EP2765290A1 - Procédé d'estimation de la température des gaz d'échappement - Google Patents

Procédé d'estimation de la température des gaz d'échappement Download PDF

Info

Publication number
EP2765290A1
EP2765290A1 EP14153382.8A EP14153382A EP2765290A1 EP 2765290 A1 EP2765290 A1 EP 2765290A1 EP 14153382 A EP14153382 A EP 14153382A EP 2765290 A1 EP2765290 A1 EP 2765290A1
Authority
EP
European Patent Office
Prior art keywords
fuel
temperature
injected
carb
qtot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14153382.8A
Other languages
German (de)
English (en)
Other versions
EP2765290B1 (fr
Inventor
Moustansir Taibaly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2765290A1 publication Critical patent/EP2765290A1/fr
Application granted granted Critical
Publication of EP2765290B1 publication Critical patent/EP2765290B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus

Definitions

  • the present invention relates to a method for estimating the temperature of the exhaust gases produced by an internal combustion engine.
  • a specific quantity of the system can then be estimated via the measurement of the sensor and the result of the modeling. These two sources of information have different qualities: reliability, dynamics ...
  • Modeling estimation of the exhaust gas temperature, taken as close as possible to the outlet of the combustion chamber, in practice in the exhaust manifold of a heat engine, is one of the main variables of the engine control. This estimate is used in particular for the estimation of other temperatures at other points of the exhaust line, these estimates being necessary for the control of pollution control member such as for example a particle filter or a catalyst.
  • thermocouples There are in the industrial field devices giving the temperature in the exhaust manifold, for example temperature sensors or thermocouples.
  • thermocouples The use of temperature sensors or thermocouples is limited: a compromise between response time and fouling must be made. Indeed the lower the response time of the sensor, the smaller it is and sensitive to fouling.
  • the exhaust gases Immediately leaving the combustion chamber of a heat engine, in particular of the Diesel type, the exhaust gases contain particles which contribute to the fouling. These particles therefore limit the use of a sensor with a low response time.
  • the method comprises a step of determining a fuel injection sequence establishing the distribution of the total amount of fuel injected on each separate injection.
  • the weighting coefficient has a first sign if the fuel injection contributes to an increase in the temperature of the exhaust gas or an opposite sign if the fuel injection contributes to a decrease in the temperature of the exhaust gas. .
  • the weighting coefficients are between 1 and -1.
  • the weighting coefficient of the main injection is equal to 1.
  • the regression coefficients ⁇ and ⁇ are determined from a preliminary engine test campaign to determine the temperature ratio as a function of the total amount of fuel injected, said quantity of fuel being injected in a single main injection.
  • the subject of the invention is also an estimator of the temperature of the exhaust gases produced by an internal combustion engine, characterized in that it comprises the acquisition and processing means required for carrying out the process according to the invention. any of the previously described variants.
  • the invention also relates to a vehicle equipped with an internal combustion engine, characterized in that it comprises an estimator of the temperature of the exhaust gas produced by said internal combustion engine of the invention.
  • the figure 1 schematically shows an internal combustion engine 1, including a diesel type direct injection engine that can equip a vehicle.
  • the engine 1 typically comprises at least one combustion chamber 2 for receiving the air and the fuel required for combustion. On the figure 1 , four combustion chambers are shown, but the engine may include a different number of combustion chamber.
  • the engine 1 is connected to an intake air distributor 3 allowing the distribution of intake air in the combustion chambers 2.
  • the motor 1 is also connected to an exhaust manifold 4 for evacuation of the exhaust gases from the combustion chambers 2.
  • the exhaust manifold 4 is connected to an exhaust line 5 so as to allow the transfer of the gases exhaust combustion chambers 2 to the exhaust line 5.
  • the engine 1 may be supercharged in which case the exhaust line 5 may comprise a turbocharging turbine 6.
  • the exhaust line 5 may also comprise at least one depollution device such as an oxidation catalyst 7, a selective reduction catalyst 8 of nitrogen oxides, a particulate filter 9.
  • the engine 1 may further comprise an exhaust gas recirculation loop 10 for taking a fraction of the exhaust gas and returning it to the intake.
  • the flow of exhaust gas in the recirculation loop 10 can be controlled by a valve 11.
  • the figure 2 now presents in the form of a flowchart the main steps of the method of the invention for estimating the temperature T3 of the exhaust gas.
  • a total quantity of weighted fuel, Qtot_carb_pond is determined.
  • this step 20 is determined at 20 'the fuel injection sequence establishing the distribution Qi on each injection i of the total amount of fuel, Qtot_carb injected.
  • the injection sequence can be determined as a function of engine operating parameters such as engine speed and load.
  • the weighting coefficients ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 are the factors attributed to each injection taking into account the contribution of the quantity of fuel injected during each injection to the temperature rise of the gases.
  • the weighting coefficients can be between a maximum value, V and its opposite, that is to say +/- V.
  • weighting coefficients are preferably determined relative to the main injection, Iprinc, for which a reference weighting coefficient equal to the maximum value V is assigned.
  • the weighting coefficient of the main injection Iprinc
  • the weighting coefficients are between -1 and 1.
  • step 21 the temperature T2 of the gases entering the combustion chambers 2 is determined, for example by a sensor or an estimator.
  • the coefficients ⁇ and ⁇ are advantageously determined experimentally during a preliminary motor test campaign.
  • the engine tests aim to determine the temperature ratio T3 / T2 as a function of the total amount of fuel injected, Qtot_carb, said quantity being injected in a single main injection.
  • the total quantity of fuel injected, Qtot_carb, and the total amount of weighted fuel, Qtot_carb_pond are identical because the weighting coefficient of the main injection is assigned a value of 1.
  • T ⁇ 3 T ⁇ 2 ⁇ ⁇ ln Q tot_carb + ⁇
  • this estimator comprises the means for acquiring and processing the information required for implementing the method of the invention.
  • These means may comprise in particular means for storing the weighting coefficients, means for storing the injection sequences, these memory means being able to take the form of a map, means for acquiring the temperature T2 of the gases entering the chambers. of combustion, means for determining the total quantity of weighted fuel, Qtot_carb_pond, means for calculating the temperature T3 of the exhaust gases from the intake temperature T2 of the gases and the total quantity of weighted fuel, Qtot_carb_pond , from the logarithmic relation (3).
  • the invention could be suitable for other types of internal combustion engine such as a diesel engine with indirect fuel injection or a spark ignition internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé d'estimation de la température (T3) des gaz d'échappement produits par un moteur à combustion interne comprenant une chambre de combustion dans laquelle est injectée une quantité totale de carburant, le procédé comprenant les étapes de : - détermination (21) de la température d'admission (T2) des gaz entrant dans la chambre de combustion, - détermination (20) de la quantité totale de carburant injectée dans la chambre de combustion, - estimation (22) de la température des gaz d'échappement à partir de la température d'admission (T2) et de la quantité totale de carburant injectée, caractérisé en ce que la température (T3) des gaz d'échappement est estimée à partir d'une relation logarithmique entre le ratio de la température (T3) des gaz d'échappement par la température d'admission (T2) et la quantité totale de carburant injectée.

Description

    Domaine technique de l'invention
  • La présente invention se rapporte à un procédé d'estimation de la température des gaz d'échappement produits par un moteur à combustion interne.
  • Arrière-plan technologique
  • Les contraintes dues aux normes, par exemple les normes européennes dites Euro VI, relatives aux niveaux d'émissions polluantes générées par le fonctionnement des moteurs à combustion interne, notamment Diesel, deviennent de plus en plus en plus sévères.
  • Les niveaux de performance requis pour les fonctions de contrôle moteur étant par conséquent de plus en plus exigent, il est intéressant de bien connaître l'état du système à contrôler. Cette connaissance passe actuellement par l'implantation de capteur complétée par une modélisation des phénomènes physiques présents.
  • Une grandeur spécifique du système peut alors être estimée via la mesure du capteur et par le résultat de la modélisation. Ces deux sources d'informations présentent des qualités différentes : fiabilité, dynamique...
  • L'estimation par modélisation de la température des gaz d'échappement, pris au plus près de la sortie de la chambre de combustion, en pratique dans le collecteur d'échappement d'un moteur thermique, est une des grandeurs principales du contrôle moteur. Cette estimation est notamment utilisée pour l'estimation d'autres températures en d'autres points de la ligne d'échappement, ces estimations étant nécessaires pour le contrôle d'organe de dépollution tels que par exemple un filtre à particules ou encore un catalyseur.
  • Il existe dans le domaine industriel des appareils donnant la température dans le collecteur d'échappement, par exemple des capteurs de température ou des thermocouples.
  • L'utilisation des capteurs de température ou des thermocouples est limitée : un compromis entre le temps de réponse et l'encrassement doit être fait. En effet plus le temps de réponse du capteur est faible, plus il est petit et sensible à l'encrassement.
  • En sortie immédiate de la chambre de combustion d'un moteur thermique, en particulier de type Diesel, les gaz d'échappement contiennent des particules qui participent à l'encrassement. Ces particules limitent donc l'utilisation d'un capteur à faible temps de réponse.
  • Il existe aussi des procédés permettant l'estimation de la température dans le collecteur d'échappement. On connait par exemple du document US20093989A1 un procédé d'estimation de la température des gaz d'échappement en fonction de la température de l'air à l'admission, de la quantité de chaleur apportée par la combustion du carburant injecté et du coefficient d'air mesuré par la sonde dite lambda dans la ligne d'échappement en aval du collecteur d'échappement.
  • Un tel procédé permet un temps de réponse faible, mais reste dépendant du bon fonctionnement de la sonde lambda et est donc insuffisamment fiable et précis pour répondre aux normes de dépollution, en particulier Euro 6.
  • Il existe donc un besoin pour estimer de manière faible, avec précision et avec un temps de réponse faible la température des gaz d'échappement au niveau du collecteur d'échappement.
  • Pour atteindre cet objectif, il est prévu selon l'invention un procédé d'estimation de la température des gaz d'échappement produits par un moteur à combustion interne comprenant une chambre de combustion dans laquelle est injectée une quantité totale de carburant, le procédé comprenant les étapes de :
    • détermination de la température d'admission des gaz entrant dans la chambre de combustion,
    • détermination de la quantité totale de carburant injectée dans la chambre de combustion,
    • estimation de la température des gaz d'échappement à partir de la température d'admission et de la quantité totale de carburant injectée,
    caractérisé en ce que la température des gaz d'échappement est estimée à partir d'une relation logarithmique entre le ratio de la température des gaz d'échappement par la température d'admission et la quantité totale de carburant injectée.
  • Dans une variante où la quantité totale de carburant est injectée dans la chambre de combustion en au moins deux injections distinctes, le procédé comprend les étapes de :
    • détermination pour chaque injection distincte d'un coefficient de pondération prenant en compte la contribution de la quantité de carburant injectée au cours de chaque injection à la modification de la température des gaz,
    • Détermination pour chaque injection d'une quantité de carburant injectée pondérée à partir du coefficient de pondération et de la quantité de carburant injectée,
    • détermination d'une quantité totale de carburant pondérée à partir de la somme des quantités injectées pondérées à la place de l'étape de détermination de la quantité totale de carburant injectée,
    • Utilisation de la quantité totale de carburant pondérée à la place de la quantité totale de carburant injectée au cours de l'étape d'estimation de la température des gaz d'échappement.
  • De préférence le procédé comprend une étape de détermination d'une séquence d'injection de carburant établissant la répartition de la quantité totale de carburant injecté sur chaque injection distincte.
  • De préférence, le coefficient de pondération a un premier signe si l'injection de carburant contribue à une élévation de température des gaz d'échappement ou un signe opposé si l'injection de carburant contribue à une baisse de la température des gaz d'échappement.
  • De préférence encore, les coefficients de pondération sont compris entre 1 et -1.
  • Dans une variante où l'une des injections distinctes étant une injection dite principale au cours de laquelle est injectée la plus importante fraction de la quantité totale de carburant , le coefficient de pondération de l'injection principale est égal à 1.
  • De préférence, la relation logarithmique entre le ratio de la température des gaz d'échappement par la température d'admission et la quantité totale de carburant injectée est de la forme : T 3 T 2 = β ln Q tot_carb + γ
    Figure imgb0001
    • Avec β et γ des coefficients de régression prédéterminés.
    • T3 la température des gaz d'échappement à estimer,
    • T2 la température d'admission des gaz entrant dans la chambre de combustion, Qtot_carb, la quantité totale de carburant injectée.
  • De préférence, les coefficients de régression β et γ sont déterminés à partir d'une campagne préalable d'essais moteur visant déterminer le ratio de température en fonction de quantité totale de carburant injectée, ladite quantité de carburant étant injectée en une seule injection principale.
  • L'invention a aussi pour objet un estimateur de la température des gaz d'échappement produits par un moteur à combustion interne, caractérisé en ce qu'il comprend les moyens d'acquisition et de traitement requis à la mise en oeuvre du procédé selon l'une quelconque des variantes précédemment décrites.
  • L'invention a aussi pour objet un véhicule équipé d'un moteur à combustion interne, caractérisé en ce qu'il comprend un estimateur de la température des gaz d'échappement produits par ledit moteur à combustion interne de l'invention.
  • Brève description des dessins
  • D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles :
    • La figure 1 est une représentation schématique d'un moteur à combustion interne relié à une ligne d'échappement.
    • La figure 2 est une représentation schématique sous forme de logigramme du procédé de l'invention.
    • La figure 3 présente un exemple de séquence d'injection de carburant au cours d'un cycle moteur. En ordonnée est représentée la quantité de carburant injectée, Qcarb, et en abscisse le temps, t.
    Description détaillée
  • La figure 1 présente schématiquement un moteur 1 à combustion interne, notamment un moteur de type Diesel à injection directe pouvant équiper un véhicule. Le moteur 1 comprend classiquement au moins une chambre de combustion 2 destinée à recevoir l'air et le carburant nécessaire à la combustion. Sur la figure 1, quatre chambres de combustion sont représentées, mais le moteur peut comprendre un nombre différent de chambre de combustion. Le moteur 1 est relié à un répartiteur d'air d'admission 3 permettant la distribution d'air d'admission dans les chambres de combustion 2. Le moteur 1 est aussi relié à un collecteur 4 d'échappement permettant l'évacuation des gaz d'échappement des chambres de combustion 2. Le collecteur 4 d'échappement est relié à une ligne 5 d'échappement de façon à permettre le transfert des gaz d'échappement des chambres de combustion 2 vers la ligne 5 d'échappement.
  • Le moteur 1 peut être suralimenté auquel cas la ligne 5 d'échappement peut comprendre une turbine 6 de détente de turbocompresseur. La ligne 5 d'échappement peut encore comprendre au moins un organe de dépollution tel qu'un catalyseur d'oxydation 7, un catalyseur 8 de réduction sélective des oxydes d'azote, un filtre à particules 9.
  • Le moteur 1 peut encore comprendre une boucle de recirculation 10 des gaz d'échappement permettant de prélever une fraction des gaz d'échappement et de la ramener vers l'admission. Le débit de gaz d'échappement dans la boucle de recirculation 10 peut être contrôlé par une vanne 11.
  • Sur la figure 1 encore :
    • T3 désigne la température des gaz d'échappement produits par le moteur 1 à combustion interne. En pratique, T3 correspond à la température des gaz d'échappement pris au plus près de la sortie de la chambre de combustion, en pratique vu au niveau du collecteur 4 d'échappement, car à cet endroit les gaz d'échappement provenant des différentes chambres de combustion 2 se sont homogénéisés.
    • T2 désigne la température des gaz entrant dans les chambres de combustion 2. Les gaz entrant peuvent être de l'air ou encore un mélange d'air et de gaz d'échappement dans le cas où une boucle de recirculation 10 est présente. En pratique T2 correspond à la température des gaz entrant vu au niveau du répartiteur d'air d'admission 3.
  • Lorsque le moteur 1 est en fonctionnement, à chaque cycle moteur, une quantité totale de carburant, Qtot_carb est injectée dans la chambre de combustion. La quantité totale de carburant, Qtot_carb, peut être fractionnée en au moins deux injections distinctes suivant une séquence d'injection de carburant établissant la répartition Qi de la quantité totale de carburant, Qtot_carb, sur chaque injection distincte i. Les rôles de ces injections sont multiples : diminution du bruit de combustion, post-traitement, couple, montée en température des gaz d'échappement La figure 3 présente un exemple non limitatif de séquence d'injection de carburant sur un moteur Diesel comprenant six injections de carburant. Plus précisément, la séquence d'injection de la figure 3 comprend :
    • une injection dite principale, Iprinc, car y est injectée la plus importante fraction de la quantité totale de carburant, Qtot_carb, pour la génération du couple moteur,
    • une injection secondaire, Isp, succédant l'injection principale permettant de réduire les bruits de combustion,
    • une première et une seconde injection pilote, Ipil1 et Ipil2, précédant l'injection principale et permettant aussi de réduire les bruits de combustion,
    • une première et seconde post injection, Ipost1 et Ipost2, succédant à l'injection secondaire permettant d'assister les systèmes de post-traitement de la ligne d'échappement.
  • La figure 2 présente maintenant sous forme d'organigramme les principales étapes du procédé de l'invention d'estimation de la température T3 des gaz d'échappement.
  • A l'étape 20, on détermine une quantité totale de carburant pondérée, Qtot_carb_pond. Dans cette étape 20 on détermine en 20' la séquence d'injection de carburant établissant la répartition Qi sur chaque injection i de la quantité totale de carburant, Qtot_carb injectée. La séquence d'injection peut être déterminée en fonction de paramètres de fonctionnement du moteur tels que le régime et la charge Cette quantité totale de carburant pondérée, Qtot_carb_pond est déterminée par la relation suivante : Q tot_carb_pond = α i Q i
    Figure imgb0002
  • Avec Qi la quantité de carburant injectée lors d'une injection i de la séquence d'injection (on a donc Qtot_carb = ∑ Qi) et αi un coefficient de pondération attribué à la quantité Qi de carburant injectée en fonction de la contribution de la quantité Qi de carburant sur la modification de la température des gaz et donc son impact sur la température T3 des gaz d'échappement. Ces coefficients de pondération sont déterminés à l'étape 20".
  • En effet, il s'avère que toutes les injections ne participent pas de la même manière à l'élévation de la température des gaz. Le produit αi · Qi détermine donc la quantité de carburant injectée pondérée pour l'injection i de la séquence d'injection. Dans le cas de la séquence d'injection illustrée en figure 2 on a alors : Q tot_carb_pond = α 1 Q pil 2 + α 2 Q pil 1 + α 3 Q princ + α 4 Q sp + α 5 Q post 1 + α 6 Q post 2
    Figure imgb0003
  • Les coefficients de pondérations α1, α2, α3, α4, α5, α6, sont les facteurs attribués à chaque injection prenant en compte la contribution de la quantité de carburant injectée au cours de chaque injection à l'élévation de température des gaz.
  • Afin de tenir compte du cas d'une injection telle que par exemple une post injection tardive qui aurait un effet refroidissant sur les gaz d'échappement, il est prévu d'attribuer un coefficient de pondération positif si la quantité de carburant injectée favorise l'élévation de température des gaz ou un coefficient de pondération négatif si la quantité de carburant injectée favorise la baisse de la température des gaz d'échappement.
  • Les coefficients de pondération peuvent être compris entre une valeur maximum, V et son opposé, c'est-à-dire +/-V.
  • De préférence on détermine ces coefficients de pondération relativement à l'injection principale, Iprinc, pour laquelle on attribue un coefficient de pondération de référence égal à la valeur maximale V.
  • Il s'avère que choisir comme coefficient de pondération de l'injection principale, Iprinc, la valeur maximale V=1 permet d'avoir une quantité totale de carburant pondérée, Qtot_carb_pond représentatif d'une combustion à mono-injection. Cet avantage sera mieux compris dans la suite du mémoire. Ainsi, de préférence, les coefficients de pondérations sont compris entre -1 et 1.
  • A l'étape 21, on détermine, par exemple par un capteur ou un estimateur, la température T2 des gaz entrant dans les chambres de combustion 2.
  • A l'étape 22 on estime la température T3 des gaz d'échappement à partir de la température d'admission T2 et de la quantité totale de carburant pondérée, Qtot_carb_pond. Plus précisément et conformément à l'invention, la température T3 des gaz d'échappement est estimée à partir d'une relation logarithmique entre le ratio de la température, T3, des gaz d'échappement par la température d'admission, T2 et la quantité totale de carburant pondérée, Qtot_carb_pond, de la forme : T 3 T 2 = β ln Q tot_carb_pond + γ
    Figure imgb0004
  • Avec, β et γ des coefficients de régression. Les coefficients β et γ sont avantageusement déterminés expérimentalement lors d'une campagne préalable d'essais moteur. Les essais sur moteur visent à déterminer le ratio de température T3/T2 en fonction de la quantité totale de carburant injectée, Qtot_carb, ladite quantité étant injectée en une seule injection principale. Dans ce cas, la quantité totale de carburant injectée, Qtot_carb, et la quantité totale de carburant pondérée, Qtot_carb_pond sont identiques car on attribue la valeur 1 au coefficient de pondération de l'injection principale.
  • La figure 4 présente le nuage de points constitutifs de tels essais moteur et la courbe 40 de régression logarithmique de forme : T 3 T 2 = β ln Q tot_carb + γ
    Figure imgb0005
  • Les coefficients de régression obtenus sont dans le cas illustrée en figure 4 : β= 0,71 et γ=0,38, avec un coefficient de détermination R2=0, 95.
  • Une fois les coefficients de régression β et γ fixés dans la relation (4), les coefficients de pondération peuvent ensuite être déterminés expérimentalement pour toute séquence d'injection. La méthode est ici illustrée en prenant comme exemple le cas de la première injection pilote, Ipil1 :
    • Ajout dans la séquence d'injection de la première injection pilote, Ipil1 à l'injection principale, Iprinc. La quantité totale de carburant pondérée s'écrit alors : Q tot_carb_pond = α 2 Q pil 1 + α 3 Q princ
      Figure imgb0006

      avec comme coefficient de pondération de l'injection principale α3 = 1,
    • Mesure de la température T2 des gaz entrant dans les chambres de combustion,
    • Mesure de la nouvelle température de gaz d'échappement T3',
    • Détermination de Qtot_carb_pond à partir de la relation (3) avec les coefficients de régression β et γ fixés lors de la campagne préalable d'essais,
    • Détermination du coefficient de pondération de la première injection pilote α2 à partir de la relation (5).
  • Il est prévu d'implémenter le procédé d'estimation de la température T3 des gaz d'échappement de l'invention dans un estimateur tel qu'une unité de de calcul électronique. Avantageusement cet estimateur comprend les moyens d'acquisition et de traitement des informations requis à la mise en en oeuvre du procédé de l'invention. Ces moyens peuvent comprendre en particulier des moyens des mémorisation des coefficients de pondération, des moyens de mémorisation des séquence d'injection, Ces moyens de mémorisation pouvant prendre la forme de cartographie, des moyens d'acquisition de la température T2 des gaz entrant dans les chambres de combustion, des moyens de détermination de la quantité totale de carburant pondérée, Qtot_carb_pond, des moyens de calcul de la température T3 des gaz d'échappement à partir de la température T2 d'admission des gaz et la quantité totale de carburant pondérée, Qtot_carb_pond, à partir de la relation logarithmique (3).
  • L'invention ne se limite pas aux variantes décrites avec une séquence d'injection à plusieurs injections distinctes. Dans une variante, où la quantité totale de carburant est injectée en une seule injection, donc en une unique injection principale, le procédé de l'invention devient :
    • détermination à l'étape 21 de la température d'admission, T2, des gaz entrant dans la chambre de combustion 2,
    • détermination à l'étape 20 de la quantité totale de carburant, Qtot_carb, injectée dans la chambre de combustion 2,
    • estimation de la température, T3, des gaz d'échappement à partir de la température d'admission, T2, et de la quantité totale de carburant, Qtot_carb, injectée, la température, T3, des gaz d'échappement étant estimée à partir de la relation établissant une régression logarithmique entre le ratio de la température, T3, des gaz d'échappement par la température d'admission (T2) et la quantité totale de carburant injectée (Qtot_carb), reprise ici : T 3 T 2 = β ln Q tot_carb + γ
      Figure imgb0007
  • En effet, dans ce cas, on utilise la quantité totale de carburant injectée, Qtot_carb, qui remplace dans la relation logarithmique la quantité totale de carburant pondérée, Qtot_carb_pond, car les deux quantités sont identiques puisque l'on attribue la valeur 1 au coefficient de pondération de l'injection unique.
  • L'invention pourrait convenir à d'autres types de moteur à combustion interne tels qu'un moteur Diesel à injection indirecte de carburant ou encore un moteur à combustion interne à allumage commandé.

Claims (10)

  1. Procédé d'estimation de la température (T3) des gaz d'échappement produits par un moteur (1) à combustion interne comprenant une chambre de combustion (2) dans laquelle est injectée une quantité totale de carburant (Qtot_carb), le procédé comprenant les étapes de :
    - détermination (21) de la température d'admission (T2) des gaz entrant dans la chambre de combustion,
    - détermination (20) de la quantité totale de carburant (Qtot_carb) injectée dans la chambre de combustion,
    - estimation (22) de la température (T3) des gaz d'échappement à partir de la température d'admission (T2) et de la quantité totale de carburant (Qtot_carb) injectée,
    caractérisé en ce que la température (T3) des gaz d'échappement est estimée à partir d'une relation logarithmique entre le ratio de la température (T3) des gaz d'échappement par la température d'admission (T2) et la quantité totale de carburant (Qtot_carb) injectée.
  2. Procédé selon la revendication 1 dans lequel la quantité totale de carburant est injectée dans la chambre de combustion en au moins deux injections distinctes, caractérisé en ce qu'il comprend les étapes de :
    - détermination (20") pour chaque injection distincte d'un coefficient de pondération (αi) prenant en compte la contribution de la quantité de carburant injectée (Qi) au cours de chaque injection à la modification de la température des gaz,
    - Détermination pour chaque injection d'une quantité de carburant injectée pondérée à partir du coefficient de pondération (αi) et de la quantité de carburant injectée (Qi),
    - détermination d'une quantité totale de carburant pondérée (Qtot_carb_pond) à partir de la somme des quantités injectées pondérées à la place de l'étape de détermination de la quantité totale de carburant (Qtot_carb) injectée,
    - Utilisation de la quantité totale de carburant pondérée (Qtot_carb_pond) à la place de la quantité totale de carburant (Qtot_carb) injectée au cours de l'étape d'estimation de la température (T3) des gaz d'échappement.
  3. - Procédé selon la revendication 2, caractérisé en ce qu'il comprend une étape de détermination (20') d'une séquence d'injection de carburant établissant la répartition de la quantité totale de carburant (Qtot_carb) injecté sur chaque injection distincte.
  4. Procédé selon la revendication 2 ou la revendication 3, caractérisé en ce que le coefficient de pondération (αi) a un premier signe si l'injection de carburant contribue à une élévation de température des gaz d'échappement ou un signe opposé si l'injection de carburant contribue à une baisse de la température des gaz d'échappement.
  5. Procédé selon la revendication 4, caractérisé en ce que les coefficients de pondération (αi) sont compris entre 1 et -1.
  6. Procédé selon la revendication 5, caractérisé en ce que l'une des injections distinctes étant une injection dite principale au cours de laquelle est injectée la plus importante fraction de la quantité totale de carburant (Qtot_carb), le coefficient de pondération de l'injection principale est égal à 1.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la relation logarithmique entre le ratio de la température (T3) des gaz d'échappement par la température d'admission (T2) et la quantité totale de carburant injectée (Qtot_carb) est de la forme : T 3 T 2 = β ln Q tot_carb + γ
    Figure imgb0008

    Avec β et γ des coefficients de régression prédéterminés.
  8. Procédé selon la revendication 7, caractérisé en ce que les coefficients de régression β et γ sont déterminés à partir d'une campagne préalable d'essais moteur visant déterminer le ratio de température en fonction de quantité totale de carburant (Qtot_carb) injectée, ladite quantité de carburant étant injectée en une seule injection principale.
  9. Estimateur de la température (T3) des gaz d'échappement produits par un moteur (1) à combustion interne, caractérisé en ce qu'il comprend les moyens d'acquisition et de traitement requis à la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes.
  10. Véhicule équipé d'un moteur (1) à combustion interne, caractérisé en ce qu'il comprend un estimateur de la température (T3) des gaz d'échappement produits par ledit moteur à combustion interne selon la revendication 9.
EP14153382.8A 2013-02-06 2014-01-31 Procédé d'estimation de la température des gaz d'échappement Active EP2765290B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1350998A FR3001766A1 (fr) 2013-02-06 2013-02-06 Procede d'estimation de la temperature des gaz d'echappement

Publications (2)

Publication Number Publication Date
EP2765290A1 true EP2765290A1 (fr) 2014-08-13
EP2765290B1 EP2765290B1 (fr) 2015-07-08

Family

ID=47989299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153382.8A Active EP2765290B1 (fr) 2013-02-06 2014-01-31 Procédé d'estimation de la température des gaz d'échappement

Country Status (2)

Country Link
EP (1) EP2765290B1 (fr)
FR (1) FR3001766A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726791A1 (de) * 1997-06-24 1999-01-07 Volkswagen Ag Verfahren zur Überwachung der Konvertierungsrate eines Abgaskatalysators für eine Brennkraftmaschine
US6067800A (en) * 1999-01-26 2000-05-30 Ford Global Technologies, Inc. Control method for a variable geometry turbocharger in a diesel engine having exhaust gas recirculation
US20020100467A1 (en) * 2001-01-31 2002-08-01 Jaliwala Salim A. System for estimating engine exhaust temperature
WO2002061261A2 (fr) * 2001-01-31 2002-08-08 Cummins, Inc. Systeme de controle de la temperature des gaz d'echappement d'un moteur
US6550464B1 (en) * 2001-01-31 2003-04-22 Cummins, Inc. System for controlling engine exhaust temperature
US20090003989A1 (en) 2007-06-26 2009-01-01 Volker Guemmer Blade with tangential jet generation on the profile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726791A1 (de) * 1997-06-24 1999-01-07 Volkswagen Ag Verfahren zur Überwachung der Konvertierungsrate eines Abgaskatalysators für eine Brennkraftmaschine
US6067800A (en) * 1999-01-26 2000-05-30 Ford Global Technologies, Inc. Control method for a variable geometry turbocharger in a diesel engine having exhaust gas recirculation
US20020100467A1 (en) * 2001-01-31 2002-08-01 Jaliwala Salim A. System for estimating engine exhaust temperature
WO2002061261A2 (fr) * 2001-01-31 2002-08-08 Cummins, Inc. Systeme de controle de la temperature des gaz d'echappement d'un moteur
US6550464B1 (en) * 2001-01-31 2003-04-22 Cummins, Inc. System for controlling engine exhaust temperature
US20090003989A1 (en) 2007-06-26 2009-01-01 Volker Guemmer Blade with tangential jet generation on the profile

Also Published As

Publication number Publication date
FR3001766A1 (fr) 2014-08-08
EP2765290B1 (fr) 2015-07-08

Similar Documents

Publication Publication Date Title
EP3014082B1 (fr) Système et procédé de diagnostic de la réduction catalytique sélective d'un véhicule automobile
EP1729000B1 (fr) Méthode d'estimation par un filtre de Kalman étendu de la richesse dans un cylindre d'un moteur à combustion
FR3065990A1 (fr) Procede de reactualisation d’une dynamique d’adaptation d’une valeur de richesse a une consigne dans un moteur
EP2361349B1 (fr) Procede d'estimation dynamique du debit d'air frais alimentant un moteur avec circuits egr haute et basse pression
EP1799983B1 (fr) Procede et systeme ameliores d'estimation d'une temperature des gaz d'echappement et moteur a combustion interne equipe d'un tel systeme
FR2864146A1 (fr) Procede de determination en temps reel de la masse de particules presente dans un filtre a particules de vehicule automobile
EP2423477B1 (fr) Procédé de détermination de l'état physique d'un filtre à particules
EP2195519B1 (fr) Estimation de parametres d'etat d'un moteur par mesure de la pression interne d'un cylindre
EP1739291B1 (fr) Système d'aide à la régénération des moyens de dépollution intègres dans une ligne d'échappement d'un moteur de véhicule automobile
EP2765290B1 (fr) Procédé d'estimation de la température des gaz d'échappement
FR2898936A1 (fr) Procede d'estimation de la richesse d'un melange air/carburant
EP2507491B1 (fr) Système et procédé d'estimation de la masse de particules stockées dans un filtre a particules de véhicule automobile
EP2992193B1 (fr) Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne
EP3067539B1 (fr) Procédé de détermination de la vitesse de rotation du turbocompresseur d'un moteur à combustion interne de véhicule automobile
FR2893979A1 (fr) Procede de mesure de la pression dans un systeme de post-traitement d'un moteur thermique.
FR2987072A1 (fr) Procede de correction d'un systeme de calcul de la consommation d'huile d'un moteur equipe d'un filtre a particules
EP3995685B1 (fr) Procédé de diagnostic d'un débitmètre d'air pour moteur à combustion interne
EP3550129B1 (fr) Dispositif de génération d'informations de commande d'injection de carburant et dispositif de commande
FR2901840A1 (fr) Procede et systeme de controle d'un dispositif de post-traitement des gaz d'echappement
EP2014884A1 (fr) Evaluation du chargement d'un filtre a particules
WO2008043952A2 (fr) Systeme de determination du debit massique d'oxydes d'azote emis dans les gaz d'echappement d'un moteur a combustion interne
FR2893982A1 (fr) Procede et systeme d'estimation d'une temperature des gaz d'echappement en interne d'un systeme de post traitement
EP2811140A1 (fr) Système et procédé de détermination de la fraction massique de gaz frais dans le collecteur d'admission d'un moteur à combustion interne de véhicule automobile
FR3090036A1 (fr) Procede de correction d’une estimation des oxydes d’azote dans une ligne d’echappement
FR2980521A1 (fr) Systeme et procede d'estimation de la masse d'oxydes de soufre stockee dans un piege a oxydes d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 735611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014000066

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 735611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602014000066

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20160119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014000066

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

26N No opposition filed

Effective date: 20160411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140131

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180312

Ref country code: FR

Ref legal event code: CD

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 11