EP2769061A1 - Method of cleaning a particle filter - Google Patents

Method of cleaning a particle filter

Info

Publication number
EP2769061A1
EP2769061A1 EP11874296.4A EP11874296A EP2769061A1 EP 2769061 A1 EP2769061 A1 EP 2769061A1 EP 11874296 A EP11874296 A EP 11874296A EP 2769061 A1 EP2769061 A1 EP 2769061A1
Authority
EP
European Patent Office
Prior art keywords
particle filter
flow
air
cleaning
diesel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11874296.4A
Other languages
German (de)
French (fr)
Other versions
EP2769061A4 (en
Inventor
Bo MUNCH JAKOBSEN
Kaj MUNCH JAKOBSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munch Miljo Teknik I/S
Original Assignee
Munch Miljo Teknik I/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munch Miljo Teknik I/S filed Critical Munch Miljo Teknik I/S
Publication of EP2769061A1 publication Critical patent/EP2769061A1/en
Publication of EP2769061A4 publication Critical patent/EP2769061A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D41/00Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids
    • B01D41/04Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids of rigid self-supporting filtering material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0237Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles for regenerating ex situ

Definitions

  • the present invention relates to a method and system for cleaning filters, and in particular filters for exhaust particles from combustion engines, such as diesel particle filters.
  • the particle filters are very efficient in collecting particles and many vehicles have a certain cleaning procedure at certain intervals, wherein the filter is heated in order to try and remove the collected particles.
  • the filter is heated in order to try and remove the collected particles.
  • the replacement of the filter is rather costly for the vehicle owner and the filter should be able to be used further if cleaned because the material of the filter, stainless steel and ceramics, have not been degraded during use, if the filter has not been exposed to physical damage, and thus the filter could be reconditioned. This would in turn mean cheaper spare parts for the owners as well as reduced use of material resources.
  • a dry air gun e.g., 50-100 psi
  • a source of pressurized air e.g., 50-100 psi
  • WO2008091218A1 discloses a method of cleaning a particle filter, in particular for combustion engines, comprising the steps of: - a) applying heat to the interior of the particle filter during a certain time period for burning the trapped particles, - b) removing the burnt particles from the particle filter, - c) measuring the particle filter, wherein the measurements are compared to values of an unused filter of the particular type, and if the measured values deviate from the values of the unused filter by a predetermined amount, steps a) to c) are repeated until the measured values are within an approval range. It is mentioned that the removal of burnt particles is performed by blowing air into the particle filter.
  • WO06096244A1 discloses an apparatus for combusting soot from a diesel engine exhaust aftertreatment device.
  • the apparatus includes a cabinet having a housing, a heating element positioned within the housing of the cabinet, and a mounting arrangement for securing the diesel engine exhaust aftertreatment device above the heating element.
  • the apparatus also includes an ash collection container mounted beneath a floor of the housing for collecting ash that falls from the diesel engine exhaust aftertreatment device during heating.
  • EP1698765A1 discloses a pulse cleaner for cleaning a diesel exhaust treatment device.
  • the pulse cleaner includes a cabinet, a diesel exhaust treatment device positioned within the cabinet, and a collection filter positioned within the cabinet for collecting material displaced from the diesel exhaust treatment device during cleaning.
  • the pulse cleaner also includes a pulse generator for generating pulses that are each directed at a majority of a face of the diesel exhaust treatment device when the diesel exhaust treatment device is mounted at the diesel exhaust treatment device mount.
  • the pulse generator includes a pressure tank for accumulating pressurized air, and a valve arrangement that flushes the pressurized air from the tank. A pulse of air for cleaning the diesel exhaust treatment device is generated each time the tank is flushed. What is needed is an improved method for servicing overloaded diesel particle filters or other exhaust aftertreatment devices.
  • the present invention solves the above mentioned problems associated with prior art methods of cleaning diesel particle filters. Specifically the present invention provides a method for cleaning a diesel particle filter, in particular for combustion engines, comprising the steps of:
  • the flow of hot air is generated by blowing ambient air at a flow between 10 and 100 m 3 /hour through a heating element with an effect of 6-24 kW to increase the temperature of the air to 600 C-700 C;
  • the flow of hot air is generated by blowing ambient air at a flow between 30 and 70 m 3 /hour through a heating element with an effect of 9-18 kW.
  • the flow of hot air is generated by blowing ambient air at a flow between 40 and 60 m 3 /hour through a heating element with an effect of 10-14 kW.
  • the diesel particle filter includes a ceramic substrate having a honey-comb configuration of plugged passages. More preferably the diesel particle filter includes silicon carbide or cordierite. In one embodiment of the present invention the diesel particle filter includes a wire mesh. In a preferred embodiment the diesel particle filter includes corrugated metal foil. In order to establish the flow of hot and cold air a blower is used to blow air through the diesel particle filter.
  • Fig. 1 shows a flow chart of the method according to the invention.
  • Fig. 2 shows schematically a setup for cleaning particle filters for vehicles according to the present invention.
  • the present disclosure relates to a method for efficiently and effectively cleaning diesel particle fi lters (DPF) or other exhaust aftertreatment devices.
  • DPF diesel particle fi lters
  • I n one em bodiment compressed air is used to back flush collected material (e.g. , soot, ash or other material captured from engine exhaust) from DPF.
  • cleaning devices and methods are described primarily with respect to cleaning diesel particulate filters. However, it will be appreciated that the same methods can be used to clean other types of engine exhaust aftertreatment devices as well.
  • Other example aftertreatment devices that may require servicing include catalytic converters, lean NOx catalyst devices, selective catalytic reduction (SCR) catalyst devices, lean NOx traps, or other devices for removing pollutants from the exhaust stream.
  • the methods and cleaners can also be used to clean other types of filters/treatment devices, and are not limited exclusively to engine exhaust aftertreatment devices.
  • Diesel particulate filter substrates can have a variety of known configurations.
  • An exemplary configuration includes a monolith ceramic substrate having a "honey-comb" configuration of plugged passages as described in U .S. Patent no.
  • the filter substrate can include a catalyst.
  • catalysts include precious metals such as platinum, palladium and rhodium, and other types of components such as base metals or zeolites.
  • DPF or aftertreatment devices are described as having inlet sides or faces and outlet sides or faces.
  • the inlet side or face of an aftertreatment device is the side that faces the incoming flow of exhaust when installed in an exhaust system.
  • the inlet side can be referred to as the "dirty” side since it is the side at which material filtered from the exhaust stream collects.
  • the outlet side or face of an aftertreatment device is the side that faces away from the incoming flow of exhaust when installed in an exhaust system.
  • the outlet side can be referred to as the "clean" side.
  • Figure 1 shows a schematic flowchart of the method according to the present invention.
  • the particles filter to be cleaned is first visually inspected for visual defects such as cracks, damaged fittings and the like.
  • the next step is then to clean the interior of the particle filter. According to the present invention this is performed by burning off the soot and carbon compounds that have been deposited on the filter surfaces.
  • the particle filter is cooled with a flow of ambient air and ultimately mounted in an exhaust system of a vehicle.
  • the particle filter is connected to a flow of heated air.
  • a mass flow controller is arranged to control the air flow.
  • the air is preheated before entering the particle filter.
  • the particle filter is heated to temperatures above the exothermic reaction of the soot when it is burnt off, but not too high, thereby avoiding damaging the ceramic filter surfaces.
  • Temperature sensors are arranged to monitor the temperatures.
  • the carbon compounds are burnt off the filter surfaces during which the flow is increased to compensate for thermal buoyancy resulting from heating the particle filter.
  • the temperature of the hot air is increased in accordance with a predetermined heating curve, which curve dictates the applied temperature at a given time.
  • the end of the process could be performed in a few different ways. The most simple is to end the heating after a predetermined time period, which time period is based on empiric studies of different types of particle filter. Another way is to measure the amount of burnt particles during the heating process.
  • the particle filter may be subjected to bursts of air injection through it with certain time intervals. The air bursts cause the burnt particles to be ejected from the filter. The amount of particles could then be used as a measurement of when the burning process can be terminated.
  • FIG 2 shows an apparatus (1 ) for cleaning a particle filter (2) according to the present invention.
  • the outlet (clean) side of the particle filter is releasibly attached to a pipe (3) comprising a heating element (6).
  • the pipe (3) is connected to an air source (5) and a fan (4), where incoming air is heated by the heating element (6) before entering the particle filter (2).
  • the air (containing burnt particles) leaving the inlet (dirty) side of the particle filter (2) enters a mixing chamber (7), wherein the air is mixed with (cold) ambient air (9) blown into the apparatus through a second fan (8).
  • the mixed air is then forced through a filter (10) before leaving the apparatus (1) as clean air (1 1).

Abstract

There is provided a method of cleaning a diesel particle filter, in particular for combustion engines. The method involves positioning the diesel particle filter within a cleaning cabinet. In order to remove soot particles from the particle filter a flow of hot air is blown into the interior of the particle filter from the outlet side. The flow of hot air is regulated in a way that ensures efficient removal of burnt particles.

Description

METHOD OF CLEANING A PARTICLE FILTER
FIELD OF THE INVENTION
The present invention relates to a method and system for cleaning filters, and in particular filters for exhaust particles from combustion engines, such as diesel particle filters.
BACKGROUND OF THE INVENTION
There is an increasing demand on the environmental aspects of pollution to decrease the negative effects and thus the amount of pol lution . One source of poll ution of the environment is exhaust gases from combustion engines in vehicles such as cars, buses and the like.
The exhaust gases have become less harmful during the last two decades thanks to more advanced emission control and catalysts. Also diesel engines have become cleaner thanks to catalysts. During recent years, many diesel powered engines have also been equipped with particle filters, for further reducing the amount of pollutants in the exhaust gases.
The particle filters are very efficient in collecting particles and many vehicles have a certain cleaning procedure at certain intervals, wherein the filter is heated in order to try and remove the collected particles. However, even if some of the particles are burnt off during this procedure it is not so efficient as to completely clean the filters, and thus after a certain time the filter has to be replaced. The replacement of the filter is rather costly for the vehicle owner and the filter should be able to be used further if cleaned because the material of the filter, stainless steel and ceramics, have not been degraded during use, if the filter has not been exposed to physical damage, and thus the filter could be reconditioned. This would in turn mean cheaper spare parts for the owners as well as reduced use of material resources.
To service a device such as a diesel particulate filter, it is known to manually move a focused stream of pressurized air back and forth across the outlet side of the filter to loosen soot/ash that has collected on the filter. For example, a dry air gun (e.g., 50-100 psi) can be used as a source of pressurized air. WO2008091218A1 discloses a method of cleaning a particle filter, in particular for combustion engines, comprising the steps of: - a) applying heat to the interior of the particle filter during a certain time period for burning the trapped particles, - b) removing the burnt particles from the particle filter, - c) measuring the particle filter, wherein the measurements are compared to values of an unused filter of the particular type, and if the measured values deviate from the values of the unused filter by a predetermined amount, steps a) to c) are repeated until the measured values are within an approval range. It is mentioned that the removal of burnt particles is performed by blowing air into the particle filter.
WO06096244A1 discloses an apparatus for combusting soot from a diesel engine exhaust aftertreatment device. The apparatus includes a cabinet having a housing, a heating element positioned within the housing of the cabinet, and a mounting arrangement for securing the diesel engine exhaust aftertreatment device above the heating element. The apparatus also includes an ash collection container mounted beneath a floor of the housing for collecting ash that falls from the diesel engine exhaust aftertreatment device during heating.
EP1698765A1 discloses a pulse cleaner for cleaning a diesel exhaust treatment device. The pulse cleaner includes a cabinet, a diesel exhaust treatment device positioned within the cabinet, and a collection filter positioned within the cabinet for collecting material displaced from the diesel exhaust treatment device during cleaning. The pulse cleaner also includes a pulse generator for generating pulses that are each directed at a majority of a face of the diesel exhaust treatment device when the diesel exhaust treatment device is mounted at the diesel exhaust treatment device mount. The pulse generator includes a pressure tank for accumulating pressurized air, and a valve arrangement that flushes the pressurized air from the tank. A pulse of air for cleaning the diesel exhaust treatment device is generated each time the tank is flushed. What is needed is an improved method for servicing overloaded diesel particle filters or other exhaust aftertreatment devices. SUMMARY OF THE INVENTION
The present invention solves the above mentioned problems associated with prior art methods of cleaning diesel particle filters. Specifically the present invention provides a method for cleaning a diesel particle filter, in particular for combustion engines, comprising the steps of:
• positioning the diesel particle filter within a cleaning cabinet, said particle filter positioned upright with the outlet side upwards and the inlet side downwards;
• applying a flow of hot air to the interior of the particle filter from the outlet side, wherein
o the flow of hot air is generated by blowing ambient air at a flow between 10 and 100 m3/hour through a heating element with an effect of 6-24 kW to increase the temperature of the air to 600 C-700 C; and
o the flow is increased to compensate for thermal buoyancy resulting from heating the particle filter;
• continuing the flow of hot air for 30 to 90 minutes, preferably 30 to 60 minutes, wherein the flow of hot air is briefly increased with 50 to 100% for at least 10 seconds at least every 15 minutes;
• applying a flow of ambient air at a temperature of between 10 and 40 C for less than an hour;
• removing the diesel particle filter from the cleaning cabinet after cleaning.
In a preferred embodiment of the present invention the flow of hot air is generated by blowing ambient air at a flow between 30 and 70 m3/hour through a heating element with an effect of 9-18 kW.
In a particularly preferred embodiment of the present invention the flow of hot air is generated by blowing ambient air at a flow between 40 and 60 m3/hour through a heating element with an effect of 10-14 kW.
Preferably the diesel particle filter includes a ceramic substrate having a honey-comb configuration of plugged passages. More preferably the diesel particle filter includes silicon carbide or cordierite. In one embodiment of the present invention the diesel particle filter includes a wire mesh. In a preferred embodiment the diesel particle filter includes corrugated metal foil. In order to establish the flow of hot and cold air a blower is used to blow air through the diesel particle filter.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a flow chart of the method according to the invention. Fig. 2 shows schematically a setup for cleaning particle filters for vehicles according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
In the following detailed description, references are made to the accompanying drawings that depict various embodiments which are examples of how certain inventive aspects may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional changes may be made without departing from the broad scope of the inventive aspects.
The present disclosure relates to a method for efficiently and effectively cleaning diesel particle fi lters (DPF) or other exhaust aftertreatment devices. I n one em bodiment compressed air is used to back flush collected material (e.g. , soot, ash or other material captured from engine exhaust) from DPF.
Throughout the specification, cleaning devices and methods are described primarily with respect to cleaning diesel particulate filters. However, it will be appreciated that the same methods can be used to clean other types of engine exhaust aftertreatment devices as well. Other example aftertreatment devices that may require servicing include catalytic converters, lean NOx catalyst devices, selective catalytic reduction (SCR) catalyst devices, lean NOx traps, or other devices for removing pollutants from the exhaust stream. The methods and cleaners can also be used to clean other types of filters/treatment devices, and are not limited exclusively to engine exhaust aftertreatment devices. Diesel particulate filter substrates can have a variety of known configurations. An exemplary configuration includes a monolith ceramic substrate having a "honey-comb" configuration of plugged passages as described in U .S. Patent no. 4,851 ,015. This type of filter can be referred to as a wall-flow trap or filter. Common materials used for wall-flow filters include silicon carbide and cordierite. Wire mesh, corrugated metal foil and other flow-through type filter configurations can also be used. I n certain embodiments, the filter substrate can include a catalyst. Exemplary catalysts include precious metals such as platinum, palladium and rhodium, and other types of components such as base metals or zeolites.
As described herein, DPF or aftertreatment devices are described as having inlet sides or faces and outlet sides or faces. The inlet side or face of an aftertreatment device is the side that faces the incoming flow of exhaust when installed in an exhaust system. The inlet side can be referred to as the "dirty" side since it is the side at which material filtered from the exhaust stream collects. The outlet side or face of an aftertreatment device is the side that faces away from the incoming flow of exhaust when installed in an exhaust system. The outlet side can be referred to as the "clean" side.
Figure 1 shows a schematic flowchart of the method according to the present invention. The particles filter to be cleaned is first visually inspected for visual defects such as cracks, damaged fittings and the like.
The next step is then to clean the interior of the particle filter. According to the present invention this is performed by burning off the soot and carbon compounds that have been deposited on the filter surfaces.
Finally the particle filter is cooled with a flow of ambient air and ultimately mounted in an exhaust system of a vehicle. The particle filter is connected to a flow of heated air. A mass flow controller is arranged to control the air flow. Then the air is preheated before entering the particle filter. The particle filter is heated to temperatures above the exothermic reaction of the soot when it is burnt off, but not too high, thereby avoiding damaging the ceramic filter surfaces. Temperature sensors are arranged to monitor the temperatures. During this step the carbon compounds are burnt off the filter surfaces during which the flow is increased to compensate for thermal buoyancy resulting from heating the particle filter. Typically the temperature of the hot air is increased in accordance with a predetermined heating curve, which curve dictates the applied temperature at a given time. The end of the process could be performed in a few different ways. The most simple is to end the heating after a predetermined time period, which time period is based on empiric studies of different types of particle filter. Another way is to measure the amount of burnt particles during the heating process. In that aspect, the particle filter may be subjected to bursts of air injection through it with certain time intervals. The air bursts cause the burnt particles to be ejected from the filter. The amount of particles could then be used as a measurement of when the burning process can be terminated.
Figure 2 shows an apparatus (1 ) for cleaning a particle filter (2) according to the present invention. The outlet (clean) side of the particle filter is releasibly attached to a pipe (3) comprising a heating element (6). The pipe (3) is connected to an air source (5) and a fan (4), where incoming air is heated by the heating element (6) before entering the particle filter (2). The air (containing burnt particles) leaving the inlet (dirty) side of the particle filter (2) enters a mixing chamber (7), wherein the air is mixed with (cold) ambient air (9) blown into the apparatus through a second fan (8). The mixed air is then forced through a filter (10) before leaving the apparatus (1) as clean air (1 1).
Even though some examples have been mentioned above, it is to be understood that other types of equipment, systems and principles can be utilized for performing the method according to the present invention. Therefore the embodiments described and shown in the figures are to be regarded as only non-limiting examples of the present invention and that it may be modified within the scope of the patent claims.

Claims

Method of cleaning a diesel particle filter, in particular for combustion engines, comprising the steps of:
• positioning the diesel particle filter within a cleaning cabinet, said particle filter positioned upright with the outlet side upwards and the inlet side downwards;
• applying a flow of hot air to the interior of the particle filter from the outlet side, wherein
o the flow of hot air is generated by blowing ambient air at a flow between 30 and 70 m3/hour through a heating element with an effect of 9-18 kW to increase the temperature of the air to 600 C-700 C; and
o the flow is increased to compensate for thermal buoyancy resulting from heating the particle filter;
• continuing the flow of hot air for 30 to 90 minutes, preferably 30 to 60 minutes, wherein the flow of hot air is briefly increased with 50 to 100% for at least 10 seconds at least every 15 minutes;
• applying a flow of ambient air at a temperature of between 10 and 40 C for less than an hour;
• removing the diesel particle filter from the cleaning cabinet after cleaning.
The method of claim 1 , wherein the flow of hot air is generated by blowing ambient air at a flow between 40 and 60 m3/hour through a heating element with an effect of 10-14 kW.
The method of claim 1 or 2, wherein the temperature of the hot air is increased in accordance with a predetermined heating curve, which curve dictates the applied temperature at a given time.
The method of any one of the preceding claims, wherein the diesel particle filter includes a ceramic substrate having a honey-comb configuration of plugged passages.
The method of any one of the preceding claims, wherein the diesel particle filter includes silicon carbide or cordierite.
6. The method of any one of the preceding claims, wherein the diesel particle filter includes wire mesh.
7. The method of any one of the preceding claims, wherein the diesel particle filter includes corrugated metal foil.
8. The method of any one of the preceding claims, wherein a blower is used to blow air through the diesel particle filter.
EP11874296.4A 2011-10-20 2011-10-20 Method of cleaning a particle filter Withdrawn EP2769061A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DK2011/050399 WO2013056710A1 (en) 2011-10-20 2011-10-20 Method of cleaning a particle filter

Publications (2)

Publication Number Publication Date
EP2769061A1 true EP2769061A1 (en) 2014-08-27
EP2769061A4 EP2769061A4 (en) 2015-11-11

Family

ID=48140359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11874296.4A Withdrawn EP2769061A4 (en) 2011-10-20 2011-10-20 Method of cleaning a particle filter

Country Status (2)

Country Link
EP (1) EP2769061A4 (en)
WO (1) WO2013056710A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884066B1 (en) * 2013-12-11 2017-01-11 Hirtenberger Aktiengesellschaft Method for diagnosing an object and a device for carrying out the said method
US10029246B1 (en) 2017-01-25 2018-07-24 Savannah River Nuclear Solutions, Llc Method of cleaning a diesel particulate filter
CN111963279A (en) * 2020-09-08 2020-11-20 浙江银轮智能装备有限公司 DPF pipeline type heated air circulation heating device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003262A1 (en) * 1991-08-01 1993-02-18 Caterpillar Inc. Particulate trap regeneration apparatus and method
US5347809A (en) * 1993-03-12 1994-09-20 Caterpillar Inc. Apparatus and method for removing particulate from an exhaust gas filter
DE602006004852D1 (en) * 2005-03-04 2009-03-05 Donaldson Co Inc DEVICE FOR BURNING COLLECTED DIESEL EXHAUST MATERIAL FROM A POST-TREATMENT DEVICE AND METHOD
US7410530B2 (en) * 2005-03-04 2008-08-12 Donaldson Company, Inc. Apparatus for cleaning exhaust aftertreatment devices and methods
EP2111279A2 (en) * 2007-01-30 2009-10-28 Donaldson Company, Inc. Apparatus for cleaning exhaust aftertreatment devices and methods
SE533875C2 (en) * 2008-05-09 2011-02-15 Stockforsa Invest Ab Particle filter cleaning device
DK177575B1 (en) * 2010-04-21 2013-10-28 Munch Miljoe Teknik I S Process for cleaning a particle filter

Also Published As

Publication number Publication date
WO2013056710A1 (en) 2013-04-25
EP2769061A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
EP1861190B1 (en) Apparatus for combusting collected diesel exhaust material from aftertreatment device and method
KR101655736B1 (en) Wet exhaust gas purification device
US8241403B2 (en) Apparatus and method for regenerating a carbon filter
EP2106835B1 (en) System comprising a ceramic honeycomb filter and method for manufacturing the same
US5065576A (en) Exhaust gas purifying device for a diesel engine
EP2114547B1 (en) Method and system for cleaning filters
JPH07106290B2 (en) Diesel Exhaust Particle Filter
US20080083334A1 (en) Method and system for removing ash from a filter
US8801818B2 (en) Method and cleaning device for cleaning and checking a particle filter
CN104541030A (en) Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
US8839602B2 (en) Non-methane hydrocarbon conversion efficiency diagnostic for a diesel after-treatment system
US10358959B2 (en) Device and method for cleaning filters, in particular particulate filters
EP2769061A1 (en) Method of cleaning a particle filter
JP4736724B2 (en) Exhaust gas purification device for internal combustion engine
US20080173007A1 (en) System for reducing emissions generated from diesel engines used in low temperature exhaust applications
DK177575B1 (en) Process for cleaning a particle filter
KR102082599B1 (en) A Burning Apparatus for Diesel Particulate Filter and A Cleaning Apparatus using the same
KR102360435B1 (en) Apparatus for exhaust gas purification and exhaust gas purification method
CN113464246A (en) Particle catcher regeneration method, controller and regeneration system
JP2004169661A (en) Particulate material purifying/regenerating method of filter
JP2019150785A (en) Method for regeneration of collection filter
JP2004108194A (en) Exhaust emission control device
JP4215994B2 (en) Apparatus and method for removing suspended particulate matter in exhaust gas
JP4415816B2 (en) Exhaust purification device
KR102354453B1 (en) Regeneration Device And Method Of Diesel Particulate Filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151013

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 46/00 20060101ALI20151007BHEP

Ipc: B01D 41/04 20060101ALI20151007BHEP

Ipc: F01N 3/027 20060101AFI20151007BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180327

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180807