EP2772610B1 - Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples - Google Patents

Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples Download PDF

Info

Publication number
EP2772610B1
EP2772610B1 EP12844033.6A EP12844033A EP2772610B1 EP 2772610 B1 EP2772610 B1 EP 2772610B1 EP 12844033 A EP12844033 A EP 12844033A EP 2772610 B1 EP2772610 B1 EP 2772610B1
Authority
EP
European Patent Office
Prior art keywords
wellbore
temperature
production
fluid
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12844033.6A
Other languages
German (de)
English (en)
Other versions
EP2772610A1 (fr
EP2772610A4 (fr
Inventor
Bertrand Theuveny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Prad Research and Development Ltd
Schlumberger Technology BV
Schlumberger Holdings Ltd
Original Assignee
Services Petroliers Schlumberger SA
Prad Research and Development Ltd
Schlumberger Technology BV
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Services Petroliers Schlumberger SA, Prad Research and Development Ltd, Schlumberger Technology BV, Schlumberger Holdings Ltd filed Critical Services Petroliers Schlumberger SA
Publication of EP2772610A1 publication Critical patent/EP2772610A1/fr
Publication of EP2772610A4 publication Critical patent/EP2772610A4/fr
Application granted granted Critical
Publication of EP2772610B1 publication Critical patent/EP2772610B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/103Locating fluid leaks, intrusions or movements using thermal measurements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/0875Well testing, e.g. testing for reservoir productivity or formation parameters determining specific fluid parameters

Definitions

  • the disclosure relates to the field of geophysical studies of oil and gas wells, in particular to determining the inflow profile of fluids inflowing into the wellbore from multi-zone reservoirs.
  • the method for determining profile of fluid inflow from a multi-zone reservoir provides the possibility to determine the inflow profile at an initial stage of production, just after perforating a well, and in enhancing the accuracy of inflow profile determination due to the possibility of determining inflow profile by transient temperature data.
  • the method comprises measuring temperature in a wellbore during a wellbore-return-to-thermal-equilibrium time after drilling and then perforating the wellbore. Temperature of fluids inflowing into the wellbore from pay zones is determined at an initial stage of production and a specific flow rate for each pay zone is determined by rate of change of the measured temperatures.
  • temperature of the fluids is determined with the use of sensors installed on a tubing string, above each perforated interval.
  • the wellbore return-to-thermal-equilibrium time usually lasts for 5-10 days.
  • Temperature of the fluids inflowing into the wellbore from pay zones at the initial state of production is preferably measured within 3-5 hours from start of production.
  • Figure 1 shows a scheme with three perforated intervals and three temperature sensors
  • Figures 2a and 2b show results of calculation of inflow profiles for two versions of formation permeabilities
  • Figure 3 shows temperatures of fluids inflowing into the wellbore and temperatures of the corresponding sensors for the case illustrated in Figure 2a
  • Figure 4 shows temperatures of the fluids inflowing into the wellbore and temperatures of the corresponding sensors for the case illustrated in Figure 2b
  • Figure 5 shows time derivatives of fluid temperature and temperature of sensor 1 for the case illustrated in Figure 2a
  • Figure 6 shows time derivatives of fluid temperature and temperature of sensor 1 for the case illustrated in Figure 2b
  • Figure 8 shows the same ratios for Figure 6 ;
  • Figure 9 shows correlation between the time derivative T in and specific flow rate q.
  • the method may be used with a tubing-conveyed perforation. It is based on the fact that a near-wellbore space, as a result of drilling, usually has a lower temperature than temperature of surrounding rocks.
  • temperature of a reservoir in a near-borehole zone is significantly (by 10-20 K and more) lower than an original temperature of the surrounding reservoir at a depth under consideration.
  • a relatively long period of wellbore-retuming-to-thermal-equilibrium follows during which other working operations in the well are carried out, including installation of a testing string with perforator guns.
  • temperature measurements in the wellbore are conducted.
  • an initial stage of production follows - cleanup of the near-borehole zone of the reservoir.
  • temperature of the fluids inflowing into the wellbore is measured.
  • radial profile of temperature in the reservoir prior to start of the cleanup is determined with the use of some general relationship that follows from the equation of conductive heat transfer (1).
  • ⁇ T ⁇ t a ⁇ ⁇ 2 T ⁇ r 2 + 1 r ⁇ ⁇ T ⁇ r
  • " a " is a heat diffusivity of the reservoir.
  • Formulas (4), (5) give an approximate radial temperature profile near the wellbore prior to start of production.
  • a numerical simulation demonstrates that after 50 hours of borehole-return-to-thermal-equilibrium time, these formulas are adequate for r ⁇ 0.5 ⁇ 0.7 m (with accuracy of 1 ⁇ 5 %) for an arbitrary possible initial (before closure) temperature profile.
  • Formulas (4), (5) do not take into consideration the influence of heat emission in course of perforation and radial non-uniformity of thermal properties of the wellbore and the reservoir, that is why after comparison with results of numerical simulation, introduction of some correction coefficient might be necessary.
  • q [m 3 /m/s] is a specific flow rate
  • ⁇ f c f is a volumetric heat capacity of the fluid
  • ⁇ m c m is a volumetric heat capacity of the rock matrix
  • is a porosity of the reservoir.
  • Equation (6) does not account for conductive heat transfer, the Joule-Thomson effect and the adiabatic effect.
  • All parameters in this formula can be approximately estimated (" a " and ⁇ ) or measured.
  • the value of ⁇ s is measured with the use of temperature sensors after installing the tubing string before the perforation.
  • the value of ⁇ 1 is measured above the first perforation interval at the initial stage of production.
  • the parameter ⁇ (11) is one and the same for all zones; the parameters ⁇ i are different because they depend on the temperature of the reservoir T ⁇ ,i recorded in the wellbore before start of production.
  • the numeric model of the producing wellbore should calculate transient temperatures of the flow at each depth of placement of the sensor with consideration of heat losses into the surrounding reservoir, the calorimetric law for the fluids being mixed in the wellbore, and the thermal influence of the wellbore which is understood here as the influence of the fluid initially filling the wellbore.
  • the flow rate is determined with the use of the procedure of model fitting that minimizes differences between the recorded and calculated temperatures of the sensors.
  • T 1 * ⁇ Q 1 + T in , 2 ⁇ Q 2 Q 1 + Q 2 T 2 *
  • T 1 * are T 2 * are temperatures of the fluid below and above the perforated zone.
  • T 2 * are temperatures of the fluid below and above the perforated zone.
  • Relative flow rates for perforated zones 3 and 4 can be calculated using the dimensionless values y 2 , y 3 and so on, which were determined previously for the perforated zones located down the wellbore.
  • Geothermal gradient equals 0.02 K/m.
  • the temperature of the undisturbed reservoir at the depth of sensor 1 (274 m) is 65.5°C that at the depth of sensor 3 (230 m) is 64.6°C.
  • Figure 1 shows the scheme of a well with three perforated intervals (#1: 280-290 m, #2: 260-270 m, #3: 240-250 m) and three temperature sensors: T 1 at the depth of 274 m, T 2 at the depth of 254 m and T 3 at the depth of 230 m.
  • the reservoir/wellbore temperature is the same in both cases under consideration.
  • Figures 3 and 4 show temperatures of the produced fluids (thin curves) and temperatures of the corresponding sensors (bold curves).
  • the difference between T in ,1 and T 1 remains practically constant after ⁇ 1 hr of production.
  • Time derivatives of fluid temperature and temperature of sensor #1 are presented in Figures 5 and 6 .
  • the difference between dT in ,1 / dt and ⁇ 1 amounts to about 6-8%, that confirming our assumption made in the analysis presented above.
  • Relative errors (related to the total flow rate) are 0.3%, 1%, and 1.3%.
  • Equation 8 For the third perforated zone, Equation 8 gives f 32 ⁇ 0.96, while from Equation (22) we find two roots:
  • the most reliable inversion of temperature measured among perforated intervals immediately after perforating can be made with the use of a specialized numerical model and fitting the transient temperature data with consideration of absolute values of temperature as well as time derivatives of temperature.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Volume Flow (AREA)

Claims (7)

  1. Procédé pour déterminer le profil d'un flux de fluides, provenant des réservoirs répartis sur de multiples zones, entrant à l'intérieur d'un puits de forage, comprenant :
    - la mesure de la température dans le puits de forage pendant un temps de retour à l'équilibre thermique du puits de forage après forage ;
    caractérisé en ce que le procédé comprend en outre les étapes de :
    - perçage du puits de forage ;
    - détermination de la température des fluides entrant à l'intérieur du puits de forage depuis chaque zone de production au niveau d'une phase initiale de production ; et
    - détermination d'un débit spécifique pour chaque zone de production au moyen de la vitesse de variation des températures mesurées.
  2. Procédé selon la revendication 1, dans lequel la température des fluides entrant à l'intérieur du puits de forage depuis les zones de production est déterminée par mesure directe de la température des fluides entrant à l'intérieur du puits de forage depuis chaque zone de production, et dans lequel un débit spécifique de chaque zone de production est déterminé au moyen de la formule : Q i = 4 π χ a h i T in , i T s 1 ,
    Figure imgb0053
    dans laquelle :
    Qi est un débit de la i-ème zone de production ;
    s est une vitesse de rétablissement de température dans le puits de forage avant perçage ;
    in,i est une vitesse de variation de température du fluide entrant à l'intérieur du puits de forage depuis la i-ème zone de production au niveau de la phase initiale de production ;
    hi est une épaisseur de la i-ème zone de production ;
    a est une diffusivité thermique du réservoir, χ = c f ρ f ρ r c r ,
    Figure imgb0054
    ρfcf est une capacité thermique volumique du fluide ;
    ρrcr = φ · ρfcf + (1 - φ) · ρmcm est une capacité thermique volumique de la roche saturée par le fluide ;
    ρmcm est une capacité thermique volumique d'une matrice rocheuse ;
    φ est une porosité du réservoir.
  3. Procédé selon la revendication 1, dans lequel le temps de retour à l'équilibre thermique du puits de forage est de 5-10 jours.
  4. Procédé selon la revendication 1, dans lequel la température des fluides entrant à l'intérieur du puits de forage depuis chaque zone de production au niveau de la phase initiale de production est mesurée dans 3-5 heures après le début de la production.
  5. Procédé selon la revendication 1, dans lequel la température des fluides est déterminée par des capteurs installés sur une colonne de tubage qui est utilisée pour le perçage, au-dessus de chaque intervalle percé, un débit spécifique d'une zone de production plus basse étant déterminé au moyen de la formule : Q 1 = 4 π χ a h 1 T 1 T s 1 ,
    Figure imgb0055
    dans laquelle :
    Ql est un débit de la zone plus basse ;
    s est une vitesse de rétablissement de température dans le puits de forage avant perçage ;
    1 est une vitesse de variation de température du fluide entrant à l'intérieur du puits de forage depuis la zone de production au niveau de la phase initiale de production, telle que mesurée au-dessus de l'intervalle percé plus bas ;
    hl est une épaisseur de la zone de production plus basse ;
    a est une diffusivité thermique du réservoir, χ = c f ρ f ρ r c r ,
    Figure imgb0056
    ρfcf est une capacité thermique volumique du fluide ;
    ρrcr = φ · ρfcf + (1 - φ) · ρmcm est une capacité thermique volumique de la roche saturée par le fluide ;
    ρmcm est une capacité thermique volumique de la matrice rocheuse ;
    φ est une porosité du réservoir, et
    dans lequel des débits spécifiques de zones de production situées au-dessus sont déterminés au moyen de températures mesurées par les capteurs installés sur la colonne de tubage, en utilisant les débits déterminées pour les zones de production situées au-dessous.
  6. Procédé selon la revendication 5, dans lequel le temps de retour à l'équilibre thermique du puits de forage est de 5-10 jours.
  7. Procédé selon la revendication 5, dans lequel la température des fluides entrant à l'intérieur du puits de forage depuis chaque zone de production au niveau de la phase initiale de production est mesurée dans 3-5 heures après le début de la production.
EP12844033.6A 2011-10-26 2012-10-25 Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples Not-in-force EP2772610B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011143218/03A RU2474687C1 (ru) 2011-10-26 2011-10-26 Способ определения профиля притока флюидов многопластовых залежей
PCT/RU2012/000872 WO2013062446A1 (fr) 2011-10-26 2012-10-25 Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples

Publications (3)

Publication Number Publication Date
EP2772610A1 EP2772610A1 (fr) 2014-09-03
EP2772610A4 EP2772610A4 (fr) 2016-01-27
EP2772610B1 true EP2772610B1 (fr) 2017-07-26

Family

ID=48168147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12844033.6A Not-in-force EP2772610B1 (fr) 2011-10-26 2012-10-25 Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples

Country Status (4)

Country Link
US (1) US20140288836A1 (fr)
EP (1) EP2772610B1 (fr)
RU (1) RU2474687C1 (fr)
WO (1) WO2013062446A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102014011707B1 (pt) 2013-05-17 2021-06-15 Schlumberger Technology B.V. Dispositivo de medição, ferramenta para fundo de poço, e método
RU2531499C1 (ru) * 2013-08-23 2014-10-20 Шлюмберже Текнолоджи Б.В. Способ определения профиля притока флюидов многопластовых залежей в скважине
RU2645692C1 (ru) * 2016-12-21 2018-02-27 Шлюмберже Текнолоджи Б.В. Способ определения профиля притока флюида в многопластовой скважине
RU2651832C2 (ru) * 2017-02-20 2018-04-24 Юрий Васильевич Коноплёв Способ и установка для контроля дебита нефтяных скважин

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU905443A1 (ru) * 1980-03-28 1982-02-15 Производственный Геофизический Трест Газовой Промышленности "Союзгазгеофизика" Способ определени профил притока флюида
SU1079827A1 (ru) * 1982-02-08 1984-03-15 Ташкентский Ордена Дружбы Народов Политехнический Институт Им.А.Р.Бируни Способ определени интервалов притока пластового флюида в скважине
SU1328502A1 (ru) * 1985-12-20 1987-08-07 Башкирский государственный университет им.40-летия Октября Способ вы влени интервалов заколонного движени жидкости в скважине
RU2143064C1 (ru) * 1999-03-26 1999-12-20 Акционерное общество закрытого типа "Нефтегазэкспертиза" Способ исследования внутреннего строения газонефтяных залежей
GB9916022D0 (en) * 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
RU2194855C1 (ru) * 2001-07-26 2002-12-20 Общество с ограниченной ответственностью "ЮганскНИПИнефть" Способ исследования скважин
AU2004309118B2 (en) * 2003-12-24 2008-06-12 Shell Internationale Research Maatschappij B.V. Method of determining a fluid inflow profile of wellbore
RU2290507C2 (ru) * 2005-01-11 2006-12-27 Открытое акционерное общество "Сургутнефтегаз" Способ определения фильтрационных параметров сложнопостроенных коллекторов и многопластовых объектов
US20080065362A1 (en) * 2006-09-08 2008-03-13 Lee Jim H Well completion modeling and management of well completion
AU2009251533B2 (en) * 2008-04-18 2012-08-23 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
BR112012016256A2 (pt) * 2009-12-31 2016-05-17 Prad Res & Dev Ltd métiodo para determinação de um perfil de influxo e parâmetros de uma área em torno do poço em um poço de múltipla zonas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2474687C1 (ru) 2013-02-10
EP2772610A1 (fr) 2014-09-03
WO2013062446A1 (fr) 2013-05-02
EP2772610A4 (fr) 2016-01-27
US20140288836A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
AU2002300917B2 (en) Method of predicting formation temperature
Kucuk et al. Analysis of simultaneously measured pressure and sandface flow rate in transient well testing (includes associated papers 13937 and 14693)
US20150083405A1 (en) Method of conducting diagnostics on a subterranean formation
US20120158310A1 (en) Method of determining reservoir pressure
US7536905B2 (en) System and method for determining a flow profile in a deviated injection well
US9348058B2 (en) Method for determining the profile of an inflow and the parameters of a well-surrounding area in a multipay well
RU2455482C2 (ru) Способ определения профиля притока флюидов и параметров околоскважинного пространства
US10174612B2 (en) Method for determining a water intake profile in an injection well
WO2004076815A1 (fr) Determination d'un profil de venue d'un puits
US20110054796A1 (en) Method for calculating the ratio of relative permeabilities of formation fluids and wettability of a formation downhole, and a formation testing tool to implement the same
EP2772610B1 (fr) Procédé pour déterminer le profil des influx de fluides dans des gisements à formations multiples
US8606523B2 (en) Method to determine current condensate saturation in a near-wellbore zone in a gas-condensate formation
CN110945209A (zh) 注入井中的或与注入井相关的改进
US8511382B2 (en) Method for determining filtration properties of rocks
RU2752802C1 (ru) Способ определения фильтрационно-емкостных характеристик пласта и способ увеличения нефтеотдачи с его использованием
US20160061025A1 (en) Method for determining downhole pressure
US11236608B2 (en) Method for injectivity profiling of injection wells
McCullagh et al. Coupling distributed temperature sensing (DTS) based wellbore temperature models with microseismic data for enhanced characterization of hydraulic fracture stimulation
Liu et al. A Novel Workflow to Characterize Production Profiles of Shale Gas Horizontal Wells Using Distributed Temperature Sensing Data
US20150053398A1 (en) Method for determining an inflow profile of multilayer reservoir fluids in a wellbore
Coimbra et al. Flow rate measurement using test separator and PDG data allows individual and commingled production zone flow rate history calculation
Lavery et al. Determining Produced Fluid Properties for Accurate Production Profiling During a Drill Stem Test Using Thermal Imaging Technology.
RU2741888C1 (ru) Способ оценки параметров трещин гидроразрыва пласта для горизонтальной скважины
US20230194320A1 (en) Virtual flow rate test
RU2704068C1 (ru) Способ оценки межпластовых внутриколонных перетоков в скважине

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160107

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 43/14 20060101ALI20151222BHEP

Ipc: E21B 49/08 20060101ALI20151222BHEP

Ipc: E21B 47/10 20120101AFI20151222BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 912569

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012035140

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 912569

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012035140

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012035140

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171026

26N No opposition filed

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726