EP2767478B2 - Shrinking device with walls built from a plurality of modules - Google Patents

Shrinking device with walls built from a plurality of modules Download PDF

Info

Publication number
EP2767478B2
EP2767478B2 EP14153677.1A EP14153677A EP2767478B2 EP 2767478 B2 EP2767478 B2 EP 2767478B2 EP 14153677 A EP14153677 A EP 14153677A EP 2767478 B2 EP2767478 B2 EP 2767478B2
Authority
EP
European Patent Office
Prior art keywords
shrinking
support structure
cross
transport direction
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14153677.1A
Other languages
German (de)
French (fr)
Other versions
EP2767478A1 (en
EP2767478B1 (en
Inventor
Christian Napravnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50028949&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2767478(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krones AG filed Critical Krones AG
Publication of EP2767478A1 publication Critical patent/EP2767478A1/en
Application granted granted Critical
Publication of EP2767478B1 publication Critical patent/EP2767478B1/en
Publication of EP2767478B2 publication Critical patent/EP2767478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • B65B53/06Shrinking wrappers, containers, or container covers during or after packaging by heat supplied by gases, e.g. hot-air jets
    • B65B53/063Tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B59/00Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
    • B65B59/04Machines constructed with readily-detachable units or assemblies, e.g. to facilitate maintenance

Definitions

  • the present invention relates to a shrinking device according to the features of the preamble of claim 1.
  • the articles When packaging articles, in particular beverage containers, bottles, etc., in bundles, the articles are put together in the desired manner and wrapped in a shrink film.
  • the shrink film is shrunk by supplying shrinking agent, for example hot air, in a shrink tunnel around the articles.
  • shrinking agent for example hot air
  • Air pressurization by means of nozzle pipes, nozzle channels and shaft walls are known from the prior art.
  • the containers are processed in several parallel paths in the shrink tunnel.
  • means for introducing the warm air must also be provided, which inject the shrinking agent between the articles guided in parallel.
  • shrink tunnels with at least one so-called middle shaft wall are used for multi-lane processing.
  • the shaft walls are side spraying devices in the form of perforated hollow bodies.
  • the inner shaft wall has shrink agent outlet openings on both side wall surfaces arranged parallel to the transport direction, so that hot air flows into the inside of the shrink tunnel on both sides and thus ensures that the articles are subjected to hot shrink agent from the side.
  • the well-known shaft walls are walls with an internal cavity into which the hot air is blown.
  • the shaft walls each have at least one air inlet opening, preferably arranged in the upper region, through which the hot air is blown into the shaft wall from above and then flows through the shrinking agent outlet openings into the interior of the shrink tunnel.
  • the document US 3717939 describes a shrinking device in which the shrinking gas is distributed via a system of lines and a so-called register.
  • US 3826017 discloses a heating system, in particular a shrinking device with separate shrinking agent modules, which are separated from one another by outlet channels. The shrinking agent is fed into the modules from below.
  • US 3727324 describes a shrink tunnel in which shrink material is transported through an arrangement comprising a plurality of shrink arches.
  • US 3397465 discloses a shrink device divided into three areas.
  • Shrinking agent is introduced within a start and an end area, while hot air can escape from the furnace in a central area.
  • US 2008/0045136 A1 describes an air duct with a column plate which has a multiplicity of openings.
  • a plurality of guide structures within the air duct cause the air to exit the openings in a directed manner, so that the air outlet is essentially uniform over the entire length of the duct.
  • the object of the invention is to simply optimally adapt the spraying of packaged goods to the particular packaged goods as they pass through a shrinking device in the transport direction.
  • the invention relates to a shrinking device for shrinking packaging material around an article or a combination of articles.
  • a shrinking device is used to produce so-called containers.
  • shrink film is shrunk around an assembly of a plurality of bottles in order to combine them as a packaging or sales unit.
  • the shrinking device comprises at least one transport route for the articles or article assemblies.
  • the articles or article combinations covered with packaging material are transported on the transport route in a transport direction through the shrinking device.
  • So-called shaft walls are arranged on both sides along the transport route, each of which has at least one outflow surface for shrinking agents facing the interior of the shrinking device.
  • Hot air in particular serves as the shrinking agent, in particular room air heated by means of a blower or another suitable fluid.
  • the outflow surfaces each comprise a plurality of shrinking agent outlet openings.
  • At least one shrinking agent distribution device is arranged above each shaft wall. This is preferably a distribution channel to which a blower for generating hot air or another suitable shrinking agent generator is assigned.
  • the distribution channel has approximately the length of the shaft wall and comprises the shaft wall on it facing underside an outflow channel, which extends over the entire length of the distribution channel and thus over the entire length of the shaft wall.
  • the shrinking agent is passed through the shrinking agent distribution device into the interior of the shaft walls and from there via shrinking agent outlet openings of the outflow surfaces into the interior of the shrinking device and the articles wrapped with the packaging agent are acted upon by the shrinking agent.
  • the shaft walls are each modular.
  • the shaft walls are each constructed from at least two shaft chamber modules arranged one after the other in the transport direction, the at least one shrinking agent distribution device being assigned to at least two shaft chamber modules per shaft wall. That the at least one shrinking agent distribution device supplies at least two shaft chamber modules with shrinking agent.
  • the shaft chamber modules each comprise two side surfaces, which are arranged at least largely parallel to the direction of transport. At least one of the side surfaces is at least partially designed as an outflow surface.
  • outer shaft walls for example in the case of a shrinking device with single-lane product processing
  • the side surfaces facing the interior of the shrinking device are designed as outflow surfaces.
  • inner shaft walls for example in the case of a middle shaft wall of a shrinking device with two-web product processing
  • both side surfaces each face a partial interior of the shrinking device. Accordingly, both side surfaces are at least partially designed as outflow side surfaces.
  • the shaft chamber modules each comprise an upper side surface, an underside surface, a front and a rear cross-sectional side surface.
  • the cross-sectional side surfaces are arranged at least largely orthogonally to the transport direction.
  • the top surfaces each have at least partially a connection opening through which the shrinking agent generated by the shrinking agent distribution device is introduced into the at least two shaft chamber modules of the shaft wall.
  • the shaft walls also include a support structure.
  • the length of the support structure largely corresponds to the length of the respective shaft wall, i.e. the support structure extends at least largely along the entire shaft wall in the transport direction.
  • At least two shaft chamber modules for shrinking means which are successive in the transport direction are formed on the support structure.
  • the support structure is designed as a comb-shaped frame structure.
  • a first lower frame element forms the so-called comb back.
  • the length of the lower frame element largely corresponds to the length of the support structure and thus approximately to the length of the shaft wall.
  • Fastening elements are arranged on the lower frame element at regular intervals largely orthogonally to the transport plane of the article.
  • the shaft chamber modules are formed between or on these fastening elements.
  • fastening element is used in the following to describe a cross element of the support structure designed as a fastening element.
  • the support structure comprises at least one upper frame element and a plurality of fastening elements arranged largely orthogonal to the upper frame element and largely orthogonal to the transport route.
  • the upper frame element is arranged on a distribution device for shrinking means and is at least partially permeable to the shrinking means.
  • the upper frame element is constructed in such a way that the shrinking agent can flow largely unhindered into the interior of the shaft chamber modules of the shaft wall through the upper frame element.
  • This upper frame element can consist, for example, of at least two longitudinal struts which are connected to one another and stabilized by connecting cross struts.
  • the individual shaft chamber modules are each formed by the frame and fastening elements or transverse elements of the support structure and by side surfaces, the side surfaces being closed side surfaces or outflow surfaces, which are arranged and fastened to the frame and fastening elements or transverse elements ,
  • these are closed side plates or outflow plates with shrinking agent outlet openings which are mounted on the frame and fastening elements of the support structure.
  • These side panels or outflow panels are screwed to the frame and fastening elements of the support structure.
  • the shaft chamber modules are separated from one another by the fastening elements or transverse elements in a shrink-medium-tight manner.
  • the fastening elements are designed as separating elements.
  • the term separating element is used in the following in particular for a transverse element of the support structure designed as a separating element.
  • the separating elements separate the at least two shaft chamber modules, which are fastened one after the other in the transport direction, in a laterally shrink-medium-tight or air-tight manner.
  • the shrinkage means from the first shaft chamber module in the region of the fastening element forming a cross-sectional area of the shaft chamber module cannot get into the second shaft chamber module and vice versa.
  • the width of the lower frame element of the support structure is variable over the length of the support structure.
  • the width of the lower frame element the support structure increases perpendicularly to the direction of transport at least in regions over a length of the support structure.
  • the width of the fastening elements arranged largely orthogonal to the lower frame element and largely orthogonal to the direction of transport corresponds in each case to the width of the lower frame element in a respective fastening region of the fastening elements on the support structure.
  • the width of a first fastening element is less than the width of a fastening element arranged downstream in the transport direction.
  • the width of the fastening elements is variable along their length between the lower frame element of the support structure and the upper frame element of the support structure or the shrinking agent distribution device.
  • the fastening elements in the fastening area on the lower frame element can have a first width and in a fastening area on the upper frame element or on the shrinking agent distribution device can have a second width, the second width preferably being greater than the first width.
  • the shaft wall thus formed has a so-called wedge-shaped cross section orthogonal to the direction of transport. This results in an advantageous outflow direction of the shrinking means in a lower region of the shaft wall, in particular in the region directly above the transport route for the articles. In particular, this does not flow downward, but rather approximately parallel to the transport plane and thus supports the upward shrinking movement of the lower film tab of the packaging material.
  • the fastening elements have a cross section perpendicular to the direction of transport, the upper side of the cross section adjoining the upper frame element of the support structure or the fastening region of the shrinking agent distribution device and the underside of the cross section adjoining the lower frame element, at least one of the largely Sides of the fastening elements arranged perpendicular to the transport route are convex or concave.
  • the described variations of the fastening elements make it possible to adapt the cross section of the shaft wall flexibly to the product to be processed in the shrinking device.
  • the outflow surfaces in the different shaft chamber modules are at least partially designed differently in order to achieve optimal spraying of the products along the transport route.
  • the side surfaces of individual shaft chamber modules can preferably only be designed in some areas as an outflow surface.
  • the shrink film is generally wrapped around the articles so that the shrink film protrudes laterally over the articles and forms a so-called film eye when shrinking.
  • the packaging unit is transported through the shrinking device in such a way that the areas of the film eyes are arranged largely parallel to the outflow surfaces of the shaft walls.
  • the shrinking device in an initial area of the shrinking device it can be provided that only the upper and lower areas of the packaging unit are sprayed and, if possible, no direct shrinking agent supply is to be entered in the central area of the film eye.
  • shaft chamber modules are used which, viewed over their height, only have shrinking agent outlet openings in an upper and a lower region.
  • shrinking agent is fed to the shrink packaging in an end region of the shrinking device, in particular in the region of the film eye.
  • a shaft chamber module that closes the transport route is used with an increased density of shrinking agent outlet openings in the middle area.
  • a shaft chamber module is used which has shrinking agent outlet openings only in a central area, but not in the upper and lower areas.
  • the individual design of the outflow surfaces relates, for example, to the arrangement of the shrinking agent outlet openings within the outflow surface, the density of the shrinking agent outlet openings, the shape of the shrinking agent outlet openings, etc.
  • a variation in the cross-section of the shaft wall can also be achieved when using a support structure with a lower frame element, the cross-section of which is the same over its length and with fastening elements that have a constant width, in particular a width that corresponds to the width of the lower frame element.
  • fastening elements that have a constant width, in particular a width that corresponds to the width of the lower frame element.
  • the spacer elements are preferably arranged on the outflow surfaces and / or side surfaces or are formed by bent-over edge regions of the outflow surfaces and / or side surfaces.
  • the shaft wall Due to the construction of the shaft wall as a comb-shaped support structure with a selection of different, respectively mountable outflow surfaces or module elements comprising an outflow surface and, if appropriate, suitable spacing elements, in particular the flow properties of the shrinking agent can be specifically influenced.
  • the use of spacer elements can be provided when fastening the outflow surfaces, in order thereby to adjust the width of the shaft chamber modules that are created and thus the size of the cross-sectional area of the shaft chamber modules.
  • the shaft wall geometry Due to the modular structure, the shaft wall geometry can be easily adjusted.
  • the spraying pattern in particular the amount of shrinking agent or the areas in which the packaging material is subjected to shrinking agent, can also be set in a targeted manner.
  • Figure 1 shows a schematic view of a shrinking device 1 according to the known prior art.
  • Articles, in particular beverage containers, bottles 12, cans or the like. are put together in article groups and covered with shrink film 14. These arrangements are also referred to as article assemblies or containers 10.
  • the containers 10 are fed to the shrinking tunnel of the shrinking device 1 on a conveyor belt 4 in the transport direction TR.
  • Heating means (not shown) are arranged in the shrink tunnel and act on the container 10 with shrinking means, for example with hot air, as a result of which the shrink film 14 shrinks around the bottles 12.
  • FIG. 2 shows a side and Figure 3 shows a further perspective view of the modular structure of a shaft wall 2-1.
  • Shrinking agent 7 is generated by a shrinking agent generator 6 and introduced into the shaft wall 2-1 via a distribution channel 8.
  • the shaft wall 2-1 consists of four shaft chambers 32.
  • the shaft chambers 32 are formed in succession in the transport direction TR by means of a support structure 25.
  • the support structure 25 is a comb-shaped frame structure and comprises a lower frame element 26 arranged parallel to the transport direction TR.
  • the length L 25 of the support structure 25 corresponds to the length L 26 of the lower frame element 26 and at least largely the length L of the shaft wall 2-1, ie the support structure 25 extends in the transport direction TR along the entire shaft wall 2-1.
  • Cross elements 27 are arranged on the lower frame element 26 at regular intervals orthogonally to the lower frame element 26 and orthogonally to the transport direction TR.
  • the shaft chamber outflow plates 33 are arranged on these cross elements 27 as outflow surfaces 3 with shrinking agent outlet openings 3 *, as a result of which the individual shaft chamber modules 32 are formed.
  • the support structure 25 comprises five cross elements 27, between which four shaft chamber modules 32 are formed.
  • Figure 3 generally shows the components of a shaft wall 2-1 with support structure 25, which in particular consists of a lower frame element 26 and transverse elements 27 arranged orthogonally thereto.
  • the outflow surfaces 3 each consist of sheet metal tiles or outflow sheets 33 or the like. with shrinking agent outlet openings 3 *, which are fastened to the support structure 25, for example by riveting on the lower frame element 26, the transverse elements 27 and on the distribution channel 8.
  • the centrally arranged orthogonal transverse elements 27 form separating elements 30 which delimit the individual shaft chamber modules 32 from one another in a shrink-medium-tight manner ,
  • Figures 4 show a further embodiment of a modular shaft wall 2-2 with an alternative embodiment of the support structure 25-2.
  • the width of the lower frame element 26-2 increases continuously in the transport direction TR.
  • the width B 27-n of the respective orthogonal cross elements 27-n also increases in the transport direction TR.
  • the width of the transverse elements 27-n in a lower fastening region 28 arranged between the lower frame element and the respective transverse element 27-1 and in an upper fastening region 29 corresponds in each case to the width of the lower frame element 26-2 in this region.
  • outflow plates 33 with shrinkage agent outlet openings 3 * are attached to the support structure 25-2 as outflow surfaces 3.
  • This is also reflected in the Figure 4B illustrates that the shaft chamber modules 32-1 to 32-4 of a shaft wall 2-2 seen from above.
  • Figures 5 show a further embodiment of a modular construction of a shaft wall 2-4 with support structure 25.
  • Figure 5A shows a so-called module element 34-1.
  • This is an outflow surface 3 with spacer elements 37 for attachment to the support structure 25.
  • the module element 34-1 consists, for example, of sheet metal or a comparable material and is in particular constructed like a box open at the top and standing on a side surface. The underside of the box is designed as an outflow surface 3 with shrinking agent outlet openings 3 *.
  • the side surfaces 35 of the box-shaped module element 34-1 which are arranged largely orthogonal to the side edges of the outflow surface 3, serve as spacer elements 38. They have a height H 1 and define the desired distance from the components 26, 27 of the support structure 25.
  • the side surfaces 35 are on the edges to the outflow surface 3 and welded together in a shrink-tight manner.
  • the fastening regions 37 can be formed by a bent, protruding region of the side surfaces 35.
  • the module element 34-1 is fastened in an airtight manner to the lower frame element 26, two orthogonal transverse elements 27 and to the distribution channel 8 via the fastening areas 37, in particular this is done by riveting on the fastening areas 37.
  • the height H 1 of the module element 34-1 thus represents a partial width B P1 of the shaft chamber module (not shown) formed by the support structure 25 and two module elements 34-1 arranged opposite one another.
  • B 25 is equal to the width of the frame elements 26, 27 of the support structure 25, ie the width of the lower frame element 26 or the width of the fastening elements 27 orthogonal to the transport direction TR.
  • Figure 5B shows the arrangement of two module elements 34-1 within a modular shaft wall 2-3 and Figure 5C shows the shaft chamber modules 32-n of a shaft wall 2-3 seen from above.
  • the first two shaft chamber modules 32-5 are formed by riveting outflow plates, so that the shaft wall 2-3 has a width B 5 in this region, which is the width of the lower frame element 26 or the width of the transverse elements 27 corresponds orthogonally to the transport direction TR.
  • the shaft chamber modules 32-6 are formed by riveting module elements 34-1 onto the frame elements 26, 27 of the support structure 25, so that the shaft wall 2-3 has a width B 6 in this area, which can be calculated using the formula shown above ,
  • Figures 6 show further representations of a modular structure of a shaft wall 2-4 with support structure 25 according to the present invention.
  • Figure 6A shows a so-called module element 34-2.
  • Figure 6B shows the arrangement of a module element 34-2 and a module element 34-1 (cf. Figure 5A ) within a modular shaft wall 2-4 and
  • Figure 6C shows the shaft chamber modules 32-n of a shaft wall 2-4 seen from above.
  • the module element 34-2 is also constructed in the form of a box open at the top and standing on one side surface. However, the height H of the side surface 35 *, which forms the standing surface or top of the module element 34-2, increases in the transport direction TR.
  • the short side 40-1 arranged first in the transport direction TR has a first length or first height H 1 and thus a first partial width B P1 .
  • the short side 40-2 arranged downstream in the transport direction TR has a second length or second height H 2 and thus a second partial width B P2 .
  • the change in the cross section of the shaft wall along its length parallel to the transport direction TR can advantageously be used to optimize the shrinking process along the transport route. It is particularly problematic that the energy input into the shrink film decreases along the transport route through the shrink tunnel, since the distance between the outflow surfaces of the shaft wall and the shrink film increases in the direction of transport during the shrinking process. In addition, the jet speed of the shrinking agent decreases with increasing depth of penetration into the room and that the shrinking agent loses temperature until the shrink film is reached and the distances covered are longer until the shrink film is reached.
  • a shaft chamber module arranged first in the transport direction TR can have a first width and a first cross-sectional area transversely to the transport direction TR.
  • the downstream second shaft chamber module has a second width and a second cross-sectional area transverse to the transport direction TR, which is larger than the first width B of the first shaft chamber module, etc.
  • Figures 7 show different examples of module elements 34-1 to 34-12 for attachment to a support structure 25 (not shown, cf. Figures 3 to 6 ).
  • Figure 7A shows a simple outflow plate 33.
  • Figure 7B shows a cuboid module element 34-1 according to Figure 5A and
  • Figure 7C shows a so-called crooked module element 34-2 according to Figure 6A ,
  • module elements 34-3 to 34-6 with curved outflow surfaces 3 * are possible, for example with outflow surfaces 3a projecting convexly into the interior of the shrinking device ( Figures 7D, 7E ) or with concave discharge surfaces 3b ( Figures 7F, 7G ).
  • Figures 7H to 7L show module elements 34-7 to 34-11 with two-part outflow surface 3.
  • the outflow surface 3 can be divided into an upper outflow partial surface 3c and a lower outflow partial surface 3d, with the lower outflow partial surface 3d in the module element 34-7 Interior of the shrinking device protrudes as the upper outflow partial surface 3c.
  • the module element 34-8 Figure 7I the upper outflow partial surface 3c has an obliquely upward and in the direction of the interior of the shrinking device, while the lower outflow partial surface 3d has an obliquely downward and in the direction of the interior of the shrinking device.
  • Both outflow partial surfaces 3c, 3d each have a concave shape.
  • the outflow surface 3 in the transport direction TR can be divided into a front outflow partial surface 3e and a rear outflow partial surface 3f, and the outflow surfaces 3e, 3f each have an oblique configuration.
  • Figure 7M an embodiment of a module element 34-12 shown, in which the outflow surface 3 is divided into a plurality of outflow surfaces 3 *. Further embodiments not shown here can be derived by the person skilled in the art.
  • Figures 8 show a further embodiment of a modular construction of a shaft wall 2-5 with support structure 25-3, in which the width of the transverse elements 27a increases along its length L 27 between the lower frame element 26 of the support structure 25-3 and the distribution channel 8.
  • the transverse elements 27a have a first, lower width Bu in the fastening region 28 on the lower frame element 26 and have a second, upper width B O in a fastening region 29 which serves for fastening to the distribution channel 8.
  • the second, upper width B O is preferably larger than the first, lower width B U.
  • Outflow plates 33 are fastened to the support structure 25-3, as a result of which the shaft wall 2-5 is formed.
  • this consists of four shaft chamber modules, the shaft chamber modules having a cross-sectional area 42a perpendicular to Have formed transport direction TR, whose width B increases between the lower frame element 26 and the distribution channel 8.
  • the shaft wall 2-5 thus formed has a so-called wedge-shaped cross section orthogonal to the transport direction TR. This results in an advantageous outflow direction of the shrinking means in a lower area of the shaft wall 2-5, in particular in the area directly above the transport route for the articles.

Description

Die vorliegende Erfindung betrifft eine Schrumpfvorrichtung gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.The present invention relates to a shrinking device according to the features of the preamble of claim 1.

Bei der Verpackung von Artikeln, insbesondere von Getränkebehältern, Flaschen etc. zu Gebinden, werden die Artikel in gewünschter Weise zusammengestellt und mit einer Schrumpffolie umhüllt. Die Schrumpffolie wird durch Zufuhr von Schrumpfmittel, beispielsweise von Heißluft, in einem Schrumpftunnel um die Artikel herum aufgeschrumpft. Aus dem Stand der Technik sind Luftbeaufschlagungen mittels Düsenrohren, Düsenkanälen und Schachtwänden bekannt.When packaging articles, in particular beverage containers, bottles, etc., in bundles, the articles are put together in the desired manner and wrapped in a shrink film. The shrink film is shrunk by supplying shrinking agent, for example hot air, in a shrink tunnel around the articles. Air pressurization by means of nozzle pipes, nozzle channels and shaft walls are known from the prior art.

Häufig werden die Gebinde, abhängig von ihrer jeweiligen Größe, im Schrumpftunnel in mehreren parallel geführten Bahnen verarbeitet. Um alle Gebinde von allen Seiten mit warmer Luft beaufschlagen zu können, müssen auch Mittel zum Einbringen der warmen Luft vorgesehen sein, welche das Schrumpfmittel zwischen den parallel geführten Artikeln eindüsen. Beispielsweise werden für die mehrbahnige Verarbeitung Schrumpftunnel mit mindestens einer so genannten mittleren Schachtwand verwendet. Bei den Schachtwänden handelt es sich um seitliche Bedüsungsvorrichtungen in Form von belochten Hohlkörpern. Die innere Schachtwand weist Schrumpfmittelaustrittsöffnungen an beiden parallel zur Transportrichtung angeordneten Seitenwandflächen auf, so dass Heißluft nach beiden Seiten in das Innere des Schrumpftunnels einströmt und somit für die seitliche Beaufschlagung der Artikel mit heißem Schrumpfmittel sorgt. Die bekannten Schachtwände sind Wände mit einem inneren Hohlraum, in den die Heißluft eingeblasen wird. Hierzu weisen die Schachtwände jeweils mindestens eine, vorzugsweise im oberen Bereich angeordnete Lufteintrittsöffnung auf, durch die die Heißluft von oben her in die Schachtwand eingeblasen wird und dann durch die Schrumpfmittelaustrittsöffnungen in das Innere des Schrumpftunnels strömt.Often, depending on their size, the containers are processed in several parallel paths in the shrink tunnel. In order to be able to apply warm air to all containers from all sides, means for introducing the warm air must also be provided, which inject the shrinking agent between the articles guided in parallel. For example, shrink tunnels with at least one so-called middle shaft wall are used for multi-lane processing. The shaft walls are side spraying devices in the form of perforated hollow bodies. The inner shaft wall has shrink agent outlet openings on both side wall surfaces arranged parallel to the transport direction, so that hot air flows into the inside of the shrink tunnel on both sides and thus ensures that the articles are subjected to hot shrink agent from the side. The well-known shaft walls are walls with an internal cavity into which the hot air is blown. For this purpose, the shaft walls each have at least one air inlet opening, preferably arranged in the upper region, through which the hot air is blown into the shaft wall from above and then flows through the shrinking agent outlet openings into the interior of the shrink tunnel.

Im Stand der Technik sind somit seitliche Bedüsungsvorrichtungen in Form von belochten Hohlkörpern bekannt. Diese Schachtwände ziehen sich entlang der Laufrichtung durch den Schrumpftunnel und sorgen für die seitliche Beaufschlagung der Artikel mit heißem Schrumpfmedium. Diese Schachtwände werden in der Regel als Schweiß- oder Nietkonstruktionen ausgeführt, bei denen die Austrittsflächen mit verschiedenen Lochmustern ausgestattet sind. Im Allgemeinen sind die Schachtwände immer aus einem Teil gefertigt und somit definiert festgelegt. Das System kann nur mit erheblichem Aufwand auf verschiedene Produktgruppen umkonfiguriert werden. Auch bei konstruktiven Änderungen, Nachrüstungen oder reklamationsbedingten Änderungen ist der zeitliche und konstruktionsbedingte Aufwand hoch.Lateral spraying devices in the form of perforated hollow bodies are thus known in the prior art. These shaft walls run along the direction of travel through the shrink tunnel and ensure that the articles are exposed to hot shrink medium from the side. These shaft walls are usually designed as welded or riveted structures, in which the exit surfaces are equipped with different hole patterns. In general, the shaft walls are always made from one part and are therefore defined in a defined manner. The system can only be reconfigured to different product groups with considerable effort. Even with design changes, retrofitting or complaint-related changes, the time and design-related effort is high.

Das Dokument US 3717939 beschreibt eine Schrumpfvorrichtung, bei der die Verteilung des Schrumpfgases über ein System aus Leitungen und einem so genannten Register erfolgt.The document US 3717939 describes a shrinking device in which the shrinking gas is distributed via a system of lines and a so-called register.

US 3826017 offenbart ein Heizsystem, insbesondere eine Schrumpfvorrichtung mit separaten Schrumpfmittel- Modulen, die voneinander durch Auslasskanäle getrennt sind. Die Zufuhr von Schrumpfmittel in die Module erfolgt von unten her. US 3826017 discloses a heating system, in particular a shrinking device with separate shrinking agent modules, which are separated from one another by outlet channels. The shrinking agent is fed into the modules from below.

US 3727324 beschreibt einen Schrumpftunnel, bei dem Schrumpfgut durch eine Anordnung umfassend mehrere Schrumpfbögen transportiert wird. US 3727324 describes a shrink tunnel in which shrink material is transported through an arrangement comprising a plurality of shrink arches.

US 3397465 offenbart eine Schrumpfvorrichtung, die in drei Bereiche unterteilt ist. Innerhalb eines Anfang- und eines Endbereiches wird Schrumpfmittel eingeleitet, während in einem mittleren Bereich heiße Luft aus dem Ofen austreten kann. US 3397465 discloses a shrink device divided into three areas. Shrinking agent is introduced within a start and an end area, while hot air can escape from the furnace in a central area.

Die Offenlegungsschrift US 2008/0045136 A1 beschreibt einen Luftkanal mit einer Kolumnierplatte, die eine Vielzahl von Öffnungen aufweist. Eine Mehrzahl von Leitstrukturen innerhalb des Luftkanals bewirken ein gerichtetes Austreten der Luft aus den Öffnungen, so dass der Luftaustritt über die gesamte Kanallänge im Wesentlichen gleichmäßig ist.The disclosure US 2008/0045136 A1 describes an air duct with a column plate which has a multiplicity of openings. A plurality of guide structures within the air duct cause the air to exit the openings in a directed manner, so that the air outlet is essentially uniform over the entire length of the duct.

Aufgabe der Erfindung ist es, die Bedüsung von Verpackungsgut beim Durchlaufen einer Schrumpfvorrichtung in Transportrichtung einfach optimal an das jeweilige Verpackungsgut anzupassen.The object of the invention is to simply optimally adapt the spraying of packaged goods to the particular packaged goods as they pass through a shrinking device in the transport direction.

Die obige Aufgabe wird durch eine Vorrichtung gelöst, die die Merkmale in dem Patentanspruch 1 umfasst. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.The above object is achieved by a device which comprises the features in claim 1. Further advantageous embodiments are described by the subclaims.

Die Erfindung betrifft eine Schrumpfvorrichtung zum Schrumpfen von Verpackungsmitteln um einen Artikel oder um eine Zusammenstellung von Artikeln. Insbesondere wird eine solche Schrumpfvorrichtung verwendet, um so genannte Gebinde herzustellen. Dabei wird Schrumpffolie um eine Zusammenstellung einer Mehrzahl von Flaschen geschrumpft, um diese als eine Verpackungs- bzw. Verkaufseinheit zusammenzufassen. Die Schrumpfvorrichtung umfasst mindestens eine Transportstrecke für die Artikel oder Artikelzusammenstellungen. Die mit Verpackungsmittel umhüllten Artikel oder Artikelzusammenstellungen werden auf der Transportstrecke in einer Transportrichtung durch die Schrumpfvorrichtung transportiert.The invention relates to a shrinking device for shrinking packaging material around an article or a combination of articles. In particular, such a shrinking device is used to produce so-called containers. Here, shrink film is shrunk around an assembly of a plurality of bottles in order to combine them as a packaging or sales unit. The shrinking device comprises at least one transport route for the articles or article assemblies. The articles or article combinations covered with packaging material are transported on the transport route in a transport direction through the shrinking device.

Beidseitig entlang der Transportstrecke sind so genannte Schachtwände angeordnet, die jeweils mindestens eine dem Innenraum der Schrumpfvorrichtung zugewandte Ausströmfläche für Schrumpfmittel aufweisen. Als Schrumpfmittel dient insbesondere heiße Luft, insbesondere mittels eines Gebläses erhitzte Raumluft oder ein anderes geeignetes Fluid. Die Ausströmflächen umfassen jeweils eine Mehrzahl von Schrumpfmittelaustrittsöffnungen. Oberhalb jeder Schachtwand ist mindestens eine Schrumpfmittelverteilvorrichtung angeordnet. Dabei handelt es sich vorzugsweise um einen Verteilkanal, dem ein Gebläse zur Erzeugung von Heißluft oder ein anderer geeigneter Schrumpfmittelerzeuger zugeordnet ist. Der Verteilkanal weist in etwa die Länge der Schachtwand auf und umfasst an seiner der Schachtwand zugewandten Unterseite einen Ausströmkanal, der sich über die gesamte Länge des Verteilkanals und somit über die gesamte Länge der Schachtwand erstreckt. Das Schrumpfmittel wird über die Schrumpfmittelverteilvorrichtung in den Innenraum der Schachtwände und von dort über Schrumpfmittelaustrittsöffnungen der Ausströmflächen in den Innenraum der Schrumpfvorrichtung geleitet und die mit dem Verpackungsmittel umhüllten Artikel werden mit dem Schrumpfmittel beaufschlagt.So-called shaft walls are arranged on both sides along the transport route, each of which has at least one outflow surface for shrinking agents facing the interior of the shrinking device. Hot air in particular serves as the shrinking agent, in particular room air heated by means of a blower or another suitable fluid. The outflow surfaces each comprise a plurality of shrinking agent outlet openings. At least one shrinking agent distribution device is arranged above each shaft wall. This is preferably a distribution channel to which a blower for generating hot air or another suitable shrinking agent generator is assigned. The distribution channel has approximately the length of the shaft wall and comprises the shaft wall on it facing underside an outflow channel, which extends over the entire length of the distribution channel and thus over the entire length of the shaft wall. The shrinking agent is passed through the shrinking agent distribution device into the interior of the shaft walls and from there via shrinking agent outlet openings of the outflow surfaces into the interior of the shrinking device and the articles wrapped with the packaging agent are acted upon by the shrinking agent.

Die Schachtwände sind jeweils modular aufgebaut. Insbesondere sind die Schachtwände jeweils aus mindestens zwei in Transportrichtung in Reihe nacheinander angeordneten Schachtkammer- Modulen aufgebaut, wobei die mindestens eine Schrumpfmittelverteilvorrichtung je Schachtwand mindestens zwei Schachtkammer-Module zugeordnet ist. D.h. die mindestens eine Schrumpfmittelverteilvorrichtung versorgt jeweils mindestens zwei Schachtkammer- Module mit Schrumpfmittel.The shaft walls are each modular. In particular, the shaft walls are each constructed from at least two shaft chamber modules arranged one after the other in the transport direction, the at least one shrinking agent distribution device being assigned to at least two shaft chamber modules per shaft wall. That the at least one shrinking agent distribution device supplies at least two shaft chamber modules with shrinking agent.

Die Schachtkammer- Module umfassen jeweils zwei Seitenflächen, die zumindest weitgehend parallel zur Transportrichtung angeordnet sind. Mindestens eine der Seitenflächen ist zumindest teilweise als Ausströmfläche ausgebildet. Bei so genannten äußeren Schachtwänden, beispielsweise bei einer Schrumpfvorrichtung mit einbahniger Produktverarbeitung, sind die jeweils dem Innenraum der Schrumpfvorrichtung zugewandten Seitenflächen als Ausströmflächen ausgebildet. Bei so genannten inneren Schachtwänden, beispielsweise bei einer mittleren Schachtwand einer Schrumpfvorrichtung mit zweibahniger Produktverarbeitung, sind beide Seitenflächen jeweils einem Teil- Innenraum der Schrumpfvorrichtung zugewandt. Dementsprechend sind beide Seitenflächen zumindest teilweise als Ausström- Seitenflächen ausgebildet. Weiterhin umfassen die Schachtkammer- Module jeweils eine Oberseitenfläche, eine Unterseitenfläche, eine vordere und eine hintere Querschnittsseitenfläche. Die Querschnittsseitenflächen sind zumindest weitgehend orthogonal zur Transportrichtung angeordnet. Die Oberseitenflächen weisen jeweils zumindest teilweise eine Verbindungsöffnung auf, über die das von der Schrumpfmittelverteilvorrichtung erzeugte Schrumpfmittel in die mindestens zwei Schachtkammer-Module der Schachtwand eingeleitet wird.The shaft chamber modules each comprise two side surfaces, which are arranged at least largely parallel to the direction of transport. At least one of the side surfaces is at least partially designed as an outflow surface. In so-called outer shaft walls, for example in the case of a shrinking device with single-lane product processing, the side surfaces facing the interior of the shrinking device are designed as outflow surfaces. In the case of so-called inner shaft walls, for example in the case of a middle shaft wall of a shrinking device with two-web product processing, both side surfaces each face a partial interior of the shrinking device. Accordingly, both side surfaces are at least partially designed as outflow side surfaces. Furthermore, the shaft chamber modules each comprise an upper side surface, an underside surface, a front and a rear cross-sectional side surface. The cross-sectional side surfaces are arranged at least largely orthogonally to the transport direction. The top surfaces each have at least partially a connection opening through which the shrinking agent generated by the shrinking agent distribution device is introduced into the at least two shaft chamber modules of the shaft wall.

Weiterhin umfassen die Schachtwände eine Trägerkonstruktion. Die Länge der Trägerkonstruktion entspricht weitgehend der Länge der jeweiligen Schachtwand, d.h. die Trägerkonstruktion erstreckt sich in Transportrichtung zumindest weitgehend entlang der gesamten Schachtwand. An der Trägerkonstruktion sind mindestens zwei, in Transportrichtung aufeinanderfolgende Schachtkammer- Module für Schrumpfmittel ausgebildet. Die Trägerkonstruktion ist als kammförmige Rahmenkonstruktion ausgebildet.The shaft walls also include a support structure. The length of the support structure largely corresponds to the length of the respective shaft wall, i.e. the support structure extends at least largely along the entire shaft wall in the transport direction. At least two shaft chamber modules for shrinking means which are successive in the transport direction are formed on the support structure. The support structure is designed as a comb-shaped frame structure.

Ein erstes unteres Rahmenelement bildet den so genannten Kammrücken. Die Länge des unteren Rahmenelements entspricht weitgehend der Länge der Trägerkonstruktion und somit in etwa der Länge der Schachtwand. An dem unteren Rahmenelement sind in regelmäßigen Abständen weitgehend orthogonal zur Transportebene der Artikel Befestigungselemente angeordnet. Zwischen bzw. an diesen Befestigungselementen sind die Schachtkammer- Module ausgebildet. Der Begriff Befestigungselement wird im Folgenden zur Beschreibung eines als Befestigungselementes ausgebildeten Querelementes der Trägerkonstruktion verwendet.A first lower frame element forms the so-called comb back. The length of the lower frame element largely corresponds to the length of the support structure and thus approximately to the length of the shaft wall. Fastening elements are arranged on the lower frame element at regular intervals largely orthogonally to the transport plane of the article. The shaft chamber modules are formed between or on these fastening elements. The term fastening element is used in the following to describe a cross element of the support structure designed as a fastening element.

Alternativ umfasst die Trägerkonstruktion mindestens ein oberes Rahmenelement und eine Mehrzahl von weitgehend orthogonal zum oberen Rahmenelement und weitgehend orthogonal zur Transportstrecke angeordneten Befestigungselemente. Das obere Rahmenelement ist an einer Verteilvorrichtung für Schrumpfmittel angeordnet und für das Schrumpfmittel zumindest teilweise durchlässig. Das obere Rahmenelement ist so konstruiert, dass das Schrumpfmittel durch das obere Rahmenelement weitgehend ungehindert in den Innenraum der Schachtkammer- Module der Schachtwand einströmen kann. Dieses obere Rahmenelement kann beispielsweise aus mindestens zwei Längsstreben bestehen, die durch verbindende Querstreben miteinander verbunden und stabilisiert sind.Alternatively, the support structure comprises at least one upper frame element and a plurality of fastening elements arranged largely orthogonal to the upper frame element and largely orthogonal to the transport route. The upper frame element is arranged on a distribution device for shrinking means and is at least partially permeable to the shrinking means. The upper frame element is constructed in such a way that the shrinking agent can flow largely unhindered into the interior of the shaft chamber modules of the shaft wall through the upper frame element. This upper frame element can consist, for example, of at least two longitudinal struts which are connected to one another and stabilized by connecting cross struts.

Gemäß der Erfindung werden die einzelnen Schachtkammer- Module jeweils durch die Rahmen- und Befestigungselemente bzw. Querelemente der Trägerkonstruktion und durch Seitenflächen ausgebildet, wobei die Seitenflächen jeweils geschlossene Seitenflächen oder Ausströmflächen sind, die an den Rahmen- und Befestigungselementen bzw. Querelementen angeordnet und befestigt sind. Insbesondere handelt es sich hierbei um geschlossene Seitenbleche oder um Ausströmbleche mit Schrumpfmittelaustrittsöffnungen, die an den Rahmen- und Befestigungselementen der Trägerkonstruktion montiert sind. Dabei werden diese Seitenbleche oder Ausströmbleche mit den Rahmen- und Befestigungselementen der Trägerkonstruktion verschraubt. Die Schachtkammer-Module werden durch die Befestigungselemente bzw. Querelemente schrumpfmitteldicht voneinander abgegrenzt.According to the invention, the individual shaft chamber modules are each formed by the frame and fastening elements or transverse elements of the support structure and by side surfaces, the side surfaces being closed side surfaces or outflow surfaces, which are arranged and fastened to the frame and fastening elements or transverse elements , In particular, these are closed side plates or outflow plates with shrinking agent outlet openings which are mounted on the frame and fastening elements of the support structure. These side panels or outflow panels are screwed to the frame and fastening elements of the support structure. The shaft chamber modules are separated from one another by the fastening elements or transverse elements in a shrink-medium-tight manner.

Gemäß einer Ausführungsform der Erfindung sind die Befestigungselemente als Trennelemente ausgebildet. Der Begriff Trennelement wird im Folgenden insbesondere für ein als Trennelement ausgebildetes Querelement der Trägerkonstruktion verwendet. Durch die Trennelemente werden die mindestens zwei, in Transportrichtung aufeinanderfolgend befestigten Schachtkammer- Module, seitlich schrumpfmitteldicht bzw. luftdicht voneinander abgetrennt. Insbesondere kann das Schrumpfmittel aus dem ersten Schachtkammer- Modul im Bereich des eine Querschnittsfläche des Schachtkammer- Moduls bildenden Befestigungselementes nicht in das zweite Schachtkammer- Modul gelangen und vice versa.According to one embodiment of the invention, the fastening elements are designed as separating elements. The term separating element is used in the following in particular for a transverse element of the support structure designed as a separating element. The separating elements separate the at least two shaft chamber modules, which are fastened one after the other in the transport direction, in a laterally shrink-medium-tight or air-tight manner. In particular, the shrinkage means from the first shaft chamber module in the region of the fastening element forming a cross-sectional area of the shaft chamber module cannot get into the second shaft chamber module and vice versa.

Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Breite des unteren Rahmenelementes der Trägerkonstruktion über die Länge der Trägerkonstruktion variabel ist. Insbesondere kann vorgesehen sein, dass die Breite des unteren Rahmenelementes der Trägerkonstruktion senkrecht zur Transportrichtung zumindest bereichsweise über eine Länge der Trägerkonstruktion kontinuierlich zunimmt. In diesem Fall ist zusätzlich vorgesehen, dass die Breite der weitgehend orthogonal zum unteren Rahmenelement und weitgehend orthogonal zur Transportrichtung angeordneten Befestigungselemente jeweils der Breite des unteren Rahmenelementes in einem jeweiligen Befestigungsbereich der Befestigungselemente an der Trägerkonstruktion entspricht. Insbesondere ist die Breite eines ersten Befestigungselements geringer als die Breite eines in Transportrichtung nachfolgend angeordneten Befestigungselementes. Durch Befestigen von Seiten- und / oder Ausströmblechen erhält man somit eine Schachtwand aus mehreren Modulen, deren Breite und somit auch Querschnittsfläche in Transportrichtung zunimmt.According to one embodiment of the invention, it is provided that the width of the lower frame element of the support structure is variable over the length of the support structure. In particular, it can be provided that the width of the lower frame element the support structure increases perpendicularly to the direction of transport at least in regions over a length of the support structure. In this case, it is additionally provided that the width of the fastening elements arranged largely orthogonal to the lower frame element and largely orthogonal to the direction of transport corresponds in each case to the width of the lower frame element in a respective fastening region of the fastening elements on the support structure. In particular, the width of a first fastening element is less than the width of a fastening element arranged downstream in the transport direction. By attaching side and / or outflow plates, a shaft wall is thus obtained from several modules, the width and thus also the cross-sectional area of which increases in the direction of transport.

Gemäß einer weiteren Ausführungsform der Erfindung ist die Breite der Befestigungselemente entlang ihrer Länge zwischen dem unteren Rahmenelement der Trägerkonstruktion und dem oberen Rahmenelement der Trägerkonstruktion oder der Schrumpfmittelverteilvorrichtung variabel. Insbesondere können die Befestigungselemente im Befestigungsbereich am unteren Rahmenelement eine erste Breite aufweisen und in einem Befestigungsbereich am oberen Rahmenelement bzw. an der Schrumpfmittelverteilvorrichtung eine zweite Breite aufweisen, wobei die zweite Breite vorzugsweise größer ist als die erste Breite. Durch Befestigen von Seiten- und / oder Ausströmblechen erhält man somit eine Schachtwand aus mehreren Schachtkammer- Modulen wobei zumindest ein Teil der Schachtkammer-Module eine Querschnittsfläche senkrecht zur Transportrichtung ausgebildet haben, deren Breite zwischen dem unterem Rahmenelement und der Schrumpfmittelverteilvorrichtung zunimmt. Die dadurch gebildete Schachtwand weist einen so genannten keilförmigen Querschnitt orthogonal zur Transportrichtung auf. Dadurch ergibt sich in einem unteren Bereich der Schachtwand, insbesondere im Bereich direkt oberhalb der Transportstrecke für die Artikel, eine vorteilhafte Ausströmrichtung des Schrumpfmittels. Dieses strömt insbesondere nicht nach unten gerichtet aus, sondern in etwa parallel zur Transportebene und unterstützt somit die nach oben gerichtete Schrumpfbewegung des unteren Folienlappen des Verpackungsmittels.According to a further embodiment of the invention, the width of the fastening elements is variable along their length between the lower frame element of the support structure and the upper frame element of the support structure or the shrinking agent distribution device. In particular, the fastening elements in the fastening area on the lower frame element can have a first width and in a fastening area on the upper frame element or on the shrinking agent distribution device can have a second width, the second width preferably being greater than the first width. By attaching side and / or outflow sheets, a shaft wall is thus obtained from a plurality of shaft chamber modules, at least some of the shaft chamber modules having a cross-sectional area perpendicular to the direction of transport, the width of which increases between the lower frame element and the shrinking agent distribution device. The shaft wall thus formed has a so-called wedge-shaped cross section orthogonal to the direction of transport. This results in an advantageous outflow direction of the shrinking means in a lower region of the shaft wall, in particular in the region directly above the transport route for the articles. In particular, this does not flow downward, but rather approximately parallel to the transport plane and thus supports the upward shrinking movement of the lower film tab of the packaging material.

Weiterhin kann vorgesehen sein, dass die Befestigungselemente einen Querschnitt senkrecht zur Transportrichtung aufweisen, wobei die Oberseite des Querschnitts an das obere Rahmenelement der Trägerkonstruktion oder an den Befestigungsbereich der Schrumpfmittelverteilvorrichtung angrenzt und wobei die Unterseite des Querschnitts an das untere Rahmenelement angrenzt, wobei mindestens eine der weitgehend senkrecht zur Transportstrecke angeordneten Seiten der Befestigungselemente konvex oder konkav ausgebildet sind. Durch Befestigen von entsprechend gebogen ausgeführten Seiten- und / oder Ausströmblechen erhält man somit eine Schachtwand aus mehreren Schachtkammer-Modulen wobei zumindest ein Teil der Schachtkammer- Module konkav oder konvex ausgeführte Ausströmflächen umfasst.Furthermore, it can be provided that the fastening elements have a cross section perpendicular to the direction of transport, the upper side of the cross section adjoining the upper frame element of the support structure or the fastening region of the shrinking agent distribution device and the underside of the cross section adjoining the lower frame element, at least one of the largely Sides of the fastening elements arranged perpendicular to the transport route are convex or concave. By fastening correspondingly curved side and / or outflow plates, a shaft wall is thus obtained from several shaft chamber modules, at least some of the shaft chamber modules comprising concave or convex discharge surfaces.

Die beschriebenen Variationen der Befestigungselemente ermöglichen es, den Querschnitt der Schachtwand flexibel an das jeweilig in der Schrumpfvorrichtung zu bearbeitende Produkt anzupassen. Weiterhin kann vorgesehen sein, die Ausströmflächen in den verschiedenen Schachtkammer- Modulen zumindest teilweise unterschiedlich auszuführen, um eine optimale Bedüsung der Produkte entlang der Transportstrecke zu erzielen. Vorzugsweise können die Seitenflächen einzelner Schachtkammer- Module nur bereichsweise als Ausströmfläche ausgebildet sein. Die Schrumpffolie wird im Allgemeinen so um die Artikel herum geschlagen, dass die Schrumpffolie seitlich über die Artikel übersteht und beim Schrumpfen ein so genanntes Folienauge bildet. Die Verpackungseinheit wird so durch die Schrumpfvorrichtung transportiert, dass die Bereiche der Folienaugen weitgehend parallel zu den Ausströmflächen der Schachtwände angeordnet sind. Beispielsweise kann in einem Anfangsbereich der Schrumpfvorrichtung vorgesehen sein, nur den oberen und unteren Bereich der Verpackungseinheit zu bedüsen und möglichst keine direkte Schrumpfmittelzufuhr in den mittleren Bereich des Folienauges einzutragen. In diesem Fall werden Schachtkammer- Module verwendet, die über ihre Höhe gesehen nur in einem oberen und einem unteren Bereich Schrumpfmittelaustrittsöffnungen aufweisen. Weiterhin kann es vorteilhaft sein, wenn in einem Endbereich der Schrumpfvorrichtung Schrumpfmittel insbesondere im Bereich des Folienauges der Schrumpfverpackung zugeführt wird. In diesem Fall verwendet man ein die Transportstrecke abschließendes Schachtkammer- Modul mit einer erhöhten Dichte an Schrumpfmittelaustrittsöffnungen im mittleren Bereich. Oder man verwendet ein Schachtkammer- Modul, das nur in einem mittleren Bereich, nicht aber im oberen und im unteren Bereich, Schrumpfmittelaustrittsöffnungen aufweist. Die individuelle Gestaltung der Ausströmflächen bezieht sich beispielsweise auf die Anordnung der Schrumpfmittelaustrittsöffnungen innerhalb der Ausströmfläche, der Dichte der Schrumpfmittelaustrittsöffnungen, der Form der Schrumpfmittelaustrittsöffnungen etc. Die Schrumpfmittelaustrittsöffnungen der Ausströmflächen können auch bereichsweise Luftleitvorrichtungen aufweisen, die die Ausströmrichtung des Schrumpfmittels gezielt in bestimmte Richtungen lenken.The described variations of the fastening elements make it possible to adapt the cross section of the shaft wall flexibly to the product to be processed in the shrinking device. Furthermore, it can be provided that the outflow surfaces in the different shaft chamber modules are at least partially designed differently in order to achieve optimal spraying of the products along the transport route. The side surfaces of individual shaft chamber modules can preferably only be designed in some areas as an outflow surface. The shrink film is generally wrapped around the articles so that the shrink film protrudes laterally over the articles and forms a so-called film eye when shrinking. The packaging unit is transported through the shrinking device in such a way that the areas of the film eyes are arranged largely parallel to the outflow surfaces of the shaft walls. For example, in an initial area of the shrinking device it can be provided that only the upper and lower areas of the packaging unit are sprayed and, if possible, no direct shrinking agent supply is to be entered in the central area of the film eye. In this case, shaft chamber modules are used which, viewed over their height, only have shrinking agent outlet openings in an upper and a lower region. Furthermore, it can be advantageous if shrinking agent is fed to the shrink packaging in an end region of the shrinking device, in particular in the region of the film eye. In this case, a shaft chamber module that closes the transport route is used with an increased density of shrinking agent outlet openings in the middle area. Or a shaft chamber module is used which has shrinking agent outlet openings only in a central area, but not in the upper and lower areas. The individual design of the outflow surfaces relates, for example, to the arrangement of the shrinking agent outlet openings within the outflow surface, the density of the shrinking agent outlet openings, the shape of the shrinking agent outlet openings, etc.

Eine Variation des Querschnitts der Schachtwand ist auch bei Verwendung einer Trägerkonstruktion mit einem unteren Rahmenelement erzielt werden, dessen Querschnitt über seine Länge gleich ist und mit Befestigungselementen, die eine gleichbleibende Breite aufweisen, insbesondere eine Breite, die der Breite des unteren Rahmenelementes entspricht. Hierbei sind zumindest teilweise Abstandselemente zwischen den die Ausströmflächen umfassenden Seitenflächen und der Trägerkonstruktion vorgesehen. Vorzugsweise sind die Abstandselemente an den Ausströmflächen und / oder Seitenflächen angeordnet bzw. werden durch umgebogene Randbereiche der Ausströmflächen und / oder Seitenflächen gebildet.A variation in the cross-section of the shaft wall can also be achieved when using a support structure with a lower frame element, the cross-section of which is the same over its length and with fastening elements that have a constant width, in particular a width that corresponds to the width of the lower frame element. Here are at least partially spacer elements between the side surfaces comprising the outflow surfaces and the Support structure provided. The spacer elements are preferably arranged on the outflow surfaces and / or side surfaces or are formed by bent-over edge regions of the outflow surfaces and / or side surfaces.

Aufgrund einer Konstruktion der Schachtwand als kammförmige Trägerkonstruktion mit einer Auswahl an unterschiedlichen, jeweils aufmontierbaren Ausströmflächen bzw. Modulelementen umfassend eine Ausströmfläche und gegebenenfalls geeignete Abstandselemente können insbesondere die Strömungseigenschaften des Schrumpfmittels gezielt beeinflusst werden. Insbesondere kann beim Befestigen der Ausströmflächen die Verwendung von Abstandselementen vorgesehen sein, um dadurch die Breite der entstehenden Schachtkammer- Module und somit die Größe der Querschnittsfläche der Schachtkammer- Module einzustellen. Aufgrund des modularen Aufbaus kann zum einen die Schachtwandgeometrie einfach angepasst werden. Andererseits kann auch einfach das Bedüsungsmuster, insbesondere die Menge an Schrumpfmittel bzw. die Bereiche, in denen das Verpackungsgut mit Schrumpfmittel beaufschlagt wird, gezielt eingestellt werden.Due to the construction of the shaft wall as a comb-shaped support structure with a selection of different, respectively mountable outflow surfaces or module elements comprising an outflow surface and, if appropriate, suitable spacing elements, in particular the flow properties of the shrinking agent can be specifically influenced. In particular, the use of spacer elements can be provided when fastening the outflow surfaces, in order thereby to adjust the width of the shaft chamber modules that are created and thus the size of the cross-sectional area of the shaft chamber modules. Due to the modular structure, the shaft wall geometry can be easily adjusted. On the other hand, the spraying pattern, in particular the amount of shrinking agent or the areas in which the packaging material is subjected to shrinking agent, can also be set in a targeted manner.

Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.

  • Figur 1 zeigt eine schematische Ansicht einer Schrumpfvorrichtung gemäß dem bekannten Stand der Technik.
  • Figur 2 zeigt einen modularen Aufbau einer Schachtwand.
  • Figur 3 zeigt Bestandteile einer ersten Ausführungsform eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
  • Figuren 4 zeigen eine weitere Ausführungsform einer modular aufgebauten Schachtwand mit einer alternativen Ausführungsform der Trägerkonstruktion.
  • Figuren 5 zeigen eine weitere Ausführungsform eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
  • Figuren 6 zeigen eine weitere Ausführungsform eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
  • Figuren 7 zeigen unterschiedliche Beispiele für Ausströmflächen.
  • Figuren 8 zeigen eine weitere Ausführungsform eines modularen Aufbaus einer Schachtwand mit Trägerkonstruktion.
In the following, exemplary embodiments are intended to explain the invention and its advantages with reference to the attached figures. The size relationships of the individual elements do not always correspond to the real size relationships, since some shapes are simplified and other shapes are shown enlarged in relation to other elements for better illustration.
  • Figure 1 shows a schematic view of a shrinking device according to the known prior art.
  • Figure 2 shows a modular structure of a shaft wall.
  • Figure 3 shows components of a first embodiment of a modular construction of a shaft wall with support structure.
  • Figures 4 show a further embodiment of a modular shaft wall with an alternative embodiment of the support structure.
  • Figures 5 show a further embodiment of a modular construction of a shaft wall with support structure.
  • Figures 6 show a further embodiment of a modular construction of a shaft wall with support structure.
  • Figures 7 show different examples of discharge areas.
  • Figures 8 show a further embodiment of a modular construction of a shaft wall with support structure.

Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung ausgestaltet sein kann und stellen keine abschließende Begrenzung dar.Identical reference numerals are used for identical or identically acting elements of the invention. Furthermore, for the sake of clarity, only reference numerals are shown in the individual figures which are necessary for the description of the respective figure. The illustrated embodiments merely represent examples of how the device according to the invention can be designed and do not constitute a final limitation.

Figur 1 zeigt eine schematische Ansicht einer Schrumpfvorrichtung 1 gemäß dem bekannten Stand der Technik. Artikel, insbesondere Getränkebehälter, Flaschen 12, Dosen o.ä. werden in Artikelgruppen zusammengestellt und mit Schrumpffolie 14 umhüllt. Diese Anordnungen bezeichnet man auch als Artikelzusammenstellungen oder Gebinde 10. Die Gebinde 10 werden in Transportrichtung TR auf einem Förderband 4 dem Schrumpftunnel der Schrumpfvorrichtung 1 zugeführt. In dem Schrumpftunnel sind Heizmittel (nicht dargestellt) angeordnet, die die Gebinde 10 mit Schrumpfmittel, beispielsweise mit heißer Luft, beaufschlagen, wodurch die Schrumpffolie 14 um die Flaschen 12 schrumpft. Nachdem die Gebinde 10 den Schrumpftunnel 1 durchlaufen haben, werden sie durch oberhalb des Förderbands 4 angeordnete Gebläse 20 mit kalter Luft 22 abgekühlt. Figure 1 shows a schematic view of a shrinking device 1 according to the known prior art. Articles, in particular beverage containers, bottles 12, cans or the like. are put together in article groups and covered with shrink film 14. These arrangements are also referred to as article assemblies or containers 10. The containers 10 are fed to the shrinking tunnel of the shrinking device 1 on a conveyor belt 4 in the transport direction TR. Heating means (not shown) are arranged in the shrink tunnel and act on the container 10 with shrinking means, for example with hot air, as a result of which the shrink film 14 shrinks around the bottles 12. After the containers 10 have passed through the shrink tunnel 1, they are cooled with cold air 22 by fans 20 arranged above the conveyor belt 4.

Figur 2 zeigt eine seitliche und Figur 3 zeigt eine weitere perspektivische Darstellung des modularen Aufbaus einer Schachtwand 2-1. Schrumpfmittel 7 wird durch einen Schrumpfmittelerzeuger 6 erzeugt und über einen Verteilkanal 8 in die Schachtwand 2-1 eingeleitet. Die Schachtwand 2-1 besteht aus vier Schachtkammern 32. Die Schachtkammern 32 sind in Transportrichtung TR aufeinanderfolgend mittels einer Trägerkonstruktion 25 ausgebildet. Die Trägerkonstruktion 25 ist eine kammförmige Rahmenkonstruktion und umfasst ein parallel zur Transportrichtung TR angeordnetes unteres Rahmenelement 26. Die Länge L25 der Trägerkonstruktion 25 entspricht der Länge L26 des unteren Rahmenelements 26 und zumindest weitgehend der Länge L der Schachtwand 2-1, d.h. die Trägerkonstruktion 25 erstreckt sich in Transportrichtung TR entlang der gesamten Schachtwand 2-1. Figure 2 shows a side and Figure 3 shows a further perspective view of the modular structure of a shaft wall 2-1. Shrinking agent 7 is generated by a shrinking agent generator 6 and introduced into the shaft wall 2-1 via a distribution channel 8. The shaft wall 2-1 consists of four shaft chambers 32. The shaft chambers 32 are formed in succession in the transport direction TR by means of a support structure 25. The support structure 25 is a comb-shaped frame structure and comprises a lower frame element 26 arranged parallel to the transport direction TR. The length L 25 of the support structure 25 corresponds to the length L 26 of the lower frame element 26 and at least largely the length L of the shaft wall 2-1, ie the support structure 25 extends in the transport direction TR along the entire shaft wall 2-1.

Orthogonal zu dem unteren Rahmenelement 26 und orthogonal zur Transportrichtung TR sind in regelmäßigen Abständen Querelemente 27 am unteren Rahmenelement 26 angeordnet. An diesen Querelementen 27 werden die Schachtkammer- Ausströmbleche 33 als Ausströmflächen 3 mit Schrumpfmittelaustrittsöffnungen 3* angeordnet, wodurch die einzelnen Schachtkammer-Module 32 gebildet werden.Cross elements 27 are arranged on the lower frame element 26 at regular intervals orthogonally to the lower frame element 26 and orthogonally to the transport direction TR. The shaft chamber outflow plates 33 are arranged on these cross elements 27 as outflow surfaces 3 with shrinking agent outlet openings 3 *, as a result of which the individual shaft chamber modules 32 are formed.

Ein Schachtkammer- Modul 32 stellt dementsprechend einen Hohlkörper dar, der folgende Seitenflächen umfasst:

  1. 1) Die Unterseitenfläche 41 eines Schachtkammer- Moduls 32 wird durch einen Teilbereich des unteren Rahmenelementes 26 gebildet.
  2. 2) Die vordere und hintere Querschnittsfläche 42 wird von jeweils einem orthogonalen Querelement 27 gebildet.
  3. 3) Mindestens eine Seitenflächen 35 wird durch ein aufmontiertes Ausströmblech 33 oder ein aufmontiertes Modulelemente 34-n (vgl. Figuren 5A, 6A und 7) mit Ausströmfläche 3 gebildet.
  4. 4) Die Oberseitenfläche 43 umfasst zumindest teilweise eine Verbindungsöffnung (nicht dargestellt) über die das Schachtkammer- Modul 32 an einer Schrumpfmittelverteilvorrichtung, insbesondere am Verteilkanal 8, angeordnet ist und über die das Schrumpfmittel 7 aus dem Verteilkanal 8 in die Schachtkammer- Module 32 der Schachtwand 2-1 übertritt.
A shaft chamber module 32 accordingly represents a hollow body which comprises the following side surfaces:
  1. 1) The underside surface 41 of a shaft chamber module 32 is formed by a partial area of the lower frame element 26.
  2. 2) The front and rear cross-sectional area 42 are each formed by an orthogonal cross element 27.
  3. 3) At least one side surface 35 is covered by a discharge plate 33 or a module element 34-n (cf. Figures 5A . 6A and 7 ) formed with outflow surface 3.
  4. 4) The top surface 43 at least partially comprises a connection opening (not shown) via which the shaft chamber module 32 is arranged on a shrinking agent distribution device, in particular on the distribution channel 8, and via which the shrinking agent 7 from the distribution channel 8 into the shaft chamber modules 32 of the shaft wall 2-1 passes.

Gemäß der in den Figuren 2 und 3 dargestellten Ausführungsform der Schachtwand 2-1 umfasst die Trägerkonstruktion 25 fünf Querelemente 27, zwischen denen vier Schachtkammer- Module 32 ausgebildet sind. Figur 3 zeigt allgemein die Bestandteile einer Schachtwand 2-1 mit Trägerkonstruktion 25, die insbesondere aus einem unteren Rahmenelement 26 und orthogonal dazu angeordneten Querelementen 27 besteht. Die Ausströmflächen 3 bestehen jeweils aus Blechkacheln bzw. Ausströmblechen 33 o.ä. mit Schrumpfmittelaustrittsöffnungen 3*, die an der Trägerkonstruktion 25 befestigt werden, beispielsweise durch Aufnieten an dem unteren Rahmenelement 26, den Querelementen 27 und am Verteilkanal 8. Die mittig angeordneten orthogonalen Querelementen 27 bilden Trennelemente 30, die die einzelnen Schachtkammer- Module 32 schrumpfmitteldicht voneinander abgrenzen.According to the in the Figures 2 and 3 Embodiment of the shaft wall 2-1 shown, the support structure 25 comprises five cross elements 27, between which four shaft chamber modules 32 are formed. Figure 3 generally shows the components of a shaft wall 2-1 with support structure 25, which in particular consists of a lower frame element 26 and transverse elements 27 arranged orthogonally thereto. The outflow surfaces 3 each consist of sheet metal tiles or outflow sheets 33 or the like. with shrinking agent outlet openings 3 *, which are fastened to the support structure 25, for example by riveting on the lower frame element 26, the transverse elements 27 and on the distribution channel 8. The centrally arranged orthogonal transverse elements 27 form separating elements 30 which delimit the individual shaft chamber modules 32 from one another in a shrink-medium-tight manner ,

Figuren 4 zeigen eine weitere Ausführungsform einer modular aufgebauten Schachtwand 2-2 mit einer alternativen Ausführungsform der Trägerkonstruktion 25-2. Hierbei nimmt die Breite des unteren Rahmenelementes 26-2 in Transportrichtung TR kontinuierlich zu. Analog dazu nimmt die Breite B27-n der jeweils orthogonalen Querelemente 27-n in Transportrichtung TR ebenfalls zu. Insbesondere entspricht die Breite der Querelemente 27-n in einem zwischen dem unteren Rahmenelement und dem jeweiligen Querelement 27-1 angeordneten unteren Befestigungsbereich 28 und in einem oberen Befestigungsbereich 29, jeweils der Breite des unteren Rahmenelementes 26-2 in diesem Bereich. Gemäß der in Figur 3 dargestellten Ausführungsform werden Ausströmbleche 33 mit Schrumpfmittelaustrittsöffnungen 3* als Ausströmflächen 3 an der Trägerkonstruktion 25-2 befestigt. Dadurch wird eine Schachtwand 2-2 gebildet, deren Breite B bzw. Querschnittsfläche Q in Transportrichtung TR kontinuierlich zunimmt. Dies wird auch noch einmal in der Figur 4B verdeutlicht, die die Schachtkammer- Module 32-1 bis 32-4 einer Schachtwand 2-2 von oben gesehen darstellt. Figures 4 show a further embodiment of a modular shaft wall 2-2 with an alternative embodiment of the support structure 25-2. The width of the lower frame element 26-2 increases continuously in the transport direction TR. Similarly, the width B 27-n of the respective orthogonal cross elements 27-n also increases in the transport direction TR. In particular, the width of the transverse elements 27-n in a lower fastening region 28 arranged between the lower frame element and the respective transverse element 27-1 and in an upper fastening region 29 corresponds in each case to the width of the lower frame element 26-2 in this region. According to the in Figure 3 In the illustrated embodiment, outflow plates 33 with shrinkage agent outlet openings 3 * are attached to the support structure 25-2 as outflow surfaces 3. This forms a shaft wall 2-2, the width B or cross-sectional area Q of which increases continuously in the transport direction TR. This is also reflected in the Figure 4B illustrates that the shaft chamber modules 32-1 to 32-4 of a shaft wall 2-2 seen from above.

Figuren 5 zeigen eine weitere Ausführungsform eines modularen Aufbaus einer Schachtwand 2-4 mit Trägerkonstruktion 25. Figur 5A zeigt ein so genanntes Modulelement 34-1. Dabei handelt es sich um eine Ausströmfläche 3 mit Abstandselementen 37 zur Befestigung an der Trägerkonstruktion 25. Das Modulelement 34-1 besteht beispielsweise aus Blech oder einem vergleichbaren Material und ist insbesondere wie eine oben offene und auf einer Seitenfläche stehende Schachtel aufgebaut. Die Unterseite der Schachtel ist als Ausströmfläche 3 mit Schrumpfmittelaustrittsöffnungen 3* ausgebildet. Die weitgehend orthogonal zu den Seitenkanten der Ausströmfläche 3 angeordneten Seitenflächen 35 des schachtelförmigen Modulelementes 34-1 dienen als Abstandselemente 38. Sie weisen eine Höhe H1 auf und definieren den gewünschten Abstand zu den Bestandteilen 26, 27 der Trägerkonstruktion 25. Die Seitenflächen 35 sind an den Kanten zur Ausströmfläche 3 und miteinander schrumpfmitteldicht verschweißt. An den so genannten Oberkanten 36 der Seitenflächen 35 befinden sich Befestigungsbereiche 37, über die das Modulelement 34-1 an der Trägerkonstruktion 25 befestigt wird. Insbesondere können die Befestigungsbereiche 37 durch einen umgebogenen, überstehenden Bereich der Seitenflächen 35 gebildet werden. Über die Befestigungsbereiche 37 wird das Modulelement 34-1 insbesondere luftdicht an dem unteren Rahmenelement 26, jeweils zwei orthogonalen Querelementen 27 und am Verteilkanal 8 befestigt, insbesondere erfolgt dies durch Aufnieten über die Befestigungsbereiche 37. Figures 5 show a further embodiment of a modular construction of a shaft wall 2-4 with support structure 25. Figure 5A shows a so-called module element 34-1. This is an outflow surface 3 with spacer elements 37 for attachment to the support structure 25. The module element 34-1 consists, for example, of sheet metal or a comparable material and is in particular constructed like a box open at the top and standing on a side surface. The underside of the box is designed as an outflow surface 3 with shrinking agent outlet openings 3 *. The side surfaces 35 of the box-shaped module element 34-1, which are arranged largely orthogonal to the side edges of the outflow surface 3, serve as spacer elements 38. They have a height H 1 and define the desired distance from the components 26, 27 of the support structure 25. The side surfaces 35 are on the edges to the outflow surface 3 and welded together in a shrink-tight manner. On the so-called upper edges 36 of the side surfaces 35 there are fastening areas 37, via which the module element 34-1 is fastened to the support structure 25. In particular, the fastening regions 37 can be formed by a bent, protruding region of the side surfaces 35. The module element 34-1 is fastened in an airtight manner to the lower frame element 26, two orthogonal transverse elements 27 and to the distribution channel 8 via the fastening areas 37, in particular this is done by riveting on the fastening areas 37.

Die Höhe H1 des Modulelements 34-1 stellt somit eine partielle Breite BP1 des durch die Trägerkonstruktion 25 und zwei daran einander gegenüberliegend angeordneten Modulelementen 34-1 gebildeten Schachtkammer- Moduls (nicht dargestellt) dar. Die Gesamt- Breite BG eines solchen Schachtkammer- Moduls berechnet sich folgendermaßen: B G = 2 B P 1 + B 25 ,

Figure imgb0001
wobei B25 gleich der Breite der Rahmenelemente 26, 27 der Trägerkonstruktion 25, d.h. der Breite des unteren Rahmenelements 26 bzw. der Breite der Befestigungselemente 27 orthogonal zur Transportrichtung TR entspricht.The height H 1 of the module element 34-1 thus represents a partial width B P1 of the shaft chamber module (not shown) formed by the support structure 25 and two module elements 34-1 arranged opposite one another. The total width B G of such a shaft chamber - Module is calculated as follows: B G = 2 B P 1 + B 25 .
Figure imgb0001
where B 25 is equal to the width of the frame elements 26, 27 of the support structure 25, ie the width of the lower frame element 26 or the width of the fastening elements 27 orthogonal to the transport direction TR.

Figur 5B zeigt die Anordnung zweier Modulelemente 34-1 innerhalb einer modularen Schachtwand 2-3 und Figur 5C zeigt die Schachtkammer- Module 32-n einer Schachtwand 2-3 von oben gesehen. Insbesondere werden die ersten beiden Schachtkammer- Module 32-5 durch Aufnieten von Ausströmblechen gebildet, so dass die Schachtwand 2-3 in diesem Bereich eine Breite B5 aufweist, die der Breite des unteren Rahmenelementes 26 bzw. der Breite der Querelemente 27 orthogonal zur Transportrichtung TR entspricht. Die Schachtkammer- Module 32-6 werden durch Aufnieten von Modulelementen 34-1 auf die Rahmenelemente 26, 27 der Trägerkonstruktion 25 gebildet, so dass die Schachtwand 2-3 in diesem Bereich eine Breite B6 aufweist, die sich nach oben dargestellter Formel berechnen lässt. Figure 5B shows the arrangement of two module elements 34-1 within a modular shaft wall 2-3 and Figure 5C shows the shaft chamber modules 32-n of a shaft wall 2-3 seen from above. In particular, the first two shaft chamber modules 32-5 are formed by riveting outflow plates, so that the shaft wall 2-3 has a width B 5 in this region, which is the width of the lower frame element 26 or the width of the transverse elements 27 corresponds orthogonally to the transport direction TR. The shaft chamber modules 32-6 are formed by riveting module elements 34-1 onto the frame elements 26, 27 of the support structure 25, so that the shaft wall 2-3 has a width B 6 in this area, which can be calculated using the formula shown above ,

Figuren 6 zeigen weitere Darstellungen eines modularen Aufbaus einer Schachtwand 2-4 mit Trägerkonstruktion 25 gemäß vorliegender Erfindung. Figur 6A zeigt ein so genanntes Modulelement 34-2. Figur 6B zeigt die Anordnung eines Modulelements 34-2 und eines Modulelements 34-1 (vgl. Figur 5A) innerhalb einer modularen Schachtwand 2-4 und Figur 6C zeigt die Schachtkammer- Module 32-n einer Schachtwand 2-4 von oben gesehen. Auch das Modulelement 34-2 ist in Form einer oben offenen und auf einer Seitenfläche stehenden Schachtel aufgebaut. Allerdings nimmt die Höhe H der Seitenfläche 35*, die die Standfläche bzw. Oberseite des Modulelements 34-2 bildet, in Transportrichtung TR zu. D.h. die in Transportrichtung TR zuerst angeordnete Kurzseite 40-1 weist eine erste Länge bzw. erste Höhe H1 und somit eine erste partielle Breite BP1 auf. Die in Transportrichtung TR nachgeordnete Kurzseite 40-2 weist eine zweite Länge bzw. zweite Höhe H2 und somit eine zweite partielle Breite BP2 auf. Somit wird durch gegenüberliegende Anordnung zweier Modulelemente 34-2 an der Trägerkonstruktion 25 ein Schachtkammermodul 32-7 gebildet, dessen Querschnitt sich von einer ersten Gesamtbreite BG1 = 2 · BP1 + B25 kontinuierlich auf eine zweite Gesamtbreite BG2 = 2 · BP2 + B25 erhöht. Figures 6 show further representations of a modular structure of a shaft wall 2-4 with support structure 25 according to the present invention. Figure 6A shows a so-called module element 34-2. Figure 6B shows the arrangement of a module element 34-2 and a module element 34-1 (cf. Figure 5A ) within a modular shaft wall 2-4 and Figure 6C shows the shaft chamber modules 32-n of a shaft wall 2-4 seen from above. The module element 34-2 is also constructed in the form of a box open at the top and standing on one side surface. However, the height H of the side surface 35 *, which forms the standing surface or top of the module element 34-2, increases in the transport direction TR. That is, the short side 40-1 arranged first in the transport direction TR has a first length or first height H 1 and thus a first partial width B P1 . The short side 40-2 arranged downstream in the transport direction TR has a second length or second height H 2 and thus a second partial width B P2 . Thus, by arranging two module elements 34-2 opposite one another on the support structure 25, a shaft chamber module 32-7 is formed, the cross section of which continuously changes from a first overall width B G1 = 2 · B P1 + B 25 to a second overall width B G2 = 2 · B P2 + B 25 increased.

Die Veränderung des Querschnitts der Schachtwand entlang ihrer Länge parallel zur Transportrichtung TR kann vorteilhaft genutzt werden, um den Schrumpfprozess entlang der Transportstrecke zu optimieren. Problematisch ist insbesondere, dass der Energieeintrag in die Schrumpffolie entlang der Transportstrecke durch den Schrumpftunnel abnimmt, da der Abstand zwischen den Ausströmflächen der Schachtwand und Schrumpffolie beim Schrumpfprozess in Transportrichtung zunimmt. Dazu kommt, dass die Strahlgeschwindigkeit des Schrumpfmittels mit zunehmender Eindringtiefe in den Raum geringer wird und dass das Schrumpfmittel bis zum Erreichen der Schrumpffolie bei länger zurückzulegenden Wegstrecken bis zum Erreichen der Schrumpffolie an Temperatur verliert. Durch den erfindungsgemäßen modularen Aufbau der Schachtwand mittels einer Trägerkonstruktion und Ausströmblechen bzw. Modulelementen kann somit der Abstand zwischen den Ausströmflächen und dem "Verpackungsgut" entlang der Transportstrecke optimiert werden, insbesondere können die Ausströmflächen kontinuierlich oder stufenweise nachgeführt werden. Beispielsweise kann ein in Transportrichtung TR als erstes angeordnete Schachtkammer- Modul quer zur Transportrichtung TR eine erste Breite und eine erste Querschnittsfläche aufweisen. Das nachgeordnete zweite Schachtkammer- Modul weist quer zur Transportrichtung TR eine zweite Breite und eine zweite Querschnittsfläche auf, die größer ist als die erste Breite B des ersten Schachtkammer- Moduls usw.The change in the cross section of the shaft wall along its length parallel to the transport direction TR can advantageously be used to optimize the shrinking process along the transport route. It is particularly problematic that the energy input into the shrink film decreases along the transport route through the shrink tunnel, since the distance between the outflow surfaces of the shaft wall and the shrink film increases in the direction of transport during the shrinking process. In addition, the jet speed of the shrinking agent decreases with increasing depth of penetration into the room and that the shrinking agent loses temperature until the shrink film is reached and the distances covered are longer until the shrink film is reached. Due to the modular construction of the shaft wall according to the invention by means of a support structure and discharge plates or module elements, the distance between the discharge surfaces and the "packaged goods" along the transport route can thus be optimized, in particular the discharge surfaces can be tracked continuously or in stages. For example, a shaft chamber module arranged first in the transport direction TR can have a first width and a first cross-sectional area transversely to the transport direction TR. The downstream second shaft chamber module has a second width and a second cross-sectional area transverse to the transport direction TR, which is larger than the first width B of the first shaft chamber module, etc.

Figuren 7 zeigen unterschiedliche Beispiele für Modulelemente 34-1 bis 34-12 zur Befestigung an einer Trägerkonstruktion 25 (nicht dargestellt, vgl. Figuren 3 bis 6). Figur 7A zeigt ein einfaches Ausströmblech 33. Figur 7B zeigt ein quaderförmiges Modulelement 34-1 gemäß Figur 5A und Figur 7C zeigt ein so genanntes schiefes Modulelement 34-2 gemäß Figur 6A. Weiterhin sind Modulelemente 34-3 bis 34-6 mit gebogenen Ausströmflächen 3* möglich, beispielsweise mit konvex in den Innenraum der Schrumpfvorrichtung ragenden Ausströmflächen 3a (Figuren 7D, 7E) oder mit konkav ausgebildeten Ausströmflächen 3b (Figuren 7F, 7G). Figures 7 show different examples of module elements 34-1 to 34-12 for attachment to a support structure 25 (not shown, cf. Figures 3 to 6 ). Figure 7A shows a simple outflow plate 33. Figure 7B shows a cuboid module element 34-1 according to Figure 5A and Figure 7C shows a so-called crooked module element 34-2 according to Figure 6A , Furthermore, module elements 34-3 to 34-6 with curved outflow surfaces 3 * are possible, for example with outflow surfaces 3a projecting convexly into the interior of the shrinking device ( Figures 7D, 7E ) or with concave discharge surfaces 3b ( Figures 7F, 7G ).

Figuren 7H bis 7L zeigen Modulelemente 34-7 bis 34-11 mit zweigeteilter Ausströmfläche 3. Insbesondere kann die Ausströmfläche 3 in eine obere Ausström-Teilfläche 3c und eine untere Ausström- Teilfläche 3d, wobei bei dem Modulelement 34-7 die untere Ausström-Teilfläche 3d weiter in den Innenraum der Schrumpfvorrichtung hineinragt als die obere Ausström- Teilfläche 3c. Bei dem Modulelement 34-8 gemäß Figur 7I weist die obere Ausström- Teilfläche 3c eine schräg nach oben und in Richtung des Innenraums der Schrumpfvorrichtung gerichtete Ausgestaltung auf, während die untere Ausström- Teilfläche 3d eine schräg nach unten und in Richtung des Innenraums der Schrumpfvorrichtung gerichtete Ausgestaltung aufweist. Bei dem Modulelement 34-9 gemäß Figur 7K weisen beide Ausström- Teilflächen 3c, 3d jeweils eine konkave Formgebung auf. Weiterhin kann die die Ausströmfläche 3 in Transportrichtung TR in eine vordere Ausström- Teilfläche 3e und eine hintere Ausström- Teilfläche 3f unterteilt sein und die Ausströmflächen 3e, 3f jeweils eine schräge Ausbildung zeigen. Weiterhin ist in Figur 7M eine Ausführungsform eines Modulelementes 34-12 dargestellt, bei dem die Ausströmfläche 3 in eine Vielzahl von Ausströmflächen 3* unterteilt ist. Weitere hier nicht dargestellte Ausführungsformen sind für den Fachmann ableitbar. Figures 7H to 7L show module elements 34-7 to 34-11 with two-part outflow surface 3. In particular, the outflow surface 3 can be divided into an upper outflow partial surface 3c and a lower outflow partial surface 3d, with the lower outflow partial surface 3d in the module element 34-7 Interior of the shrinking device protrudes as the upper outflow partial surface 3c. According to the module element 34-8 Figure 7I the upper outflow partial surface 3c has an obliquely upward and in the direction of the interior of the shrinking device, while the lower outflow partial surface 3d has an obliquely downward and in the direction of the interior of the shrinking device. According to the module element 34-9 Figure 7K Both outflow partial surfaces 3c, 3d each have a concave shape. Furthermore, the outflow surface 3 in the transport direction TR can be divided into a front outflow partial surface 3e and a rear outflow partial surface 3f, and the outflow surfaces 3e, 3f each have an oblique configuration. Furthermore, in Figure 7M an embodiment of a module element 34-12 shown, in which the outflow surface 3 is divided into a plurality of outflow surfaces 3 *. Further embodiments not shown here can be derived by the person skilled in the art.

Figuren 8 zeigen eine weitere Ausführungsform eines modularen Aufbaus einer Schachtwand 2-5 mit Trägerkonstruktion 25-3, bei der die Breite der Querelemente 27a entlang ihrer Länge L27 zwischen dem unteren Rahmenelement 26 der Trägerkonstruktion 25-3 und dem Verteilkanal 8 zunimmt. Insbesondere weisen die Querelemente 27a im Befestigungsbereich 28 am unteren Rahmenelement 26 eine erste, untere Breite Bu auf und weisen in einem Befestigungsbereich 29, der der Befestigung am Verteilkanal 8 dient, eine zweite, obere Breite BO auf. Die zweite, obere Breite BO ist vorzugsweise größer ist als die erste, untere Breite BU. An der Trägerkonstruktion 25-3 werden Ausströmbleche 33 befestigt, wodurch die Schachtwand 2-5 gebildet wird. Diese besteht im vorliegenden Ausführungsbeispiels aus vier Schachtkammer- Modulen, wobei die Schachtkammer-Module eine Querschnittsfläche 42a senkrecht zur Transportrichtung TR ausgebildet haben, deren Breite B zwischen dem unterem Rahmenelement 26 und dem Verteilkanal 8 zunimmt. Die dadurch gebildete Schachtwand 2-5 weist einen so genannten keilförmigen Querschnitt orthogonal zur Transportrichtung TR auf. Dadurch ergibt sich in einem unteren Bereich der Schachtwand 2-5, insbesondere im Bereich direkt oberhalb der Transportstrecke für die Artikel, eine vorteilhafte Ausströmrichtung des Schrumpfmittels. Figures 8 show a further embodiment of a modular construction of a shaft wall 2-5 with support structure 25-3, in which the width of the transverse elements 27a increases along its length L 27 between the lower frame element 26 of the support structure 25-3 and the distribution channel 8. In particular, the transverse elements 27a have a first, lower width Bu in the fastening region 28 on the lower frame element 26 and have a second, upper width B O in a fastening region 29 which serves for fastening to the distribution channel 8. The second, upper width B O is preferably larger than the first, lower width B U. Outflow plates 33 are fastened to the support structure 25-3, as a result of which the shaft wall 2-5 is formed. In the present exemplary embodiment, this consists of four shaft chamber modules, the shaft chamber modules having a cross-sectional area 42a perpendicular to Have formed transport direction TR, whose width B increases between the lower frame element 26 and the distribution channel 8. The shaft wall 2-5 thus formed has a so-called wedge-shaped cross section orthogonal to the transport direction TR. This results in an advantageous outflow direction of the shrinking means in a lower area of the shaft wall 2-5, in particular in the area directly above the transport route for the articles.

Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.The invention has been described with reference to a preferred embodiment. However, it is conceivable for a person skilled in the art that modifications or changes of the invention can be made without leaving the scope of the following claims.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1,1,
Schrumpfvorrichtungshrinker
2, 2-n2, 2-n
Schachtwandshaft wall
33
Ausströmfläche,outflow,
3*3 *
SchrumpfmittelaustrittsöffnungenShrinkage agent outlet openings
44
Transportvorrichtung / FörderbandTransport device / conveyor belt
66
SchrumpfmittelerzeugerShrinkage agents producer
77
Schrumpfmittelshrinkage agents
88th
Verteilkanaldistribution channel
1010
Artikelzusammenstellung, Gebinde, VerpackungseinheitArticle compilation, packaging, packaging unit
1212
Flaschebottle
1414
Schrumpffolieshrink film
2020
Gebläsefan
2222
Kaltluftcold air
25, 25*25, 25 *
Trägerkonstruktionsupport structure
26, 26*26, 26 *
unteres Rahmenelementlower frame element
27, 27-n27, 27-n
orthogonales Querelement / Befestigungselementorthogonal cross member / fastener
2828
unterer Befestigungsbereichlower mounting area
2929
oberer Befestigungsbereichupper fastening area
3030
Trennelementseparating element
32-n32-n
Schachtkammer- ModulShaft chamber module
3333
AusströmblechAusströmblech
34-n34-n
Modulelementmodule element
3535
Seitenflächeside surface
3636
Oberkantetop edge
3737
Befestigungsbereichefixing areas
3838
Abstandselementspacer
40-n40-n
Kurzseiteshort side
4141
UnterseitenflächeBottom surface
4242
QuerschnittsflächeCross sectional area
4343
OberseitenflächeTop surface
BG B G
Gesamt- Breite der SchachtkammerTotal width of the shaft chamber
Bn B n
Breite der SchachtkammerWidth of the shaft chamber
BPn B Pn
partielle Breite des Schachtkammer- Moduls / der Schachtkammerpartial width of the shaft chamber module / shaft chamber
B27-n B 27-n
Breite des orthogonalen BefestigungselementsWidth of the orthogonal fastener
HH
Höheheight
L, LnL, Ln
Längelength
QQ
QuerschnittsflächeCross sectional area
TRTR
Transportrichtungtransport direction

Claims (11)

  1. A shrinking apparatus (1) for shrinking packaging means (14) around an article (12) or a set of articles (12), wherein the shrinking apparatus (1) comprises at least one transport path (4) for the articles (12) or the sets of articles, on which transport path (4) the articles (12), which are wrapped in packaging means (14), are transported in a transport direction (TR), and wherein the shrinking apparatus (1) comprises at least two shaft walls (2), which are arranged on both sides along the transport path (4), wherein at least one shrinking means distribution apparatus (8) is arranged above each shaft wall (2), and wherein each shaft wall (2) has at least one outflow surface (3) with a plurality of shrinking means outlet openings (3*), the outflow surface (3) in each case facing an interior space of the shrinking apparatus (1), wherein shrinking means (7) is conductible via the shrinking means distribution apparatus (8) into the interior space of the shaft walls (2) and conductible via the outflow surface (3), respectively, onto the articles (12), which are wrapped in packaging means (14), in the interior space of the shrinking apparatus (1), characterised in that the shaft walls (2-n) are each constructed of at least two shaft chamber modules (32, 32-n), which are arranged in transport direction (TR) in a row one after the other and which are separated from one another laterally, wherein each shaft chamber module (32, 32-n) comprises two lateral surfaces (35), which are arranged at least largely in parallel to the transport direction (TR), wherein at least one lateral surface (35) is at least partially designed as an outflow surface (33), wherein each shaft chamber module (32, 32-n) furthermore comprises a top side surface, a bottom side surface, and a front and a back cross-sectional side surface, wherein the cross-sectional side surfaces are arranged at least largely orthogonal to the transport direction (TR), wherein the top side surface has a connecting opening to the shrinking means distribution apparatus (8), wherein the shaft wall has a comb-shaped support structure (25), wherein the length of the support structure (25) largely corresponds to the length of the respective shaft wall (2-n), wherein the support structure (25) comprises a frame element (26) in parallel to the transport direction (TR), which frame element (26) is formed as a comb ridge, and cross elements (27), which are arranged orthogonal to the transport direction (TR), wherein the cross elements (27) form the cross-sectional side surfaces of the shaft chamber modules (32, 32-n), and wherein the lateral surfaces of the shaft chamber modules (32, 32-n) are bolted together with the cross elements (27), wherein at least one shrinking means distribution apparatus (8) per shaft wall (2-n) is assigned at least two shaft chamber modules (32, 32-n), wherein the shaft chamber modules (32, 32-n) are separated from one another by the cross elements (27) in such a way that they are laterally impermeable to shrinking means.
  2. The shrinking apparatus (1) as recited in claim 1 wherein the support structure (25) comprises at least one upper frame element in parallel to the transport direction (TR), which frame element is at least partially permeable for shrinking means (7), and a plurality of cross elements (27), which are arranged largely orthogonal to the upper frame element and largely orthogonal to the transport direction (TR), and/or wherein the support structure (25) comprises at least one lower frame element (26) in parallel to the transport direction (TR) and a plurality of cross elements (27), which are arranged largely orthogonal to the lower frame element (26) and largely orthogonal to the transport direction (TR).
  3. The shrinking apparatus (1) as recited in claim 2 wherein the individual shaft chamber modules (32, 32-n) are each formed by the frame elements and cross elements (26, 27) of the support structure (25) and by lateral surfaces (35), wherein the lateral surfaces (35) are each closed lateral surfaces or outflow surfaces (3), which are arranged and fastened at the frame elements and cross elements (26, 27) of the support structure (25), wherein at least one lateral surface (35) of one shaft chamber module (32, 32-n) is at least partially designed as outflow surface (3).
  4. The shrinking apparatus (1) as recited in claim 3 wherein the side surfaces or outflow surfaces (35, 3) are closed side panels or outflow panels (33) with shrinking means outlet openings (3*), which side panels or outflow panels (33) are screwed together with the frame elements and cross elements (26, 27) of the support structure (25).
  5. The shrinking apparatus (1) as recited in one of the claims 2 to 4 wherein the lower frame element (26) has a width perpendicular to the transport direction (TR), wherein the width of the lower frame element (26) of the support structure (25) continuously increases perpendicular to the transport direction (TR) at least sectionwise over a length (L25) of the support structure (25).
  6. The shrinking apparatus (1) as recited in claim 5 wherein the cross elements (27) have a width perpendicular to the transport direction (TR), wherein the width (B27-n) of the cross elements (27), which are arranged largely orthogonal to the lower frame element (26) and largely orthogonal to the transport direction (TR), in each case corresponds to the width of the lower frame element (26) in a respective fastening section (28) of the cross elements (27) at the support structure (25).
  7. The shrinking apparatus (1) as recited in claim 6 wherein the width (B27-1) of a first cross element (27-1) is less than the width (B27-2) of a second cross element (27-2), which is arranged downstream in transport direction (TR).
  8. The shrinking apparatus (1) as recited in one of the claims 2 to 7 wherein the cross elements (27) have a first width in a fastening section (28) at the lower frame element (26) of the support structure (25), and wherein the cross elements (27) have a second width in a section directly below a fastening section (29) at the shrinking means distribution apparatus (5), in particular wherein the second width is greater than the first width.
  9. The shrinking apparatus (1) as recited in one of the claims 2 to 8 wherein the cross elements (27) have a cross section perpendicular to the transport direction, wherein the top side of the cross section abuts on the fastening section of the shrinking means distribution apparatus (5), and wherein the bottom side of the cross section abuts on the lower frame element (26), wherein at least one of the sides of the cross elements (27), which are arranged largely in perpendicular to the transport path, are formed to be convex or concave.
  10. The shrinking apparatus (1) as recited in one of the claims 3 to 9 wherein distance-holding elements (38) for adjusting a width of the shaft chamber modules transverse to the transport direction (TR) are at least partially arranged between the outflow surfaces (3), which are arranged at the support structure (25), and the support structure (25).
  11. The shrinking apparatus (1) as recited in claim 10 wherein the distance-holding elements (38) are arranged at the outflow surfaces (3).
EP14153677.1A 2013-02-14 2014-02-03 Shrinking device with walls built from a plurality of modules Active EP2767478B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013101484.4A DE102013101484A1 (en) 2013-02-14 2013-02-14 SHRINKING DEVICE

Publications (3)

Publication Number Publication Date
EP2767478A1 EP2767478A1 (en) 2014-08-20
EP2767478B1 EP2767478B1 (en) 2016-08-03
EP2767478B2 true EP2767478B2 (en) 2020-01-08

Family

ID=50028949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153677.1A Active EP2767478B2 (en) 2013-02-14 2014-02-03 Shrinking device with walls built from a plurality of modules

Country Status (3)

Country Link
EP (1) EP2767478B2 (en)
CN (1) CN103991585B (en)
DE (1) DE102013101484A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667900A (en) * 2015-10-21 2016-06-15 西安长峰智能科技产业有限公司 Electric heating shrinking oven
DE202015107021U1 (en) * 2015-12-22 2017-03-24 Msk - Verpackungs-Systeme Gmbh Shrink frame with at least one connectable to a fan air inlet for supplying blown air
CN108227215A (en) * 2018-03-19 2018-06-29 马鞍山问鼎网络科技有限公司 A kind of VR glasses pack fixed mechanism
DE102019130364A1 (en) * 2019-11-11 2021-05-12 Khs Gmbh Linear filling machine for filling containers with filling material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187148A (en) 1993-12-22 1995-07-25 Fuji Seal Co Ltd Method and apparatus for shrinking label
EP2050676A1 (en) 2007-10-16 2009-04-22 Krones AG Shrink tunnel
DE102011052353A1 (en) 2011-08-02 2013-02-07 Krones Aktiengesellschaft shrink tunnel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3222800A (en) * 1962-05-29 1965-12-14 Weldotron Corp Apparatus for shrinking wrappers of packages
US3389478A (en) * 1966-03-03 1968-06-25 Anderson Electric Corp Apparatus for thermally conditioning articles and the like
US3397465A (en) * 1966-08-10 1968-08-20 Du Pont Heat shrinking apparatus
US3727324A (en) * 1970-09-18 1973-04-17 Despatch Ind Inc Shrink tunnel for palletized loads
US3717939A (en) 1971-02-23 1973-02-27 Oven Syst Inc Shrink film oven
US3826017A (en) * 1972-07-27 1974-07-30 R Kostur Heating system
CN1473125A (en) * 2000-11-01 2004-02-04 基斯特斯卡亚特公司 Adaptable packaging machine heat shrink tunnel
CN201245253Y (en) * 2008-07-09 2009-05-27 北京奥瑞金新美制罐有限公司 Thermal shrinkage film apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187148A (en) 1993-12-22 1995-07-25 Fuji Seal Co Ltd Method and apparatus for shrinking label
EP2050676A1 (en) 2007-10-16 2009-04-22 Krones AG Shrink tunnel
DE102011052353A1 (en) 2011-08-02 2013-02-07 Krones Aktiengesellschaft shrink tunnel

Also Published As

Publication number Publication date
DE102013101484A1 (en) 2014-08-14
EP2767478A1 (en) 2014-08-20
EP2767478B1 (en) 2016-08-03
CN103991585A (en) 2014-08-20
CN103991585B (en) 2016-04-06

Similar Documents

Publication Publication Date Title
EP2767478B2 (en) Shrinking device with walls built from a plurality of modules
EP3446991B1 (en) Shrinking device and method for suctioning air from an interior of a shrinking apparatus
EP2554483B1 (en) Shrink tunnel
DE102009044465A1 (en) shrink tunnel
EP2653394B1 (en) Shrinking device with cover bar
DE102012103402A1 (en) Cover rail for shrinking device for hot shrinking of film around article e.g. beverage container, has vertically movable supporting structure that is provided with position units for arranging diaphragms tiles at supporting structure
DE102012103398A9 (en) Shrinking device with cover strip
EP2767477B1 (en) Shrinking device with walls built from a plurality of modules
EP2767476B1 (en) Shrinking device
DE19920057A1 (en) Method and device for packaging objects in shrink film
DE102011052101A1 (en) Shrinking device with container cooling
EP3812288B1 (en) Method and shrinking device for shrinking a thermoplastic packaging material onto articles
EP2586717B1 (en) Shrink tunnel
EP3546382B1 (en) Steam diffusing bar and shrink tunnel
EP3730417A1 (en) Shrink equipment and method for adjusting shrink equipment
DE102014105057A1 (en) SCHRUMPFVORRICHTUNG WITH GEBINDEKÜHLUNG AND METHOD FOR PRODUCING A UNIFORM, HOMOGENEOUS COOLANT STREAM
DE19732585C2 (en) Method and device for cooling goods in a cooling channel
DE2118589A1 (en) Method and device for the continuous deflection of a glass ribbon in a plastic state
DE102019123835A1 (en) Packaging device and method for producing packaging units
DE2700064A1 (en) OVEN FOR A BAND SUPPORTED BY GAS CUSHION
DE1930097A1 (en) Device for packing continuously moving goods by shrinking on shrink films
EP4043354A1 (en) Shrinking device, method of optimizing the shrinking of packaging material onto an assembly comprising at least one item and shrink module
EP3184443B1 (en) Device and method for controlling the temperature of a fluid flow formed by air and/or gas formed by combining fluid flow formed by air and/or gas with a hot gas volume flow
DE10042528A1 (en) Pasteurization system for products in containers has spraying devices in roof of pasteurization housing
EP3129735B1 (en) Shrinking apprartus with packaging cooling device and method for producing a uniform and homogenous coolant stream

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150122

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20160624

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 817159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014001204

Country of ref document: DE

Representative=s name: BENNINGER PATENTANWALTSKANZLEI, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001204

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014001204

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

26 Opposition filed

Opponent name: KHS GMBH

Effective date: 20170503

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KHS GMBH

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200108

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014001204

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 817159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230110

Year of fee payment: 10

Ref country code: DE

Payment date: 20221230

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 11