EP2781000A1 - Storage battery protected from internal short-circuits - Google Patents

Storage battery protected from internal short-circuits

Info

Publication number
EP2781000A1
EP2781000A1 EP12788499.7A EP12788499A EP2781000A1 EP 2781000 A1 EP2781000 A1 EP 2781000A1 EP 12788499 A EP12788499 A EP 12788499A EP 2781000 A1 EP2781000 A1 EP 2781000A1
Authority
EP
European Patent Office
Prior art keywords
current
accumulators
stage
battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12788499.7A
Other languages
German (de)
French (fr)
Inventor
Sébastien CARCOUET
Bruno Beranger
Daniel Chatroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2781000A1 publication Critical patent/EP2781000A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/108Normal resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to electrochemical storage batteries. These can be used, for example, in the field of electric and hybrid transport or on-board systems.
  • Hybrid combustion / electric or electric vehicles include in particular high power batteries. Such batteries are used to drive an AC electric motor through an inverter. The voltage levels required for such motors reach several hundred volts, typically of the order of 400 volts. Such batteries also have a high capacity to promote the autonomy of the vehicle in electric mode.
  • the electrochemical accumulators used for such vehicles are generally of the lithium type for their ability to store a significant amount of energy with a weight and a volumetric content. Lithium ion iron phosphate LiFeP04 battery technologies are undergoing significant development due to a high intrinsic safety level, to the detriment of a slightly lower energy storage density.
  • An electrochemical accumulator usually has a nominal voltage of the following order of magnitude:
  • FIG. 1 represents a Bat ion battery Bat ion known in the state of the art.
  • Bat battery consists of four stages Et1, Et2, Et3 and Et4 connected in series. Each stage has four similar accumulators connected in parallel. The terminals of the accumulators of the same stage are connected together by means of strong electrical connections. Each stage is also connected to the adjacent stages via high section electrical connections in order to pass strong currents corresponding to the sum of the currents of the accumulators of a stage.
  • One or more loads are intended to be connected to the terminals N and P of the battery 1.
  • the voltage across the four stages is noted respectively U 1, U 2, U 3 and U 4.
  • the total voltage U between the terminals N and P of the battery 1 is the sum of the voltages U 1, U 2, U 3 and U 4.
  • each fourth-stage accumulator Et4 is denoted 11, 12, 13 and 14, respectively.
  • the current I generated on the P-terminal of the battery Bat is the sum of the currents 11, 12, 13 and 14.
  • a balance circuit Load balancing Eq is connected to the terminals of each stage of the Bat battery.
  • a fault on an accumulator usually results either by shorting the accumulator, or by an open circuit, or by a large leakage current in the accumulator. It is important to know the impact of a battery failure. Open or short-circuiting can cause an overall launcher failure of the entire battery.
  • the battery behaves like a resistor which causes a discharge of the accumulators of the stage considered to zero.
  • the risks of starting fire are low because the energy is dissipated relatively slowly.
  • the discharge of the accumulators of the stage up to a zero voltage deteriorates them implicating their replacement in addition to the initially defective accumulator.
  • the other three accumulators of the stage will initially discharge into this accumulator, because of the strong section of the electrical connections between them.
  • the fuse placed in series with the battery in short circuit will interrupt the parasitic discharge of the other three accumulators.
  • each battery has a fuse connected to it in series.
  • the current flowing through it increases substantially and melts its series fuse in order to protect the rest of the battery Bat.
  • the dissipation of energy in the accumulator in short circuit would induce its heating as well as that of other accumulators discharging. Such dissipation could be the cause of a start of fire.
  • Lithium ion technologies are particularly at risk when a stage has a large number of parallel accumulators to store a large amount of energy.
  • Cobalt oxide is known as a highly reactive chemistry.
  • Iron phosphate is known to him as the safest chemistry. The use of fuses is therefore particularly suitable for these technologies, particularly for iron phosphate which tolerates a certain surge.
  • WO201 1/003924 discloses a battery structure for eliminating the losses induced by a protection system during normal operation of the battery, and further ensuring continuity of service of the battery when an element battery is in short circuit or circuit breaker.
  • the battery comprises at least first and second branches each having at least first and second accumulators connected in series.
  • the battery further comprises a fuse through which the first accumulators are connected in parallel and through which the second accumulators are connected in parallel.
  • the cut-off threshold of the fuse is sized to open when one of the accumulators is short-circuited.
  • the battery supplies a vehicle electric motor
  • its recharging occurs either when the vehicle is stopped by connecting the battery to the electrical network, or during the driving of the vehicle during phases during which the electric motor operates as a generator.
  • charge or balancing currents to the accumulators that are not negligible.
  • the fuses connected in parallel connections can thus be traversed by relatively large currents.
  • some fuses can be crossed by the accumulation of recharging or balancing currents to several accumulators of the same floor and remote recharge connectivity. Some fuses may thus represent a common connection of several accumulators to the balancing circuit.
  • the sizing of the fuses of parallel connections may be difficult to ensure both the protection of the accumulators, the continuity of service of the battery during a malfunction of an accumulator, and the recharging of the different cells. Accumulators. Joule losses can also occur during recharging or balancing due to currents flowing through the fuses. The life of the fuses can also be reduced by the repeated application of load currents through them.
  • the fuses have a function of interruption of the current in case of overcurrent.
  • the current flowing through the transistors when they are closed is also negligible compared to the current delivered by the accumulators.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to a storage battery as defined in the claims.
  • the invention also relates to a system defined in the claims.
  • FIG 1 is a schematic representation of an example battery according to the state of the art
  • FIG. 2 is a schematic representation of an exemplary battery according to one embodiment of the invention.
  • FIG. 3 illustrates an example of bidirectional current limiter
  • FIG. 4 illustrates another example of bidirectional current limiter
  • FIG. 5 illustrates yet another example of bidirectional current limiter
  • FIG. 6 is a diagram illustrating the usual intensity response of a JFET transistor as a function of the voltage applied between its source and its drain;
  • FIG. 7 is a schematic representation of an example of a battery according to one embodiment of the invention, having been simulated during the malfunctioning of an electrochemical cell;
  • FIG. 8 is a diagram illustrating the evolution of the intensity in electrochemical cells of the battery of FIG. 7;
  • FIG 9 is a diagram illustrating the evolution of the voltage across different electrochemical cells of the battery of Figure 7;
  • FIG. 10 is a diagram illustrating the evolution of the voltage across electrochemical cells in a stage comprising a faulty electrochemical cell
  • FIG. 11 schematically illustrates an advantageous variant of connection of electrochemical cells in a battery stage
  • FIG. 12 illustrates a monodirectional current limiter that can be used in the variant of FIG. 11;
  • FIG. 13 illustrates an isolation circuit of a battery module including a faulty electrochemical cell
  • FIG. 14 illustrates a battery including several modules in a normal operating mode
  • FIG. 1 illustrates the battery of FIG. 14 in an operating mode in which one of the modules includes a faulty electrochemical cell.
  • the current imigraph will denote a component or circuit traversed by an increasing current with the voltage at its terminals when this voltage is below a saturation threshold, and traversed by a substantially constant saturation current when this voltage is greater than saturation threshold.
  • the saturation current is greater than 50% of the maximum value of the current for any voltage across the limit below the saturation threshold.
  • the saturation current is at least equal to the maximum value of the current for a voltage across the lower limit of the saturation threshold.
  • FIG. 2 is a diagrammatic representation of an exemplary battery 1 according to one embodiment of the invention.
  • the battery 1 comprises five stages Eti to Et5 connected electrically in series. Each stage comprises five accumulators or electrochemical cells electrically connected in parallel.
  • the battery 1 thus comprises five branches Br1 to Br5 electrically connected in parallel.
  • the parallel connection of the accumulators of a stage is carried out via current imagers Li. Each current im Li of the example participates in the parallel connection of two accumulators of one stage. as well as the parallel connection of two accumulators of another stage.
  • An electric charge 3 is connected to the terminals P and N of the battery 1, so as to be supplied by this battery.
  • a load balancing management circuit 2 is electrically connected to each of the stages Eti to Et5. Circuit 2 is configured to charge the accumulators of these stages. Circuit 2 is also configured to track the state of charge of the accumulators. The circuit 2 is also configured to implement load balancing of the accumulators of these stages, according to the monitoring of their state of charge. The functions of charging / monitoring the state of charge / load balancing are known per se and will not be detailed further.
  • the battery 1 advantageously comprises power reader cols traversed by the currents in parallel coming from different branches Br1 to Br5.
  • the current imitators allow to imitate the current delivered through a short-circuited accumulator, in order to avoid any risk of overheating and fire, even in the presence of a large number of connected accumulators. parallel in each floor.
  • the discharge rate of the accumulators of a stage including a short-circuited accumulator is also imitated, which may make it possible to continue using the battery 1.
  • an accumulator The short circuit is not isolated from circuit 2, which makes it possible to detect its spike and continue its monitoring. By measuring the voltage at each stage, the circuit can thus detect a spike, by noting, for example, that one stage is discharging or charging differently from the other stages. Since a short-circuited accumulator remains connected in parallel with the other accumulators of the stage, it can be detected that the other accumulators are gradually discharged therein.
  • the current im litors also make it possible to implement a distribution of intensity between the accumulators of the various branches in the presence of a short-circuited accumulator.
  • the current limiters Li may be of any suitable type.
  • Figure 3 illustrates an example of the current imager Li based on the use of JFET type transistors.
  • the current limiter Li of this example advantageously comprises two transistors T1 and 12 mounted head to tail.
  • the transistor T1 has its grill connected to its source. Its drain is intended to be connected to a terminal of an accumulator. The transistor T1 thus ensures imitation of the current flowing in the direction al lant of its drain towards its source.
  • the transistor 12 has its grill connected to its source. Its drain is intended to be connected to a terminal of an accumulator. Transistor 12 thus provides an imitation of the current flowing in the direction al lant of its drain towards its source.
  • a JFET type transistor has the advantage of being naturally closed in the absence of a control circuit for polarizing its grill. It is thus not necessary to have a control circuit to allow the passage of cross currents balancing load or recharging accumulators.
  • a current l imitor Li imitates the discharge current from an accumulator to which it is connected when it discharges into another short-circuited accumulator;
  • Figure 6 illustrates a classic example of a transistor characteristic
  • JFET for a potential difference Vgs between the grid and the given source.
  • the ordinate corresponds to the drain-source current Ids
  • the abscissa corresponding to the potential difference Vds between its drain and its source.
  • the current Ids is substantially proportional to the voltage Vds when Vds is less than the saturation voltage Vs.
  • the current is substantially constant and close to a saturation current Is when the voltage
  • Vds is greater than said saturation threshold Vs.
  • the current Ids for a voltage Vds greater than Vs is greater than the current Ids for any voltage Vds less than Vs.
  • Vds crosses the value Vs, notably because of the heating of the transistors.
  • the current Ids remains significant when Vds is greater than Vs, for example at least equal to 0.5 * Is.
  • the JFET transistor or transistors of the current imi Li may also be replaced by depletion-type Mosfet transistors whose gate is connected to the source and whose drain is connected to a terminal of an accumulator. Such a transistor can also be naturally closed in the absence of a control circuit to polarize the grill.
  • the JFET transistor (s) of the current imi L can also be replaced by N channel type enrichment-type Mosfet transistors. Such a transistor being in the natural state of being open, its grill must be permanently controlled. to keep it closed.
  • FIG. 4 shows a first example of a Li-imitator structure that makes it possible to keep two N-channel-type enhancement-type Mosfet transistors in the closed state, without the need for an external control circuit to polarize its grill.
  • Two Mos heads are used because of the presence of an internal diode junction in the Mos between drain and source.
  • the limiter Li comprises a transistor T1.
  • Diode D1 models the diode intrinsic to Mos transistor T1, whose anode is connected to the source of transistor T1 and whose cathode is connected to the drain of transistor T1.
  • the l imitor Li comprises a transistor 12.
  • the diode D2 models the diode intrinsic to the Mos transistor 12, whose anode is connected to the source of the transistor 12 and whose cathode is connected to the drain of the transistor 12.
  • the gate of the transistors T1 and 12 is connected via a same resistor R to a terminal of a battery A. In practice, the voltage across the battery A polarizes the grill of the transistors T1 and 12 and thus keeps them on.
  • FIG. 5 shows a second example of a Li-imitator structure making it possible to keep two NMos-type transistors in the closed state, without the need for an external control circuit to polarize its gate.
  • Two accumulators A1 and A2 are connected in parallel in the same floor.
  • the source of the transistor T1 is connected to a first terminal of the accumulator A1.
  • the gate of the transistor T1 is connected to a second terminal of the accumulator A1 via a resistor R1.
  • the source of the transistor 12 is connected to a first terminal of the accumulator A2.
  • the gate of the transistor 12 is connected to a second terminal of the battery A2 via a resistor R2.
  • Transistors T1 and 12 are connected by their source.
  • the respective intrinsic diodes D1 and D2 of the MOS transistors T1 and 12 are also lustrous. The voltages at the terminals of the accumulators A1 and A2 polarize the respective gates of the transistors T1 and 12 and thus keep them on.
  • a battery 1 according to the invention advantageously comprises lithium-ion batteries LiFeP with a number of stages greater than or equal to 7 (in this case 8 in this example).
  • an accumulator of this type tolerates an overvoltage (voltage up to 4.2 V) and the overvoltage induced in the accumulators of a branch including a short-circuited accumulator does not induce their destruction or a security risk for such a large number of floors.
  • the first branch Br1 includes accumulators A1 1 to A18 connected in series.
  • the second branch Br2 includes accumulators A21 to A28 connected in series.
  • the third branch Br3 includes accumulators A31 to A38 connected in series.
  • the fourth branch Br4 includes accumulators A41 to A48 connected in series.
  • Limiters of currents Li 1 1 to Li 1 realize the parallel connection of the accumulators of the first and second branches.
  • Current imitators Li 21 through Li 27 realize the parallel connection of the second and third accumulators.
  • third branches. Imitators of currents L 31 to Li 37 realize the parallel connection of the accumulators of the third and fourth branches.
  • Simulations of malfunctions were carried out with a model of a battery 1 according to FIG. 7.
  • the accumulators were assimilated to voltage sources of 3.3 V in series with an internal resistance of 0.01 ⁇ .
  • the current imimeters were sized with a saturation current of 1 A, with a nominal resistance of 0.01 5 ⁇ .
  • FIG. 8 is a diagram showing the evolution of the intensity across the various branches following the appearance of the dysfunction. Due to the presence of current im Li 1 5, Li 25, Li 35 and Li 16, Li 26, Li 36, the transverse load currents from the accumulators A1 6, A 36 and A 46 remain relatively limited. As a result, the charging current received by the branch Br2 does not come from the transverse load currents but from the external connections of the branches Br1, Br3, Br4, which are not provided with limiters. The branches Br1, Br3 and Br4 therefore provide a current of load (broken line). Branch Br2 receives a load current (in dotted line), corresponding to the accumulation of load currents branches Br1, Br3 and Br4.
  • Figure 9 is a diagram showing the voltage across the battery A26 (dotted) and the voltage across the accumulators Br2 branch (dashed) free of malfunctions.
  • the voltage across the faulty accumulator A26 drops gradually to a value close to 0V.
  • the voltage across the other accumulators of the branch Br2 increases gradually from a value of 3.3 V to about 3.8 V, to compensate for the voltage drop in the stage Et6. This voltage is largely bearable by the other batteries of the branch Br2 in LiFeP technology.
  • the discharge rate of the accumulators A1 6, A36 and A46 (dashed line) is therefore considerably slower than the discharge rate of the accumulator A26 (in dotted lines).
  • the entire stage Et6 discharges and the voltage across the battery 1 drops accordingly.
  • the discharge time of this faulty stage is of course dependent on the number of parallel connected accumulators and the saturation current of the current imitators.
  • the circuit 2 can determine the presence of a faulty accumulator by identifying a branch absorbing a charging current from the other branches or by identifying a stage at the terminals of which the voltage varies abnormally with respect to the other stages, either during a load , or during a discharge. It is also possible to identify a stage containing a faulty accumulator from a significant variation in its discharge velocity or voltage level since it gradually discharges to 0V.
  • FIG 11 shows schematically an advantageous variant of battery connection in a stage.
  • all the accumulators A1 to A5 of a stage And have a terminal connected to a common connection node NC via the respective current imitators Li 1 to Li 5.
  • the other terminal of these accumulators A1 to A5 may be connected to another common connection node via other respective current imprinters.
  • Such a structure makes it possible on the one hand to use unidirectional current imitators. Such a structure makes it easy for anyone to determine which area of the battery is failing, while current imagers maintain electrical contact with the failing area. In addition, the balancing currents pass only through the load limiter associated with the relevant accumulator. There is thus no current limiter which sees charge or balance current flow to several accumulators, which limits losses and reduces their size. For this purpose, the circuit 2 is here connected to the common connection nodes. In addition, such a structure makes it possible to imitate the number of transistors integrated in the current imimeters.
  • FIG. 12 schematically shows a unidirectional current imi L, based on a JFET transistor T3, mimicking the current in the sense of an accumulator to the common node NC.
  • the saturation current may also be defined at a rated current of an accumulator resulting in its complete discharge in one hour.
  • a battery 1 intended to power a motor vehicle electric motor typically has a nominal voltage of between 200 and 500 V.
  • the current limiters can be sized to have a saturation intensity of between 200 mA and 2 A, for example of the order of 1 A.
  • the current limiters are advantageously sized to have a reduced resistance in the on state, typically less than or equal to 0.1 ⁇ , preferably less than 1 ⁇ , when the voltage at their terminals is lower than said saturation voltage.
  • the circuit 2 can perform voltage clipping at the terminals of the accumulators, for lithium-ion type accumulators unable to achieve this clipping naturally.
  • Such clipping can be achieved by a circuit 2 of a relatively small volume and cost, because of the parallel connection of the accumulators of the same stage.
  • a storage device or power battery whose nominal voltage is generally greater than 100V will typically include several modules or batteries connected in series. Each module will then comprise several stages in series with several branches in parallel. In the case where an accumulator fails in one of the modules, the circuit 2 may advantageously control the short-circuiting of this module to ensure the continuity of service of the rest of the storage device.
  • Figure 13 illustrates an isolation circuit of a Mod module in case of failure thereof.
  • Mod module comprises terminals B1 and B2 between which it applies its power supply potential difference.
  • the isolation circuit comprises two power output poles P and N, intended to be connected to modules in series or to one of the power terminals of the power storage device.
  • the power circuit comprises two branches connected in parallel between the poles P and N.
  • a first branch includes the switch 11 in series with the module Mod.
  • a second branch branch includes the switch.
  • the switch 12 is configured to be normally closed, the switch 11 being configured to be normally open.
  • the switch 11 is configured to selectively open / close the branch including the module Mod.
  • the switch 12 is configured to selectively open / close the branch branch.
  • the closing of the switch 11 is controlled by the circuit 2. In the absence of control signal applied by the circuit 2, the switch 11 is kept open to automatically isolate the Mod module in case of malfunction.
  • the closing of the switch 12 is controlled by default by the voltage between the terminals B 1 and B2.
  • the opening of the switch 12 must be actively controlled by the circuit 2 in order to apply the voltage of the Mod module to the poles P and N.
  • the switches 11 and 12 may be MOSFET transistors, which can easily be appropriately sized at a relatively low cost.
  • Transistors 11 and 12 may be of nMOS type.
  • FIG. 14 illustrates a system 4 comprising modules Mod1, Mod2, Mod3 connected in series.
  • the module Mod 1 is connected between the poles P1 and P2, the module Mod2 is connected between the poles P2 and P3, the module Mod3 is connected between the poles P3 and P4.
  • the isolation circuit of the module Mod 1 comprises switches 11 1 and 11 2, the isolation circuit of the module Mod2 comprises switches 121 and 11 2, the isolation circuit of the module Mod3 comprises switches 131 and I32.
  • Mod 1, Mod 2, Mod 3 modules are operational. Consequently, the switches 11 1, 121 and 131 are closed and their switches 112, I22 and I32 are open, so that the modules Mod1, Mod2, Mod3 are connected in series.
  • Figure 14 it shines the system 4 when Mod2 module is malfunctioning.
  • the circuit 2 detects this malfunction, it opens the switch 121 and closes the switch I22.
  • the Mod2 module is thus short-circuited.
  • the Mod2 module can thus be isolated in order to avoid its load and thus avoid a more serious damage.
  • the system 4 can therefore be used in a degraded manner while ensuring its continuity of service.
  • the invention applies to a battery comprising at least two stages and at least three accumulators in each stage, although a larger number of stages and accumulators have been mentioned in the various embodiments described.
  • Current limiters can be realized with bipolar transistors.
  • the current flowing through such a current limiter is then substantially defined by an affine function of the voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Protection Of Static Devices (AREA)

Abstract

The invention relates to a storage battery, comprising at least: first and second stages (Et1, Et2) electrically connected in series, each stage including at least first to third cells (A11, A21, A31) electrically connected in parallel; and at least first and second current limiters (Li11, Li21) via which the first to third cells (A11, A21, A31) of said first stage (Et1) are connected in parallel and via which the first to third cells (A12, A22, A32) of said second stage (Et2) are connected in parallel.

Description

BATTERIE D'ACCUMULATEURS PROTEGEE CONTRE LES COURTS- CIRCUITS INTERNES  BATTERY OF ACCUMULATORS PROTECTED AGAINST SHORT CIRCUITS
L'invention concerne les batteries d'accumulateurs électrochimiques. Cel les- ci peuvent par exemple être util isées dans le domaine des transports électriques et hybrides ou les systèmes embarqués. The invention relates to electrochemical storage batteries. These can be used, for example, in the field of electric and hybrid transport or on-board systems.
Les véhicules hybrides combustion/électrique ou électriques incluent notamment des batteries de forte puissance. De tel les batteries sont util isées pour entraîner un moteur électrique à courant alternatif par l ' intermédiaire d'un onduleur. Les niveaux de tension nécessaires pour de tels moteurs atteignent plusieurs centaines de Volts, typiquement de l 'ordre de 400 Volts. De telles batteries comportent également une forte capacité afin de favoriser l 'autonomie du véhicule en mode électrique.  Hybrid combustion / electric or electric vehicles include in particular high power batteries. Such batteries are used to drive an AC electric motor through an inverter. The voltage levels required for such motors reach several hundred volts, typically of the order of 400 volts. Such batteries also have a high capacity to promote the autonomy of the vehicle in electric mode.
Pour obtenir de fortes puissances et capacités, on place plusieurs groupes d'accumulateurs en série. Le nombre d'étages (nombre de groupes d'accumulateurs) et le nombre d'accumulateurs en paral lèle dans chaque étage varient en fonction de la tension, du courant et de la capacité souhaités pour la batterie. L'association de plusieurs accumulateurs est appelée une batterie d'accumulateurs. Les accumulateurs électrochimiques util isés pour de tels véhicules sont généralement du type l ithium ion pour leur capacité à stocker une énergie importante avec un poids et un vol ume contenus. Les technologies de batterie de type Lithium ion phosphate de fer LiFeP04 font l 'objet d' importants développements du fait d'un niveau de sécurité intrinsèque élevé, au détriment d'une densité de stockage d'énergie un peu en retrait. Un accumulateur électrochimique a habituel lement une tension nominale de l'ordre de grandeur suivant :  To obtain high powers and capacities, several groups of accumulators are placed in series. The number of stages (number of accumulator groups) and the number of parallel accumulators in each stage vary according to the desired voltage, current, and capacity for the battery. The combination of several accumulators is called a storage battery. The electrochemical accumulators used for such vehicles are generally of the lithium type for their ability to store a significant amount of energy with a weight and a volumetric content. Lithium ion iron phosphate LiFeP04 battery technologies are undergoing significant development due to a high intrinsic safety level, to the detriment of a slightly lower energy storage density. An electrochemical accumulator usually has a nominal voltage of the following order of magnitude:
3.3 V pour une technologie l ithium-ion phosphate de Fer, LiFeP04,  3.3 V for iron phosphate lithium ion technology, LiFePO4,
4.2 V pour une technologie de type l ithium-ion à base d'oxyde de cobalt. L'invention peut également s'appl iquer à des super-condensateurs.  4.2 V for a cobalt oxide-based lithium ion technology. The invention can also be applied to supercapacitors.
La figure 1 représente une batterie d'accumulateurs l ithium-ion Bat connue de l'état de la technique. La batterie Bat est composée de quatre étages Et1 , Et2, Et3 et Et4 connectés en série. Chaque étage comprend quatre accumulateurs similaires, connectés en paral lèle. Les bornes des accumulateurs d'un même étage sont raccordées ensemble par l ' intermédiaire de connexions électriques de forte section. Chaque étage est également raccordé aux étages adjacents par l ' intermédiaire de connexions électriques de forte section afin de laisser passer de forts courants correspondant à la somme des courants des accumulateurs d'un étage. Une ou plusieurs charges sont destinées à être connectées aux bornes N et P de la batterie 1 . La tension aux bornes des quatre étages est notée respectivement U 1 , U2, U3 et U4. Dans ce schéma, la tension totale U entre les bornes N et P de la batterie 1 est la somme des tensions U 1 , U2, U3 et U4. Le courant traversant chaque accumulateur du quatrième étage Et4 est notée respectivement 11 , 12, 13 et 14. Le courant I généré sur la borne P de la batterie Bat est la somme des courants 11 , 12, 13 et 14. Un circuit d'équil ibrage de charge Eq est connecté aux bornes de chaque étage de la batterie Bat. FIG. 1 represents a Bat ion battery Bat ion known in the state of the art. Bat battery consists of four stages Et1, Et2, Et3 and Et4 connected in series. Each stage has four similar accumulators connected in parallel. The terminals of the accumulators of the same stage are connected together by means of strong electrical connections. Each stage is also connected to the adjacent stages via high section electrical connections in order to pass strong currents corresponding to the sum of the currents of the accumulators of a stage. One or more loads are intended to be connected to the terminals N and P of the battery 1. The voltage across the four stages is noted respectively U 1, U 2, U 3 and U 4. In this diagram, the total voltage U between the terminals N and P of the battery 1 is the sum of the voltages U 1, U 2, U 3 and U 4. The current flowing through each fourth-stage accumulator Et4 is denoted 11, 12, 13 and 14, respectively. The current I generated on the P-terminal of the battery Bat is the sum of the currents 11, 12, 13 and 14. A balance circuit Load balancing Eq is connected to the terminals of each stage of the Bat battery.
Dans toute la durée de vie de la batterie, certains défauts peuvent apparaître sur certains accumulateurs composant la batterie. Un défaut sur un accumulateur se traduit généralement soit par la mise en court-circuit de l'accumulateur, soit par une mise en circuit ouvert, soit par un courant de fuite important dans l'accumulateur. I l est important de connaître l'impact de la défail lance d'un accumulateur sur la batterie. Une mise en circuit ouvert ou en court-circuit peut provoquer une défail lance globale de toute la batterie.  Throughout the life of the battery, some faults may appear on some accumulators making up the battery. A fault on an accumulator usually results either by shorting the accumulator, or by an open circuit, or by a large leakage current in the accumulator. It is important to know the impact of a battery failure. Open or short-circuiting can cause an overall launcher failure of the entire battery.
Dans le cas de l 'apparition d'un courant de fuite important dans un accumulateur d'un étage, la batterie se comporte comme une résistance qui provoque une décharge des accumulateurs de l'étage considéré jusqu'à zéro. Les risques de départ de feu sont faibles car l'énergie est dissipée relativement lentement. En technologie l ithium ion, la décharge des accumulateurs de l'étage jusqu'à une tension nul le les détériore ce qui impl ique leur remplacement en plus de l'accumulateur initialement défail lant. Lorsqu'un accumulateur forme un court- circuit, les trois autres accumulateurs de l'étage vont initialement se décharger dans cet accumulateur, du fait de la forte section des connexions électriques entre eux. Le fusible placé en série avec l 'accumulateur en court-circuit va interrompre la décharge parasite des trois autres accumulateurs.  In the case of the appearance of a large leakage current in a battery of a stage, the battery behaves like a resistor which causes a discharge of the accumulators of the stage considered to zero. The risks of starting fire are low because the energy is dissipated relatively slowly. In lithium technology, the discharge of the accumulators of the stage up to a zero voltage deteriorates them implicating their replacement in addition to the initially defective accumulator. When an accumulator forms a short-circuit, the other three accumulators of the stage will initially discharge into this accumulator, because of the strong section of the electrical connections between them. The fuse placed in series with the battery in short circuit will interrupt the parasitic discharge of the other three accumulators.
Afin de protéger la batterie Bat des conséquences d 'un court-circuit dans un accumulateur, chaque accumulateur présente un fusible qui lui est connecté en série. Lorsqu'un accumulateur forme un court-circuit, le courant le traversant augmente sensiblement et fait fondre son fusible série afin de protéger le reste de la batterie Bat. En l 'absence de fusible, la dissipation d'énergie dans l 'accumulateur en court-circuit induirait son échauffement ainsi que celui des autres accumulateurs se déchargeant. Une tel le dissipation pourrait être la cause d'un départ de feu. Les technologies l ithium ion sont particul ièrement à risque lorsqu'un étage comprend un grand nombre d'accumulateurs en paral lèle pour stocker une énergie importante. L'oxyde de cobalt est connu comme une chimie fortement réactive. Le phosphate de fer est lui connu comme la chimie la plus sûre. L'util isation de fusibles s'avère donc particul ièrement appropriée pour ces technologies, en particul ier pour le phosphate de fer qui tolère une certaine surtension.  In order to protect the battery Bat from the consequences of a short circuit in an accumulator, each battery has a fuse connected to it in series. When an accumulator forms a short circuit, the current flowing through it increases substantially and melts its series fuse in order to protect the rest of the battery Bat. In the absence of a fuse, the dissipation of energy in the accumulator in short circuit would induce its heating as well as that of other accumulators discharging. Such dissipation could be the cause of a start of fire. Lithium ion technologies are particularly at risk when a stage has a large number of parallel accumulators to store a large amount of energy. Cobalt oxide is known as a highly reactive chemistry. Iron phosphate is known to him as the safest chemistry. The use of fuses is therefore particularly suitable for these technologies, particularly for iron phosphate which tolerates a certain surge.
Cependant, la présence des fusibles en série entre les étages d'accumulateurs induit des pertes non négl igeables, particul ièrement handicapantes pour des appl ications embarquées. Le document WO201 1 /003924 décrit une structure de batterie permettant d'él iminer les pertes induites par un système de protection durant le fonctionnement normal de la batterie, et permettant en outre d'assurer une continuité de service de la batterie lorsqu'un élément de la batterie se retrouve en court-circuit ou en coupe-circuit. However, the presence of fuses in series between the accumulator stages induces non-negligible losses, particularly disabling for on-board applications. WO201 1/003924 discloses a battery structure for eliminating the losses induced by a protection system during normal operation of the battery, and further ensuring continuity of service of the battery when an element battery is in short circuit or circuit breaker.
Dans ce document, la batterie comprend au moins des première et deuxième branches présentant chacune au moins des premier et deuxième accumulateurs connectés en série. La batterie comprend en outre un fusible par l'intermédiaire duquel les premiers accumulateurs sont connectés en paral lèle et par l'intermédiaire duquel les deuxièmes accumulateurs sont connectés en paral lèle. Le seuil de coupure du fusible est dimensionné pour s'ouvrir lorsqu'un des accumulateurs est en court-circuit.  In this document, the battery comprises at least first and second branches each having at least first and second accumulators connected in series. The battery further comprises a fuse through which the first accumulators are connected in parallel and through which the second accumulators are connected in parallel. The cut-off threshold of the fuse is sized to open when one of the accumulators is short-circuited.
Lorsque la batterie al imente un moteur électrique de véhicule, sa recharge intervient soit à l 'arrêt du véhicule en raccordant la batterie au réseau électrique, soit durant le roulage du véhicule pendant des phases durant laquel le le moteur électrique fonctionne en génératrice. Durant une recharge rapide à l 'arrêt du véhicule ou lors du fonctionnement du moteur électrique en génératrice, des courants de recharge ou d'équil ibrage non négl igeables peuvent être appl iqués sur les accumulateurs. Les fusibles connectés dans les connexions en paral lèle peuvent ainsi être traversés par des courants relativement importants. En outre, certains fusibles peuvent être traversés par le cumul des courants de recharge ou d'équil ibrage à destination de plusieurs accumulateurs d'un même étage et distants de la connectique de recharge. Certains fusibles peuvent ainsi représenter une connexion commune de plusieurs accumulateurs au circuit d'équil ibrage. Par conséquent, le dimensionnement des fusibles des connexions en paral lèle peut s'avérer dél icat pour assurer à la fois la protection des accumulateurs, la continuité de service de la batterie lors d'un dysfonctionnement d'un accumulateur, et la recharge des différents accumulateurs. Des pertes par effet Joule peuvent également intervenir durant la recharge ou l'équil ibrage du fait des courants traversant les fusibles. La durée de vie des fusibles peut également être amoindrie par l'appl ication répétée de courants de charge les traversant.  When the battery supplies a vehicle electric motor, its recharging occurs either when the vehicle is stopped by connecting the battery to the electrical network, or during the driving of the vehicle during phases during which the electric motor operates as a generator. During a quick charge when the vehicle is stopped or when the electric motor is running as a generator, it may be possible to apply charge or balancing currents to the accumulators that are not negligible. The fuses connected in parallel connections can thus be traversed by relatively large currents. In addition, some fuses can be crossed by the accumulation of recharging or balancing currents to several accumulators of the same floor and remote recharge connectivity. Some fuses may thus represent a common connection of several accumulators to the balancing circuit. Consequently, the sizing of the fuses of parallel connections may be difficult to ensure both the protection of the accumulators, the continuity of service of the battery during a malfunction of an accumulator, and the recharging of the different cells. Accumulators. Joule losses can also occur during recharging or balancing due to currents flowing through the fuses. The life of the fuses can also be reduced by the repeated application of load currents through them.
Le document US2010/072950 décrit une batterie d'accumulateurs incluant: -trois étages connectés en série;  The document US2010 / 072950 describes a storage battery including: three stages connected in series;
-trois accumulateurs en paral lèle dans les étages;  - three accumulators in parallel in the floors;
-des fusibles respectifs connectés en série avec chacun des accumulateurs ; -des transistors associés à des fusibles respectifs, appl iquant un signal d'alerte sur un circuit de contrôle lorsque la tension aux bornes de leur fusible franchit un seuil ;  respective fuses connected in series with each of the accumulators; transistors associated with respective fuses, applying an alarm signal on a control circuit when the voltage across their fuse crosses a threshold;
-des connexions assurant la connexion en paral lèle des accumulateurs de chacun des étages. Aucun composant commun à deux étages ne participe à la connexion en parallèle des accumulateurs respectifs de ces deux étages. connections ensuring the parallel connection of the accumulators of each of the stages. No two-stage common component participates in the parallel connection of the respective accumulators of these two stages.
Les fusibles ont une fonction d'interruption du courant en cas de surintensité. Le courant traversant les transistors lorsqu'ils sont fermés est par ailleurs négligeable par rapport au courant délivré par les accumulateurs.  The fuses have a function of interruption of the current in case of overcurrent. The current flowing through the transistors when they are closed is also negligible compared to the current delivered by the accumulators.
L'invention vise à résoudre un ou plusieurs de ces inconvénients. L'invention porte ainsi sur une batterie d'accumulateurs telle que définie dans les revendications. The invention aims to solve one or more of these disadvantages. The invention thus relates to a storage battery as defined in the claims.
L'invention porte également sur un système défini dans les revendications.  The invention also relates to a system defined in the claims.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels : Other characteristics and advantages of the invention will emerge clearly from the description which is given hereinafter, by way of indication and in no way limitative, with reference to the appended drawings, in which:
-la figure 1 est une représentation schématique d'un exemple de batterie selon l'état de la technique ;  FIG 1 is a schematic representation of an example battery according to the state of the art;
-la figure 2 est une représentation schématique d'un exemple de batterie selon un mode de réalisation de l'invention ;  FIG. 2 is a schematic representation of an exemplary battery according to one embodiment of the invention;
-la figure 3 illustre un exemple de limiteur de courant bidirectionnel ;  FIG. 3 illustrates an example of bidirectional current limiter;
-la figure 4 illustre un autre exemple de limiteur de courant bidirectionnel ; FIG. 4 illustrates another example of bidirectional current limiter;
-la figure 5 illustre encore un autre exemple de limiteur de courant bidirectionnel ; FIG. 5 illustrates yet another example of bidirectional current limiter;
-la figure 6 est un diagramme illustrant la réponse en intensité usuelle d'un transistor JFET en fonction de la tension appliquée entre sa source et son drain ;  FIG. 6 is a diagram illustrating the usual intensity response of a JFET transistor as a function of the voltage applied between its source and its drain;
-la figure 7 est une représentation schématique d'un exemple de batterie selon un mode de réalisation de l'invention, ayant fait l'objet de simulations lors du dysfonctionnement d'une cellule électrochimique ;  FIG. 7 is a schematic representation of an example of a battery according to one embodiment of the invention, having been simulated during the malfunctioning of an electrochemical cell;
-la figure 8 est un diagramme illustrant l'évolution de l'intensité dans des cellules électrochimiques de la batterie de la figure 7 ;  FIG. 8 is a diagram illustrating the evolution of the intensity in electrochemical cells of the battery of FIG. 7;
-la figure 9 est un diagramme illustrant l'évolution de la tension aux bornes de différentes cellules électrochimiques de la batterie de la figure 7 ;  FIG 9 is a diagram illustrating the evolution of the voltage across different electrochemical cells of the battery of Figure 7;
-la figure 10 est un diagramme illustrant l'évolution de la tension aux bornes de cellules électrochimiques dans un étage comportant une cellule électrochimique défaillante ;  FIG. 10 is a diagram illustrating the evolution of the voltage across electrochemical cells in a stage comprising a faulty electrochemical cell;
-la figure 1 1 illustre schématiquement une variante avantageuse de connexion de cellules électrochimiques dans un étage de batterie ;  FIG. 11 schematically illustrates an advantageous variant of connection of electrochemical cells in a battery stage;
-la figure 12 illustre un limiteur de courant monodirectionnel pouvant être utilisé dans la variante de la figure 1 1 ;  FIG. 12 illustrates a monodirectional current limiter that can be used in the variant of FIG. 11;
-la figure 1 3 illustre un circuit d'isolation d'un module de batterie incluant une cellule électrochimique défaillante ; -la figure 14 illustre une batterie incluant plusieurs modules dans un mode de fonctionnement normal ; FIG. 13 illustrates an isolation circuit of a battery module including a faulty electrochemical cell; FIG. 14 illustrates a battery including several modules in a normal operating mode;
-la figure 1 5 il lustre la batterie de la figure 14 dans un mode de fonctionnement où l 'un des modules inclut une cel lule électrochimique défail lante.  FIG. 1 illustrates the battery of FIG. 14 in an operating mode in which one of the modules includes a faulty electrochemical cell.
On désignera par la suite par l imiteur de courant un composant ou circuit traversé par un courant croissant avec la tension à ses bornes lorsque cette tension est inférieure à un seuil de saturation, et traversé par un courant de saturation sensiblement constant lorsque cette tension est supérieure audit seuil de saturation. Hereinafter, the current imigraph will denote a component or circuit traversed by an increasing current with the voltage at its terminals when this voltage is below a saturation threshold, and traversed by a substantially constant saturation current when this voltage is greater than saturation threshold.
Avantageusement, le courant de saturation est supérieur à 50% de la valeur maximale du courant pour toute tension aux bornes du l imiteur inférieure au seuil de saturation. Avantageusement, le courant de saturation est au moins égal à la valeur maximale du courant pour une tension aux bornes du l imiteur inférieure au seuil de saturation.  Advantageously, the saturation current is greater than 50% of the maximum value of the current for any voltage across the limit below the saturation threshold. Advantageously, the saturation current is at least equal to the maximum value of the current for a voltage across the lower limit of the saturation threshold.
La figure 2 est une représentation schématique d'un exemple de batterie 1 selon un mode de réal isation de l 'invention. La batterie 1 comprend cinq étages Eti à Et5 connectés électriquement en série. Chaque étage comprend cinq accumulateurs ou cel lules électrochimiques connectés électriquement en paral lèle. La batterie 1 comprend ainsi cinq branches Br1 à Br5 connectées électriquement en paral lèle. La connexion en paral lèle des accumulateurs d'un étage est réal isée par l ' intermédiaire de l imiteurs de courant Li. Chaque l imiteur de courant Li de l'exemple participe à la connexion en paral lèle de deux accumulateurs d'un étage, ainsi qu'à la connexion en paral lèle de deux accumulateurs d'un autre étage. FIG. 2 is a diagrammatic representation of an exemplary battery 1 according to one embodiment of the invention. The battery 1 comprises five stages Eti to Et5 connected electrically in series. Each stage comprises five accumulators or electrochemical cells electrically connected in parallel. The battery 1 thus comprises five branches Br1 to Br5 electrically connected in parallel. The parallel connection of the accumulators of a stage is carried out via current imagers Li. Each current im Li of the example participates in the parallel connection of two accumulators of one stage. as well as the parallel connection of two accumulators of another stage.
Une charge électrique 3 est connectée aux bornes P et N de la batterie 1 , de façon à être al imentée par cette batterie. Un circu it de gestion d'équil ibrage de charge 2 est connecté électriquement à chacun des étages Eti à Et5. Le circuit 2 est configuré pour procéder à la charge des accumulateurs de ces étages. Le circuit 2 est également configuré pour assurer le suivi de l 'état de charge des accumulateurs. Le circuit 2 est également configuré pour mettre en oeuvre un équil ibrage de charge des accumulateurs de ces étages, en fonction du suivi de leur état de charge. Les fonctions de charge/suivi l 'état de charge/équil ibrage de charge sont connus en soi et ne seront pas détail lées davantage. Au niveau des bornes P et N, la batterie 1 comprend avantageusement des col lecteurs de puissance traversés par les courants en parallèle provenant des différentes branches Br1 à Br5.  An electric charge 3 is connected to the terminals P and N of the battery 1, so as to be supplied by this battery. A load balancing management circuit 2 is electrically connected to each of the stages Eti to Et5. Circuit 2 is configured to charge the accumulators of these stages. Circuit 2 is also configured to track the state of charge of the accumulators. The circuit 2 is also configured to implement load balancing of the accumulators of these stages, according to the monitoring of their state of charge. The functions of charging / monitoring the state of charge / load balancing are known per se and will not be detailed further. At terminals P and N, the battery 1 advantageously comprises power reader cols traversed by the currents in parallel coming from different branches Br1 to Br5.
Les l imiteurs de courant permettent de l imiter le courant débité à travers un accumulateur en court-circuit, afin d'éviter tout risque d'échauffement et de départ de feu, et ce même en présence d'un grand nombre d'accumulateurs connectés en paral lèle dans chaque étage. La vitesse de décharge des accumulateurs d'un étage incluant un accumulateur en court-circuit est également l imitée, ce qui peut permettre de poursuivre l 'util isation de la batterie 1 . Par ail leurs, un accumulateur en court-circuit n'est pas isolé du circuit 2, ce qui permet de détecter sa défail lance et de poursuivre sa surveil lance. En mesurant la tension à chaque étage, le circuit peut ainsi détecter une défail lance, en constatant par exemple qu'un étage se décharge ou se charge différemment des autres étages. Du fait qu'un accumulateur en court-circuit reste connecté en paral lèle des autres accumulateurs de l'étage, on peut détecter que les autres accumulateurs se déchargent progressivement dans celui-ci. The current imitators allow to imitate the current delivered through a short-circuited accumulator, in order to avoid any risk of overheating and fire, even in the presence of a large number of connected accumulators. parallel in each floor. The discharge rate of the accumulators of a stage including a short-circuited accumulator is also imitated, which may make it possible to continue using the battery 1. In addition, an accumulator The short circuit is not isolated from circuit 2, which makes it possible to detect its spike and continue its monitoring. By measuring the voltage at each stage, the circuit can thus detect a spike, by noting, for example, that one stage is discharging or charging differently from the other stages. Since a short-circuited accumulator remains connected in parallel with the other accumulators of the stage, it can be detected that the other accumulators are gradually discharged therein.
Les l imiteurs de courant permettent également de mettre en oeuvre une répartition d' intensité entre les accumulateurs des différentes branches en présence d'un accumulateur en court-circuit.  The current im litors also make it possible to implement a distribution of intensity between the accumulators of the various branches in the presence of a short-circuited accumulator.
L'util isation de l imiteurs de courant dans les connexions en paral lèle des accumulateurs permet d'appl iquer des courants de charge d'ampl itudes élevées sur les accumulateurs, pour mettre en oeuvre soit une charge rapide par le réseau électrique (nécessaire pour assurer des temps de charge réduits), soit une charge par un moteur électrique fonctionnant en génératrice (par exemple lors d'une phase de freinage d'un véhicule), sans induire de coupure intempestive de ces connexions en paral lèle.  The use of current imagers in the parallel connections of the accumulators makes it possible to apply high load currents to the accumulators, to implement either a fast charge via the electrical network (necessary for to ensure reduced charging times), or a load by an electric motor running as a generator (for example during a braking phase of a vehicle), without inducing inadvertent disconnection of these connections in parallel.
Durant une phase de charge ou de décharge, le courant principal dans une branche traverse l 'ensemble des accumulateurs connectés en série dans cette branche. Durant un tel fonctionnement, si l 'ensemble des accumulateurs sont similaires et présentent un même état de charge ou de décharge, aucun courant transversal ne circule à travers les l imiteurs de courant Li. Les limiteurs de courants Li peuvent être de tout type approprié. La figure 3 il lustre un exemple de l imiteur de courant Li basé sur l 'util isation de transistors de type JFET. Le l imiteur de courant Li de cet exemple comporte avantageusement deux transistors T1 et 12 montés tête-bêche. Le transistor T1 a sa gril le connectée à sa source. Son drain est destiné à être connecté à une borne d'un accumulateur. Le transistor T1 assure ainsi une l imitation du courant le traversant dans le sens al lant de son drain vers sa source. Le transistor 12 a sa gril le connectée à sa source. Son drain est destiné à être connecté à une borne d'un accumulateur. Le transistor 12 assure ainsi une l imitation du courant le traversant dans le sens al lant de son drain vers sa source. Un transistor de type JFET présente l 'avantage d'être naturel lement fermé en l 'absence de circuit de commande pour polariser sa gril le. I l n'est ainsi pas nécessaire de disposer d'un circuit de commande pour permettre le passage des courants transversaux d'équil ibrage de charge ou de recharge des accumulateurs. During a charge or discharge phase, the main current in a branch passes through all the accumulators connected in series in this branch. During such operation, if all the accumulators are similar and have the same state of charge or discharge, no transverse current flows through the current liimeters Li. The current limiters Li may be of any suitable type. Figure 3 illustrates an example of the current imager Li based on the use of JFET type transistors. The current limiter Li of this example advantageously comprises two transistors T1 and 12 mounted head to tail. The transistor T1 has its grill connected to its source. Its drain is intended to be connected to a terminal of an accumulator. The transistor T1 thus ensures imitation of the current flowing in the direction al lant of its drain towards its source. The transistor 12 has its grill connected to its source. Its drain is intended to be connected to a terminal of an accumulator. Transistor 12 thus provides an imitation of the current flowing in the direction al lant of its drain towards its source. A JFET type transistor has the advantage of being naturally closed in the absence of a control circuit for polarizing its grill. It is thus not necessary to have a control circuit to allow the passage of cross currents balancing load or recharging accumulators.
Le montage de deux transistors tête-bêche dans le l imiteur de courant Li permet de réal iser une l imitation de courant bidirectionnel le. Ainsi, un l imiteur de courant Li : -l imite le courant de décharge provenant d'un accumulateur auquel il est connecté lorsque celui-ci se décharge dans un autre accumulateur en court-circuit ; The mounting of two transistors upside-down in the current limiter Li makes it possible to achieve a bidirectional current imitation. Thus, a current l imitor Li: imitates the discharge current from an accumulator to which it is connected when it discharges into another short-circuited accumulator;
-l imite le courant de charge (provenant de plusieurs accumulateurs) vers l 'accumulateur auquel il est connecté lorsque celui-ci est en court-circuit.  - Imitates the charge current (from several accumulators) to the accumulator to which it is connected when it is in short circuit.
La figure 6 il lustre un exemple classique de caractéristique d'un transistorFigure 6 illustrates a classic example of a transistor characteristic
JFET pour une différence de potentiel Vgs entre gri l le et source donnée. L'ordonnée correspond au courant drain-source Ids, l 'abscisse correspondant à la différence de potentiel Vds entre son drain et sa source. JFET for a potential difference Vgs between the grid and the given source. The ordinate corresponds to the drain-source current Ids, the abscissa corresponding to the potential difference Vds between its drain and its source.
De façon connue en soi, le courant Ids est sensiblement proportionnel à la tension Vds lorsque Vds est inférieur à la tension de saturation Vs. Le courant est sensiblement constant et proche d'un courant de saturation Is lorsque la tension In a manner known per se, the current Ids is substantially proportional to the voltage Vds when Vds is less than the saturation voltage Vs. The current is substantially constant and close to a saturation current Is when the voltage
Vds est supérieure audit seuil de saturation Vs. Vds is greater than said saturation threshold Vs.
L'homme du métier saura de façon connue en soi déterminer le dimensionnement des transistors des limiteurs de courant pour obtenir des valeurs souhaitées de courant de saturation Is et de tension de saturation Vs.  Those skilled in the art will know in a manner known per se determine the dimensioning of the transistors of the current limiters to obtain desired values of saturation current Is and saturation voltage Vs.
Dans l'exemple illustré à la figure 6, le courant Ids pour une tension Vds supérieure à Vs est supérieur au courant Ids pour toute tension Vds inférieure à Vs. In the example illustrated in FIG. 6, the current Ids for a voltage Vds greater than Vs is greater than the current Ids for any voltage Vds less than Vs.
On peut cependant envisager un rebroussement de l'intensité lorsque Vds franchit la valeur Vs, notamment du fait de l'échauffement des transistors. Cependant, le courant Ids reste significatif lorsque Vds est supérieur à Vs, par exemple au moins égal à 0,5 * Is. However, it is possible to consider a crawling of the intensity when Vds crosses the value Vs, notably because of the heating of the transistors. However, the current Ids remains significant when Vds is greater than Vs, for example at least equal to 0.5 * Is.
Le ou les transistors de type JFET du l imiteur de courant Li peuvent également être remplacés par des transistors de type Mosfet à déplétion dont la gril le est connectée à la source et dont le drain est connecté à une borne d'un accumulateur. Un tel transistor permet également d'être naturel lement fermé en l'absence de circuit de commande pour polariser sa gril le. Le ou les transistors de type JFET du l imiteur de courant Li peuvent également être remplacés par des transistors de type Mosfet à enrichissement de type canal N. Un tel transistor étant à l 'état naturel lement ouvert, sa gril le doit être commandée en permanence pour le maintenir fermé. The JFET transistor or transistors of the current imi Li may also be replaced by depletion-type Mosfet transistors whose gate is connected to the source and whose drain is connected to a terminal of an accumulator. Such a transistor can also be naturally closed in the absence of a control circuit to polarize the grill. The JFET transistor (s) of the current imi L can also be replaced by N channel type enrichment-type Mosfet transistors. Such a transistor being in the natural state of being open, its grill must be permanently controlled. to keep it closed.
La figure 4 il lustre un premier exemple de structure de l imiteur Li permettant de maintenir à l'état fermé deux transistors de type Mosfet à enrichissement de type canal N, sans nécessiter de circuit de commande externe pour polariser sa gril le.  FIG. 4 shows a first example of a Li-imitator structure that makes it possible to keep two N-channel-type enhancement-type Mosfet transistors in the closed state, without the need for an external control circuit to polarize its grill.
Deux Mos tête-bêche sont util isés du fait de la présence d'une jonction de diode interne au Mos entre drain et source.  Two Mos heads are used because of the presence of an internal diode junction in the Mos between drain and source.
Le l imiteur Li comporte un transistor T1 . La diode D1 modél ise la diode intrinsèque au transistor Mos T1 , dont l'anode est connectée à la source du transistor T1 et dont la cathode est connectée au drain du transistor T1 . Le l imiteur Li comporte un transistor 12. La diode D2 modél ise la diode intrinsèque au transistor Mos 12, dont l'anode est connectée à la source du transistor 12 et dont la cathode est connectée au drain du transistor 12. La gril le des transistors T1 et 12 est connectée par l'intermédiaire d'une même résistance R à une borne d'un accumulateur A. En pratique, la tension aux bornes de l 'accumulateur A polarise la gril le des transistors T1 et 12 et les maintient donc passants. The limiter Li comprises a transistor T1. Diode D1 models the diode intrinsic to Mos transistor T1, whose anode is connected to the source of transistor T1 and whose cathode is connected to the drain of transistor T1. The l imitor Li comprises a transistor 12. The diode D2 models the diode intrinsic to the Mos transistor 12, whose anode is connected to the source of the transistor 12 and whose cathode is connected to the drain of the transistor 12. The gate of the transistors T1 and 12 is connected via a same resistor R to a terminal of a battery A. In practice, the voltage across the battery A polarizes the grill of the transistors T1 and 12 and thus keeps them on.
La figure 5 il lustre un deuxième exemple de structure de l imiteur Li permettant de maintenir à l 'état fermé deux transistors de type NMos, sans nécessiter de circuit de commande externe pour polariser sa gril le.  FIG. 5 shows a second example of a Li-imitator structure making it possible to keep two NMos-type transistors in the closed state, without the need for an external control circuit to polarize its gate.
Deux accumulateurs A1 et A2 sont connectés en paral lèle dans un même étage. La source du transistor T1 est connectée à une première borne de l'accumulateur A1 . La gril le du transistor T1 est connectée à une deuxième borne de l 'accumulateur A1 par l ' intermédiaire d'une résistance R1 . La source du transistor 12 est connectée à une première borne de l 'accumulateur A2. La gril le du transistor 12 est connectée à une deuxième borne de l 'accumulateur A2 par l' intermédiaire d'une résistance R2. Les transistors T1 et 12 sont connectés par leur source. Les diodes intrinsèques D1 et D2 respectives des transistors MOS T1 et 12 sont également il lustrées. Les tensions aux bornes des accumulateurs A1 et A2 polarisent les grilles respectives des transistors T1 et 12 et les maintiennent donc passants.  Two accumulators A1 and A2 are connected in parallel in the same floor. The source of the transistor T1 is connected to a first terminal of the accumulator A1. The gate of the transistor T1 is connected to a second terminal of the accumulator A1 via a resistor R1. The source of the transistor 12 is connected to a first terminal of the accumulator A2. The gate of the transistor 12 is connected to a second terminal of the battery A2 via a resistor R2. Transistors T1 and 12 are connected by their source. The respective intrinsic diodes D1 and D2 of the MOS transistors T1 and 12 are also lustrous. The voltages at the terminals of the accumulators A1 and A2 polarize the respective gates of the transistors T1 and 12 and thus keep them on.
Même en maintenant les transistors NMos T1 et 12 fermés en permanence, leur consommation reste relativement réduite en fonctionnement normal car l'oxyde de grille des Mos est un condensateur qui ne consomme donc aucun courant permanent. De ce fait, une tension constante est appl iquée sur leur gril le correspondant à la tension des accumulateurs A1 et A2, typiquement de l 'ordre de 3,3 V pour des accumulateurs de type LiFeP.  Even keeping the NMos transistors T1 and 12 permanently closed, their consumption remains relatively low in normal operation because the Mos gate oxide is a capacitor which therefore consumes no permanent current. As a result, a constant voltage is applied to their grill corresponding to the voltage of the accumulators A1 and A2, typically of the order of 3.3 V for LiFeP type accumulators.
Comme il lustré à la figure 7, une batterie 1 selon l' invention comprend avantageusement des accumulateurs de type l ithium-ion LiFeP avec un nombre d'étages supérieur ou égal à 7 (en l'occurrence 8 dans cet exemple). En effet, un accumulateur de ce type tolère une surtension (tension pouvant atteindre jusqu'à 4,2 V) et la surtension induite dans les accumulateurs d'une branche incluant un accumulateur en court-circuit n'induit ainsi pas leur destruction ou un risque de sécurité pour un nombre d'étages aussi important. As illustrated in FIG. 7, a battery 1 according to the invention advantageously comprises lithium-ion batteries LiFeP with a number of stages greater than or equal to 7 (in this case 8 in this example). Indeed, an accumulator of this type tolerates an overvoltage (voltage up to 4.2 V) and the overvoltage induced in the accumulators of a branch including a short-circuited accumulator does not induce their destruction or a security risk for such a large number of floors.
La première branche Br1 inclut des accumulateurs A1 1 à A18 connectés en série. La deuxième branche Br2 inclut des accumulateurs A21 à A28 connectés en série. La troisième branche Br3 inclut des accumulateurs A31 à A38 connectés en série. La quatrième branche Br4 inclut des accumulateurs A41 à A48 connectés en série. Des limiteurs de courants Li 1 1 à Li 1 réal isent la connexion en paral lèle des accumulateurs des première et deuxième branches. Des l imiteurs de courants Li21 à Li27 réal isent la connexion en paral lèle des accumulateurs des deuxième et troisième branches. Des l imiteurs de courants L i 31 à Li37 réal isent la connexion en paral lèle des accumulateurs des troisième et quatrième branches. The first branch Br1 includes accumulators A1 1 to A18 connected in series. The second branch Br2 includes accumulators A21 to A28 connected in series. The third branch Br3 includes accumulators A31 to A38 connected in series. The fourth branch Br4 includes accumulators A41 to A48 connected in series. Limiters of currents Li 1 1 to Li 1 realize the parallel connection of the accumulators of the first and second branches. Current imitators Li 21 through Li 27 realize the parallel connection of the second and third accumulators. third branches. Imitators of currents L 31 to Li 37 realize the parallel connection of the accumulators of the third and fourth branches.
Des simulations de dysfonctionnements ont été réalisées avec un modèle d'une batterie 1 selon la figure 7. Pour ces simulations, les accumulateurs ont été assimilés à des sources de tension de 3,3 V en série avec une résistance interne de 0,01 Ω. Les l imiteurs de courant ont été dimensionnés avec un courant de saturation de 1 A, avec une résistance nominale de 0,01 5Ω.  Simulations of malfunctions were carried out with a model of a battery 1 according to FIG. 7. For these simulations, the accumulators were assimilated to voltage sources of 3.3 V in series with an internal resistance of 0.01 Ω . The current imimeters were sized with a saturation current of 1 A, with a nominal resistance of 0.01 5Ω.
Dans l 'exemple de la figure 7, l 'accumulateur A26 subit un dysfonctionnement en court-circuit. La figure 8 est un diagramme représentant l'évolution de l ' intensité à travers les différentes branches suite à l'apparition du dysfonctionnement. Du fait de la présence des l imiteurs de courant Li 1 5, Li25, Li35 et Li 1 6, Li26, Li36, les courants de charge transversaux provenant des accumulateurs A1 6, A36 et A46 restent relativement l imités. De ce fait le courant de charge reçu par la branche Br2 ne vient pas des courants de charge transversaux mais par les connections externes des branches Br1 , Br3, Br4,.non pourvues de limiteurs Les branches Br1 , Br3 et Br4 fournissent donc un courant de charge (trait discontinu). La branche Br2 reçoit un courant de charge (en pointil lés), correspondant au cumul des courants de charge des branches Br1 , Br3 et Br4. La figure 9 est un diagramme représentant la tension aux bornes de l 'accumulateur A26 (en pointil lés) et la tension aux bornes des accumulateurs de la branche Br2 (en trait discontinu) exempts de dysfonctionnements. La tension aux bornes de l'accumulateur défail lant A26 chute progressivement jusqu'à une valeur proche de 0V. La tension aux bornes des autres accumulateurs de la branche Br2 augmente progressivement d'une valeur de 3,3 V jusqu'à environ 3,8 V, pour compenser la baisse de tension dans l'étage Et6. Cette tension est largement supportable par les autres accumulateurs de la branche Br2 en technologie LiFeP.  In the example of FIG. 7, the battery A26 suffers a malfunction in short circuit. FIG. 8 is a diagram showing the evolution of the intensity across the various branches following the appearance of the dysfunction. Due to the presence of current im Li 1 5, Li 25, Li 35 and Li 16, Li 26, Li 36, the transverse load currents from the accumulators A1 6, A 36 and A 46 remain relatively limited. As a result, the charging current received by the branch Br2 does not come from the transverse load currents but from the external connections of the branches Br1, Br3, Br4, which are not provided with limiters. The branches Br1, Br3 and Br4 therefore provide a current of load (broken line). Branch Br2 receives a load current (in dotted line), corresponding to the accumulation of load currents branches Br1, Br3 and Br4. Figure 9 is a diagram showing the voltage across the battery A26 (dotted) and the voltage across the accumulators Br2 branch (dashed) free of malfunctions. The voltage across the faulty accumulator A26 drops gradually to a value close to 0V. The voltage across the other accumulators of the branch Br2 increases gradually from a value of 3.3 V to about 3.8 V, to compensate for the voltage drop in the stage Et6. This voltage is largely bearable by the other batteries of the branch Br2 in LiFeP technology.
Comme il lustré à la figure 10, la vitesse de décharge des accumulateurs A1 6, A36 et A46 (trait discontinu) est par conséquent nettement plus lente que la vitesse de décharge de l 'accumulateur A26 (en pointil lés). Progressivement, l'ensemble de l 'étage Et6 se décharge et la tension aux bornes de la batterie 1 baisse en conséquence. Le temps de décharge de cet étage défail lant est bien entendu dépendant du nombre d'accumulateurs connectés en paral lèle et du courant de saturation des l imiteurs de courant.  As illustrated in FIG. 10, the discharge rate of the accumulators A1 6, A36 and A46 (dashed line) is therefore considerably slower than the discharge rate of the accumulator A26 (in dotted lines). Gradually, the entire stage Et6 discharges and the voltage across the battery 1 drops accordingly. The discharge time of this faulty stage is of course dependent on the number of parallel connected accumulators and the saturation current of the current imitators.
Dans une tel le batterie, il reste possible de procéder à un équil ibrage de charge des étages non défail lants même en présence d'un étage défaillant. Le circuit 2 pourra déterminer la présence d'un accumulateur défail lant en identifiant une branche absorbant un courant de charge provenant des autres branches ou en identifiant un étage aux bornes duquel la tension varie anormalement par rapport aux autres étages, soit lors d'une charge, soit lors d'une décharge. On peut également identifier un étage contenant un accumulateur défaillant à partir d'une variation importante de sa vitesse de décharge ou de son niveau de tension puisqu'il se décharge progressivement pour atteindre 0V. In such a battery, it remains possible to balance the load of non-faulty floors even in the presence of a faulty stage. The circuit 2 can determine the presence of a faulty accumulator by identifying a branch absorbing a charging current from the other branches or by identifying a stage at the terminals of which the voltage varies abnormally with respect to the other stages, either during a load , or during a discharge. It is also possible to identify a stage containing a faulty accumulator from a significant variation in its discharge velocity or voltage level since it gradually discharges to 0V.
La figure 1 1 représente schématiquement une variante avantageuse de connexion d'accumulateurs dans un étage. En l 'occurrence, l'ensemble des accumulateurs A1 à A5 d'un étage Et ont une borne connectée à un noeud de connexion commun NC par l ' intermédiaire de l imiteurs de courant respectifs Li 1 à Li5. L'autre borne de ces accumulateurs A1 à A5 peut être connectée à un autre nœud de connexion commun par l'intermédiaire d'autres l imiteurs de courant respectifs. Figure 11 shows schematically an advantageous variant of battery connection in a stage. In this case, all the accumulators A1 to A5 of a stage And have a terminal connected to a common connection node NC via the respective current imitators Li 1 to Li 5. The other terminal of these accumulators A1 to A5 may be connected to another common connection node via other respective current imprinters.
Une tel le structure permet d'une part d'util iser des l imiteurs de courant unidirectionnels. Une tel le structure permet par ai lleurs de déterminer aisément quel le zone de la batterie est défail lante, les l imiteurs de courant maintenant un contact électrique avec la zone défail lante. En outre, les courants d'équil ibrage transitent uniquement par le limiteur de charge associé à l'accumulateur concerné. Il n'y a ainsi pas de limiteur de courant qui voit transiter du courant de charge ou d'équil ibrage à destination de plusieurs accumulateurs, ce qui limite les pertes et permet de réduire leur dimensionnement. A cet effet, le circuit 2 est ici connecté aux nœuds de connexion communs. En outre, une tel le structure permet de l imiter le nombre de transistors intégrés dans les l imiteurs de courant.  Such a structure makes it possible on the one hand to use unidirectional current imitators. Such a structure makes it easy for anyone to determine which area of the battery is failing, while current imagers maintain electrical contact with the failing area. In addition, the balancing currents pass only through the load limiter associated with the relevant accumulator. There is thus no current limiter which sees charge or balance current flow to several accumulators, which limits losses and reduces their size. For this purpose, the circuit 2 is here connected to the common connection nodes. In addition, such a structure makes it possible to imitate the number of transistors integrated in the current imimeters.
Pour des l imiteurs de courant dans le sens de la charge (courant al lant du noeud commun vers les accumulateurs), si un accumulateur se retrouve en court- circuit, le courant de charge fourni par les autres accumulateurs de l 'étage devra forcément traverser son l imiteur de courant. L'accumulateur en court-circuit sera donc protégé d'un courant de charge excessif.  For current imagers in the direction of the load (current from the common node to the accumulators), if an accumulator is short-circuited, the charging current supplied by the other accumulators of the stage will necessarily have to cross. its current imitator. The short-circuited battery will therefore be protected from excessive charging current.
Pour des l imiteurs de courant dans le sens de la décharge (courant al lant d'un accumulateur vers le noeud commun), si un accumulateur se retrouve en court-circuit, les courants de décharge fournis par les autres accumulateurs de l'étage seront limités par leurs l imiteurs de courant respectifs. L'accumulateur en court-circuit sera donc protégé d'un courant de charge excessif par les l imiteurs de courant des autres accumulateurs.  For current imagers in the discharge direction (current from an accumulator to the common node), if an accumulator becomes short-circuited, the discharge currents supplied by the other accumulators of the stage will be limited by their respective current l imitors. The short-circuited accumulator will therefore be protected from excessive charging current by current imagers of other accumulators.
La figure 12 représente schématiquement un l imiteur de courant unidirectionnel Li, basé sur un transistor JFET T3, l imitant le courant dans le sens d'un accumulateur vers le noeud commun NC.  FIG. 12 schematically shows a unidirectional current imi L, based on a JFET transistor T3, mimicking the current in the sense of an accumulator to the common node NC.
Différents critères pourront être pris en compte pour dimensionner le courant de saturation et/ou la tension de saturation des l imiteurs de courant. Different criteria may be taken into account for sizing the saturation current and / or the saturation voltage of the current imitators.
On pourra notamment util iser des l imiteurs de courant dont la tension de saturation est inférieure à la tension nominale de chacun des accumulateurs de la batterie 1 . On pourra également utiliser un circuit d'équilibrage 2 configuré pour appliquer un courant d'équilibrage aux accumulateurs restant inférieur aux courants de saturation des limiteurs de courant. In particular, it is possible to use current imagers whose saturation voltage is lower than the nominal voltage of each of the accumulators of the battery 1. It will also be possible to use a balancing circuit 2 configured to apply a balancing current to the accumulators remaining below the saturation currents of the current limiters.
Le courant de saturation pourra également être défini à un courant nominal d'un accumulateur aboutissant à sa décharge complète en une heure.  The saturation current may also be defined at a rated current of an accumulator resulting in its complete discharge in one hour.
Une batterie 1 destinée à alimenter un moteur électrique de véhicule automobile présente typiquement une tension nominale comprise entre 200 et 500 V. Pour une telle batterie, les limiteurs de courant pourront être dimensionnés pour présenter une intensité de saturation comprise entre 200 mA et 2 A, par exemple de l'ordre de 1 A. Afin de limiter les pertes lors de la charge ou de l'équilibrage de charge dans la batterie 1 , les limiteurs de courant sont avantageusement dimensionnés pour présenter une résistance réduite à l'état passant, typiquement inférieure ou égale à 0,1 Ω, de préférence inférieure à 1 Ω, lorsque la tension à leurs bornes est inférieure à ladite tension de saturation.  A battery 1 intended to power a motor vehicle electric motor typically has a nominal voltage of between 200 and 500 V. For such a battery, the current limiters can be sized to have a saturation intensity of between 200 mA and 2 A, for example of the order of 1 A. In order to limit the losses during charging or load balancing in the battery 1, the current limiters are advantageously sized to have a reduced resistance in the on state, typically less than or equal to 0.1 Ω, preferably less than 1 Ω, when the voltage at their terminals is lower than said saturation voltage.
Avantageusement, le circuit 2 peut réaliser un écrêtage de tension aux bornes des accumulateurs, pour des accumulateurs de type lithium-ion incapables de réaliser naturellement cet écrêtage. Un tel écrêtage peut être réalisé par un circuit 2 d'un volume et d'un coût relativement réduits, du fait de la connexion en parallèle des accumulateurs d'un même étage.  Advantageously, the circuit 2 can perform voltage clipping at the terminals of the accumulators, for lithium-ion type accumulators unable to achieve this clipping naturally. Such clipping can be achieved by a circuit 2 of a relatively small volume and cost, because of the parallel connection of the accumulators of the same stage.
Un dispositif de stockage ou batterie de puissance dont la tension nominale est généralement supérieure à 100V comprendra typiquement plusieurs modules ou batteries connectées en série. Chaque module comprendra alors plusieurs étages en série avec plusieurs branches en parallèle. Dans le cas où un accumulateur soit défaillant dans l'un des modules, le circuit 2 pourra avantageusement commander le court-circuitage de ce module afin d'assurer la continuité de service du reste du dispositif de stockage. A storage device or power battery whose nominal voltage is generally greater than 100V will typically include several modules or batteries connected in series. Each module will then comprise several stages in series with several branches in parallel. In the case where an accumulator fails in one of the modules, the circuit 2 may advantageously control the short-circuiting of this module to ensure the continuity of service of the rest of the storage device.
La figure 1 3 illustre un circuit d'isolation d'un module Mod en cas de défaillance de celui-ci. Le module Mod comporte des bornes B1 et B2 entre lesquelles il applique sa différence de potentiel d'alimentation. Le circuit d'isolation comporte deux pôles de sortie de puissance P et N, destinées à être connectées à des modules en série ou à une des bornes de puissance du dispositif de stockage de puissance. Le circuit de puissance comporte deux branches connectées en parallèle entre les pôles P et N. Une première branche inclut l'interrupteur 11 en série avec le module Mod. Une deuxième branche de dérivation inclut l'interrupteur.  Figure 13 illustrates an isolation circuit of a Mod module in case of failure thereof. Mod module comprises terminals B1 and B2 between which it applies its power supply potential difference. The isolation circuit comprises two power output poles P and N, intended to be connected to modules in series or to one of the power terminals of the power storage device. The power circuit comprises two branches connected in parallel between the poles P and N. A first branch includes the switch 11 in series with the module Mod. A second branch branch includes the switch.
L'interrupteur 12 est configuré pour être normalement fermé, l'interrupteur 11 étant configuré pour être normalement ouvert. L'interrupteur 11 est configuré pour ouvrir/fermer sélectivement la branche incluant le module Mod. L'interrupteur 12 est configuré pour ouvrir/fermer sélectivement la branche de dérivation. La fermeture de l'interrupteur 11 est commandée par le circuit 2. En l'absence de signal de commande appl iqué par le circuit 2, l ' interrupteur 11 est maintenu ouvert afin d'isoler automatiquement le module Mod en cas de dysfonctionnement. La fermeture de l' interrupteur 12 est commandée par défaut par la tension entre les bornes B 1 et B2. Ainsi, la présence normale d'une tension entre les bornes B1 et B2 maintient l ' interrupteur 12 ouvert en l'absence d'autres commandes, ce qui assure le court-circuitage du module Mod par défaut en cas de dysfonctionnement. L'ouverture de l'interrupteur 12 doit être commandée de façon active par le circuit 2 afin d'appl iquer la tension du module Mod sur les pôles P et N. The switch 12 is configured to be normally closed, the switch 11 being configured to be normally open. The switch 11 is configured to selectively open / close the branch including the module Mod. The switch 12 is configured to selectively open / close the branch branch. The closing of the switch 11 is controlled by the circuit 2. In the absence of control signal applied by the circuit 2, the switch 11 is kept open to automatically isolate the Mod module in case of malfunction. The closing of the switch 12 is controlled by default by the voltage between the terminals B 1 and B2. Thus, the normal presence of a voltage between the terminals B1 and B2 keeps the switch 12 open in the absence of other controls, which ensures the short-circuiting of the Mod module by default in the event of a malfunction. The opening of the switch 12 must be actively controlled by the circuit 2 in order to apply the voltage of the Mod module to the poles P and N.
Les interrupteurs 11 et 12 peuvent être des transistors de type MOSFET, qui peuvent aisément être dimensionnés de façon appropriée à un coût relativement réduit. Les transistors 11 et 12 peuvent être de type nMOS.  The switches 11 and 12 may be MOSFET transistors, which can easily be appropriately sized at a relatively low cost. Transistors 11 and 12 may be of nMOS type.
La figure 14 il lustre un système 4 comprenant des modules Mod1 , Mod2, Mod3 connectés en série. Le module Mod 1 est connecté entre les pôles P1 et P2, le module Mod2 est connecté entre les pôles P2 et P3, le module Mod3 est connecté entre les pôles P3 et P4. Le circuit d'isolation du module Mod 1 comprend des interrupteurs 11 1 et 11 2, le circuit d'isolation du module Mod2 comprend des interrupteurs 121 et 11 2, le circuit d'isolation du module Mod3 comprend des interrupteurs 131 et I32. Dans la configuration il lustrée, les modules Mod 1 , Mod2, Mod3 sont opérationnels. Par conséquent, les interrupteurs 11 1 , 121 et 131 sont fermés et leurs interrupteurs 112, I22 et I32 sont ouverts, de sorte que les modules Mod1 , Mod2, Mod3 sont connectés en série. FIG. 14 illustrates a system 4 comprising modules Mod1, Mod2, Mod3 connected in series. The module Mod 1 is connected between the poles P1 and P2, the module Mod2 is connected between the poles P2 and P3, the module Mod3 is connected between the poles P3 and P4. The isolation circuit of the module Mod 1 comprises switches 11 1 and 11 2, the isolation circuit of the module Mod2 comprises switches 121 and 11 2, the isolation circuit of the module Mod3 comprises switches 131 and I32. In the lustrous configuration, Mod 1, Mod 2, Mod 3 modules are operational. Consequently, the switches 11 1, 121 and 131 are closed and their switches 112, I22 and I32 are open, so that the modules Mod1, Mod2, Mod3 are connected in series.
La figure 14 il lustre le système 4 lorsque le module Mod2 connaît un dysfonctionnement. Lorsque le circuit 2 détecte ce dysfonctionnement, il ouvre l'interrupteur 121 et ferme l'interrupteur I22. Le module Mod2 est ainsi court- circuité. Le module Mod2 peut être ainsi isolé afin d'éviter sa charge et ainsi éviter une avarie plus grave. Le système 4 peut donc être util isé de façon dégradée en assurant sa continuité de service. L' invention s'appl ique à une batterie comprenant au moins deux étages et au moins trois accumulateurs dans chaque étage, bien qu'un nombre d'étages et d'accumulateurs plus important ait été mentionnés dans les différents modes de réal isation décrits. Les limiteurs de courant peuvent être réal isés avec des transistors bipolaires. Figure 14 it shines the system 4 when Mod2 module is malfunctioning. When the circuit 2 detects this malfunction, it opens the switch 121 and closes the switch I22. The Mod2 module is thus short-circuited. The Mod2 module can thus be isolated in order to avoid its load and thus avoid a more serious damage. The system 4 can therefore be used in a degraded manner while ensuring its continuity of service. The invention applies to a battery comprising at least two stages and at least three accumulators in each stage, although a larger number of stages and accumulators have been mentioned in the various embodiments described. Current limiters can be realized with bipolar transistors.
En dessous du seuil de saturation, le courant traversant un tel l imiteur de courant est alors sensiblement défini par une fonction affine de la tension. Below the saturation threshold, the current flowing through such a current limiter is then substantially defined by an affine function of the voltage.

Claims

REVENDICATIONS
Batterie d'accumulateurs (1 ), caractérisée en ce qu'el le comprend au moins : Accumulator battery (1), characterized in that it comprises at least:
-des premier et deuxième étages (Et1 , Et2) connectés électriquement en série, chaque étage incluant au moins des premier à troisième accumulateurs (A1 1 , A21 , A31 ) connectés électriquement en paral lèle ;  first and second stages (Et1, Et2) electrically connected in series, each stage including at least first to third accumulators (A1 1, A21, A31) electrically connected in parallel;
-au moins des premier et deuxième l imiteurs de courant (Li 1 1 , Li21 ) par l'intermédiaire desquels les premier à troisième accumulateurs (A1 1 , A21 , A31 ) dudit premier étage (Et1 ) sont connectés en paral lèle et par l'intermédiaire desquels les premier à troisième accumulateurs (A12, A22, A32) dudit deuxième étage (Et2) sont connectés en paral lèle, un l imiteur de courant étant un composant ou circuit traversé par un courant croissant avec la tension à ses bornes lorsque cette tension est inférieure à un seuil de saturation, et traversé par un courant de saturation sensiblement constant lorsque cette tension est supérieure audit seuil de saturation.  at least first and second current imitators (Li 1 1, Li 21) by means of which the first to third accumulators (A1 1, A 21, A 31) of said first stage (Et 1) are connected in parallel and through intermediate of which the first to third accumulators (A12, A22, A32) of said second stage (Et2) are connected in parallel, a current limiter being a component or circuit traversed by an increasing current with the voltage at its terminals when this voltage is below a saturation threshold, and traversed by a substantially constant saturation current when this voltage is greater than said saturation threshold.
Batterie d'accumulateurs selon la revendication 1 , comprenant en outre un troisième l imiteur de courant (Li3), lesdits premier à troisième accumulateurs (A1 , A2, A3) du premier étage étant connectés à un noeud de connexion commun (NC) par l ' intermédiaire respectivement des premiers à troisième limiteurs de courant (Li1 , Li2, Li3). An accumulator battery according to claim 1, further comprising a third current imprinter (Li3), said first to third accumulators (A1, A2, A3) of the first stage being connected to a common connection node (NC) by the intermediate respectively first to third current limiters (Li1, Li2, Li3).
Batterie d'accumulateurs selon la revendication 2, dans laquel le lesdits premier à troisième l imiteurs de courant (Li 1 , Li2, Li3) l imitent le courant de façon unidirectionnel le entre le noeud de connexion commun (NC) et respectivement les premier à troisième accumulateurs (A1 , A2, A3). An accumulator battery according to claim 2, wherein said first to third current imitators (Li 1, Li 2, Li 3) mimic the current unidirectionally between the common (NC) and the first to third accumulators (A1, A2, A3).
Batterie d'accumulateurs selon l 'une quelconque des revendications précédentes, dans laquel le lesdits l imiteurs de courant incluent chacun un premier transistor de type JFET dont la gril le est connectée à la source, dont la source est connectée à une borne d'un des accumulateurs du premier étage et dont le drain est connecté à une borne d'un autre des accumulateurs du premier étage. An accumulator battery according to any one of the preceding claims, wherein said current imagers each include a first JFET transistor whose gate is connected to the source, whose source is connected to a terminal of a accumulators of the first stage and whose drain is connected to a terminal of another of the accumulators of the first stage.
Batterie d'accumulateurs selon l 'une quelconque des revendications 1 à 3, dans laquel le lesdits l imiteurs de courant incluent chacun un premier transistor de type Mosfet à déplétion dont la gril le est connectée à la source, dont la source est connectée à une borne d'un des accumulateurs du premier étage et dont le drain est connecté à une borne d'un des accumulateurs du premier étage. An accumulator battery according to any one of claims 1 to 3, wherein said current imagers each include a first depletion-type Mosfet transistor whose gate is connected to the source, whose source is connected to a source. terminal of one of the accumulators of the first stage and whose drain is connected to a terminal of one of the accumulators of the first stage.
Batterie d'accumulateurs selon l 'une quelconque des revendications 1 à 3, dans laquel le lesdits l imiteurs de courant incluent chacun un premier transistor de type Mosfet à enrichissement et un circuit de commande configuré pour maintenir ledit transistor Mosfet fermé. The accumulator battery according to any of claims 1 to 3, wherein said current imagers each include a first transistor of an enrichment-type Mosfet and a control circuit configured to hold said Mosfet transistor closed.
7. Batterie d'accumulateurs selon l'une quelconque des revendications 4 à 6, dans laquelle lesdits limiteurs de courant incluent chacun un deuxième transistor de même type que le premier transistor et monté tête-bêche avec le premier transistor. The accumulator battery according to any one of claims 4 to 6, wherein said current limiters each include a second transistor of the same type as the first transistor and mounted head to tail with the first transistor.
8. Batterie selon l'une quelconque des revendications précédentes, comprenant au moins cinq étages (Et1 -Et8) connectés électriquement en série, chaque étage incluant au moins des premier à troisième accumulateurs de type lithium-ion LiFeP et connectés électriquement en parallèle par l'intermédiaire d'au moins deux limiteurs de courant respectifs. 9. Batterie selon l'une quelconque des revendications précédentes, dans laquelle la tension nominale aux bornes de chacun desdits accumulateurs est supérieure à la tension de saturation aux bornes des limiteurs de courant au-delà de laquelle les limiteurs de courant sont traversés par un courant de saturation sensiblement constant. 8. Battery according to any one of the preceding claims, comprising at least five stages (Et1-Et8) electrically connected in series, each stage including at least first to third lithium-ion LiFeP type accumulators and electrically connected in parallel with each other. intermediate of at least two respective current limiters. 9. Battery according to any one of the preceding claims, wherein the nominal voltage across each of said accumulators is greater than the saturation voltage across the current limiters beyond which the current limiters are traversed by a current. saturation substantially constant.
10. Batterie selon la revendication 8, dans laquelle chacun desdits limiteurs de courant se comporte comme un circuit résistif présentant une résistance inférieure à 1 Ω lorsque la tension à ses bornes est inférieure à ladite tension de saturation. The battery of claim 8, wherein each of said current limiters behaves as a resistive circuit having a resistance of less than 1 Ω when the voltage across it is less than said saturation voltage.
1 1 . Batterie selon l'une quelconque des revendications précédentes, dans laquelle ledit courant de saturation de chacun des limiteurs de courant est au moins égal à 50% de la valeur maximale de courant pour toute tension aux bornes dudit limiteur de courant inférieure au seuil de saturation. 1 1. A battery as claimed in any one of the preceding claims, wherein said saturation current of each of the current limiters is at least 50% of the maximum current value for any voltage across said current limiter below the saturation threshold.
12. Batterie selon l'une quelconque des revendications précédentes, dans laquelle ledit courant de saturation de chacun des limiteurs de courant est au moins égal à la valeur maximale de courant pour toute tension aux bornes dudit limiteur de courant inférieure au seuil de saturation. 12. Battery according to any one of the preceding claims, wherein said saturation current of each of the current limiters is at least equal to the maximum current value for any voltage across said current limiter below the saturation threshold.
1 3. Système comprenant : 1 3. System comprising:
-une batterie selon la revendication 8 ou 10;  a battery according to claim 8 or 10;
-un circuit d'équilibrage (2) connecté aux bornes de chacun des étages de la batterie et configuré pour appliquer un courant d'équilibrage aux accumulateurs d'un étage, ce courant d'équilibrage présentant une amplitude maximale inférieure audit courant de saturation. a balancing circuit (2) connected to the terminals of each of the stages of the battery and configured to apply a balancing current to the accumulators of a stage, this balancing current having a maximum amplitude less than the said saturation current.
14. Système selon la revendication 1 3, incluant une batterie selon la revendication 9, et dans lequel le circuit d'équilibrage (2) est connecté à un nœud de connexion commun (NC) des accumulateurs d'un étage et configuré pour appliquer un courant d'équilibrage à chacun des accumulateurs dudit étage, le courant d'équilibrage de chacun des accumulateurs présentant une amplitude maximale inférieure audit courant de saturation divisé par le nombre d'accumulateurs dudit étage. The system of claim 13, including a battery according to claim 9, and wherein the balancing circuit (2) is connected to a common connection node (NC) of the accumulators of a stage and configured to apply a balancing current to each of the accumulators of said stage, the balancing current of each of the accumulators having a maximum amplitude less than said saturation current divided by the number of accumulators of said stage.
15. Système (3) comprenant: 15. System (3) comprising:
-deux batteries (Mod1 , Mod2) selon l'une quelconque des revendications 1 à 12, lesdites batteries étant connectées en série et comportant chacune des premier et deuxième pôles de sortie de puissance (P1 , P2) ;  two batteries (Mod1, Mod2) according to any one of claims 1 to 12, said batteries being connected in series and each having first and second power output poles (P1, P2);
-un dispositif de sécurisation associé à une desdites batterie (Mod1 ) et comprenant :  a security device associated with one of said batteries (Mod1) and comprising:
-des premier et deuxième interrupteurs (11 1 , 11 2), le premier interrupteur étant un interrupteur normalement ouvert (11 1 ), le deuxième interrupteur étant un interrupteur normalement fermé (112), une tension d'alimentation de ladite batterie (Mod1 ) étant appliquée comme signal de commande de fermeture par défaut du deuxième interrupteur (112);  first and second switches (11 1, 11 2), the first switch being a normally open switch (11 1), the second switch being a normally closed switch (112), a supply voltage of said battery (Mod1) being applied as the default closing control signal of the second switch (112);
-des première et deuxième branches connectées en parallèle entre les premier et deuxième pôles de sortie de puissance (P1 , P2), la première branche incluant une batterie et l'interrupteur normalement ouvert (11 1 ) connectés en série, la deuxième branche étant sélectivement ouverte/fermée par l'interrupteur normalement fermé (112).  first and second branches connected in parallel between the first and second power output poles (P1, P2), the first branch including a battery and the normally open switch (11 1) connected in series, the second branch being selectively open / closed by the normally closed switch (112).
16. Système selon la revendication 15, comprenant en outre un circuit de commande (2) qui, durant l'utilisation de la batterie associée au dispositif de sécurisation, applique un signal de commande forçant la fermeture du premier interrupteur et applique un signal de commande forçant l'ouverture du deuxième interrupteur. The system of claim 15, further comprising a control circuit (2) which, during use of the battery associated with the securing device, applies a control signal forcing the closure of the first switch and applies a control signal forcing the opening of the second switch.
1 7. Système comprenant : 7. System comprising:
-une batterie selon l'une quelconque des revendications précédentes ;  a battery according to any one of the preceding claims;
-un circuit de détection de défaillance (2) connecté aux bornes de chacun des étages de la batterie et configuré pour détecter un dysfonctionnement de la batterie lorsque la tension aux bornes d'un desdits étages diverge des tensions aux bornes des autres étages. a fault detection circuit connected to the terminals of each of the stages of the battery and configured to detect a malfunction of the battery when the voltage across one of said stages diverges voltages across the other stages.
EP12788499.7A 2011-11-17 2012-11-14 Storage battery protected from internal short-circuits Withdrawn EP2781000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160460A FR2982998B1 (en) 2011-11-17 2011-11-17 BATTERY OF ACCUMULATORS PROTECTED AGAINST SHORT CIRCUITS
PCT/EP2012/072600 WO2013072358A1 (en) 2011-11-17 2012-11-14 Storage battery protected from internal short-circuits

Publications (1)

Publication Number Publication Date
EP2781000A1 true EP2781000A1 (en) 2014-09-24

Family

ID=47216243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12788499.7A Withdrawn EP2781000A1 (en) 2011-11-17 2012-11-14 Storage battery protected from internal short-circuits

Country Status (4)

Country Link
US (1) US10059216B2 (en)
EP (1) EP2781000A1 (en)
FR (1) FR2982998B1 (en)
WO (1) WO2013072358A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490639B2 (en) 2010-02-05 2016-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Charge equalization system for batteries
FR2956261B1 (en) * 2010-02-05 2012-03-09 Commissariat Energie Atomique BALANCING SYSTEM FOR BATTERIES OF ACCUMULATORS
FR2991779B1 (en) * 2012-06-12 2014-07-11 Commissariat Energie Atomique BATTERY OF ACCUMULATORS PROTECTED AGAINST SHORT CIRCUITS EXTERNAL
JP6229952B2 (en) * 2012-08-10 2017-11-15 パナソニックIpマネジメント株式会社 Battery device and battery control device
US9547045B2 (en) * 2014-02-04 2017-01-17 Gm Global Technology Operations, Llc Methods and systems for determining a characteristic of a vehicle energy source
JP6779708B2 (en) * 2016-08-25 2020-11-04 矢崎総業株式会社 Quick charging device
EP3327825B1 (en) * 2016-11-25 2019-10-02 Samsung SDI Co., Ltd. Busbar for a battery system
CN108471151A (en) * 2018-04-12 2018-08-31 福泰动力有限公司 Power supply system and driving method
CN110635177B (en) * 2018-06-22 2021-05-11 华为技术有限公司 Battery control method, battery control device, and computer-readable storage medium
US11264810B2 (en) * 2019-03-21 2022-03-01 StoreDot Ltd. Balancing charging of lithium ion batteries by a switching circuitry
FR3118335B1 (en) * 2020-12-23 2022-12-09 Commissariat Energie Atomique Device and method for isolating an electric accumulator
CN118715687A (en) * 2022-02-18 2024-09-27 日立能源有限公司 Discharge resistor arrangement of energy storage cabinet in energy storage system
SE545697C2 (en) * 2022-02-25 2023-12-12 Sem Ab Fault tolerant battery module
SE545703C2 (en) * 2022-02-25 2023-12-12 Sem Ab Battery module enabling cell voltage measurement
KR20240038384A (en) * 2022-09-16 2024-03-25 삼성전자주식회사 Method of controlling battery, electronic apparatus performing the merhod, and battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094923A1 (en) * 2001-11-22 2003-05-22 Akihiko Emori Power supply unit, distributed power supply system and electric vehicle loaded therewith
US20060158816A1 (en) * 2005-01-14 2006-07-20 Harris Richard A Low resistance transient blocking unit
JP2011024404A (en) * 2009-07-06 2011-02-03 Amperex Technology Ltd Connection scheme for multiple battery cells

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600809B1 (en) * 1986-06-24 1988-08-19 Eurotechnique Sa DEVICE FOR DETECTING THE OPERATION OF THE READING SYSTEM OF AN EPROM OR EEPROM MEMORY CELL
US4894588A (en) * 1988-01-25 1990-01-16 Vultron, Inc. High efficiency flasher
JPH01225031A (en) * 1988-03-02 1989-09-07 Yaskawa Electric Mfg Co Ltd Current limiting device for accident current
JP3330517B2 (en) * 1997-05-19 2002-09-30 富士通株式会社 Protection circuit and battery unit
US5898291A (en) * 1998-01-26 1999-04-27 Space Systems/Loral, Inc. Battery cell bypass topology
US6278964B1 (en) * 1998-05-29 2001-08-21 Matsushita Electric Industrial Co., Ltd. Hot carrier effect simulation for integrated circuits
US8980492B2 (en) * 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
US6700351B2 (en) * 2000-02-18 2004-03-02 Liebert Corporation Modular uninterruptible power supply battery management
US6599655B2 (en) * 2001-04-06 2003-07-29 The Boeing Company Procedure for performing battery reconditioning on a space vehicle designed with one battery
JP2006053120A (en) * 2004-07-12 2006-02-23 Denso Corp Battery pack voltage detector
KR100635269B1 (en) 2004-10-01 2006-10-19 삼성전자주식회사 Image forming apparatus
JP4196122B2 (en) * 2005-02-25 2008-12-17 パナソニック株式会社 Battery pack
JP4439456B2 (en) * 2005-03-24 2010-03-24 株式会社東芝 Battery pack and automobile
US7962212B2 (en) * 2007-08-02 2011-06-14 Cameron Health, Inc. Multiple battery configurations in an implantable medical device
TW200913433A (en) * 2007-09-10 2009-03-16 J Tek Inc Scattered energy storage control system
US7692404B2 (en) * 2007-09-24 2010-04-06 Harris Technology, Llc Charging control in an electric vehicle
US20090085553A1 (en) * 2007-09-28 2009-04-02 Pavan Kumar Reconfigurable battery pack
JP5319224B2 (en) * 2008-09-25 2013-10-16 株式会社東芝 Assembled battery system
FR2938986B1 (en) * 2008-11-25 2010-12-17 Bull Sas SUPPLY DEVICE FOR DIRECT CURRENT SUPPORT OF AN ELECTRICAL SYSTEM.
KR101678522B1 (en) * 2009-04-10 2016-11-22 더 리젠츠 오브 더 유니버시티 오브 미시건 Dynamically reconfigurable framework for a large-scale battery system
FR2947958B1 (en) * 2009-07-08 2011-09-09 Commissariat Energie Atomique BATTERY OF ACCUMULATORS WITH REDUCED LOSSES
US8541987B2 (en) * 2010-07-07 2013-09-24 Monolithic Power Systems, Inc. Low loss discharge circuits for EMI filter capacitors
US20120013189A1 (en) * 2010-07-15 2012-01-19 Vercingetorix, Llc battery management system
US8669613B2 (en) * 2010-09-29 2014-03-11 Alpha & Omega Semiconductor, Inc. Semiconductor device die with integrated MOSFET and low forward voltage diode-connected enhancement mode JFET and method
JP5764911B2 (en) * 2010-11-01 2015-08-19 ソニー株式会社 Battery pack and power consuming equipment
JP5099569B1 (en) * 2011-05-13 2012-12-19 独立行政法人 宇宙航空研究開発機構 A circuit in which a switch of a series-parallel switching cell voltage balance circuit is constituted by a MOSFET and a driving circuit thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094923A1 (en) * 2001-11-22 2003-05-22 Akihiko Emori Power supply unit, distributed power supply system and electric vehicle loaded therewith
US20060158816A1 (en) * 2005-01-14 2006-07-20 Harris Richard A Low resistance transient blocking unit
JP2011024404A (en) * 2009-07-06 2011-02-03 Amperex Technology Ltd Connection scheme for multiple battery cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013072358A1 *

Also Published As

Publication number Publication date
US20140354232A1 (en) 2014-12-04
WO2013072358A1 (en) 2013-05-23
US10059216B2 (en) 2018-08-28
FR2982998B1 (en) 2013-12-20
FR2982998A1 (en) 2013-05-24

Similar Documents

Publication Publication Date Title
EP2781000A1 (en) Storage battery protected from internal short-circuits
EP2452384B1 (en) Low-loss storage battery
EP2721666B1 (en) Secure battery element
EP3105845B1 (en) Dc voltage supply system configured to precharge a smoothing capacitor before supplying a load
EP2715379B1 (en) Detection of an insulation defect
EP2994341A1 (en) Security system for an accumulator battery module and corresponding method for balancing a battery module
EP3060422B1 (en) Protecting a power supply including a plurality of batteries in parallel against an external short-circuit
EP2994968B1 (en) Protection of a power supply including a plurality of batteries in parallel against an external short circuit
FR2908939A1 (en) Main power bus voltage regulation assuring device for satellite, has control signal generating unit for generating control signal determining closing and opening of switch in specific cases
EP3066707B1 (en) Storage battery providing continuity of service in the event of a malfunction
EP2859636B1 (en) Accumulator battery protected against external short-circuits
EP3044025B1 (en) Insulation fault detection device for testing for insulation faults under critical conditions
WO2022023203A9 (en) Semi-modular accumulator battery management system
EP4189406A1 (en) Battery management system
EP3900175A1 (en) System for controlling a voltage converter
FR2849298A1 (en) DEVICE FOR MONITORING THE CHARGE STATE, AT CONSTANT VOLTAGE, OF A BATTERY ASSEMBLY WITH SECONDARY ELECTROCHEMICAL GENERATORS
FR2959631A1 (en) Aircraft rechargeable lithium ion battery disconnecting system, has parallel branches, where each branch includes silicon switches that are mounted on metal isolated substrate card, where free wheel diode is equipped in system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210112