference fringe by scattering of laser or the like or covering scratch on the support.
  • The conductive layer can be formed by forming a coat of a conductive layer-coating liquid obtained by subjecting carbon black, a conductive pigment, a resistance-regulating pigment, or the like together with a binder resin to a dispersing treatment, and drying the resulting coat. A compound that is to be cured and polymerized by heating, ultraviolet irradiation, radiation irradiation or the like may also be added to the conductive layer-coating liquid. A conductive layer in which a conductive pigment or a resistance-regulating pigment is dispersed tends to have a roughened surface.
  • The solvent of the conductive layer-coating liquid includes an ether-based solvent, an alcohol-based solvent, a ketone-based solvent and an aromatic hydrocarbon solvent. The thickness of the conductive layer is preferably 0.1 µm or more and 50 µm or less, further preferably 0.5 µm or more and 40 µm or less, and further more preferably 1 µm or more and 30 µm or less.
  • The binder resin for use in the conductive layer includes polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene, a polyvinyl alcohol resin, a polyvinyl acetal resin, a polycarbonate resin, a polyester resin, a polysulfone resin, a polyphenylene oxide resin, a polyurethane resin, a cellulose resin, a phenol resin, a melamine resin, a silicon resin, an epoxy resin and an isocyanate resin.
  • The conductive pigment and the resistance-regulating pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver and stainless, and a pigment obtained by vapor-depositing such a metal (alloy) on the surface of plastic particles. In addition, the pigments may be made of particles of metal oxides such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide and antimony or tantalum-doped tin oxide. Such pigments may be used singly or in combination of two or more.
  • An undercoat layer (intermediate layer) having a barrier function or an adhesion function may also be provided between the support or the conductive layer and the charge generation layer for the purpose of the improvements in adhesiveness of the charge generation layer, in coatability and in hole-injecting properties from the support, and the protection of the charge generation layer from electrical breakdown or the like.
  • The undercoat layer can be formed by forming a coat of an undercoat layer-coating liquid obtained by dissolving a binder resin in a solvent, and drying the resulting coat.
  • The binder resin for use in the undercoat layer includes a polyvinyl alcohol resin, poly-N-vinylimidazole, a polyethylene oxide resin, ethylcellulose, an ethylene-acrylic acid copolymer, casein, a polyamide resin, an N-methoxymethylated 6-nylon resin, a copolymerized nylon resin, a phenol resin, a polyurethane resin, an epoxy resin, an acrylic resin, a melamine resin or a polyester resin.
  • The undercoat layer may further contain metal oxide particles. The metal oxide particles include particles containing titanium oxide, zinc oxide, tin oxide, zirconium oxide or aluminum oxide. In addition, the metal oxide particles may be metal oxide particles whose surface is treated with a surface treatment agent such as a silane coupling agent.
  • The solvent for use in the undercoat layer-coating liquid includes organic solvents such as an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic compound. The thickness of the undercoat layer is preferably 0.05 µm or more and 30 µm or less, and more preferably 1 µm or more and 25 µm or less. The undercoat layer may further contain organic resin fine particles and a leveling agent.
  • Then, the charge generation layer is described. The charge generation layer can be formed by applying a charge generation layer-coating liquid obtained by subjecting a charge generation substance together with a binder resin and a solvent to a dispersing treatment, and drying the resulting coat. In addition, the charge generation layer may be a film by vapor deposition of the charge generation substance.
  • The charge generation substance for use in the charge generation layer includes an azo pigment, a phthalocyanine pigment, an indigo pigment, a perylene pigment, a polycyclic quinone pigment, a squarylium dye, a pyrylium salt, a thiapyrylium salt, a triphenylmethane dye, a quinacridone pigment, an azulenium salt pigment, a cyanine dye, an anthanthrone pigment, a pyranthrone pigment, a xanthene dye, a quinonimine dye and a styryl dye. Such charge generation substances may be used singly or in combination of two or more. Among such charge generation substances, a phthalocyanine pigment and an azo pigment are preferable, and in particular a phthalocyanine pigment is more preferable from the viewpoint of sensitivity.
  • As the phthalocyanine pigment, in particular, oxytitanium phthalocyanine, chlorogallium phthalocyanine and hydroxygallium phthalocyanine exhibit an excellent charge generation efficiency. Furthermore, as the hydroxygallium phthalocyanine, hydroxygallium phthalocyanine crystal of a crystal form having strong peaks at Bragg angles 2θ, 7.4° ± 0.3° and 28.2° ± 0.3°, in CuKα characteristic X-ray diffraction can be adopted from the viewpoint of sensitivity.
  • Examples of the binder resin for use in the charge generation layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylate, methacrylate, vinylidene fluoride and trifluoroethylene, a polyvinyl alcohol resin, a polyvinyl acetal resin, a polycarbonate resin, a polyester resin, a polysulfone resin, a polyphenylene oxide resin, a polyurethane resin, a cellulose resin, a phenol resin, a melamine resin, a silicon resin and an epoxy resin.
  • The mass ratio of the charge generation substance to the binder resin can be in a range from 1 : 0.3 to 1 : 4.
  • Examples of the dispersing treatment method include a method using a homogenizer, ultrasonic dispersing, a ball mill, a vibration ball mill, a sand mill, Attritor, a roll mill or the like.
  • The solvent for use in the charge generation layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic compound.
  • Then, the charge transport layer is described. The charge transport layer is formed on the charge generation layer. The charge transport layer contains a charge transport substance and a thermoplastic resin. The thermoplastic resin includes a polycarbonate resin and a polyester resin. The thermoplastic resin can be a polycarbonate resin.
  • The charge transport substance for use in the charge transport layer includes a triarylamine-based compound, a hydrazone compound, a stilbene compound, a pyrazoline-based compound, an oxazole-based compound, a triallylmethane-based compound and a thiazole-based compound. Such charge transport substances may be used singly or in combination of two or more.
  • The charge transport layer can be formed by forming a coat of a charge transport layer-coating liquid obtained by dissolving a charge transport substance and a thermoplastic resin in a solvent, and drying the resulting coat. With respect to the ratio of the charge transport substance to the thermoplastic resin in the charge transport layer, the ratio of the charge transport substance can be 0.3 parts by mass or more and 10 parts by mass or less based on 1 part by mass of the thermoplastic resin.
  • The drying temperature is preferably 60°C or higher and 150°C or lower, and more preferably 80°C or higher and 120°C or lower, from the viewpoint of suppressing cracking of the charge transport layer. In addition, the drying time can be 10 minutes or more and 60 minutes or less.
  • The solvent for use in the charge transport layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic hydrocarbon-based solvent. The thickness of the charge transport layer is preferably 5 µm to 40 µm, and in particular, more preferably 10 µm to 35 µm.
  • In addition, an antioxidant, an ultraviolet ray absorber and a plasticizer can also be added to the charge transport layer, if necessary. In addition, the charge transport layer may contain fluorine atom-containing resin particles, silicone-containing resin particles and the like. In addition, the charge transport layer may contain metal oxide particles and inorganic particles.
  • Then, the protective layer is described. The protective layer is formed on the charge transport layer, and in such a case, the protective layer is the surface layer.
  • The protective layer contains a polymerized product of a composition including the hole transporting compound having the first reactive functional group, and the compound having a second reactive functional group reactable with the first reactive functional group. The respective compounds are as described above.
  • When the surface layer is the protective layer, the thickness thereof is preferably 0.1 µm or more and 15 µm or less, and further more preferably 0.5 µm or more and 10 µm or less. The solvent for use in the surface layer-coating liquid includes an alcohol-based solvent, a sulfoxide-based solvent, a ketone-based solvent, an ether-based solvent, an ester-based solvent, an aliphatic halogenated hydrocarbon-based solvent and an aromatic hydrocarbon-based solvent. The solvent can be an alcohol-based solvent from the viewpoint of not dissolving the charge transport layer as a lower layer.
  • In addition, the surface layer of the electrophotographic photosensitive member may contain a lubricant such as conductive particles, a silicone oil, wax, fluorine atom-containing resin particles including polytetrafluoroethylene particles, silica particles, alumina particles and boron nitride.
  • Various additives may be added to the surface layer. The additives include a coatability improver such as a leveling agent, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide and alumina particles.
  • When the coating liquid for each of the layers is applied, any known coating method such as a dip coating method, a spray coating method, a ring coating method, a spin coating method, a roller coating method, a Meyer bar coating method or a blade coating method can also be used.
  • Then, FIG. 1 illustrates one example of a schematic configuration of an electrophotographic apparatus provided with the electrophotographic photosensitive member and the process cartridge of the present invention.
  • In FIG. 1, reference number 1 represents a cylindrical electrophotographic photosensitive member, which is rotatably driven at a predetermined circumferential speed around an axis 2 in the direction shown by an arrow. The peripheral surface of the electrophotographic photosensitive member 1 to be rotatably driven is uniformly charged to a predetermined positive or negative potential by a charging unit (primary charging unit: charging roller or the like) 3. Then, the charged peripheral surface is subjected to exposure light (image exposure light) 4 that is emitted from an exposing unit (not illustrated) such as slit exposure or laser beam scanning exposure. In this way, an electrostatic latent image according to the intended image is sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1. The voltage to be applied to the charging unit 3 may be a voltage in which an AC component is superimposed to a DC component, or a voltage of only a DC component.
  • The electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member 1 is developed by a toner contained in a developer of a developing unit 5 to be formed into a toner image. Then, the toner image formed and supported on the peripheral surface of the electrophotographic photosensitive member 1 is sequentially transferred to a transfer material (paper or the like) 7 with a transfer bias from a transferring unit (transfer roller or the like) 6. The transfer material 7 is taken out from a transfer material feed unit (not illustrated) in synchronous with the rotation of the electrophotographic photosensitive member 1, and fed to a portion (abutting portion) between the electrophotographic photosensitive member 1 and the transferring unit 6.
  • The transfer material 7 to which the toner image is transferred is separated from the peripheral surface of the electrophotographic photosensitive member 1 and introduced to a fixing unit 8, and is subjected to a treatment of fixing the toner image and then printed out outside the apparatus as an image-formed material (printed or copied material).
  • The surface of the electrophotographic photosensitive member 1, on which the toner image is transferred, is cleaned by a cleaning unit 9 so that a transfer residual toner is removed. Then, the electrophotographic photosensitive member 1 is subjected to a discharging treatment with pre-exposure light 10 from a pre-exposing unit (not illustrated), and thereafter repeatedly used for image forming. Herein, when the charging unit 3 is a contact charging unit using a charging roller or the like as illustrated in FIG. 1, pre-exposing is not necessarily required.
  • In addition, as the transferring unit, for example, a transferring unit of an intermediate transfer system in which a belt-shaped or drum-shaped intermediate transfer body is used may be adopted.
  • A plurality of constituent elements selected from the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, the cleaning unit 9 and the like may be accommodated in a container to be integrally supported as a process cartridge. Such a process cartridge may be detachably attachable to the main body of the electrophotographic apparatus. In FIG. 1, the electrophotographic photosensitive member 1, and the charging unit 3, the developing unit 5 and the cleaning unit 9 are integrally supported to be formed into a cartridge, and thus set up to a process cartridge 11 detachably attachable to the main body of the electrophotographic apparatus by using a guiding unit 12 such as a rail provided in the main body of the electrophotographic apparatus.
  • Examples
  • Hereinafter, the present invention will be described in more detail with reference to specific Examples. Herein, "part(s)" in Examples means "part(s) by mass".
  • Example 1
  • An aluminum cylinder having a diameter of 30 mm, a length of 357.5 mm and a wall thickness of 1 mm was used as a support (conductive support).
  • Then, 100 parts of zinc oxide particles (specific surface area: 19 m2/g, powder resistance: 4.7 × 106 Ω•cm) were stirred and mixed with 500 parts of toluene, 0.8 parts of a silane coupling agent was added thereto, and the resultant was stirred for 6 hours. Thereafter, toluene was distilled off under reduced pressure, and the resultant was heated and dried at 130°C for 6 hours, providing zinc oxide particles surface-treated. As the silane coupling agent, KBM602 (compound name: N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane) produced by Shin-Etsu Chemical Co., Ltd. was used.
  • Then, 15 parts of a polyvinyl butyral resin (weight average molecular weight: 40000, product name: BM-1, produced by Sekisui Chemical Co., Ltd.) and 15 parts of a blocked isocyanate (product name: Sumijule 3175, produced by Sumika Bayer Urethane Co., Ltd.) were dissolved in a mixed solution of 73.5 parts of methyl ethyl ketone and 73.5 parts of 1-butanol. The zinc oxide particles surface-treated (80.8 parts) and 0.8 parts of 2,3,4-trihydroxybenzophenone (produced by Wako Pure Chemical Industries, Ltd.) were added to the resulting solution, and were dispersed by a sand mill apparatus using glass beads having a diameter of 0.8 mm at an atmosphere of 23 ± 3°C for 3 hours. After the dispersing, 0.01 parts of a silicone oil (product name: SH28PA, produced by Dow Corning Toray Co., Ltd.) and 5.6 parts of crosslinked poly(methyl methacrylate) (PMMA) particles (product name: TECHPOLYMER SSX-103, produced by Sekisui Plastics Co., Ltd., average primary particle size: 3.0 µm) were added for stirring, preparing an undercoat layer-coating liquid.
  • The undercoat layer-coating liquid was dip-applied on the aluminum cylinder to form a coat, and the resulting coat was dried at 160°C for 40 minutes to form an undercoat layer having a thickness of 18 µm.
  • Then, a hydroxygallium phthalocyanine crystal (charge generation substance) of a crystal form having strong peaks at Bragg angles 2θ ± 0.2°, 7.4° and 28.2°, in CuKα characteristic X-ray diffraction was prepared. After 20 parts of the hydroxygallium phthalocyanine crystal, 0.2 parts of a calixarene compound represented by the following formula (A), 10 parts of a polyvinyl butyral resin (product name: S-Lec BX-1, produced by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were dispersed by a sand mill apparatus using glass beads having a diameter of 1 mm for 4 hours, 700 parts of ethyl acetate was added thereto to prepare a charge generation layer-coating liquid. The charge generation layer-coating liquid was dip-applied on the undercoat layer to form a coat, and the resulting coat was heated and dried at a temperature of 80°C for 15 minutes to thereby form a charge generation layer having a thickness of 0.17 µm.
    Figure imgb0110
  • Then, 30 parts of a compound represented by the following structural formula (B) (charge transport substance), 60 parts of a compound represented by the following structural formula (C) (charge transport substance), 10 parts of a compound represented by the following structural formula (D),
    Figure imgb0111
  • 100 parts of a polycarbonate resin (product name: Iupilon Z400, produced by Mitsubishi Engineering-Plastics Corporation, bisphenol Z-type polycarbonate), and 0.02 parts of polycarbonate (viscosity average molecular weight Mv: 20000) having a structural unit represented by the following formula (E) and a structural unit represented by the following formula (F):
    Figure imgb0112
    (in the formulae (E)and (F), numeral values 0.95 and 0.05 represent the molar ratios (copolymerization ratios) of the structural unit represented by the formula (E) and the structural unit represented by the formula (F), respectively.) were dissolved in a mixed solvent of 600 parts of mixed xylene and 200 parts of dimethoxymethane to thereby prepare a charge transport layer-coating liquid. The charge transport layer-coating liquid was dip-applied on the charge generation layer to form a coat, and the resulting coat was dried at 100°C for 30 minutes to thereby form a charge transport layer having a thickness of 18 µm.
  • Then, 99 parts of the hole transporting compound represented by the exemplary compound (I-27), 1 part of a melamine compound (Nikalac MW-30 produced by Sanwa Chemical Co., Ltd.), 0.1 parts of p-toluenesulfonic acid as a catalyst, 35 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane (product name: Zeorora H, produced by Zeon Corporation) and 35 parts of 1-propanol were mixed and well stirred. The resultant was subjected to filtration by a polyflon filter (product name: PF-060, manufactured by Advantec Toyo Kaisha, Ltd.) to prepare a surface layer-coating liquid.
  • The surface layer-coating liquid was applied on the charge transport layer to form a coat, and the coat was heat-treated at 160°C for 1 hour for curing, to form a surface layer having a thickness of 5 µm as a protective layer.
  • In this way, an electrophotographic photosensitive member including the support, the undercoat layer, the charge generation layer, the charge transport layer and the surface layer (protective layer) was produced.
  • Evaluations
  • The electrophotographic photosensitive member produced was mounted on a cyan station in an electrophotographic apparatus (copier) (product name: iR-ADV C5051) altered, manufactured by Canon Inc., as an evaluation apparatus. Then, the initial potential at 30°C/80%RH, the potential after image formation for 1000 sheets, and the image (fine line) reproducibility were evaluated. With respect to the alteration of the apparatus, the process speed was set to 350 mm/sec.
  • First, an electrophotographic photosensitive member (for control) mounted on the electrophotographic apparatus was used, and the conditions of a charging apparatus and an exposure apparatus were set so that the initial dark portion potential (VD) and the initial light portion potential (VL) of the electrophotographic photosensitive member were -700V and -200V, respectively. Then, the initial dark portion potential (VD) and the initial light portion potential (VL) of the electrophotographic photosensitive member produced were measured. Image formation was performed for 1000 sheets under the conditions, and the dark portion potential (VD) and the light portion potential (VL) after the image formation for 1000 sheets were measured in the same manner.
  • The image reproducibility was evaluated as follows. First, the total discharge current in a charging step was set to 150 µA, and then a cassette heater in the apparatus was turned OFF. Thereafter, a test chart having an image rate of 5% was used to perform continuous image formation for 5000 sheets, and the sheets were left to stand for 3 days. Thereafter, an A4 horizontal 1 dot-1 space image of an output resolution of 600 dpi was formed, and the image density in the vicinity of the charging apparatus and the image reproducibility on the whole surface of the A4 image were evaluated as follows. Similarly, the total discharge current was set to 200 µA, and the image reproducibility was evaluated in the same manner.
    1. A: No irregularities and scattering of dots (namely, no image deletion) were found in the vicinity of the charging apparatus, and the image (fine line) reproducibility was good.
    2. B: Irregularities of dots were found in the vicinity of the charging apparatus when the image was enlarged and observed, but no scattering was found and the fine line reproducibility was good in other portion.
    3. C: Irregularities and scattering of dots were generated in the vicinity of the charging apparatus when the image was enlarged and observed, but the fine line reproducibility was good in other portion.
    4. D: Irregularities and scattering of dots were generated in the vicinity of the charging apparatus when the image was enlarged and observed, but the fine line reproducibility was good in other portion. However, a portion in which the fine line was dashed was generated at several points on the image.
    5. E: White blanks were generated on the image in the vicinity of the charging apparatus, and the fine line reproducibility was poor in other portion.
    6. F: White blanks were generated on the whole surface of the image and the fine line reproducibility was poor.
  • The results are shown in Table 1.
  • Examples 2 to 4
  • Each of electrophotographic photosensitive members was produced in the same manner as in Example 1 except that the contents of the hole transporting compound and the melamine compound were changed as shown in Table 1, and the evaluations were performed. The results are shown in Table 1.
  • Example 5
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that (I-8) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • Example 6
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a guanamine compound (Nikalac BL-60 produced by Sanwa Chemical Co., Ltd.) was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • Example 7
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a blocked isocyanate (product name: Sumijule 3175, produced by Sumika Bayer Urethane Co., Ltd.) was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • Example 8
  • An electrophotographic photosensitive member was produced in the same manner as in Example 5 except that a methylolated urea compound obtained by heating urea together with formaldehyde in the presence of a basic catalyst was used instead of the melamine compound, and the evaluations were performed. The results are shown in Table 1.
  • Examples 9 to 20
  • Each of electrophotographic photosensitive members was produced in the same manner as in Example 1 except that one shown in Table 1 was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
  • Comparative Example 1
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that a compound represented by the following formula (6) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
    Figure imgb0113
  • Comparative Example 2
  • An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that a compound represented by the following structural formula (7) was used as the hole transporting compound, and the evaluations were performed. The results are shown in Table 1.
    Figure imgb0114
  • Comparative Example 3
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 1 except that 1 part of o-terphenyl (produced by Tokyo Chemical Industry Co., Ltd.) was further added to the components in Comparative Example 1, and the evaluations were performed. The results are shown in Table 1. Table 1
    Hole transporting compound having first reactive functional group Compound having second reactive functional group Initial potential (-V) Potential after endurance (-V) Image quality (image reproducibility)
    Type of compound Amount added Type of compound Amount added VD VL VD VL 150µA 200 µA
    Example 1 I-27 99 parts Melamine compound 1 part 700 199 700 200 A A
    Example 2 I-27 94 parts Melamine compound 6 parts 700 205 700 215 C D
    Example 3 I-27 96 parts Melamine compound 4 parts 700 203 699 211 B C
    Example 4 I-27 99 parts Melamine compound 0.1 part 700 199 700 200 B B
    Example 5 I-8 99 parts Melamine compound 1 part 700 198 698 202 A A
    Example 6 I-8 99 parts Guanamine compound 1 part 700 200 698 205 A A
    Example 7 I-8 99 parts Isocyanate compound 1 part 700 199 698 203 A A
    Example 8 I-8 99 parts Urea compound 1 part 700 199 699 203 B B
    Example 9 I-83 99 parts Melamine compound 1 part 700 200 699 204 B B
    Example 10 I-81 99 parts Melamine compound 1 part 700 200 699 209 C C
    Example 11 I-85 99 parts Melamine compound 1 part 700 199 697 203 B B
    Example 12 I-92 99 parts Melamine compound 1 part 700 198 698 202 B B
    Example 13 I-96 99 parts Melamine compound 1 part 700 198 697 202 B B
    Example 14 I-15 99 parts Melamine compound 1 part 700 201 700 209 B B
    Example 15 I-46 99 parts Melamine compound 1 part 700 198 698 202 C C
    Example 16 I-48 99 parts Melamine compound 1 parts 700 199 699 204 C C
    Example 17 I-58 99 parts Melamine compound 1 parts 700 200 697 204 C C
    Example 18 I-104 99 parts Melamine compound 1 parts 700 203 697 210 D D
    Example 19 I-106 99 parts Melamine compound 1 parts 700 205 700 218 D D
    Example 20 I-49 99 parts Melamine compound 1 parts 700 212 700 230 D D
    Comparative Example 1 Amine-based CTM 99 parts Melamine compound 1 parts 700 199 700 200 E F
    Comparative Example 2 Amine-based CTM 99 parts Melamine compound 1 parts 700 200 699 202 E F
    Comparative Example 3 Amine-based CTM 99 parts Melamine compound 1 parts 700 207 699 248 C D
  • As can be seen from Table 1, with respect to the evaluation results, the initial potential, the potential after endurance (potential after image formation for 1000 sheets), and the image (fine line) reproducibility were good in Examples. On the other hand, reduced image (fine line) reproducibility associated with image deletion was found in Comparative Examples 1 and 2, and was not at a satisfactory level. In Comparative Example 3, a good result was achieved with respect to the image deletion, but the VL potential after endurance was significantly increased relative to the initial VL potential, and the image density was found to be reduced after endurance and was not at a satisfactory level.
  • While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

Claims (14)

  1. An electrophotographic photosensitive member comprising:
    a support; and
    a photosensitive layer formed on the support,
    wherein a surface layer of the electrophotographic photosensitive member comprises a polymerized product of a composition comprising:
    a hole transporting compound having a first reactive functional group; and
    a compound having a second reactive functional group reactable with the first reactive functional group,
    wherein
    a structure other than the first reactive functional group of the hole transporting compound is:
    a structure consisting of one or more carbon atoms and one or more hydrogen atoms; or
    a structure consisting of one or more carbon atoms, one or more hydrogen atoms and one or more oxygen atoms.
  2. The electrophotographic photosensitive member according to claim 1,
    wherein the structure other than the first reactive functional group of the hole transporting compound is a structure having a conjugate structure having 24 or more sp2 carbon atoms, and
    the conjugate structure has a condensed polycyclic structure having 12 or more sp2 carbon atoms.
  3. The electrophotographic photosensitive member according to claim 2, wherein the hole transporting compound has 2 or more of the condensed polycyclic structures.
  4. The electrophotographic photosensitive member according to claim 2 or 3, wherein the condensed polycyclic structures are connected to each other by a single bond.
  5. The electrophotographic photosensitive member according to any one of claims 2 to 4, wherein the condensed polycyclic structure has a 5-membered ring or a 6-membered ring.
  6. The electrophotographic photosensitive member according to any one of claims 2 to 5, wherein the structure other than the first reactive functional group of the hole transporting compound has a conjugate structure having 28 or more sp2 carbon atoms.
  7. The electrophotographic photosensitive member according to claim 1, wherein a compound in which the first reactive functional group of the hole transporting compound is replaced with a hydrogen atom is a compound represented by the following formula (1):
    Figure imgb0115
    wherein in the formula (1), R1 to R6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aryl group, R7 represents a group derived from a substituted or unsubstituted arene by loss of 6 hydrogen atoms , and n represents an integer of 1 to 10, provided that when n represents 2 to 10, partial structures represented by the following formula (2) in the formula (1) may be the same or different:
    Figure imgb0116
  8. The electrophotographic photosensitive member according to claim 7, wherein the arene of R7 in the formula (1) is fluorene, anthracene, phenanthrene, fluoranthene or pyrene.
  9. The electrophotographic photosensitive member according to any one of claims 1 to 8,
    wherein the first reactive functional group is a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group, and
    the compound having a second reactive functional group is a melamine compound, a guanamine compound, a urea compound or an isocyanate compound.
  10. The electrophotographic photosensitive member according to claim 9,
    wherein the first reactive functional group is a hydroxy group, and
    the compound having a second reactive functional group is an isocyanate compound, a melamine compound or a guanamine compound.
  11. The electrophotographic photosensitive member according to any one of claims 1 to 10, wherein a molecular weight of the compound represented by the formula (1) is 300 or more and 3000 or less.
  12. A process cartridge which integrally supports the electrophotographic photosensitive member according to any one of claims 1 to 11, and at least one unit selected from the group consisting of a charging unit, a developing unit, a transferring unit and a cleaning unit, wherein the process cartridge is detachably attachable to a main body of an electrophotographic apparatus.
  13. An electrophotographic apparatus comprising the electrophotographic photosensitive member according to any one of claims 1 to 11, a charging unit, an exposing unit, a developing unit and a transferring unit.
  14. A condensed polycyclic aromatic compound having a first reactive functional group,
    wherein
    a structure other than the first reactive functional group of the condensed polycyclic aromatic compound is:
    a structure consisting of one or more carbon atoms and one or more hydrogen atoms; or
    a structure consisting of one or more carbon atoms, one or more hydrogen atoms and one or more oxygen atoms,
    the first reactive functional group is a hydroxy group, a methoxy group, a carboxy group, an amino group or a thiol group, and
    the structure other than the first reactive functional group of the condensed polycyclic aromatic compound is a structure having a conjugate structure having 24 or more sp2 carbon atoms
EP14000813.7A 2013-03-07 2014-03-07 Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound Active EP2790059B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14000813.7A EP2790059B1 (en) 2013-03-07 2014-03-07 Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013045698 2013-03-07
JP2014032154A JP6391251B2 (en) 2013-03-07 2014-02-21 Electrophotographic photoreceptor, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
EP14000720 2014-02-28
EP14000813.7A EP2790059B1 (en) 2013-03-07 2014-03-07 Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP14000720 Previously-Filed-Application 2013-03-07 2014-02-28

Publications (4)

Publication Number Publication Date
EP2790059A2 EP2790059A2 (en) 2014-10-15
EP2790059A8 EP2790059A8 (en) 2014-12-10
EP2790059A3 EP2790059A3 (en) 2014-12-24
EP2790059B1 true EP2790059B1 (en) 2017-01-11

Family

ID=51494675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14000813.7A Active EP2790059B1 (en) 2013-03-07 2014-03-07 Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound

Country Status (1)

Country Link
EP (1) EP2790059B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503083B1 (en) * 2003-01-10 2005-07-21 삼성전자주식회사 Positively charged organophotoreceptor for electrophotography
US8679709B2 (en) * 2007-06-28 2014-03-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
JP5573170B2 (en) * 2010-01-08 2014-08-20 富士ゼロックス株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
CN103529666B (en) * 2012-06-29 2017-04-12 佳能株式会社 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2790059A2 (en) 2014-10-15
EP2790059A3 (en) 2014-12-24
EP2790059A8 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US9316931B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
US10670979B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and method of manufacturing electrophotographic photosensitive member
US9594318B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP2965154B1 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and condensed polycyclic aromatic compound
EP2775352B1 (en) Electrophotographic photosensitive member, and electrophotographic apparatus and process cartridge each including the electrophotographic photosensitive member
US10031430B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US10488769B2 (en) Electrophotographic photosensitive member, and electrophotographic apparatus and process cartridge each including the electrophotographic photosensitive member
JP3755856B2 (en) Electrophotographic photoreceptor
EP3588192A1 (en) Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and method of producing electrophotographic photosensitive member
US20200249590A1 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
DE102017103153B4 (en) ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELEMENT, PROCESS CARTRIDGE AND ELECTROPHOTOGRAPHIC APPARATUS
US9946175B2 (en) Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and condensed polycyclic aromatic compound
JP6391251B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
US10331052B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP2790059B1 (en) Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and condensed polycyclic aromatic compound
JP2015191013A (en) Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic device and process cartridge having the electrophotographic photoreceptor
JP2017049547A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6433207B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP6072140B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US20240111224A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3663061B2 (en) Electrophotographic photoreceptor
JPH0815879A (en) Electrophotographic photoreceptor
JPH0950145A (en) Photoreceptor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140307

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: G03G 5/147 20060101ALI20141021BHEP

Ipc: G03G 5/07 20060101ALI20141021BHEP

Ipc: G03G 5/06 20060101AFI20141021BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G03G 5/06 20060101AFI20141117BHEP

Ipc: G03G 5/147 20060101ALI20141117BHEP

Ipc: G03G 5/07 20060101ALI20141117BHEP

R17P Request for examination filed (corrected)

Effective date: 20150624

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CANON KABUSHIKI KAISHA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014006106

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 861820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014006106

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170307

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170307

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230221

Year of fee payment: 10