EP2776763A1 - Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication - Google Patents

Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication

Info

Publication number
EP2776763A1
EP2776763A1 EP12788616.6A EP12788616A EP2776763A1 EP 2776763 A1 EP2776763 A1 EP 2776763A1 EP 12788616 A EP12788616 A EP 12788616A EP 2776763 A1 EP2776763 A1 EP 2776763A1
Authority
EP
European Patent Office
Prior art keywords
slots
transparent plate
transparent
face
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12788616.6A
Other languages
German (de)
English (en)
Inventor
Joël GILBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunpartner Technologies SAS
Original Assignee
Sunpartner Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpartner Technologies SAS filed Critical Sunpartner Technologies SAS
Publication of EP2776763A1 publication Critical patent/EP2776763A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/50Rollable or foldable solar heat collector modules
    • F24S20/55Rollable or foldable solar heat collector modules made of flexible materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0525Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells including means to utilise heat energy directly associated with the PV cell, e.g. integrated Seebeck elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Definitions

  • the present invention relates to solar thermal and / or photovoltaic collectors and more particularly to the visual integration of these sensors by making it possible to visualize an image on their surface.
  • the discrete visual integration of solar collectors is particularly useful in objects whose main function is to shield, at least partially, the sun's rays, as for example in the case of blinds, sunshades, parasols, shades and others.
  • Mats good visual and functional integration of solar collectors can also be useful in a wider range of media, such as buildings, roofs, walls, tiles, glazing, transport vehicles, including boats and airplanes , advertising panels and screens, electronic screens, clothing, and generally on any flat or non-planar support.
  • a first problem is due to the generally dark appearance of known solar collectors, which hinders a good visual integration of these sensors on supports of different color to that of the sensors. Indeed, most solar collectors are uniform in color and dark because they consist of materials that are themselves uniform in color and dark as crystalline silicon or amorphous for photovoltaic sensors, and as copper or aluminum covered titanium or a black absorbent for solar thermal collectors.
  • Some devices are also known for visualizing an image on their surface while capturing solar radiation. These devices use a network of straight microlenses associated with image bands and strips of solar collectors in order to be able to visualize an image on the surface of the solar panel at certain viewing angles while at other angles of incidence the light illuminates the solar collector strips. But these devices have the disadvantage that the angles of capture of the solar radiation and the viewing angles of the image are limited to a relatively small angular range, beyond which the observer will see the solar sensor in place of the image and the sun's rays will touch the image instead of the solar collector.
  • the present invention therefore aims to solve these two problems and to provide on the one hand a substantially transparent solar collector, from a visual point of view, and on the other hand to provide a flexible and adaptable solar collector supports no plans.
  • the invention aims to solve the two problems simultaneously and to propose a solar sensor to the is substantially transparent to visible light, and sufficiently flexible in large areas to be easily applied to non-planar substrates.
  • the present invention describes an optical device that increases the total angular range of image viewing and sunlight capture up to 180 °.
  • the present invention will make the lenticular surface flexible even with large lens thicknesses.
  • the invention therefore relates to a device comprising at least one light energy sensor from a light source, characterized in that it further comprises a transparent plate disposed between the light source and said sensor, and a first face is structured by an array of lenses separated by slots, the distance between the bottom of the slots on one side of the transparent plate and the opposite side of the transparent plate being such as to allow bending of the transparent plate at this point, while the second face of the transparent plate contains pixel areas of an image, and areas of transparency.
  • said lenses are convex or concave, and of symmetrical or asymmetrical shape.
  • the transparent plate is for example mineral glass, organic glass, a polymer such as PET (polyethylene terephthalate), PMMA (poly methyl methacrylate), or polycarbonate, or silicone.
  • PET polyethylene terephthalate
  • PMMA poly methyl methacrylate
  • silicone polycarbonate
  • the slots are preferably arranged in the front face of the plate directly exposed to the light source, and they are preferably rectilinear and perpendicular to the plane of the plate. These slots are for example parallel to each other (in the uncoiled position of the device) and the distances between them are all identical.
  • the depth of the slots is such that it leaves a thickness of material between the bottom of the slot and the rear face of the plate. This thickness of material is sufficiently small to allow deformation at this point but without causing rupture, which allows the winding of the device.
  • a light energy sensor typically a solar collector.
  • the solar collector can be of any kind, for example thermal and / or photovoltaic or chemical. If it is photovoltaic, it can be in crystalline or amorphous silicon or in thin or organic layers. If it is thermal, it can be made of copper, aluminum, PVC (polyvinyl chloride), a heat-transfer liquid or a gas such as air.
  • the solar collector itself can be rigid or even flexible, even along a single axis. Of course the solar collector will be connected to an electrical or hydraulic circuit to allow its proper operation and recovery of the energy generated.
  • the pixelated areas and transparency areas of the transparent plate have a shape, a size and are positioned relative to the slots so that at certain viewing angles an observer looking at the front will only see the pixelated areas that will combine between them to allow the visualization of an image on all the surface of the plate, whereas under other angles the direct or indirect solar radiation will be refracted on the surface of the plate, will cross the zones of transparency then will activate the solar sensor which is behind the plate.
  • the opposite faces inside each slot are sufficiently polished so that these surfaces have the property of reflecting certain light rays coming from inside the plate.
  • This optical reflection is due to the difference in refractive index between the transparent material of the plate and the air that is contained in the slots. Part of the rays coming from a light source, especially from the sun, will thus be reflected on the walls of the slits and will pass through the zones of transparency, while other solar rays will pass directly through the zones of transparency without being reflected on the surface. slots.
  • the amount of light that will cross the areas of transparency and that will reach the solar collector will then be greater than the amount of light that would have crossed the areas of transparency if the slots did not exist, which will have the effect of increasing the energy production yield of the device.
  • the mirror-like optical reflection on the walls of the slits also acts for the outgoing rays coming from the pixelated zones, which allows an observer to visualize all the pixelated zones, therefore an entire image, at much greater angles than if the slits did not exist.
  • the visual integration of the device on a support will be effective over a wider angular range than in the absence of slots.
  • the presence of slits induces the property of making the plate capable of bending along these slots and even, if the slits are rectilinear and parallel, of wrapping around a cylinder whose axis of rotation is parallel to the longitudinal axis of the slots. Thanks to these slots, the rigidity of the plate is no longer proportional to its thickness, which allows the plate to use large thicknesses, for example of one or more millimeters while having good flexibility. The thickness of the plate then allows to have pixelated areas whose dimensions can be of the same order of magnitude as the thickness of the plate which will facilitate their manufacture and the accuracy of their positioning.
  • the slots have their opening either on the side of the front provided with lenses and exposed to the light source, or on the side of the rear face.
  • the side of the plate where the opening of the slots is located determines the direction of bending or winding of this plate, namely that this bending or winding will be around an axis which will be the opposite side to the opening of the slots.
  • the slots are preferably perpendicular to the plane in which the plate is inscribed in the absence of bending, but to control the viewing angles and the angles of transparency, the slots may be inclined relative to the perpendicular to the plane of the plate a non-zero angle.
  • the front face of the transparent plate will have undergone antireflection treatment.
  • the front plate is covered by another plate or a transparent, rigid or flexible film, so as to protect the slots against incrustation of soiling.
  • This protection plate can also be treated on its external face against reflections.
  • the solar collectors cover only the areas of transparency and not pixelated areas.
  • the solar collectors such as thin-film photovoltaic cells, may have the same shape and size as the transparency areas, and alternate with them.
  • the pixelated zones consist of electronic pixels generated by retro-illuminated components such as LCD ("Liquid Crystal Display”), or electroluminescent such as LED ("Light Emitting Diode”) or OLED ( “Organic Light Emitting Diode”), or reflecting pixels of color filter type on a mirror surface, or pixels whose color is determined by an optical diffraction grating effect, or whose color reflection is determined by an effect of light interferences.
  • LCD Liquid Crystal Display
  • electroluminescent such as LED (“Light Emitting Diode”) or OLED ( “Organic Light Emitting Diode”)
  • reflecting pixels of color filter type on a mirror surface or pixels whose color is determined by an optical diffraction grating effect, or whose color reflection is determined by an effect of light interferences.
  • the support of the electronic pixels may be rigid or flexible.
  • the electronic pixel carriers although not shown, will contain all the electrical connections necessary for their operation.
  • the solar cells preferably photovoltaic cells
  • the solar cells are positioned on one of the two faces of the slots and the pixelated areas cover all or part of the rear face of the plate.
  • the slots delimit (or are delimited by) cylindrical shapes whose longitudinal axes are perpendicular to the plate.
  • the base of the cylindrical shapes can be circular or polygonal, for example hexagonal, and contains a pixelated zone and / or a zone of transparency, with at the back of the plate a solar thermal or photovoltaic sensor.
  • an observer will then see only the pixelated zones, so overall an image, while solar rays, direct or after reflection on the walls of the cylinders, will reach the solar collector after having crossed the areas of transparency .
  • the cylindrical shapes in question may be miniaturized and take the dimensions and characteristics of optical fibers such as diameters of less than 500 microns.
  • the pixelated areas are not covered by the solar panels and are wholly or partly transparent to the light, which will allow an observer positioned on the rear side of the plate to receive at least one part of the light, especially solar, received by the front side of the plate.
  • the slit air knives completely separate the different parts of the plate from each other, and a transparent film is then adhered to the entire rear face of the plate in order to keep these parts in position relative to one another. to others.
  • This transparent film may be rigid or flexible, the latter case will then fold the plate at the air blades and thus obtain the general flexibility of the plate.
  • the invention finds its main applications in the case where the light source is the sun, and said light energy sensor is then a solar collector of thermal, photovoltaic, or chemical type.
  • the subject of the invention is also a method of manufacturing a device as above, characterized in that it comprises the steps of:
  • a structured transparent plate on one of its faces by a lens array, and comprising on the other face an image formed of pixel zones spaced by transparency bands;
  • the method of manufacturing the device comprises the steps of:
  • the manufacturing method comprises steps of supplying a transparent plate having a flat face and a face provided with a lens array, the flat face being configured as above with zones of transparency and zones. pixelized, then develop in one or both sides a network of slots by molding, thermoforming, or extrusion.
  • Figure 1A is an elevational view in section of a lenticular solar collector element according to the state of the art
  • FIG. 1B is an elevation view in section of a solar collector element according to the invention
  • FIG. 2 is a view in elevation and in section of the solar collector of Figure 1B, in the curved position;
  • Figure 3 is a cross-sectional view of a set of solar collectors according to Figures 1B and 2, wound around an axis;
  • Figure 4 is an elevational view in section of a first variant of solar collector according to Figure 1B;
  • Figure 5 is an ue in elevation and in section of a second variant of solar collector according to Figure 1B;
  • FIG. 6 is a perspective view showing another alternative embodiment of a solar collector according to the invention.
  • FIG. 7 is a perspective view schematically showing the steps for producing a solar collector according to FIG. 1B;
  • Figure 8 is a view by schematically showing the steps of an alternative method of producing the solar collector according to the invention.
  • FIG. 1 corresponds to a known solar collector according to the patent WO / 2007/085721. It comprises a transparent plate 1 having a front face exposed to the sun 8 and provided with a lens array 10. The rear face lb is alternately provided with areas of transparency 4 and pixel areas 3 of an image. Behind the zones 3,4 is placed a solar collector 5. It follows that at certain angles of incidence, an incident solar ray 8A, 8B will pass through the transparent plate 1 and the zones of transparency 4 to strike the solar collector 5. An observer placed in 6 will see the pixels 3 of the image but will not see the solar sensor 5 placed behind the areas of transparency, this sensor being visible only from other angles, as shown in 7.
  • the known solar collector according to FIG. 1B in practice has a disadvantage that the solar radiation capture angles and the viewing angles of the image are limited to a total angular range of about 55 degrees, which limits the possible inclination of the sensors with respect to the stroke of the sun and in relation to the observer. Beyond this angular range of 55 degrees, the observer will see the solar collector 5 instead of the image and the sun's rays will touch the image in place of the solar collector.
  • Another problem of the solar collector according to FIG. 1A is its lack of flexibility, which strongly limits its use to an application on substantially planar supports, whereas the existence of flexible solar collectors would make it possible to multiply the potential applications of this technology. .
  • FIG. 1B is a block diagram in elevation and section of the various elements of the solar collector device according to the invention and capable of solving the problems mentioned.
  • a transparent plate 1 made of glass or organic glass has its front face provided with a lens array 10, and its rear face lb plane.
  • the front face is structured by a series of slots 2 separating two consecutive lenses, and both sides are flat and polished.
  • these slots 2 are substantially perpendicular to the plane of the rear face 1b of the transparent plate 1, and these slots 2 can preferably be rectilinear and parallel to each other.
  • the front face of the transparent plate 1 is meant that which directly faces an observer and receives directly the light radiation of a light source, including the sun 8 as shown.
  • the depth 18 of the slots 2 is preferably less than the thickness of the plate 1 so as to leave a thickness of material 11 between the bottom of each slot 2 and the rear face lb of the plate, this material thickness 11 being weak enough to allow some bending of the plate without breaking it.
  • the surface defined by two consecutive slots 2 comprises a transparent area 4 and a pixel area 3, also called pixelated area.
  • these two respective zones 4, 3 may preferably be transparency bands and image bands parallel to the longitudinal axis of the slots.
  • the rear face 1b of the transparent plate 1 is entirely covered by a solar sensor 5 which thus also covers the pixelated areas 3 of the image.
  • the solar collectors 5 cover only the transparent areas 4 of the plate 1, and not its image areas.
  • the solar collector (s) 5 can be of any type, thermal or photovoltaic, rigid or flexible.
  • the distance between the consecutive slots 2 and their thickness 18 may be varied. the scope of the skilled person according to each specific application given.
  • the image zones 3 are typically pixels that emit colored light.
  • This light may be light from ambient light reflected on colored substrates, such as printed or painted paper or film, mirror-like reflective substrates covered with colored filters, or whose color is determined by a color effect. optical diffraction grating, or whose color reflection is determined by a light interference effect.
  • This light can also be light from an electronic light source (such as LEDs, OLEDs or LCDs), provided with a backlight. The power supply of these lighting devices is not illustrated.
  • Figure 2 illustrates the device of Figure 1B in a bending position.
  • the slots 2 whose walls were parallel in Figure 1, now deviate from each other to form an opening angle which is larger than the bending is important.
  • the photovoltaic film of the solar collector 5 is itself flexible in this example, so that its surface remains close to the rear face of the plate.
  • Figure 3 illustrates the device according to the invention in a winding position about an axis or a cylinder.
  • the sunscreen device according to the invention is wound around a cylinder 25 which can rotate about its longitudinal axis 26.
  • the opening of the slots 2 is oriented towards the outside of the winding, and the longitudinal axis of the slots is parallel to the winding axis 26.
  • the rear face lb of the plate 1 still contains, as in the embodiment according to FIG. 1B, image zones 3 and zones of transparency 4 alternating between the slots 2.
  • a solar sensor 5, for example photovoltaic, is positioned at the back of the plate and covers it over its entire surface.
  • FIG. 5 schematizes an alternative embodiment of the device according to the invention, in which the solar collector surfaces 5 are positioned no longer at the rear of the transparent plate, but directly on one face of each slot 2.
  • the rear face of the transparent plate 1 always comprises, between the slots 2, image zones 3 and transparency zones 4.
  • an observer 13 placed in front of the sunscreen will see by transparency the image areas 3 of the plate 1. It will also see a possible support disposed behind the plate, through the areas of transparency 4. But the observer 13 does not will see almost no solar collectors 5 which are positioned or bonded here on the lower wall of the slots 2, insofar as these slots are substantially in the extension of its axis of vision.
  • the solar rays 8 or the ambient light coming from above are refracted on the surface of the transparent plate 1 and reach the solar collectors 5 situated on the slits and which are in this example in a horizontal position.
  • FIG. 6 represents a variant of the device according to the invention when the slots 2 are no longer delimited by plane faces, but by cylindrical shapes 14.
  • the transparent plate 1 is then structured on its front face by slots or interstices of which the walls are non-planar and delimit for example outlines that take the form of circles. The result is a juxtaposition of cylinders 14 whose longitudinal axis is perpendicular to the transparent plate 1, and whose height is slightly less than the thickness of said plate.
  • each cylinder 14 At the base of each cylinder 14 are positioned a transparency zone 16 and a pixel zone 15. Part of the light entering each cylinder 14 is directed towards the zone of transparency 16 and reaches the solar sensor 5 located behind it, while that an observer, under certain viewing angles, will only see the pixels 15, and therefore globally an image.
  • the incident light passing through the zones of transparency 16 will reach the solar collector 5 and will therefore produce energy, whereas an observer observing the structure from other angles, will not be able to see the areas of transparency 16 and the solar collector 5 behind, but will see only the pixel areas 15 and therefore an image, separate from the solar collector.
  • FIG. 7 represents the principle of a method of manufacturing a device according to the invention.
  • a laser beam is used for producing the slots 2 of the transparent plate 1.
  • the front face 1a of a transparent plate 1 is subjected to a laser beam 17 so as to create slots 2 of which the depth 18 is less than or equal to the thickness of the plate 1.
  • the slots 2 are preferably rectilinear and perpendicular to the surface of the plate 1.
  • the distance 20 between the bottom of the slots 2 and the rear face lb of the plate is small enough to allow bending there without break.
  • Between each slot and the rear surface of the plate are arranged a pixel area 3 and a transparency area 4. If the slots 2 are rectilinear, the image areas 3 and the transparency areas 4 are preferably also straight and configured in the form bands.
  • a first variant of the manufacturing method consists in printing the pixel areas 3 on a transparent film 25 and in bonding this film to the rear of the plate 1 by matching the pixel areas 3 with the zones delimited by two consecutive slots 2 .
  • This film 25 can also advantageously serve to maintain the various parts in place, particularly in an embodiment in which the depth 18 of the slots is equal to the thickness of the transparent plate 1.
  • Behind the plate 1 is positioned or glued the solar collector 5 which, in this non-limiting example, is flat and covers the entire plate.
  • Figure 8 shows the principle of an alternative method of manufacturing the device according to the invention. It consists, to produce the transparent plate 1 and the slots 2, to juxtapose a series of transparent rules 24, which are stuck on a transparent film 25 serving as a support.
  • the section of the transparent rules 24 is for example square, except for their front face which is in the form of a lens.
  • the rulers 24 are juxtaposed next to each other leaving an air film between two adjacent rulers, thereby forming slots 2 as explained above, the rulers 24 being adhered by their flat rear face, so that the lenticular faces located on the front face of the transparent plate 1.
  • the transparent film 25 may itself be flexible. It will have been previously printed strips of rectilinear images 3 and parallel to the longitudinal axis of the rules. The width of the image bands 3 will for example be half the width of the rules 24.
  • Each image band 3 is positioned in front of a ruler 24.
  • Transparency bands 4 appear between two consecutive image bands 3.
  • a solar sensor 5 is supplied and positioned at the rear of this device. This solar collector 5 will have its active face turned towards the rules 24.
  • the solar collector 5 may be glued to the structure, or separated by a blade of air if it is a thermal sensor.
  • a flexible transparent polyester film of 30 cm by 70 cm of sides and 0.1 mm thick is printed on one of its faces with strips of pixels 1 mm wide which are spaced apart by bands of transparency of 1 mm wide.
  • the other side of the film is self-adhesive. Pixel bands are predominantly orange in color. Providing 35 transparent PMMA rules of 70 cm in length, each side is 2 mm, except for the front face in the form of a lens. These rules are then placed side by side on the printed film on the side of its self-adhesive side so that the face of the rulers which is glued to the film corresponds to the face opposite to the lenticular face and completely covers a strip of pixels and a band of transparency.
  • the film on which the rules were glued is mechanically fastened to the surface of a photovoltaic solar collector of the same dimensions as said film and so that said film is in contact with the solar collector.
  • the solar collector is then positioned on the orange tiles of a roof facing South, or instead of the tiles it covers, so that the longitudinal axis of the rulers is horizontal and so that the image bands are up the roof.
  • This configuration is only a simplified example of manufacturing and visual integration of a black solar panel on an orange roof that uses the method object of the invention.
  • the printing is done with UV inks and the image strips and the transparency strips are parallel to the width of the plate.
  • the unglued side of said plate is scanned by a laser beam so as to create rectilinear slots parallel to the image bands, these slots are positioned above a junction between image band and transparency band, and are spaced apart from each other. 1 mm so that the space between two slots includes exactly one image band and a transparency band.
  • the depth of the slots is 1 mm.
  • the plate thus structured by the slots becomes flexible and can be wound around a hollow, rigid metal tube 5 cm in diameter and positioned parallel to the slots.
  • the whole is the essential part of a roll-up photovoltaic awning.
  • the awning When the awning is unrolled in front of a window on the first floor of a dwelling, its surface is arranged vertically and an observer placed below will only see the white image bands, therefore the surface of the overall white blind, while the solar radiation which comes mainly from the top will completely cross the plate and activate the photovoltaic effect of the sensor.
  • the production of the electric current produced by the awning can by example to charge a battery which will be used to supply an electric motor for the winding and the automated unfolding of the blind.
  • This configuration is only a simplified example of the manufacture and visual integration of a photovoltaic blind placed in front of a building window, and which uses the device and method objects of this invention.
  • the device object of the invention will make it possible to make the solar collectors sufficiently flexible to be able to give them various shapes and / or to wind them around for example a cylinder, while retaining thicknesses compatible with industrial fabrications.
  • the device that is the subject of the invention will moreover allow viewing angles of the images and the angles of capture of the solar radiation over a larger angular range, which can be in total up to 180 °.
  • the invention is particularly adapted to the visual integration of solar collectors in blinds, sunshades, sunshades, parasols, shades, roofs, walls, tiles, glazing, transport vehicles , including boats and airplanes, advertising panels and screens, electronic displays, clothing, and generally any imagery medium, including electronic images, and on any flat or non-planar surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

L'invention concerne un dispositif à capteur d'énergie lumineuse d'une source de lumière, comportant au moins un capteur d'énergie lumineuse (5), caractérisé en ce qu'il comporte en outre une plaque transparente (1) disposée entre la source de lumière et ledit capteur, et dont une première face (la) est structurée par un réseau de lentilles (10) séparées par des fentes (2), alors que la seconde face (lb) contient des zones de pixels (3) d'une image, et des zones de transparence (4). En conséquence de cette structure, un observateur pourra visualiser une image à la surface de l'écran, bien que l'écran soit transparent aux rayons solaires. Ces rayons solaires atteignent alors un capteur solaire placé derrière la plaque. Les fentes sont pratiquées dans l'épaisseur de la dite plaque ont aussi pour effet de rendre l'écran souple et enroulable autour d'un axe. Ces fentes ont par ailleurs la propriété optique d'augmenter les angles de vision de l'image. Cette invention est particulièrement adaptée à l'intégration visuelle des capteurs solaires dans notre environnement, notamment les stores, les brises soleil, les pare-soleils, les parasols, les ombrières, les toitures, les murs, les tuiles, les vitrages, les véhicules de transport, y compris les bateaux et les avions, les panneaux et écrans publicitaires, les écrans électroniques, les vêtements, et d'une manière générale sur tout support imagé, y compris les images électroniques, et sur toutes surfaces planes ou non planes.

Description

Capteur solaire rigide ou souple avec une image visualisée en surface; et ses procédés de fabrication.
La présente invention se rapporte aux capteurs solaires thermiques et/ou photovoltaïques et plus particulièrement à l'intégration visuelle de ces capteurs en permettant de visualiser une image à leur surface.
L'intégration visuelle discrète des capteurs solaires est particulièrement utile dans des objets qui ont pour fonction principale de faire écran, au moins partiellement, aux rayons solaires, comme par exemple dans le cas des stores, des pare-soleils, des parasols, des ombrières et autres.
Mats une bonne intégration visuelle et fonctionnelle de capteurs solaires peut aussi être utile dans une gamme plus vaste de supports, comme les bâtiments, les toitures, les murs, les tuiles, les vitrages, les véhicules de transport, y compris les bateaux et les avions, les panneaux et écrans publicitaires, les écrans électroniques, les vêtements, et d'une manière générale sur tout support plan ou non plan.
A cet égard se posent deux problèmes techniques.
Un premier problème tient à l'aspect généralement sombre des capteurs solaires connus, qui nuit à une bonne intégration visuelle de ces capteurs sur des supports de couleur différente de celle des capteurs. En effet, la plupart des capteurs solaires est de couleur uniforme et sombre car ils sont constitués de matériaux qui sont eux-mêmes de couleur uniforme et sombre comme le silicium cristallin ou amorphe pour les capteurs photovoltaïques, et comme le cuivre ou l'aluminium recouvert de titane ou d'un absorbant noir pour les capteurs solaires thermiques.
On connaît pourtant dans l'état de la technique certaines cellules photovoltaïques qui utilisent des matériaux transparents à la lumière visible, ce qui permet de visualiser une image colorée au travers des cellules. Cependant, ces cellules ne transforment en électricité qu'une partie du spectre solaire comme les rayons infrarouges et les rayons ultraviolets, de sorte que leurs performances électriques sont en définitive assez faibles. Les différents capteurs solaires connus ne permettent donc pas de visualiser une image colorée au travers de leur surface tout en capturant la totalité du rayonnement solaire, ce qui permettrait pourtant de faciliter l'intégration visuelle de ces capteurs solaires dans notre environnement tout en conservant une part importante de leurs performances.
On connaît par ailleurs quelques dispositifs permettant de visualiser une image à leur surface tout en capturant le rayonnement solaire. Ces dispositifs utilisent un réseau de microlentilles rectilignes associées à des bandes images et à des bandes de capteurs solaires afin de pouvoir visualiser une image à la surface du panneau solaire sous certains angles d'observation alors que sous d'autres angles d'incidence la lumière éclaire les bandes de capteurs solaires. Mais ces dispositifs ont un inconvénient qui est que les angles de capture du rayonnement solaire et les angles de visualisation de l'image sont limités à une plage angulaire relativement faible, au-delà de laquelle l'observateur verra le capteur solaire à la place de l'image et les rayons solaires toucheront l'image à la place du capteur solaire.
Un autre problème tient à l'absence de souplesse de la plupart des capteurs solaires connus, ce qui limite fortement leur usage à une application sur des supports sensiblement plans, alors que l'existence de capteurs solaires souples permettrait de démultiplier les applications potentielles de cette technologie.
On comprend bien que la résolution simultanée des deux problèmes mentionnés permettrait à la fois d'envisager des applications de capteurs solaires sur des surfaces non planes, et de donner à ces capteurs solaires un aspect bien plus discret permettant de bien les intégrer visuellement aux différents supports envisagés, sans perte de performance.
La présente invention a par conséquent pour but de résoudre ces deux problèmes et de proposer d'une part un capteur solaire sensiblement transparent, d'un point de vue visuel, et d'autre part de proposer un capteur solaire souple et adaptable à des supports non plans.
Bien entendu, dans sa version la plus évoluée, l'invention a pour but de résoudre les deux problèmes simultanément et de proposer un capteur solaire à la fois sensiblement transparent à la lumière visible, et suffisamment souple en grande surface pour être aisément appliqué sur des supports non plans.
A cet effet, la présente invention décrit un dispositif optique qui augmente la plage angulaire totale de visualisation de l'image et de la capture des rayons solaires jusqu'à 180°. De plus la présente invention va permettre de rendre la surface lenticulaire flexible même avec des épaisseurs de lentilles importantes.
L'invention a par conséquent pour objet un dispositif comportant au moins un capteur de l'énergie lumineuse provenant d'une source de lumière, caractérisé en ce qull comporte en outre une plaque transparente disposée entre la source de lumière et ledit capteur, et dont une première face est structurée par un réseau de lentilles séparées par des fentes, la distance entre le fond des fentes pratiquées sur une face de la plaque transparente et la face opposée de la plaque transparente étant telle qu'elle permet une flexion de la plaque transparente à cet endroit, alors que la seconde face de la plaque transparente contient des zones de pixels d'une image, et des zones de transparence.
Selon les modes de réalisation retenus, lesdites lentilles sont convexes ou concaves, et de forme symétrique ou asymétrique.
La plaque transparente est par exemple en verre minéral, en verre organique, en un polymère comme du PET (poly téréphtalate d'éthylène), du PMMA (poly méthacrylate de méthyle), ou du Polycarbonate, ou encore du silicone.
Les fentes sont de préférence aménagées dans la face avant de la plaque directement exposée à la source de lumière, et elles sont de préférence rectilignes et perpendiculaires au plan de la plaque. Ces fentes sont par exemple parallèles entre elles (en position non enroulée du dispositif) et les distances qui les séparent sont toutes identiques.
La profondeur des fentes est telle qu'elle laisse une épaisseur de matière entre le fond de la fente et la face arrière de la plaque. Cette épaisseur de matière est suffisamment faible pour permettre une déformation à cet endroit mais sans provoquer de rupture, ce qui permet l'enroulement du dispositif.
A chaque plage de la plaque transparente délimitée par le tracé des fentes correspondent sur la face arrière de la plaque une zone pixélisée et une zone de transparence.
Derrière la plaque, du côté de la face arrière, se positionne un capteur d'énergie lumineuse, typiquement un capteur solaire. Le capteur solaire peut être de toutes natures, par exemple thermique et/ou photovoltaïque ou chimique. S'il est photovoltaïque, il peut être en silicium cristallin ou amorphe ou en couches minces ou organique. S'il est thermique il peut être en cuivre, en aluminium, en PVC (polychlorure de vinyle), parcouru par un liquide caloporteur ou par un gaz comme l'air. Le capteur solaire lui-même peut être rigide ou bien souple, même suivant un seul axe. Bien entendu le capteur solaire sera connecté à un circuit électrique ou hydraulique afin de permettre son bon fonctionnement et la récupération de l'énergie générée.
Les zones pixélisées et les zones de transparence de la plaque transparente ont une forme, une taille et sont positionnées par rapport aux fentes de sorte que sous certains angles d'observation un observateur qui regarde la face avant ne verra que les zones pixélisées qui se combineront entre elles pour permettre la visualisation d'une image sur toute la surface de la plaque, alors que sous d'autres angles le rayonnement solaire direct ou indirect sera réfracté à la surface de la plaque, traversera les zones de transparence puis activera le capteur solaire qui se trouve derrière la plaque.
De préférence, les faces opposées à l'intérieur de chaque fente sont suffisamment polies pour que ces surfaces aient la propriété de réfléchir certains rayons lumineux qui viennent de l'intérieur de la plaque. Cette réflexion optique ce fait grâce à la différence d'indice de réfraction entre la matière transparente de la plaque et l'air qui est contenu dans les fentes. Une partie des rayons issus d'une source lumineuse, en particulier du soleil, seront ainsi réfléchis sur les parois des fentes et traverseront les zones de transparence, alors que d'autres rayons solaires traverseront directement les zones de transparence sans être réfléchis à la surface des fentes.
La quantité de lumière qui traversera les zones de transparence et qui atteindra le capteur solaire sera alors supérieure à la quantité de lumière qui aurait traversé les zones de transparence si les fentes n'existaient pas, ce qui aura pour effet d'augmenter le rendement de production énergétique du dispositif.
La réflexion optique de type miroir sur les parois des fentes agit aussi pour les rayons sortants issus des zones pixélisées, ce qui permet à un observateur de visualiser toutes les zones pixélisées, donc une image entière, sous des angles bien plus importants que si les fentes n'existaient pas. Il en résulte que l'intégration visuelle du dispositif sur un support sera effective sur une plage angulaire plus large qu'en l'absence des fentes.
D'autre part, la présence de fentes induit la propriété de rendre la plaque capable de se courber le long de ces fentes et même, si les fentes sont rectilignes et parallèles, de s'enrouler autour d'un cylindre dont l'axe de rotation est parallèle à l'axe longitudinal des fentes. Grâce à ces fentes, la rigidité de la plaque n'est donc plus proportionnelle à son épaisseur, ce qui permet d'utiliser pour la plaque des épaisseurs importantes, par exemple d'un ou de plusieurs millimètres tout en ayant une bonne souplesse. L'épaisseur de la plaque permet alors d'avoir des zones pixélisées dont les dimensions pourront être du même ordre de grandeur que l'épaisseur de la plaque ce qui facilitera leur fabrication et la précision de leurs positionnements.
Suivant différents modes de réalisation, les fentes ont leur ouverture soit du côté de la face avant pourvue de lentilles et exposée à la source de lumière, soit du côté de la face arrière. Le côté de la plaque où se trouve l'ouverture des fentes détermine le sens de la flexion ou de l'enroulement de cette plaque, à savoir que cette flexion ou enroulement se fera autour d'un axe qui sera du côté opposé à l'ouverture des fentes. Les fentes sont de préférence perpendiculaires au plan dans lequel s'inscrit la plaque en l'absence de flexion, mais pour maîtriser les angles de visualisation et les angles de transparence, les fentes peuvent être inclinées par rapport à la perpendiculaire au plan de la plaque d'un angle non nul.
Dans un mode de réalisation particulier, la face avant de la plaque transparente aura subi un traitement antireflet.
Dans un autre mode de réalisation, la plaque avant est recouverte par une autre plaque ou un film transparent, rigide ou souple, de manière à protéger les fentes contre l'incrustation de salissures. Cette plaque de protection pourra aussi être traitée sur sa face externe contre les reflets.
Dans un autre mode de réalisation non représenté, les capteurs solaires ne recouvrent que les zones de transparence et non les zones pixélisées. Dans ce cas les capteurs solaires, comme par exemple des cellules photovoltaïques en couche mince, pourront avoir la même forme et la même taille que les zones de transparence, et alterner avec elles.
Dans un autre mode de réalisation non représenté, les zones pixélisées sont constituées de pixels électroniques générés par des composants rétro éclaires comme les LCD (« Liquid Crystal Display »), ou électroluminescents comme les LED (« Light Emitting Diode ») ou les OLED (« Organic Light Emitting Diode »), ou encore des pixels réfléchissants de type filtres colorés sur une surface miroir, ou encore des pixels dont la couleur est déterminée par un effet de réseau de diffraction optique, ou dont la réflexion colorée est déterminée par un effet d'interférences lumineuses.
Dans tous ces cas le support des pixels électroniques pourra être rigide ou bien souple. Les supports de pixels électroniques, bien que non illustrés, contiendront toutes les connexions électriques nécessaires à leur fonctionnement.
Dans un autre mode de réalisation particulier illustré en Figure 5, les capteurs solaires, de préférence des cellules photovoltaïques, sont positionnés sur l'une des deux faces des fentes et les zones pixélisées recouvrent tout ou partie de la face arrière de la plaque. L'avantage de cette disposition est qu'un observateur placé devant un écran solaire vertical mettant en œuvre cette invention, ne verra que l'image et pas du tout les capteurs solaires, même dans une plage angulaire importante comprise entre 0° correspondant à la perpendiculaire au plan de la plaque, et 90° correspondant à une vision proche de la verticale.
Dans un autre mode de réalisation particulier illustré en Figure 6, les fentes délimitent (ou sont délimitées par) des formes cylindriques dont les axes longitudinaux sont perpendiculaires à la plaque. La base des formes cylindriques peut être circulaire ou polygonale comme par exemple hexagonale, et contient une zone pixélisée et/ou une zone de transparence, avec à l'arrière de la plaque un capteur solaire thermique ou photovoltaïque. Pour certaines positions par rapport au dispositif, un observateur ne verra alors que les zones pixélisées, donc globalement une image, alors que des rayons solaires, directs ou après réflexion sur les parois des cylindres, atteindront le capteur solaire après avoir traversé les zones de transparence. Afin de rendre l'écran solaire encore plus souple, les formes cylindriques en question pourront être miniaturisées et prendre les dimensions et les caractéristiques des fibres optiques comme par exemple des diamètres inférieurs à 500 microns.
Dans un autre mode de réalisation non représenté, les zones pixélisées ne sont pas recouvertes par les capteurs solaires et sont en tout ou en partie transparentes à la lumière, ce qui permettra à un observateur positionné du côté arrière de la plaque de recevoir au moins une partie de la lumière, notamment solaire, reçue par le côté avant de la plaque.
Dans un autre mode de réalisation les lames d'air des fentes séparent complètement les différentes parties de la plaque entre elles, et un film transparent est alors collé sur toute la face arrière de la plaque afin de maintenir ces parties en position les unes par rapport aux autres. Ce film transparent pourra être rigide ou souple, ce dernier cas permettra alors de plier la plaque au niveau des lames d'air et d'obtenir ainsi la souplesse générale de la plaque.
L'invention trouve ses principales applications dans le cas où la source de lumière est le soleil, et ledit capteur d'énergie lumineuse est alors un capteur solaire de type thermique, photovoltaïque, ou chimique.
L'invention a également pour objet un procédé de fabrication d'un dispositif tel que ci-dessus, caractérisé en ce qu'il comporte des étapes consistant à :
- approvisionner une plaque transparente structurée sur une de ses faces par un réseau de lentilles, et comportant sur l'autre face une image formée de zones de pixels espacées par des bandes de transparence;
- déposer sur la face image, une couche de silicium amorphe photovoltaïque ;
- réaliser dans la face pourvue de lentilles, entre deux lentilles consécutives, des fentes dont la profondeur laisse subsister une épaisseur de matière susceptible d'assurer une possibilité de flexion à la plaque transparente.
Selon une première variante, le procédé de fabrication du dispositif comporte des étapes consistant à :
- approvisionner des règles transparentes dont une des faces a la forme d'une lentille, et un film transparent dont sur une des faces est pourvue de zones images espacées par des bandes de transparence ;
- coller la face lesdites règles transparentes les unes à côté des autres sur ledit film transparent de manière à ce que chaque règle soit collée par sa face opposée à celle qui a une forme de lentille, et de manière à laisser entre chacune desdites règles une lame d'air à faces parallèles, lesdites règles ayant une largeur telle qu'elles recouvrent une bande image et une bande de transparence;
- approvisionner un ou plusieurs capteurs solaires et les disposer sur la face de la plaque transparente opposée à celle qui porte les fentes, de façon que lesdits capteurs solaires aient leurs faces actives tournées du côté des zones de transparence.
Selon une autre variante, le procédé de fabrication comporte des étapes consistant à approvisionner une plaque transparente présentant une face plane et une face pourvue d'un réseau de lentilles, la face plane étant configurée comme ci-dessus avec des zones de transparence et des zones pixélisées, puis aménager dans l'une ou les deux faces un réseau de fentes par moulage, thermoformage, ou extrusion.
L'invention sera mieux comprise à l'aide de sa description détaillée, en relation avec les figures, dans lesquelles :
la figure 1A est une vue en élévation et en coupe d'un élément de capteur solaire lenticulaire selon l'état de la technique;
la figure 1B est une vue en élévation et en coupe d'un élément de capteur solaire selon l'invention
la figure 2 est une vue en élévation et en coupe du capteur solaire de la figure 1B, en position courbée ;
la figure 3 est une vue en coupe transversale d'un ensemble de capteurs solaires selon les figures 1B et 2, enroulés autour d'un axe ; la figure 4 est une vue en élévation et en coupe d'une première variante de capteur solaire selon la figure 1B ;
la figure 5 est une ue en élévation et en coupe d'une seconde variante de capteur solaire selon la figure 1B ;
la figure 6 est une vue en perspective montrant une autre variante de réalisation d'un capteur solaire selon l'invention ;
- la figure 7 est une vue en perspective montrant de façon schématique les étapes de réalisation d'un capteur solaire selon la figure 1B ;
la figure 8 est une vue en montrant de façon schématique les étapes d'une variante de procédé de réalisation du capteur solaire selon l'invention.
Les figures ne sont pas à l'échelle, l'épaisseur relative du dispositif étant exagérée pour mieux faire apparaître la structure.
On se réfère à la figure 1 qui correspond à un capteur solaire connu selon le brevet WO/2007/085721. Il comporte une plaque transparente 1 ayant une face avant la exposée au soleil 8 et pourvue d'un réseau de lentilles 10. La face arrière lb est pourvue en alternance de zones de transparence 4 et de zones de pixels 3 d'une image. Derrière les zones 3,4 est placé un capteur solaire 5. Il en résulte que sous certains angles d'incidence, un rayon solaire incident 8A, 8B traversera la plaque transparente 1 et les zones de transparence 4 pour venir frapper le capteur solaire 5. Un observateur placé en 6 verra les pixels 3 de l'image mais ne verra pas le capteur solaire 5 placé derrière les zones de transparence, ce capteur n'étant visible que sous d'autres angles, comme représenté en 7.
Le capteur solaire connu selon la figure 1B a en pratique un inconvénient qui est que les angles de capture du rayonnement solaire et les angles de visualisation de l'image sont limités à une plage angulaire totale d'environs 55 degrés, ce qui limite l'inclinaison possible des capteurs par rapport à la course du soleil et par rapport à l'observateur. Au delà de cette plage angulaire de 55 degrés l'observateur verra le capteur solaire 5 à la place de l'image et les rayons solaires toucheront l'image à la place du capteur solaire.
Un autre problème du capteur solaire selon la figure 1A tient à son absence de souplesse, ce qui limite fortement son usage à une application sur des supports sensiblement plans, alors que l'existence de capteurs solaires souples permettrait de démultiplier les applications potentielles de cette technologie.
On se réfère à la figure 1B, qui est un schéma de principe en élévation et en coupe des différents éléments du dispositif de capteur solaire selon l'invention et capable de résoudre les problèmes mentionnés.
Une plaque transparente 1 faite de verre ou de verre organique a sa face avant la pourvue d'un réseau de lentilles 10, et sa face arrière lb plane. La face avant la est structurée par une série de fentes 2 séparant deux lentilles consécutives, et dont les deux faces sont planes et polies. Dans l'exemple illustré, ces fentes 2 sont sensiblement perpendiculaires au plan de la face arrière lb de la plaque transparente 1, et ces fentes 2 peuvent de préférence être rectilignes et parallèles entre elles. Par face avant la de la plaque transparente 1, on entend celle qui fait directement face à un observateur et qui reçoit directement le rayonnement lumineux d'une source lumineuse, notamment le soleil 8 tel que représenté.
La profondeur 18 des fentes 2 est de préférence inférieure à l'épaisseur de la plaque 1 de manière à laisser subsister une épaisseur de matière 11 entre le fond de chaque fente 2 et la face arrière lb de la plaque, cette épaisseur de matière 11 étant assez faible pour permettre une certaine flexion de la plaque sans la casser.
Sur la face arrière lb de la plaque 1, la surface délimitée par deux fentes 2 consécutives comporte une zone de transparence 4 et une zone de pixels 3, encore appelée zone pixélisée. Lorsque les fentes 2 sont rectilignes et parallèles entre elles, ces deux zones respectives 4,3 peuvent préférentiellement être des bandes de transparence et des bandes images parallèles à l'axe longitudinal des fentes. Par application des principes de propagation de la lumière, sous certains angles, les rayons lumineux incidents 8A, 8B se réfracteront sur la face avant la de la plaque 1, puis atteindront les zones de transparence 4 à l'arrière de la plaque avant d'atteindre le capteur solaire 5, alors que sous d'autres angles un observateur 6 pourra voir selon le trajet optique 6A,6B les pixels 3 au travers de la plaque.
Les rayons lumineux 9 issus de l'intérieur de la plaque transparente 1 qui touchent l'une quelconque des faces des fentes 2 sont alors réfléchis à la surface de ces fentes, comme par un miroir, dès lors que les angles d'incidence de ces rayons par rapport à la perpendiculaire à ces faces sont supérieurs à une valeur limite fonction de l'indice de réfraction de la matière transparente constitutive de la plaque.
Dans le mode de réalisation représenté en figure 1B, la face arrière lb de la plaque transparente 1 est recouverte en totalité par un capteur solaire 5 qui recouvre donc aussi les zones pixélisées 3 de l'image.
Dans un autre mode particulier non représenté, on peut prévoir que les capteurs solaires 5 ne recouvrent que les zones de transparence 4 de la plaque 1, et non ses zones images.
En fonction de leur angle d'incidence, certains rayons solaires 8 vont traverser les zones de transparence 4 et toucher le capteur solaire 5 placé derrière les zones de transparence 4.
Le ou les capteurs solaires 5 peuvent être de tous types, thermique ou photovoltaïque, rigide ou souple.
Afin de définir des valeurs pour les angles d'observation des zones images 3 et pour les angles où on observe la transparence, on pourra faire varier la distance entre les fentes 2 consécutives, ainsi que leur épaisseur 18. Cette mise au point sera aisément à la portée de l'homme du métier en fonction de chaque application précise donnée.
On note que par mesure de simplification de la description, les dispositifs électriques ou thermiques associés aux capteurs solaires pour assurer la collecte et la redistribution de l'énergie électrique ou thermique ne sont pas illustrés, étant bien connus de l'homme du métier et ne faisant pas partie de l'invention à proprement parler.
Les zones images 3 sont typiquement des pixels qui émettent de la lumière colorée. Cette lumière peut être de la lumière issue de la lumière ambiante qui se réfléchit sur des supports colorés, comme du papier ou du film imprimé ou peint, des supports réfléchissants de type miroir recouverts de filtres colorés ou dont la couleur est déterminée par un effet de réseau de diffraction optique, ou encore dont la réflexion colorée est déterminée par un effet d'interférences lumineuses. Cette lumière peut aussi être de la lumière issue d'une source lumineuse électronique (comme des LED, des OLED ou des LCD), munie d'un rétro éclairage. L'alimentation électrique de ces dispositifs d'éclairage n'est pas illustrée.
La Figure 2 illustre le dispositif de la figure 1B dans une position de flexion. Au cours de cette flexion, les fentes 2 dont les parois étaient parallèles dans la figure 1, s'écartent maintenant les unes des autres pour former un angle d'ouverture qui est d'autant plus grand que la flexion est importante. Le film photovoltaïque du capteur solaire 5 est lui-même flexible dans cet exemple, afin que sa surface reste proche de la face arrière de la plaque.
La Figure 3 illustre le dispositif selon l'invention dans une position d'enroulement autour d'un axe ou d'un cylindre. Le dispositif d'écran solaire suivant l'invention, est enroulé autour d'un cylindre 25 qui peut tourner autour de son axe longitudinal 26. Dans cet exemple l'ouverture des fentes 2 est orientée vers l'extérieur de l'enroulement, et l'axe longitudinal des fentes est parallèle à l'axe d'enroulement 26.
On voit bien que dans cette disposition, il est possible par exemple d'enrouler une image 3 combinée à des cellules photovoltaïques formant un capteur solaire 5, de sorte que la surface de production photovoltaïque reste souple et enroula ble, tout en étant masquée sous certains angles d'observation du fait des fentes 2. Cela permet en définitive de disposer d'une surface enroulable photovoltaïque faisant apparaître une image 3, tout en masquant les cellules photovoltaïques sous la plupart des angles de vision utiles. La Figure 4 illustre le dispositif selon l'invention dans un mode de réalisation particulier où les fentes 2 sont inclinées par rapport à la perpendiculaire à la surface de la plaque transparente 1. La plaque 1 est alors structurée sur sa face avant la par des fentes 2 dont les parois sont inclinées d'un angle (A) par rapport à la perpendiculaire à la surface de la plaque. La face arrière lb de la plaque 1 contient encore, comme dans la réalisation selon la figure 1B, des zones images 3 et des zones de transparence 4 alternées entre les fentes 2. Un capteur solaire 5, par exemple photovoltaïque, est positionné à l'arrière de la plaque et la recouvre sur toute sa surface.
La Figure 5 schématise une variante de réalisation du dispositif selon l'invention, dans laquelle les surfaces de capteurs solaire 5 sont positionnées non plus à l'arrière de la plaque transparente, mais directement sur une face de chaque fente 2.
Ce positionnement convient particulièrement à un écran solaire positionné verticalement. La face arrière de la plaque transparente 1 comprend toujours, entre les fentes 2, des zones images 3 et des zones de transparence 4.
Ainsi, un observateur 13 placé en face de l'écran solaire verra par transparence les zones images 3 de la plaque 1. Il verra aussi un éventuel support disposé derrière la plaque, au travers des zones de transparence 4. Mais l'observateur 13 ne verra quasiment pas les capteurs solaires 5 qui sont positionnés ou collés ici sur la paroi inférieure des fentes 2, dans la mesure où ces fentes sont sensiblement dans le prolongement de son axe de vision.
Par contre, les rayons solaires 8 ou la lumière ambiante qui vient du haut, sont réfractés à la surface de la plaque transparente 1 et atteignent les capteurs solaires 5 situés sur les fentes et qui sont dans cet exemple en position horizontale.
On a donc dans cette disposition en position déployée de l'écran solaire une production d'énergie électrique ou thermique par les capteurs solaires 5, alors que ces capteurs solaires restent non visibles par l'observateur 13 qui ne voit que l'image 3. En outre, l'écran solaire représenté offre une possibilité de flexion ou d'enroulement autour d'un axe parallèle à l'axe longitudinal des fentes 2. La Figure 6 représente une variante du dispositif selon l'invention lorsque les fentes 2 ne sont plus délimitées par des faces planes, mais par des formes cylindriques 14. La plaque transparente 1 est alors structurée sur sa face avant la par des fentes ou interstices dont les parois sont non planes et délimitent par exemple des contours qui prennent la forme de cercles. Le résultat est une juxtaposition de cylindres 14 dont l'axe longitudinal est perpendiculaire à la plaque transparente 1, et dont la hauteur est légèrement inférieure à l'épaisseur de ladite plaque.
A la base de chaque cylindre 14 sont positionnées une zone de transparence 16 et une zone de pixels 15. Une partie de la lumière entrant dans chaque cylindre 14 est dirigée vers la zone de transparence 16 et atteint le capteur solaire 5 situé derrière elle, alors qu'un observateur, sous certains angles de vision, ne verra que les pixels 15, et donc globalement une image.
Au final, sous certains angles d'incidence, la lumière incidente traversant les zones de transparence 16 atteindra le capteur solaire 5 et produira donc de l'énergie, alors qu'un observateur observant la structure sous d'autres angles, ne pourra pas voir les zones de transparence 16 et le capteur solaire 5 qui se trouve derrière, mais ne verra que les zones de pixels 15 et donc une image, distincte du capteur solaire.
En outre, en fonction de la souplesse choisie pour le capteur solaire 5 et son support, il sera possible de conférer une certaine souplesse au dispositif et de l'adapter à des supports non plans.
On se réfère maintenant à la Figure 7 qui représente le principe d'un procédé de fabrication d'un dispositif selon l'invention.
Selon une variante de ce procédé, on utilise un faisceau laser pour la réalisation des fentes 2 de la plaque transparente 1. La face avant la d'une plaque transparente 1 est soumise à un faisceau Laser 17 de manière à y créer des fentes 2 dont la profondeur 18 est inférieure ou égale à l'épaisseur de la plaque 1.
Les fentes 2 sont de préférence rectilignes et perpendiculaires à la surface de la plaque 1. La distance 20 entre le fond des fentes 2 et la face arrière lb de la plaque est suffisamment faible pour permettre une flexion à cet endroit sans cassure. Entre chaque fente et la surface arrière de la plaque sont disposées une zone de pixels 3 et une zone de transparence 4. Si les fentes 2 sont rectilignes, les zones images 3 et les zones de transparence 4 seront de préférence aussi rectilignes et configurées sous forme de bandes.
Une première variante du procédé de fabrication consiste à imprimer les zones de pixels 3 sur un film transparent 25 et à coller ce film à l'arrière de la plaque 1 en faisant correspondre les zones de pixels 3 avec les zones délimitées par deux fentes 2 consécutives. Ce film 25 pourra aussi avantageusement servir à maintenir les différentes parties en place, notamment dans un mode de réalisation dans lequel la profondeur 18 des fentes est égale à l'épaisseur de la plaque transparente 1. Derrière la plaque 1 on positionne ou on colle le capteur solaire 5 qui, dans cet exemple non limitatif, est plan et recouvre la totalité de la plaque.
La Figure 8 représente le principe d'une variante de procédé de fabrication du dispositif selon l'invention. Elle consiste, pour réaliser la plaque transparente 1 et les fentes 2, à juxtaposer une série de règles transparentes 24, qui sont collées sur un film transparent 25 servant de support. La section des règles transparentes 24 est par exemple carrée, sauf en ce qui concerne leur face avant qui est en forme de lentille.
Les règles 24 sont juxtaposées les unes à côté des autres en laissant un film d'air entre deux règles adjacentes, réalisant ainsi des fentes 2 comme expliqué précédemment, les règles 24 étant collées par leur face arrière plane, de manière que les faces lenticulaires se trouvent sur la face avant la de la plaque transparente 1.
Afin d'assurer la souplesse du dispositif, le film transparent 25 pourra être lui-même souple. Il aura été au préalable imprimé de bandes images 3 rectilignes et parallèles à l'axe longitudinal des règles. La largeur des bandes images 3 sera par exemple de la moitié de la largeur des règles 24.
Chaque bande image 3 est positionnée en face d'une règle 24. Des bandes de transparence 4 apparaissent entre deux bandes image 3 consécutives. Un capteur solaire 5 est approvisionné et positionné à l'arrière de ce dispositif. Ce capteur solaire 5 aura sa face active tournée vers les règles 24. Le capteur solaire 5 pourra être collé à la structure, ou bien séparé par une lame d'air s'il s'agit d'un capteur thermique.
On va maintenant décrire le dimensionnement et la constitution d'un exemple de réalisation concret d'un panneau solaire constitué et réalisé selon l'invention.
Un film souple transparent en polyester de 30 cm par 70 cm de côtés et de 0,1 mm d'épaisseur est imprimé sur une de ses faces de bandes de pixels de 1 mm de large qui sont espacées entre elles par des bandes de transparence de 1 mm de large.
L'autre face du film est autocollante. Les bandes de pixels sont de couleur dominante orange. On approvisionne 35 règles transparentes en PMMA de 70 cm de longueur dont chacun des côtés fait 2 mm, sauf en ce qui concerne la face avant en forme de lentille. On dispose ensuite ces règles les unes à côté des autres sur le film imprimé du côté de sa face autocollante de sorte que la face des règles qui est collée au film corresponde à la face opposée à la face lenticulaire et recouvre complètement une bande de pixels et une bande de transparence.
Le film sur lequel ont été collées les 35 règles est fixé mécaniquement à la surface d'un capteur solaire photovoltaïque de mêmes dimensions que ledit film et de sorte que ledit film soit en contact avec le capteur solaire.
Le capteur solaire est alors positionné sur les tuiles oranges d'une toiture orientée vers le Sud, ou bien à la place des tuiles qu'il recouvre, de sorte que l'axe longitudinal des règles soit à l'horizontale et de sorte que les bandes images soient vers le haut de la toiture.
Un observateur qui regardera le panneau solaire sur la toiture ne verra à la surface dudit panneau qu'une couleur orange identique à celles des tuiles de la toiture, alors que le rayonnement solaire traversera bien la plaque et activera le capteur solaire photovoltaïque.
Cette configuration n'est qu'un exemple simplifié de fabrication et d'intégration visuelle d'un panneau solaire noir sur une toiture orange qui utilise le procédé objet de l'invention.
La répétition du processus ci-dessus appliquée à l'ensemble de la toiture, et en remplacement des tuiles d'origine, est possible dès lors que le panneau solaire rectangulaire est équipé d'un système qui permette d'une part d'assurer l'étanchéité entre les panneaux, ce qui peut être le cas par exemple si les panneaux se recouvrent partiellement les uns les autres, et d'autre part qui soit équipé d'une connectique pour ramener la puissance électrique ou thermique générée par le panneau solaire.
Dans un autre exemple de réalisation, non limitatif, on approvisionne une plaque de PMMA de 100 cm de large sur 150 cm de hauteur et d' 1 mm d'épaisseur sur laquelle on colle, avec une colle transparente, un film photovoltaïque souple de 0,5 mm d'épaisseur, de mêmes dimensions en largeur et hauteur que la plaque et sur lequel ont été imprimées des bandes images de couleur blanche, de 0,5 mm de large, espacées entre elles par des bandes de transparence de mêmes largeurs.
L'impression se fait avec des encres UV et les bandes images et les bandes de transparences sont parallèles à la largeur de la plaque. Ensuite la face non collée de ladite plaque est balayée par un faisceau laser de manière à créer des fentes rectilignes parallèles aux bandes images, ces fentes sont positionnées au dessus d'une jonction entre bande image et bande de transparence, et sont espacées entre elles de 1 mm de sorte que l'espace entre deux fentes inclus exactement une bande image et une bande de transparence. La profondeur des fentes est de 1 mm.
La plaque ainsi structurée par les fentes devient souple et elle peut s'enrouler autour d'un tube métallique creux, rigide, de 5 cm de diamètre et positionné parallèlement aux fentes. Le tout constitue la partie essentielle d'un store photovoltaïque enroulable. Lorsque le store est déroulé devant une fenêtre au premier étage d'une habitation, sa surface est disposée à la verticale et un observateur placé en contrebas ne verra que les bandes images blanches, donc la surface du store globalement blanche, alors que le rayonnement solaire qui vient principalement du haut traversera entièrement la plaque et activera l'effet photovoltaïque du capteur.
La production du courant électrique produit par le store pourra par exemple charger une batterie qui servira à alimenter un moteur électrique pour l'enroulement et le déroulement automatisé du store.
Cette configuration n'est qu'un exemple simplifié de la fabrication et de l'intégration visuelle d'un store photovoltaïque posé devant une fenêtre de bâtiment, et qui utilise le dispositif et procédé objets de cette invention.
Il résulte de ce qui précède que l'invention atteint les buts fixés. Elle décrit un dispositif ayant des caractéristiques à la fois mécaniques et optiques pour visualiser une image à la surface des capteurs solaires, et qui ne possède pas les inconvénients des dispositifs connus à ce jour,
Le dispositif objet de l'invention va permettre de rendre les capteurs solaires suffisamment souples pour pouvoir leur donner des formes diverses et/ou les enrouler par exemple autour d'un cylindre, tout en conservant des épaisseurs compatibles avec des fabrications industrielles.
Le dispositif objet de l'invention va de plus permettre des angles de visualisation des images et des angles de capture du rayonnement solaire sur une plage angulaire plus importante, pouvant aller au total jusqu'à 180°.
L'invention est particulièrement adaptée à l'intégration visuelle des capteurs solaires dans les stores, les brise-soleil, les pare-soleils, les parasols, les ombrières, les toitures, les murs, les tuiles, les vitrages, les véhicules de transport, y compris les bateaux et les avions, les panneaux et écrans publicitaires, les écrans électroniques, les vêtements, et d'une manière générale sur tout support imagé, y compris les images électroniques, et sur toutes surfaces planes ou non planes.

Claims

R E V E N D I C A T I O N S
1. Dispositif comportant au moins un capteur (5) de l'énergie lumineuse provenant d'une source de lumière, caractérisé en ce qu'il comporte en outre une plaque transparente (1) disposée entre la source de lumière et ledit capteur, et dont une première face (la) est structurée par un réseau de lentilles (10) séparées par des fentes (2), la distance (11) entre le fond des fentes (2) pratiquées sur une face de la plaque transparente (1) et la face opposée de la plaque transparente (1) étant telle qu'elle permet une flexion de la plaque transparente à cet endroit, alors que la seconde face (1b) de la plaque transparente (1) contient des zones de pixels (3) d'une image, et des zones de transparence (4).
2. Dispositif selon la revendication 1, caractérisé en ce que lesdites lentilles (10) sont convexes ou concaves, et de forme symétrique ou asymétrique.
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'une zone de pixels (3) et une zone de transparence (4) sont situées dans une plage de ladite seconde face (lb) délimitée par deux fentes (2) consécutives.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la source de lumière est le soleil, et en ce que ledit capteur d'énergie lumineuse est un capteur solaire de type thermique, photovoltaïque, ou chimique.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la plaque transparente (1) est en verre ou en verre organique, ou en un polymère transparent de type PMMA, PET ou Polycarbonate.
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la plaque transparente (1) est colorée dans sa masse.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fentes (2) sont rectilignes et parallèles entre elles.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fentes (2) sont délimitées par des formes cylindriques, polygonales, ou par des fibres optiques (14).
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fentes (2) sont perpendiculaires au plan de la plaque transparente (1), ou inclinées d'un certain angle (A) par rapport à une perpendiculaire par rapport au plan de la plaque transparente (1).
10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fentes (2) sont pratiquées sur ladite première face (la) exposée à la lumière, et/ou sur ladite seconde face (lb) de la plaque transparente (1).
11. Dispositif selon l'une des revendications précédentes, caractérisée en ce que la distance (11) entre le fond des fentes (2) pratiquées sur une face de la plaque transparente (1) et la face opposée est suffisamment faible pour permettre une flexion de la matière à cet endroit sans se casser.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fentes (2) ont leurs parois lisses et/ou polies.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les zones de pixels (3) contiennent des pixels imprimés ou des pixels électroniques générés par des composants rétro éclairés, électroluminescents, ou réfléchissants.
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les capteurs solaires (5) sont souples et/ou flexibles suivant au moins un axe (26).
15. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il peut s'enrouler autour d'un axe (26) ou d'un cylindre (25) qui est parallèle à l'axe longitudinal des fentes (2).
16. Dispositif selon l'une des revendications 1 à 15, caractérisé en ce que les capteurs solaires (5) recouvrent la totalité de la surface d'une des faces de la plaque transparente (1), ou ne recouvrent que les zones de transparence (4), ou ne recouvrent qu'une partie des zones de transparence (4).
17. Dispositif selon l'une des revendications 1 à 15, caractérisé en ce que les capteurs solaires (5) sont positionnés sur une des faces des fentes (2), et en ce que les zones de pixels (3) recouvrent tout ou partie de la face de la plaque transparente (1) opposée à celle qui porte les fentes (2).
18. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les zones de pixels (3) sont en tout ou en partie transparentes à la lumière.
19. Procédé de fabrication d'un dispositif selon l'une des revendications de 1 à 18, caractérisé en ce qu'il comporte des étapes consistant à :
- approvisionner une plaque transparente (1) structurée sur une de ses faces par un réseau de lentilles, et comportant sur l'autre face une image formée de zones de pixels (3) espacées par des bandes de transparence (4);
- déposer sur la face image, une couche de silicium amorphe photovoltaïque (23),
- réaliser dans la face pourvue de lentilles, entre deux lentilles consécutives, des fentes (2) dont la profondeur (8) laisse subsister une épaisseur de matière susceptible d'assurer une possibilité de flexion à la plaque transparente.
20. Procédé de fabrication d'un dispositif selon l'une des revendications 1 à 18, caractérisé en ce qu'il comporte des étapes consistant à :
- approvisionner des règles transparentes (24) dont une des faces a la forme d'une lentille (10), et un film transparent (25) dont sur une des faces est pourvue de zones images (3) espacées par des bandes de transparence (4) ;
- coller la face lesdites règles transparentes (24) les unes à côté des autres sur ledit film transparent (25) de manière à ce que chaque règle soit collée par sa face opposée à celle qui a une forme de lentille (10), et de manière à laisser entre chacune desdites règles une lame d'air (19) à faces parallèles, lesdites règles (24) ayant une largeur telle qu'elles recouvrent une bande image (3) et une bande de transparence (4) ;
- approvisionner un ou plusieurs capteurs solaires (5) et les disposer sur la face de la plaque transparente opposée à celle qui porte les fentes (2), de façon que lesdits capteurs solaires (5) aient leurs faces actives tournées du côté des zones de transparence (4).
21. Procédé de fabrication d'un dispositif selon l'une des revendications de 1 à 18, caractérisé en ce qu'on approvisionne une plaque transparente (1) présentant une face pourvue d'un réseau de lentilles (10) et une face plane, et en ce qu'on aménage sur l'une des deux faces, par moulage, thermoformage, ou extrusion, un réseau de lentilles (10) séparées par des fentes (2).
EP12788616.6A 2011-10-18 2012-10-16 Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication Withdrawn EP2776763A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103192A FR2981438B1 (fr) 2011-10-18 2011-10-18 Capteur solaire rigide ou souple avec une image visualisee en surface, et ses procedes de fabrication
PCT/FR2012/000418 WO2013057393A1 (fr) 2011-10-18 2012-10-16 Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication

Publications (1)

Publication Number Publication Date
EP2776763A1 true EP2776763A1 (fr) 2014-09-17

Family

ID=47216352

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12788616.6A Withdrawn EP2776763A1 (fr) 2011-10-18 2012-10-16 Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication
EP12794361.1A Withdrawn EP2776764A2 (fr) 2011-10-18 2012-10-17 Capteur solaire souple avec une image visualisee en surface, et ses procedes de fabrication

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12794361.1A Withdrawn EP2776764A2 (fr) 2011-10-18 2012-10-17 Capteur solaire souple avec une image visualisee en surface, et ses procedes de fabrication

Country Status (12)

Country Link
US (2) US20140299175A1 (fr)
EP (2) EP2776763A1 (fr)
JP (1) JP2015502511A (fr)
CN (2) CN104160219A (fr)
AU (1) AU2012324705A1 (fr)
BR (1) BR112014009493A2 (fr)
CA (1) CA2851884A1 (fr)
FR (1) FR2981438B1 (fr)
MX (1) MX2014004761A (fr)
RU (1) RU2014119675A (fr)
WO (2) WO2013057393A1 (fr)
ZA (1) ZA201403604B (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001551B1 (fr) * 2013-01-31 2015-02-13 Prismaflex Int Panneau imprime retro-eclaire
US9818285B2 (en) * 2013-03-15 2017-11-14 Forward Entertainment & Technology, Llc Method and apparatus for moving while receiving information
FR3004846B1 (fr) * 2013-04-22 2017-09-15 Wysips Procede et dispositif pour optimiser la visibilite d'une image positionnee devant un capteur solaire
US10348239B2 (en) * 2013-05-02 2019-07-09 3M Innovative Properties Company Multi-layered solar cell device
US10263132B2 (en) 2013-07-01 2019-04-16 3M Innovative Properties Company Solar energy devices
JP6237991B2 (ja) * 2013-07-30 2017-11-29 大日本印刷株式会社 太陽電池複合型表示体
FR3011125B1 (fr) * 2013-09-20 2015-09-25 Wysips Dispositif catadioptrique ameliorant la visualisation d'une image placee devant un capteur solaire
JP6331476B2 (ja) * 2014-02-28 2018-05-30 大日本印刷株式会社 太陽電池複合体
JP6331477B2 (ja) * 2014-02-28 2018-05-30 大日本印刷株式会社 太陽電池複合体
JP6331478B2 (ja) * 2014-02-28 2018-05-30 大日本印刷株式会社 太陽電池複合体
JP6319655B2 (ja) * 2014-04-28 2018-05-09 大日本印刷株式会社 太陽電池パネル付き表示体
FR3020533A1 (fr) * 2014-04-29 2015-10-30 Sunpartner Technologies Dispositif semi-transparent de communication par lumiere visible codee permettant de vicualiser une image au travers du dispositif et de recevoir simultanement plusieurs lumieres codees differentes
JP6399288B2 (ja) * 2014-07-15 2018-10-03 大日本印刷株式会社 太陽電池複合型表示体
FR3031165B1 (fr) * 2014-12-31 2018-07-27 Sunpartner Technologies Dispositif optique permettant d'eclairer efficacement en face avant une image semi-transparente a micro-trous
US10256360B2 (en) 2015-01-23 2019-04-09 Sistine Solar, Inc. Graphic layers and related methods for incorporation of graphic layers into solar modules
US11161369B2 (en) 2015-01-23 2021-11-02 Sistine Solar, Inc. Graphic layers and related methods for incorporation of graphic layers into solar modules
JP6728597B2 (ja) * 2015-08-25 2020-07-22 大日本印刷株式会社 太陽電池複合型表示体
JP6610085B2 (ja) * 2015-08-25 2019-11-27 大日本印刷株式会社 太陽電池複合型表示体及び表示体
US9954482B2 (en) 2015-10-12 2018-04-24 The Boeing Company Rigidly mounted tracking solar panel and method
FR3042311B1 (fr) * 2015-10-13 2018-06-29 Sunpartner Technologies Dispositif optique d'affichage ameliorant la visualisation d'une image associee a un capteur solaire
US20170250301A1 (en) 2016-02-29 2017-08-31 Zafer Termanini Solar panel with optical light enhancement device
IL247556B (en) * 2016-08-30 2019-05-30 Hillel Rosenfeld Photovoltaic module
TWI587533B (zh) * 2017-01-11 2017-06-11 艾爾碧全球綠色科技有限公司 彩色太陽能模組及其製造方法
TWI631718B (zh) * 2017-03-31 2018-08-01 上銀光電股份有限公司 Thin film solar cell with chromo pattern
CA3071924A1 (fr) * 2017-08-04 2019-02-07 Bolymedia Holdings Co. Ltd. Appareil solaire vertical
CN109873675A (zh) * 2017-12-01 2019-06-11 上海航空电器有限公司 一种基于fpga的飞机蒙皮可见光隐身系统
DE102018001181B3 (de) * 2018-02-15 2019-07-11 Azur Space Solar Power Gmbh Sonnenstandssensor
CN108390451A (zh) * 2018-04-03 2018-08-10 北京汉能光伏投资有限公司 一种太阳能充电器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199376A (en) * 1978-11-06 1980-04-22 Atlantic Richfield Company Luminescent solar collector
JPS58214101A (ja) * 1982-06-07 1983-12-13 Sanyo Haujingu:Kk レンズ板とレンズ板を用いた熱媒体加温方法
US5303525A (en) * 1990-05-18 1994-04-19 University Of Arkanas Siding or roofing exterior panels for controlled solar heating
JPH04265936A (ja) * 1991-02-20 1992-09-22 Sony Corp 画像表示装置の製造方法
FR2896596B1 (fr) * 2006-01-26 2008-04-18 Joel Gilbert Systeme optique pour visualiser une image a la surface d'un panneau solaire
JP4086206B1 (ja) * 2007-11-14 2008-05-14 敬介 溝上 装飾具及び太陽光受光モジュール
EP2326885A4 (fr) * 2008-07-02 2014-10-01 Sunpower Corp Ensemble de generation d'energie solaire et son procede de fourniture
JP5015889B2 (ja) * 2008-09-25 2012-08-29 大日本スクリーン製造株式会社 太陽電池パネル及び太陽光発電装置
JP5623697B2 (ja) * 2008-12-22 2014-11-12 株式会社朝日ラバー 光学レンズ付きシート部材、ならびに発光装置およびそれを用いた液晶表示装置、看板
JP2010152226A (ja) * 2008-12-26 2010-07-08 Fujikura Ltd 映写スクリーン
US20110023937A1 (en) * 2009-07-31 2011-02-03 Palo Alto Research Center Incorporated Solar energy converter assembly incorporating display system and method of fabricating the same
US8402653B2 (en) * 2009-07-31 2013-03-26 Palo Alto Research Center Incorporated Solar energy converter assembly incorporating display system and method of fabricating the same
TWI625555B (zh) * 2010-03-26 2018-06-01 友輝光電股份有限公司 具有光準直及擴散結構的光學基板
US20110296726A1 (en) * 2010-04-06 2011-12-08 Kari Rinko Laminate structure with embedded cavities and related method of manufacture
US20130038820A1 (en) * 2011-10-28 2013-02-14 Shi-Chiung Chen Micro structure substrates for flexible display device and methods of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013057393A1 *

Also Published As

Publication number Publication date
US20140299175A1 (en) 2014-10-09
MX2014004761A (es) 2015-03-06
RU2014119675A (ru) 2015-11-27
CN104160219A (zh) 2014-11-19
CN104395680B (zh) 2017-04-05
WO2013057394A2 (fr) 2013-04-25
WO2013057393A1 (fr) 2013-04-25
US20140290723A1 (en) 2014-10-02
BR112014009493A2 (pt) 2017-05-09
WO2013057394A3 (fr) 2014-11-13
CN104395680A (zh) 2015-03-04
FR2981438A1 (fr) 2013-04-19
JP2015502511A (ja) 2015-01-22
FR2981438B1 (fr) 2016-10-28
AU2012324705A1 (en) 2014-06-05
CA2851884A1 (fr) 2013-04-25
ZA201403604B (en) 2015-12-23
EP2776764A2 (fr) 2014-09-17

Similar Documents

Publication Publication Date Title
EP2776763A1 (fr) Capteur solaire rigide ou souple avec une image visualisée en surface et ses procédés de fabrication
EP1982226B1 (fr) Systeme optique pour visualiser une image a la surface d' un panneau solaire
EP2132786B1 (fr) Dispositif de concentration de lumiere plan a epaisseur reduite
WO2014167194A1 (fr) Dispositif pour éclairer ou rétro-éclairer une image placée devant ou derrière un panneau solaire
FR2932307A1 (fr) Dispositif d'affichage d'une image video sur un edifice
FR3010831A1 (fr) Dispositif d'affichage retroeclaire avec cellules photovoltaiques integrees
WO2015063380A1 (fr) Dispositif optique donnant un aspect de relief à une image qui recouvre partiellement un capteur d'énergie lumineuse
EP2396829B1 (fr) Double vitrage a haut rendement photovoltaique
FR2981505A1 (fr) Capteur solaire rigide ou souple avec une image visualisee en surface, et ses procedes de fabrication
JP7450548B2 (ja) 太陽光パネル出力を増幅するシステムおよび方法
WO2015040288A1 (fr) Dispositif catadioptrique améliorant la visualisation d'une image placée devant un capteur solaire
FR2953633A1 (fr) Element notamment pour facade comprenant une vitre et des diodes electroluminescentes
FR3009132A1 (fr) Dispositif d'affichage avec cellules photovoltaiques integrees a luminosite amelioree
BE1020456A3 (fr) Pare-soleil a solidariser au niveau d'au moins une ouverture d'un batiment ou d'un vehicule.
WO2009133280A2 (fr) Paroi optique asymetrique
FR3009746A1 (fr) Module d'eclairage etanche et enseigne lumineuse utilisant un tel module.
FR2983620A1 (fr) Element comprenant au moins deux vitres et des diodes electroluminescentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503