EP2788583B1 - Aube directrice de turbine dotée d'un élément d'étranglement - Google Patents

Aube directrice de turbine dotée d'un élément d'étranglement Download PDF

Info

Publication number
EP2788583B1
EP2788583B1 EP12808764.0A EP12808764A EP2788583B1 EP 2788583 B1 EP2788583 B1 EP 2788583B1 EP 12808764 A EP12808764 A EP 12808764A EP 2788583 B1 EP2788583 B1 EP 2788583B1
Authority
EP
European Patent Office
Prior art keywords
turbine
throttle element
coolant
vane
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12808764.0A
Other languages
German (de)
English (en)
Other versions
EP2788583A1 (fr
Inventor
Fathi Ahmad
Nihal Kurt
Mario Nitsche
Marco Schüler
Andreas Varnholt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12808764.0A priority Critical patent/EP2788583B1/fr
Publication of EP2788583A1 publication Critical patent/EP2788583A1/fr
Application granted granted Critical
Publication of EP2788583B1 publication Critical patent/EP2788583B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the invention relates to a turbine guide vane with an aerodynamically curved airfoil, which has a channel system equipped with a throttle element of channel sections for guiding coolant.
  • Such a turbine blade is for example from the WO 01/36790 A1 known.
  • the throttling of the cooling air consumption of the known turbine blade takes place with the aid of a plug, which is attached from outside into the turbine guide vanes at a reversal point of the cooling duct.
  • the flow-through cross section of the reversal point and thus the flow rate of cooling air can be easily adjusted to predetermined dimensions.
  • casting-related dimensional differences arising from the production of the turbine blade can be compensated by means of the plug, whereby an excessive consumption of cooling air can be avoided.
  • the throttle may also be formed as a cast web extending transversely into the cooling channel. In this case, however, the size of the throttle effect after casting the turbine blade is no longer adjustable.
  • the object of the invention is to provide an alternative turbine vane, in which despite a present at the deflection point opening for the removal of coolant from the turbine blade a subsequent throttling is possible.
  • the invention is based on the finding that, in the case of a turbine guide vane with an aerodynamically curved airfoil, which has a duct system comprising duct sections for guiding coolant, equipped with a throttle element, the throttle element must be designed in such a way that it also permits the removal of coolant. Consequently, it should be equipped with an inflow opening, an outflow opening and a channel connecting the two openings.
  • the throttle element is now not alone for throttling. It is also used as a switch for splitting the coolant into two separate coolant streams. The first of the two coolant sub-streams continues to flow within the turbine vane and is used to cool the airfoil and its trailing edge.
  • the other of the two coolant sub-streams is led out of the turbine vane immediately.
  • the latter is particularly advantageous if at the end at which the coolant is led out of the turbine vane, further gas turbine components are arranged, which must either be cooled or with which the turbine vane (or other components) include gaps in which a hot gas could penetrate the gas turbine.
  • the respective gaps are blocked by outflowing coolant, so that the hot gas intrusion can be safely avoided.
  • the throttle element is inserted into the turbine guide vane and designed cup-shaped with a circumferentially arranged inflow opening for coolant, wherein the pot opening of the throttle element is disposed in the outer surface of the turbine vane.
  • the pot opening represents the outflow opening for the flow into the throttle element coolant partial flow.
  • Another advantage of this design is that with a single component inserted into the cast turbine vane - the throttle element - the distribution of the incoming coolant flow into two partial streams can take place.
  • the distribution of the coolant flow depends on the size of the inflow opening and on the remaining flow cross-section at the throttle point in the duct system.
  • the pot opening may still have a collar whose diameter is larger than the opening into which the throttle element is inserted. This prevents that when inserting the throttle element this fall into the channel sections and thus can be lost.
  • the turbine guide vane is a cast component, which is designed largely or completely monolithically.
  • the turbine vane includes a foot region and a head region for attachment. Both areas are arranged on both sides of the airfoil.
  • the throttle element may be arranged in the foot area and / or in the head area.
  • the root section of the turbine vane is used to attach the turbine vane on an annular vane carrier.
  • the blade area extends radially inward from the foot region, at the inner end of which the head region adjoins.
  • the foot area and head area generally each comprise a so-called platform for the local, radial delimitation of the hot gas channel of the gas turbine.
  • a low-pressure loss of coolant through the throttle element can take place when the inflow opening faces the incoming coolant flow.
  • the cross-sectional area of all through-flow openings is preferably substantially smaller than the cross-sectional area of the inflow opening.
  • the through-flow openings are located opposite the inflow opening and consequently on the side of the throttle element at which the coolant partial stream remaining in the turbine guide vane for the time being flows out. It is even conceivable that such flow openings are located even in throttle element, if this is not for the removal of cooling air - that is not partially tubular, but solid - configured.
  • the throttle element is arranged in that region which is opposite to the feed.
  • a turbine nozzle 10 for a stationary gas turbine is in FIG. 1 shown in perspective.
  • the turbine vane 10 comprises a foot region 12, an aerodynamically curved airfoil 14 and a head region 16, which follow one another along a longitudinal axis 18.
  • the foot region 12 is located radially outward and the head region 16 is located radially inwards.
  • Both foot region 12 and head region 16 each include a platform 20 which forms the local, radial boundary of the annular hot gas path of the gas turbine in the region of the respective turbine guide vane 10.
  • the airfoil 14 extends through the annular hot gas channel 22.
  • Both foot region 12 and head region 16 have on their sides facing away from the hot gas channel 22 a plurality of hooks 24 for attachment.
  • hooks 24 are used to attach the turbine vane 10 to an annular turbine vane carrier, not shown.
  • the hooks located in the head area 16 serve for fastening a so-called U-ring, which is also not shown here.
  • the airfoil 14 comprises a leading edge 17 and a trailing edge 19, between which a pressure-side and a suction-side airfoil wall 40, 42 extend.
  • FIG. 1 shown blade 14 is not completely perspective, but partially shown in longitudinal section.
  • the channel sections 26 of a channel system 28 present in the interior of the blade 14 are shown.
  • the channel system 28 with the channel sections 26 between the two walls 40, 42 (FIG. FIG. 2 ) arranged.
  • the channel system 28 is configured to guide coolant, which can be supplied via an opening 30 of the turbine guide vane 10 arranged on the base side.
  • three parallel juxtaposed channel portions 26 are provided, two of which are fluidically connected to one another at the head-side region via a deflection region 30.
  • the turbine guide vane 10 has an opening 31 into which a throttle element is connected from the outside 32 is inserted.
  • the throttle element 32 may be welded or soldered to the cast turbine vane 10 at points or peripherally.
  • the throttle element 32 is cup-shaped with a cylindrical shell and a bottom of the pot 34, which is a gap forming a the two channel sections 26 separating partition 36 opposite.
  • FIG. 2 shows the turbine vane 10 according to the section II-II in FIG. 1 with the head portion 16 and the hooks 24 arranged thereon in a perspective view.
  • the throttle element 32 inserted from the outside into the turbine guide vane 10 on the outside is shown in perspective and has an inflow opening 37 which faces one (26a) of the channel sections 26. Through the inflow opening 37 through a pot opening 38 can be seen.
  • the pot bottom 34 is the head-side end 39 ( Fig. 1 ) of the partition wall 36 gap forming opposite.
  • the throttle element 32 is formed cylindrically with a constant diameter.
  • the throttle element is also configured cylindrically with sections of different diameters or conical.
  • the inner surfaces of the airfoil walls 40 42 are spaced, so that the incoming from the channel portion 26 a coolant flow, usually cooling air, flows into two flow streams either into the inflow opening 37 or into the gaps between the blade wall inner surfaces or partition wall 36 and throttle element 32 , The latter partial flow then flows through the channel section 26b and remains in the turbine guide vane 10 for the time being.
  • the partial flow flowing into the inflow opening 37 flows out through the pot opening 38 and can be on the hub side be used for cooling the components located there or to block columns against hot gas intake.
  • one or more flow openings 41 can still be provided in the throttle element.
  • the invention relates to a turbine vane 10 with an aerodynamically curved airfoil 14, which has a equipped with a throttle element 32 channel system 28 of channel portions 26 for guiding coolant.
  • the throttle element 32 is designed for removal of coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (5)

  1. Aube (10) directrice de turbine ayant une lame (14) d'aube à courbure aérodynamique,
    qui a un système (28) de canal, équipé d'un élément (32) d'étranglement et composé de tronçons (26) de canal, pour conduire du fluide de refroidissement, caractérisé en ce que
    l'élément (32) d'étranglement est inséré (10) directrice de turbine et est conformé pour le prélèvement de fluide de refroidissement ainsi qu'en forme de pot ayant une ouverture (37) d'entrée du fluide de refroidissement disposé du côté du pourtour,
    l'ouverture (38) du pot de l'élément (32) d'étranglement étant disposée dans la surface extérieure de l'aube (10) directrice de turbine.
  2. Aube (10) directrice de turbine suivant la revendication 1,
    qui comprend, pour la fixation, une partie (12) d'emplanture et une partie (16) de tête, qui sont disposées des deux côtés sur la lame (14) d'aube et l'élément (32) d'étranglement est disposé dans la partie (12) d'emplanture et/ou dans la partie (16) de tête.
  3. Aube (10) directrice de turbine suivant la revendication 1 ou 2,
    dans laquelle, dans la lame (14) de l'aube, deux tronçons (26) de canal, disposés à peu près parallèlement entre eux, sont reliés l'un à l'autre en technique d'écoulement par une partie (30) de déviation disposée du côté de l'emplanture ou du côté de la tête et l'élément (32) d'étranglement pénètre transversalement dans la partie (30) de déviation.
  4. Aube (10) directrice de turbine suivant l'une des revendications 1, 2 ou 3,
    dans laquelle l'ouverture (37) d'entrée est tournée vers le courant arrivant du fluide de refroidissement.
  5. Aube (10) directrice de turbine suivant l'une des revendications 1, 2, 3 ou 4,
    dans laquelle il est prévu au moins une ouverture de traversée.
EP12808764.0A 2012-02-14 2012-12-12 Aube directrice de turbine dotée d'un élément d'étranglement Active EP2788583B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12808764.0A EP2788583B1 (fr) 2012-02-14 2012-12-12 Aube directrice de turbine dotée d'un élément d'étranglement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12155394.5A EP2628900A1 (fr) 2012-02-14 2012-02-14 Aube directrice de turbine dotée d'un élément d'étranglement
PCT/EP2012/075256 WO2013120560A1 (fr) 2012-02-14 2012-12-12 Aube directrice de turbine équipée d'un élément d'étranglement
EP12808764.0A EP2788583B1 (fr) 2012-02-14 2012-12-12 Aube directrice de turbine dotée d'un élément d'étranglement

Publications (2)

Publication Number Publication Date
EP2788583A1 EP2788583A1 (fr) 2014-10-15
EP2788583B1 true EP2788583B1 (fr) 2016-03-02

Family

ID=47469943

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12155394.5A Withdrawn EP2628900A1 (fr) 2012-02-14 2012-02-14 Aube directrice de turbine dotée d'un élément d'étranglement
EP12808764.0A Active EP2788583B1 (fr) 2012-02-14 2012-12-12 Aube directrice de turbine dotée d'un élément d'étranglement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12155394.5A Withdrawn EP2628900A1 (fr) 2012-02-14 2012-02-14 Aube directrice de turbine dotée d'un élément d'étranglement

Country Status (7)

Country Link
US (1) US9856738B2 (fr)
EP (2) EP2628900A1 (fr)
JP (1) JP6005764B2 (fr)
CN (1) CN104126054B (fr)
IN (1) IN2014DN05979A (fr)
RU (1) RU2615091C2 (fr)
WO (1) WO2013120560A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481927A (zh) * 2014-12-12 2015-04-01 常州环能涡轮动力股份有限公司 具有双面离心压轮微型涡轮喷气发动机的导流环
EP3147455A1 (fr) 2015-09-23 2017-03-29 Siemens Aktiengesellschaft Aube directrice de turbine ayant un agencement d'étranglement
EP3199760A1 (fr) * 2016-01-29 2017-08-02 Siemens Aktiengesellschaft Aube de turbine dotée d'un élément d'étranglement
CN109374275A (zh) * 2018-11-13 2019-02-22 霍山嘉远智能制造有限公司 一种涡轮导向叶片的内部流道检测工装
KR102207971B1 (ko) * 2019-06-21 2021-01-26 두산중공업 주식회사 터빈 베인, 및 이를 포함하는 터빈
CN112539086A (zh) * 2020-10-27 2021-03-23 哈尔滨广瀚燃气轮机有限公司 涡轮动叶冷却空气分段旋转增压装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2468727A1 (fr) * 1979-10-26 1981-05-08 Snecma Perfectionnement aux aubes de turbine refroidies
US4526551A (en) * 1980-05-30 1985-07-02 Champion Spark Plug Company Production of electrodes
JPS57153903A (en) 1981-03-20 1982-09-22 Hitachi Ltd Cooling structure for turbing blade
US4526512A (en) * 1983-03-28 1985-07-02 General Electric Co. Cooling flow control device for turbine blades
DE3603350A1 (de) * 1986-02-04 1987-08-06 Walter Prof Dipl Ph Sibbertsen Verfahren zur kuehlung thermisch belasteter bauelemente von stroemungsmaschinen, vorrichtung zur durchfuehrung des verfahrens sowie ausbildung thermisch belasteter schaufeln
US4666368A (en) * 1986-05-01 1987-05-19 General Electric Company Swirl nozzle for a cooling system in gas turbine engines
JPH09303103A (ja) 1996-05-16 1997-11-25 Toshiba Corp 閉ループ冷却形タービン動翼
JPH10306701A (ja) 1997-05-08 1998-11-17 Toshiba Corp タービン動翼およびその製造方法
RU2159335C1 (ru) 1999-04-28 2000-11-20 Открытое акционерное общество "А.Люлька-Сатурн" Способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя
EP1099825A1 (fr) 1999-11-12 2001-05-16 Siemens Aktiengesellschaft Aube de turbine et sa méthode de production
US7185662B2 (en) * 2003-11-14 2007-03-06 United Technologies Corporation Methods of preparing, cleaning and repairing article and article repaired
EP1789654B1 (fr) * 2004-09-16 2017-08-23 General Electric Technology GmbH Pale de turbomachine a couronne a refroidissement fluidique
US8016547B2 (en) * 2008-01-22 2011-09-13 United Technologies Corporation Radial inner diameter metering plate
ES2542064T3 (es) 2008-03-28 2015-07-30 Alstom Technology Ltd Álabe de guía para una turbina de gas y turbina de gas con un álabe de guía de esta clase
RU2387846C1 (ru) 2008-10-29 2010-04-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Способ охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя и устройство для его реализации

Also Published As

Publication number Publication date
JP2015507129A (ja) 2015-03-05
EP2628900A1 (fr) 2013-08-21
RU2014136803A (ru) 2016-04-10
JP6005764B2 (ja) 2016-10-12
US20140377058A1 (en) 2014-12-25
US9856738B2 (en) 2018-01-02
EP2788583A1 (fr) 2014-10-15
WO2013120560A1 (fr) 2013-08-22
CN104126054A (zh) 2014-10-29
IN2014DN05979A (fr) 2015-06-26
CN104126054B (zh) 2016-02-03
RU2615091C2 (ru) 2017-04-03

Similar Documents

Publication Publication Date Title
EP2788583B1 (fr) Aube directrice de turbine dotée d'un élément d'étranglement
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE10210866C1 (de) Leitschaufelbefestigung in einem Strömungskanal einer Fluggasturbine
EP2693120A2 (fr) Chambre de combustion de turbine à gaz avec orifices d'air de mélange et éléments de guidage d'air de construction modulaire
EP2140114A2 (fr) Palier axial notamment pour un turbocompresseur
DE102007007090A1 (de) Gasturbine mit Kühlluft-Übertragungssystem
WO2006017952A1 (fr) Dispositif de nettoyage pour turbine a gaz
EP2818643B1 (fr) Dispositif d'étanchéité et turbomachine
EP3333398B1 (fr) Culasse de cylindre
EP2823152A1 (fr) Aube mobile de turbine et section axiale de rotor pour une turbine à gaz
EP3121373A1 (fr) Roue de turbine refroidie, plus particulièrement pour un réacteur
EP3473808B1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
EP3548732A1 (fr) Pale de rotor pour une éolienne et éolienne
DE102016104957A1 (de) Kühleinrichtung zur Kühlung von Plattformen eines Leitschaufelkranzes einer Gasturbine
WO2015007443A1 (fr) Rotor pour turbomachine thermique
EP2994615B1 (fr) Rotor pour une turbomachine thermique
WO2015007494A1 (fr) Rotor pour une turbomachine thermique
EP3112593A1 (fr) Aube de turbine a refroidissement interieur
EP3312388B1 (fr) Pièce de rotor, compresseur, turbine et procédé de fabrication associés
EP3109520B1 (fr) Support d'étanchéité, stator et turbomachine
WO2011054341A2 (fr) Ensemble d'étanchéité pour une turbine à gaz et turbine à gaz de ce type
EP3087254B1 (fr) Composant pouvant être alimenté par un gaz chaud pour une turbine à gaz et système d'étanchéité doté d'un tel composant
EP3232001A1 (fr) Aube rotorique de turbine
WO2015150089A1 (fr) Brûleur bicombustible pour turbine à gaz
DE102008029528A1 (de) Vorrichtung zur Gasführung zwischen Rotorscheiben eines Verdichters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006187

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006187

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 778208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012006187

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 12

Ref country code: FR

Payment date: 20231226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 12

Ref country code: CH

Payment date: 20240101

Year of fee payment: 12