EP2766712B1 - Verfahren zur erkennung der interaktion von mindestens einer einheit mit einer dielektrischen schicht - Google Patents

Verfahren zur erkennung der interaktion von mindestens einer einheit mit einer dielektrischen schicht Download PDF

Info

Publication number
EP2766712B1
EP2766712B1 EP12780227.0A EP12780227A EP2766712B1 EP 2766712 B1 EP2766712 B1 EP 2766712B1 EP 12780227 A EP12780227 A EP 12780227A EP 2766712 B1 EP2766712 B1 EP 2766712B1
Authority
EP
European Patent Office
Prior art keywords
dielectric layer
entity
silicon
cell
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12780227.0A
Other languages
English (en)
French (fr)
Other versions
EP2766712A1 (de
Inventor
Tetyana NICHIPORUK
Tetiana SERDIUK
Volodymyr Lysenko
Yuriy ZAKHARKO
Alain Geloen
Mustapha Lemiti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2766712A1 publication Critical patent/EP2766712A1/de
Application granted granted Critical
Publication of EP2766712B1 publication Critical patent/EP2766712B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to the technical field of luminescence detection applied to Biosciences. More precisely, the present invention relates to a method for detecting the interaction of at least one entity with a luminescent dielectric layer containing different electronic levels. Such a method is particularly suitable for the study of living cells or cell organelles such as cell nuclei and mitochondria.
  • fluorophores http://fr.wikipedia.org/wiki/Fluorophore
  • NPs semiconductor nanoparticles II-VI and III-V
  • the fluorophores used are often organic in nature and are mostly toxic.
  • these molecules lose their luminescence properties by degrading under the effect of the exciting light, which limits the observation time to a few minutes.
  • NPs II-VI and III-V for their part, have the following advantages compared to fluorophores: (i) the emission wavelength can be controlled by their size, (ii) they lead to high luminescence yields and (iii) they exhibit greater emission stability. However, these NPs have been shown to be cytotoxic, due to the release of toxic ions (for example, Cd, Se, etc.) under photoexcitation.
  • toxic ions for example, Cd, Se, etc.
  • the patent application US2010 / 0035335 uses metallic nanoparticles which either amplify the natural luminescence of cells or fluorescent markers integrated into the cell. This document therefore focuses either on the amplification of cellular autofluorescence which leads to a single green color, or on that of the staining agents added to the cells which have a cytotoxic effect.
  • the document " Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers "(F. Giorgis and CF Pirri, Physical Rview B, Vol. 60, Number 16 ) shows the detection of photoluminescence in a dielectric layer of silicon.
  • a photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli (Valerie Duplan et al., Sensors and Actuators B: Chemical ), shows the detection of biomolecules based on the photoluminescence of a GaAs semiconductor.
  • the object of the invention is precisely to propose a new method suitable for the study of different biological entities or biomolecules, which is easy to implement and does not require prior labeling of the biological entities or biomolecules.
  • the method according to the invention must therefore be simple and competitive, compared to the prior techniques mentioned above.
  • the entity is capable, by physicochemical interactions with the dielectric layer on which it is deposited, of influencing the radiative and non-radiative electronic transitions between the energy levels in the band gap of the dielectric layer caused by the external excitatory electromagnetic radiation used.
  • the invention uses the passivation of dielectric layer by the entity or entities deposited on the dielectric layer (which can in particular be a living cell) which increases the rate of radiative recombinations of the layer, thus modifying the luminescence emitted.
  • the process according to the invention does not use the plasmonic effect at all, as is the case in the process described in the patent application. US2010 / 0035335 .
  • the dielectric layer has the following stoichiometry in atoms of Si, N and O: SiO x with 0 ⁇ x ⁇ 2, Si y N z with 1 ⁇ y ⁇ 3 and 0 ⁇ z ⁇ 4 or Si t O u N v with 1 ⁇ t ⁇ 3, 0 ⁇ u ⁇ 1 and 0 ⁇ v ⁇ 2.
  • the stoichiometries given in the context of the invention include the silicon nanoparticles present within the layer.
  • the silicon nanoparticles represent a volume fraction of 5 to 75%, relative to the total volume of the dielectric layer (i.e. of the matrix + the silicon nanoparticles). This volume fraction will be a function of the stoichiometry of the layer.
  • the dielectric layers richer in Si will have a higher volume fraction of Si nanoparticles.
  • the presence of the Si nanoparticles can be determined by TEM, the stoichiometry by element spectroscopy techniques associated with TEM, and the volume fraction of the silicon particles by XPS spectroscopy.
  • the dielectric layer is composed of silicon oxide in which silicon nanoparticles are distributed, it comprises Si-H bonds, due to the passivation by hydrogen of at least part of the interface defects between the silicon oxide matrix and the silicon nanoparticles.
  • the dielectric layer containing different electronic levels in the forbidden energy band of the dielectric layer is composed of silicon nitride or silicon oxy-nitride in which silicon nanoparticles are distributed, the latter comprises bonds Si-H and NH, corresponding to passivation by hydrogen of at least part of the interface defects between the matrix of silicon nitride or silicon oxy-nitride respectively and the silicon nanoparticles that it contains .
  • the dielectric layer is a dielectric layer of silicon nitride in which silicon nanoparticles are distributed and which is partially hydrogenated and whose stoichiometry in silicon atoms and in nitrogen atoms is SiN xa with xa ranging from 0 , 4 to 0.8.
  • the Figure 2 shows the energy state diagram of an SiN xa dielectric layer as defined above, as well as some of the possible radiative electronic transitions between energy levels in the bandgap.
  • the first electronic transition (Ec (SiN xa ) -> Si - ) corresponds to a red emission relating to the transition between the conduction band (Ec) of the SiN xa layer and the Si - fault states of the silicon nanoparticles .
  • the third way of recombination corresponds to the electronic transition (Si 0 -> N - ) which occurs between the neutral silicon atoms of the silicon nanoparticles and the N - fault states of the dielectric matrix .
  • There are also other recombination pathways in the blue emission spectrum for this type of layer Robertson J. et al., Appl. Phys. Lett. 1984, 44, 415-417 and Mo C. et al. J. Appl. Phys. 1993, 73, 5185-5188 ).
  • dielectric layers in particular of the organic type, for example polymers, in particular used in the field of photovoltaics.
  • the interaction of the entity with the dielectric layer makes it possible to achieve such transition levels and therefore leads to an emission of luminescence.
  • the emission may be different depending on the area of the cell in contact with the dielectric layer, as will appear later with reference to the Figures.
  • the entity will be deposited on the dielectric layer and left for a sufficient time to obtain an interaction of the entity with the dielectric layer leading to physicochemical interactions with the dielectric layer on which it is deposited, which will influence radiative and non-radiative electronic transitions between energy levels in the forbidden band caused by external excitatory electromagnetic radiation.
  • the luminescence emission obtained differs from that which would be obtained if the entity were deposited on a conventional substrate, such as a glass slide, as well as from that obtained with the dielectric layer alone.
  • the silicon nanoparticles present in the dielectric layer can be in the form of essentially spherical particles, rods or particles of irregular shape.
  • the particles will be essentially spherical.
  • the silicon nanoparticles Preferably, the silicon nanoparticles have a size of less than 50 nm, and advantageously a size belonging to the range going from 1 to 20 nm, and preferentially to the range going from 1 to 7 nm. Most often, the nanoparticles used are essentially spherical, that is to say that their shape does not deviate by more than 10% from a perfect sphere.
  • the size of a nanoparticle corresponds to its diameter in the case of spherical particles or to its equivalent diameter in the case of non-spherical particles.
  • the measurement of the equivalent diameter of a nanoparticle can be carried out by measuring the area of each nanoparticle on a photograph by transmission electron microscopy.
  • the dielectric layer has a thickness of less than 500 nm, and typically belonging to the range going from 30 to 200 nm and preferentially to the range going from 50 to 150 nm, which will of course be related to the size of the nanoparticles. of silicon present.
  • the dielectric layer is generally deposited on a substrate 3 playing the role of support, as illustrated Figure 1 .
  • substrates will be of the plate or lamella type, made of glass or quartz, or even of silicon or more generally any support which would withstand the process of depositing the dielectric layer.
  • the dielectric layers can be obtained within the scope of the invention by a chemical vapor deposition (CVD) process, and in particular by a plasma assisted chemical vapor deposition process called PECVD.
  • CVD chemical vapor deposition
  • PECVD plasma assisted chemical vapor deposition
  • CVD deposition is carried out by reacting the various constituents of a vapor phase. These constituents are created by the dissociation of several species. These reactions require an "energy motor” which can be thermal energy, but also energy supplied by plasma or another energy source.
  • the deposition will be carried out from a gas mixture composed of silane (SiH 4 ) and nitrous oxide (N 2 O), optionally in a carrier gas of the argon, helium or hydrogen type.
  • the deposition will be carried out from a gas mixture containing SiH 4 and ammonia (NH 3 ) or nitrogen (N 2 ), playing the role of gas precursors.
  • the deposit will be carried out from a gas mixture composed of SiH 4 , NH 3 (or N 2 ) and N 2 O.
  • the different stoichiometries are obtained by varying the ratio of the precursor gases.
  • the deposition time determines a different thickness.
  • such deposits can be carried out at a temperature belonging to the range going from 50 to 500 ° C, and typically of the order of 370 ° C.
  • the pressure, frequency and power injected to generate the plasma, as well as the gas flow rates will depend on the reactor used and will be adapted by those skilled in the art.
  • the deposited layers obtained contain Si nanoparticles integrated into the matrix of silicon oxide, silicon nitride or silicon oxy-nitride, depending on the gas mixture used. Such layers are partially hydrogenated, which is why the presence of Si-H and Si-OH bonds is mentioned, in the case of silicon oxide, the presence of Si-H and NH bonds, in the case of silicon oxide. silicon nitride and the presence of Si-H, Si-OH and NH bonds, in the case of silicon oxy-nitride.
  • the preparation of such dielectric layers is described in particular by JF Lelievre, in "Elaboration of SiNx: H by PECVD: optimization of properties optical, passivating and structural for photovoltaic applications ", Thèse INSA de Lyon, 2007, p.
  • the deposition be carried out by other chemical vapor deposition techniques well known to those skilled in the art, namely the chemical vapor deposition technique assisted by UV photon UVCVD (for "UV (Hg) photon assisted Chemical Vapor Deposition "), the technique of chemical vapor deposition at atmospheric pressure APCVD (for" Atmospheric Chemical Vapor Deposition ”) or the technique of chemical vapor deposition at low pressure LPCVD (for" Low Pressure Chemical Vapor Deposition ”).
  • UV photon UVCVD for "UV (Hg) photon assisted Chemical Vapor Deposition”
  • LPCVD Low Pressure Chemical Vapor Deposition
  • the method according to the invention can be applied to any type of biological entity, in particular to molecules entering into the composition of cells, such as proteins, lipids (phospholipids or glycolipids), DNAs, RNAs, or even to cells. or more generally to cellular organelles such as nuclei and mitochondria.
  • the method according to the invention can be used on any type of substance (products in the biomedical, agro-food, cosmetic, perfumery, etc.) field which can have a physico-chemical interaction with the dielectric layer and thus influence the transitions. radiative and non-radiative electronics between energy levels in the band gap caused by external excitatory electromagnetic radiation.
  • the dielectric layer in particular a single cell
  • a population of entities in particular a cell culture
  • the entity may be deposited, in a form in solution or in suspension in an appropriate solvent, or as such.
  • the contact time between the entity and the dielectric layer, before measurement of the luminescence, and possibly excitation if the excitation does not take place thanks to natural light will preferably be greater than 10 s, or even 1 hour or 1 day, this time depending on the entity studied. For example, for certain types of cells, longer times of one to several days may be necessary for a multi-color image in particular to appear.
  • the method according to the invention is particularly advantageous in the case where the entity is a living cell.
  • the living cell can be deposited and be grown directly on the dielectric layer.
  • any culture medium well known to those skilled in the art can be used.
  • rinsing can be carried out before measurement of the luminescence, or even before excitation if the excitation is not carried out thanks to natural light. Before detection, it may be useful to fix the cell (s) according to techniques well known to those skilled in the art, for example, by rinsing with ethanol.
  • the method according to the invention in particular when the entity is a cell or a cell nucleus or a mitochondria, could be used to carry out cell differentiation, to diagnose a pathology, and in particular a cancer or else to evaluate the disease. effectiveness of treatment.
  • the dielectric layer does not include, either in its mass or on the surface, metal particles.
  • metal particles include, either in its mass or on the surface, metal particles.
  • the detection can be carried out without adding a luminescent agent to the entity. That is to say, in particular, without prior marking of the entity.
  • the exciting electromagnetic radiation is most often radiation of light visible to the human eye, infrared, ultraviolet or X-ray radiation.
  • an electromagnetic radiation in the wavelength range from 250 to 700 nm.
  • the luminescence detection means can be a CCD sensor (standing for “Charge-Coupled Device”, for charge transfer device) connected to a computer system for processing the image obtained.
  • the detection for its part, will preferably be carried out in the range of wavelengths ranging from 300 to 2000 nm.
  • step c) for the detection of the luminescence of the dielectric layer to be obtained in step c) in the form of an image in several colors.
  • the use of the invention is possible in biology or in medicine and will consist quite simply in replacing the substrates made of glass conventionally used as supports for cell cultures (during their observation in optical microscopy) by substrates, in particular of glass, carriers.
  • the method according to the invention offers new approaches in the field of cell imaging, and in particular allows the multi-color visualization of cells (or more generally of biological entities), without requiring the use of any fluorescent agent.
  • fluorescent agent such as fluorophores or fluorescent nanoparticles which disrupt or completely change the normal functioning of cells or cellular organelles.
  • the method according to the invention allows efficient in-vitro visualization of a biological entity, for various applications in biology or medicine.
  • the method according to the invention is particularly suitable for the visualization and the study of cells, in particular in the form of cell culture, or even of cell organelles such as nuclei or mitochondria which can be isolated from cells.
  • the ratio of ammonia / silane gas flow rates in the circulating gas determines the stoichiometry of the dielectric layer deposited (silicon nanoparticles included) which is therefore equal to 5.
  • the deposit has a thickness of 60 to 200 nm, depending on the time of deposit.
  • the Figure 3 is a TEM photograph of the deposit obtained and shows the presence of silicon particles with a diameter of between 2 and 4 nm within the silicon nitride matrix.
  • FIG. 4 show the effectiveness of the method according to the invention for fluorescent visualization of biological cells without any additional specific agent.
  • the two images were obtained under the same optical acquisition conditions.
  • Figure 4 (A) that the natural fluorescence (green in color) of 3T3-L1 cells fixed on ordinary glass-based supports is non-existent.
  • Figure 4 (B) the same cells spread on the substrates as obtained previously give a clearly visible fluorescence ( Figure 4 (B) ) with a multi-color image with areas of red / yellow and green.
  • the places where no cells are seen correspond to the SiN xa layer in the absence of cells.
  • the luminescence intensity of the layers on their own is therefore very low, which proves that the deposited cells not only give a given set of colors, but also passivate non-radiative states.
  • the colors obtained correspond well to the possible transitions as illustrated Figure 2 .
  • the cell influences the substrate differently, so that it is possible to distinguish the various compartments of the cell which will correspond to fluorescence emissions of different colors. It is thus possible to distinguish the nucleus, the endoplasmic reticulum and the cytoplasm.
  • the fluorescence intensity detected is much higher than that obtained with the autofluorescence signal of the cells (green only) obtained under the same acquisition conditions in terms of acquisition time and intensity of excitation.
  • FIGs 5 and 6 demonstrate the different fluorescence obtained with different cells, due to the very nature of the cells ( Figure 6 ) or by their healthy versus tumoral character ( Figure 5 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physiology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Claims (18)

  1. Verfahren zum Erfassen der Interaktion von wenigstens einer Einheit mit einer dielektrischen Schicht, die unterschiedliche elektronische Niveaus in dem verbotenen Energieband der dielektrischen Schicht enthält,
    bei dem:
    a) die Einheit auf der dielektrischen Schicht abgeschieden wird,
    b) die Einheit und die dielektrische Schicht, auf der sie abgeschieden ist, einer elektromagnetischen Erregerstrahlung ausgesetzt werden, die unter den in Schritt c) umgesetzten Bedingungen zu keiner beobachtbaren Lumineszenz der Einheit selbst führt, und
    c) die Lumineszenz der dielektrischen Schicht, deren elektronische Strahlungs- und Nichtstrahlungsübergänge zwischen den Energieniveaus in dem verbotenen Band infolge ihrer Interaktion mit der Einheit beeinflusst worden sind, erfasst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die dielektrische Schicht zusammengesetzt ist:
    - entweder aus Siliziumoxid, in dem Siliziumnanopartikel verteilt sind, wobei die Schicht Si-H-, Si-O-Si- und Si-OH-Bindungen umfasst,
    - oder aus Siliziumnitrid, in dem Siliziumnanopartikel verteilt sind, wobei die Schicht Si-H-, Si-N-Si- und N-H-Bindungen umfasst,
    - oder aus einem Siliziumoxynitrid, in dem Siliziumnanopartikel verteilt sind, wobei die Schicht Si-H-, Si-N-Si-, Si-O-Si-, Si-OH- und N-H-Bindungen umfasst.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einheit durch physikalisch-chemische Interaktionen mit der dielektrischen Schicht, auf der sie abgeschieden ist, in der Lage ist, die elektronischen Strahlungs- und Nichtstrahlungsübergänge zwischen den Energieniveaus in dem verbotenen Band, welche durch die externe elektromagnetische Erregerstrahlung bewirkt werden, zu beeinflussen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Schicht die folgende Stöchiometrie an Si-, N- und O-Atomen aufweist:
    SiOx wobei 0 < x < 2, SiyNz wobei 1 < y < 3 und 0 < z < 4 oder SitOuNv wobei 1 < t < 3, 0 < u < 1 und 0 < v < 2.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Siliziumnanopartikel eine zu dem Bereich von 1 bis 20 nm, vorzugsweise zu dem Bereich von 1 bis 7 nm gehörende Größe aufweisen.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Schicht eine Dicke von weniger als 500 nm und vorzugsweise von 30 bis 200 nm und bevorzugt von 50 bis 150 nm aufweist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Schicht eine dielektrische Schicht aus Siliziumnitrid ist, in der Siliziumnanopartikel verteilt sind und die teilweise hydriert ist und deren Stöchiometrie an Siliziumatomen und an Stickstoffatomen SiNxa ist, wobei xa im Bereich von 0,4 bis 0,8 liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Schicht weder in ihrer Masse noch auf der Oberfläche Metallpartikel enthält.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Erregerstrahlung eine für das menschliche Auge sichtbare Lichtstrahlung, eine Infrarot-, Ultraviolett- oder Röntgenstrahlung ist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erfassung der Lumineszenz der dielektrischen Schicht in Schritt c) in Form eines Mehrfarbenbildes erfolgt.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrische Schicht durch ein Verfahren der plasmaunterstützten chemischen Gasphasenabscheidung, welches als PECVD bezeichnet wird, erhalten wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erfassung ohne Zugabe eines Lumineszenzmittels zu der Einheit durchgeführt wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einheit eine biologische Einheit ist, insbesondere ein Molekül, das Bestandteil von Zellen ist, wie ein Protein, ein Lipid, eine DNA, eine RNA, eine Zelle oder ein zelluläres Organell, wie ein Kern oder ein Mitochondrium.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Einheit ein zelluläres Organell, wie ein Kern oder ein Mitochondrium, ist oder vorzugsweise die Einheit eine lebende Zelle ist.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Einheit eine lebende Zelle ist, die auf der dielektrischen Schicht abgeschieden und in Wachstum versetzt wird.
  16. Verwendung eines Verfahrens nach einem der Ansprüche 13 bis 15, zur Durchführung der Zelldifferenzierung.
  17. Verwendung eines Verfahrens nach einem der Ansprüche 13 bis 15, zur Diagnose einer Pathologie und insbesondere von Krebs.
  18. Verwendung eines Verfahrens nach einem der Ansprüche 13 bis 15, zur Bewertung der Wirksamkeit einer Behandlung.
EP12780227.0A 2011-10-11 2012-10-08 Verfahren zur erkennung der interaktion von mindestens einer einheit mit einer dielektrischen schicht Active EP2766712B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159174A FR2981159B1 (fr) 2011-10-11 2011-10-11 Procede de detection de l'interaction d'au moins une entite avec une couche dielectrique
PCT/FR2012/052274 WO2013054024A1 (fr) 2011-10-11 2012-10-08 Procede de detection de l'interaction d'au moins une entite avec une couche dielectrique

Publications (2)

Publication Number Publication Date
EP2766712A1 EP2766712A1 (de) 2014-08-20
EP2766712B1 true EP2766712B1 (de) 2020-09-23

Family

ID=47116057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12780227.0A Active EP2766712B1 (de) 2011-10-11 2012-10-08 Verfahren zur erkennung der interaktion von mindestens einer einheit mit einer dielektrischen schicht

Country Status (4)

Country Link
US (1) US9746460B2 (de)
EP (1) EP2766712B1 (de)
FR (1) FR2981159B1 (de)
WO (1) WO2013054024A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010954B2 (ja) 2016-09-06 2022-01-26 ビイエヌエヌティ・エルエルシイ 遷移放射光源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100075875A (ko) * 2007-08-30 2010-07-05 비티 이미징 피티와이 리미티드 광발전 전지 제조
US20100035335A1 (en) 2008-08-08 2010-02-11 Lakowicz Joseph R Metal-enhanced fluorescence for the label-free detection of interacting biomolecules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VALÉRIE DUPLAN ET AL: "A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli (Supporting Information)", SENSORS AND ACTUATORS B: CHEMICAL: INTERNATIONAL JOURNAL DEVOTED TO RESEARCH AND DEVELOPMENT OF PHYSICAL AND CHEMICAL TRANSDUCERS, vol. 160, no. 1, 1 December 2011 (2011-12-01), NL, pages 46 - 51, XP055504018, ISSN: 0925-4005, DOI: 10.1016/j.snb.2011.07.010 *
VALRIE DUPLAN ET AL: "A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli", SENSORS AND ACTUATORS B: CHEMICAL: INTERNATIONAL JOURNAL DEVOTED TO RESEARCH AND DEVELOPMENT OF PHYSICAL AND CHEMICAL TRANSDUCERS, ELSEVIER BV, NL, vol. 160, no. 1, 5 July 2011 (2011-07-05), pages 46 - 51, XP028110866, ISSN: 0925-4005, [retrieved on 20110719], DOI: 10.1016/J.SNB.2011.07.010 *

Also Published As

Publication number Publication date
FR2981159A1 (fr) 2013-04-12
US9746460B2 (en) 2017-08-29
WO2013054024A1 (fr) 2013-04-18
EP2766712A1 (de) 2014-08-20
US20140255973A1 (en) 2014-09-11
FR2981159B1 (fr) 2013-11-29

Similar Documents

Publication Publication Date Title
Baibakov et al. Extending single-molecule Forster resonance energy transfer (FRET) Range beyond 10 nanometers in zero-mode waveguides
FR3057470A1 (fr) Synthese de nanoparticules cœur-coquille et applications de ces nanoparticules pour la spectroscopie raman exaltee de surface
CA2558033A1 (fr) Nanoparticules hybrides comprenant un coeur de ln2o3 porteuses de ligands biologiques et leur procede de preparation
Sugimoto et al. Plasmon-enhanced emission rate of silicon nanocrystals in gold nanorod composites
Artur et al. Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging
Lim et al. Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface
EP2766712B1 (de) Verfahren zur erkennung der interaktion von mindestens einer einheit mit einer dielektrischen schicht
Wang et al. Photon induced quantum yield regeneration of cap-exchanged CdSe/CdS quantum rods for ratiometric biosensing and cellular imaging
Seo et al. Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications
EP2125992B1 (de) Fluoreszierende organische nanokristalle zur herstellung von biosensoren
Szalkowski et al. Silver island film substrates for ultrasensitive fluorescence detection of (bio) molecules
Lin et al. Substrate-free self-assembled SiOx-core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging
Browning et al. Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells
EP1121461B1 (de) Fluoreszenzsonden zum anfärben von chromosomen
EP2670884A1 (de) Verfahren zur herstellung von metallnanopartikeln
FR2972461A1 (fr) Procede de fabrication de nanoparticules semi-conductrices
Wiwatowski et al. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes
Misbah et al. Exploring the synergy of radiative coupling and substrate undercut in arrayed gold nanodisks for economical, ultra-sensitive label-free biosensing
Lustig et al. Toward Imaging Defect-Mediated Energy Transfer between Single Nanocrystal Donors and Single Molecule Acceptors
WO2010139869A1 (fr) Utilisation d&#39;une couche de silicium amorphe et procédés d&#39;analyse
Dovbeshko et al. Surface enhanced imaging and IR spectroscopy of the biological cells on the nanostructured gold film
US10209258B2 (en) Lipoprotein nanoplatelets: fluorescent, zwitterionic probes for molecular and cellular imaging
Lee et al. Silver nanostructure sensing platform for maximum-contrast fluorescence cell imaging
Zhu et al. A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin. Nanomaterials 2023, 13, 2374
Herynková et al. Structural and luminescence properties of silicon nanocrystals in colloidal solutions for bio applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSERM - INSTITUT NATIONAL DE LA SANTE ET DE LA RE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180910

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012072467

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1316897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012072467

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221027

Year of fee payment: 11

Ref country code: DE

Payment date: 20221012

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012072467

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231008

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240501