EP2754511B1 - Method for manufacturing a steel wire mesh - Google Patents
Method for manufacturing a steel wire mesh Download PDFInfo
- Publication number
- EP2754511B1 EP2754511B1 EP14150765.7A EP14150765A EP2754511B1 EP 2754511 B1 EP2754511 B1 EP 2754511B1 EP 14150765 A EP14150765 A EP 14150765A EP 2754511 B1 EP2754511 B1 EP 2754511B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel wire
- wire rod
- further processing
- mesh
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 98
- 239000010959 steel Substances 0.000 title claims description 98
- 238000000034 method Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000005065 mining Methods 0.000 claims description 17
- 239000004575 stone Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F27/00—Making wire network, i.e. wire nets
- B21F27/08—Making wire network, i.e. wire nets with additional connecting elements or material at crossings
- B21F27/10—Making wire network, i.e. wire nets with additional connecting elements or material at crossings with soldered or welded crossings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/02—Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C43/00—Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass
- B21C43/02—Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass combined with or specially adapted for use in connection with drawing or winding machines or apparatus
- B21C43/04—Devices for de-scaling wire or like flexible work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F1/00—Bending wire other than coiling; Straightening wire
- B21F1/02—Straightening
- B21F1/026—Straightening and cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F23/00—Feeding wire in wire-working machines or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F27/00—Making wire network, i.e. wire nets
- B21F27/12—Making special types or portions of network by methods or means specially adapted therefor
- B21F27/20—Making special types or portions of network by methods or means specially adapted therefor of plaster-carrying network
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/08—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/14—Lining predominantly with metal
Definitions
- the invention relates to a method for manufacturing a steel wire mesh according to the preamble of the enclosed independent claim.
- a mesh manufactured from steel wire a so-called steel wire mesh for mining applications
- the used steel wire mesh for mining applications should conform to the walls of the tunnel, so the steel wire mesh for mining applications should be manufactured from a wire having an appropriate ductility.
- the steel wire mesh for mining applications manufactured should, however, be relatively easy to shape, so that it can be shaped by mechanical pressing to conform to the walls of the tunnel.
- the steel wire meshes for mining applications are manufactured from wire rod, so that the wire rod made of steel having a specific diameter is first guided to a cold forming stage, in which the diameter of the wire rod is substantially decreased to a desired wire diameter to be used in the final mesh structure.
- the diameter of the wire rod is typically decreased by 8-30%.
- Cold forming can either be carried out by rolling or cold extension. Cold forming requires one or several successive rolls or drawing stones having a different aperture, since the diameter of the rod can only be decreased a certain amount at once. Cold forming reinforces the wire, so that after the cold forming the steel wire has to be heat treated in order to achieve the desired softness and shapability, so that the wire can be used in the manufacture of steel wire mesh for mining applications.
- the heat treatment consumes remarkable amounts of energy and increases thus the production costs of the mesh manufactured from the steel wire.
- the annealed steel wire is straightened and cut into the desired length, after which a desired mesh structure is prepared from the wire by welding.
- Document AU 2002300805 discloses a method, which involves cold working a wire uch that the cross-sectional area of the wire is reduced by 5% to 15% and the wire retains a ductility greater than 5%.
- the object of the present invention is to provide a method for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from a steel wire rod, which method is simpler and thus more cost-effective than the conventional production method.
- the method according to the invention is characterised in what is presented in the characterising part of the independent claim.
- a typical method of the invention for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from steel wire rod is described in claim 1.
- a typical system for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from steel wire rod comprises at least
- the system is free from heat treatment means and the further processing means of the steel wire rod are arranged so that the average diameter of the steel wire rod does not substantially change in the further processing stage.
- the average diameter the steel wire rod does not substantially change, i.e. the average diameter of the wire rod remains substantially the same.
- the steel wire mesh which is manufactured by the method of the invention, is used in the walls of mine tunnels and corresponding structures to reinforce the tunnel structure and to prevent the falling of loose rocks.
- the mesh manufactured by the method according to the invention is thus used as a so-called steel wire mesh for mining applications.
- the steel wire mesh for mining applications is typically a planar and ductile steel mesh, which can be attached to the wall of the mine tunnel or corresponding structure, and after attaching the mesh the tunnel walls can be shotcreted.
- the steel wire mesh for mining applications or corresponding mesh structure having a sufficient strength and shapability can be easily and simply manufactured from the steel wire rod having a specific diameter, which steel wire rod meets the desired strength and shapability requirements, without a separate heat treatment stage.
- the steel wire rod which used as a raw material in the method according to the invention for manufacturing a steel wire mesh is only guided through a further processing stage and straightening stage before forming the actual mesh structure by welding.
- the steel wire rod is typically guided straight from the further processing stage to the straightening stage, optionally through intermediate coiling, but without any intermediate stages, which would affect the strength properties of the wire.
- the manufacturing method according to the invention which method is free from the heat treatment stages of the steel wire rod, is remarkably simpler and more cost-effective than the manufacturing method according to the prior art.
- the further processing stage is only a so-called calibration stretch, the meaning of which is not to substantially change the average diameter of the wire rod, but the average diameter of the steel wire rod is mainly the same before the further processing stage and after it.
- the average diameter of the steel wire rod means the mathematical mean value of the diameters measured at several locations of the wire.
- the further processing is however performed, so that roll scale and other possible slag and impurities, which hinder the welding of the mesh from the steel wire, can be removed from the surface of the steel wire rod to be used as a material of the mesh.
- the diameter of the wire is formed more circular, since the cross-section of the unprocessed steel wire rod is typically not entirely circular, but it may be oval-shaped or otherwise deformed.
- the change of the average diameter of the wire rod is 0.01-0.75%.
- the further processing i.e. the calibration stretch
- the further processing is performed by guiding the steel wire rod through at least one drawing stone, drawing stone aperture being a diameter which is substantially the same as the average diameter of the steel wire rod.
- the steel wire rod is guided through only one drawing stone, wherein the process is as simple as possible.
- the further processing can be performed in a method according to the invention by directing the steel wire rod through one or more rolling units, so that the average diameter of the steel wire rod does not substantially change.
- the steel wire rod is guided in the further processing stage through only one rolling unit so that the average diameter of the wire rod does not substantially change.
- the production speed of this stage can be kept high.
- the production speed which here means the propagation speed of the steel wire rod in the further processing stage, is substantially the same as the maximum speed of a wire coiling unit used in the further processing.
- the production rate is for example about 10 m/s. The production rate is thus not affected by directing the steel wire rod through the further processing means, such as drawing stone or twin rolls.
- the steel wire rod used in the method according to the invention is a wire manufactured from steel by hot rolling, the diameter of which wire is typically substantially round.
- the elongation (A 10 ) of the steel wire rod used in the method according to the invention is typically 25 - 35%.
- the tensile strength R m of the steel wire rod is 370 - 420 N/mm 2 and the yield strength R P0,20 is 320 - 370 N/mm 2 .
- a typical steel wire mesh preferably a steel wire mesh for mining applications, is manufactured from substantially smooth-surface steel wire, i.e. from further processed rod wire.
- steel wire rod having a diameter of 5.5 mm or 6 mm is used as a material of the steel wire mesh for mining applications. Since the method of the invention does not substantially affect to the diameter of the wire, the steel wire mesh according to the invention is thus manufactured from the steel wire, the diameter of which is about 5.5 mm or 6 mm.
- the diameter of the wire affects the mesh size of the mesh to be manufactured, so that the desired strength and weight of the mesh is achieved.
- the diameter of the wire and the mesh size of the mesh to be manufactured from it is chosen according to the purpose of use.
- the mesh-like structure is formed of cut processed parts of the steel wire rod, i.e. steel wire, and the parts of the wire rod overlapping in the structure are welded together at locations, where the parts intersect.
- steel wire rod 2 used as a raw material of the mesh-like structure 1 is guided to a further processing stage 10, in which the wire rod 2 is guided either through at least one drawing stone or rolling unit so that the roll scale is removed from the surface of the wire rod.
- the processed wire rod 3 can be recoiled before the processed wire rod 3, i.e. the steel wire, is further guided to the next stage 20, in which the steel wire 3 is straightened and cut into parts 4, 4' having a desired length.
- the straightening of the wire means smoothing out the wire, so that substantially straight elongated parts 4, 4' can be cut from the wire.
- a mesh-like structure preferably a steel wire mesh for mining applications 1, is formed by welding from the parts 4, 4' cut from the steel wire 3.
- the mesh structure 1 is welded at the intersections, where the parts 4, 4' arranged in different directions relative to each other overlap.
- the manufacture of the mesh employs a wire rod made of steel, which wire rod has
- the wire rod is drawn through a drawing stone, which has an aperture of 5.5 mm, or through a rolling unit, which is set for the diameter of 5.5 mm, so that the roll scale can be removed from the surface of the wire rod (so-called calibration stretch).
- the average diameter of the processed wire rod is not more than 1.5% smaller than the diameter of the unprocessed wire rod.
- the smooth surface steel wire is straightened and cut into parts having a desired length.
- the mesh-like structure having a desired size is welded from the cut parts.
- the size of the steel wire mesh is for example 2270 mm x 2530 mm, and the mesh size of the mesh is 75 mm x 75 mm, wherein the desired strength and shapability properties of the mesh are achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Wire Processing (AREA)
- Metal Extraction Processes (AREA)
- Metal Rolling (AREA)
Description
- The invention relates to a method for manufacturing a steel wire mesh according to the preamble of the enclosed independent claim.
- A mesh manufactured from steel wire, a so-called steel wire mesh for mining applications, is attached to the walls of mine tunnels and respective structures to reinforce the tunnel structure and to prevent the falling of loose rocks. The used steel wire mesh for mining applications should conform to the walls of the tunnel, so the steel wire mesh for mining applications should be manufactured from a wire having an appropriate ductility. However, there are certain strength requirements for the steel wire to be used in the manufacture of the mesh depending on the purpose of use, so that the mesh structure manufactured from it will last in the purpose of use. The steel wire mesh for mining applications manufactured should, however, be relatively easy to shape, so that it can be shaped by mechanical pressing to conform to the walls of the tunnel.
- Typically, the steel wire meshes for mining applications are manufactured from wire rod, so that the wire rod made of steel having a specific diameter is first guided to a cold forming stage, in which the diameter of the wire rod is substantially decreased to a desired wire diameter to be used in the final mesh structure. The diameter of the wire rod is typically decreased by 8-30%. Cold forming can either be carried out by rolling or cold extension. Cold forming requires one or several successive rolls or drawing stones having a different aperture, since the diameter of the rod can only be decreased a certain amount at once. Cold forming reinforces the wire, so that after the cold forming the steel wire has to be heat treated in order to achieve the desired softness and shapability, so that the wire can be used in the manufacture of steel wire mesh for mining applications. The heat treatment consumes remarkable amounts of energy and increases thus the production costs of the mesh manufactured from the steel wire. After the heat treatment the annealed steel wire is straightened and cut into the desired length, after which a desired mesh structure is prepared from the wire by welding.
- Document
WO 00/51760 claim 1, discloses a method and installation for producing grid mats comprised of rods which are welded to one another at crossing points. Rods are continuously drawn from each wire supply and stretched, subsequently temper rolled and cut into lengths. - Document
AU 2002300805 - The object of the present invention is to provide a method for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from a steel wire rod, which method is simpler and thus more cost-effective than the conventional production method.
- To achieve this object, the method according to the invention is characterised in what is presented in the characterising part of the independent claim.
- The other, dependent claims present some preferred embodiments of the invention.
- A typical method of the invention for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from steel wire rod is described in
claim 1. - A typical system for manufacturing a steel wire mesh, preferably a steel wire mesh for mining applications, from steel wire rod, comprises at least
- means for guiding steel wire rod into a further processing stage,
- means for further processing the steel wire rod,
- means for straightening the processed steel wire rod and cutting it into parts having a desired length, and
- means for welding the mesh from the steel wire parts.
- The system is free from heat treatment means and the further processing means of the steel wire rod are arranged so that the average diameter of the steel wire rod does not substantially change in the further processing stage.
- In a method according to the invention the average diameter the steel wire rod does not substantially change, i.e. the average diameter of the wire rod remains substantially the same.
- Typically, the steel wire mesh, which is manufactured by the method of the invention, is used in the walls of mine tunnels and corresponding structures to reinforce the tunnel structure and to prevent the falling of loose rocks. Typically, the mesh manufactured by the method according to the invention is thus used as a so-called steel wire mesh for mining applications. The steel wire mesh for mining applications is typically a planar and ductile steel mesh, which can be attached to the wall of the mine tunnel or corresponding structure, and after attaching the mesh the tunnel walls can be shotcreted.
- It has now been surprisingly found that the steel wire mesh for mining applications or corresponding mesh structure having a sufficient strength and shapability can be easily and simply manufactured from the steel wire rod having a specific diameter, which steel wire rod meets the desired strength and shapability requirements, without a separate heat treatment stage. The steel wire rod which used as a raw material in the method according to the invention for manufacturing a steel wire mesh is only guided through a further processing stage and straightening stage before forming the actual mesh structure by welding. In other words, in the method according to the invention the steel wire rod is typically guided straight from the further processing stage to the straightening stage, optionally through intermediate coiling, but without any intermediate stages, which would affect the strength properties of the wire. Thus, the manufacturing method according to the invention, which method is free from the heat treatment stages of the steel wire rod, is remarkably simpler and more cost-effective than the manufacturing method according to the prior art.
- In the method according to the invention the further processing stage is only a so-called calibration stretch, the meaning of which is not to substantially change the average diameter of the wire rod, but the average diameter of the steel wire rod is mainly the same before the further processing stage and after it. The average diameter of the steel wire rod means the mathematical mean value of the diameters measured at several locations of the wire. The further processing is however performed, so that roll scale and other possible slag and impurities, which hinder the welding of the mesh from the steel wire, can be removed from the surface of the steel wire rod to be used as a material of the mesh. Simultaneously, the diameter of the wire is formed more circular, since the cross-section of the unprocessed steel wire rod is typically not entirely circular, but it may be oval-shaped or otherwise deformed.
- According to the invention the change of the average diameter of the wire rod is 0.01-0.75%.
- In one embodiment method according to the invention the further processing, i.e. the calibration stretch, is performed by guiding the steel wire rod through at least one drawing stone, drawing stone aperture being a diameter which is substantially the same as the average diameter of the steel wire rod. In a preferred embodiment the steel wire rod is guided through only one drawing stone, wherein the process is as simple as possible. Alternatively, the further processing can be performed in a method according to the invention by directing the steel wire rod through one or more rolling units, so that the average diameter of the steel wire rod does not substantially change. In one preferred embodiment the steel wire rod is guided in the further processing stage through only one rolling unit so that the average diameter of the wire rod does not substantially change.
- Since the calibration stretch stage is only meant to remove roll scale from the surface of the steel wire rod to be used as a raw material for the steel wire mesh, the production speed of this stage can be kept high. In an embodiment of the invention the production speed, which here means the propagation speed of the steel wire rod in the further processing stage, is substantially the same as the maximum speed of a wire coiling unit used in the further processing. The production rate is for example about 10 m/s. The production rate is thus not affected by directing the steel wire rod through the further processing means, such as drawing stone or twin rolls.
- The steel wire rod used in the method according to the invention is a wire manufactured from steel by hot rolling, the diameter of which wire is typically substantially round. The elongation (A10) of the steel wire rod used in the method according to the invention is typically 25 - 35%. Typically, the tensile strength Rm of the steel wire rod is 370 - 420 N/mm2 and the yield strength RP0,20 is 320 - 370 N/mm2.
- A typical steel wire mesh, preferably a steel wire mesh for mining applications, is manufactured from substantially smooth-surface steel wire, i.e. from further processed rod wire.
- In one preferred embodiment of the invention steel wire rod having a diameter of 5.5 mm or 6 mm is used as a material of the steel wire mesh for mining applications. Since the method of the invention does not substantially affect to the diameter of the wire, the steel wire mesh according to the invention is thus manufactured from the steel wire, the diameter of which is about 5.5 mm or 6 mm. The diameter of the wire affects the mesh size of the mesh to be manufactured, so that the desired strength and weight of the mesh is achieved. The diameter of the wire and the mesh size of the mesh to be manufactured from it is chosen according to the purpose of use.
- The mesh-like structure is formed of cut processed parts of the steel wire rod, i.e. steel wire, and the parts of the wire rod overlapping in the structure are welded together at locations, where the parts intersect.
- In the following the invention will be described in more detail with reference to the appended
Figure 1 , which illustrates the method of the invention. - In the method of
Figure 1 steel wire rod 2 used as a raw material of the mesh-like structure 1 is guided to afurther processing stage 10, in which thewire rod 2 is guided either through at least one drawing stone or rolling unit so that the roll scale is removed from the surface of the wire rod. After thefurther processing stage 10 the processedwire rod 3 can be recoiled before the processedwire rod 3, i.e. the steel wire, is further guided to thenext stage 20, in which thesteel wire 3 is straightened and cut intoparts 4, 4' having a desired length. The straightening of the wire means smoothing out the wire, so that substantially straightelongated parts 4, 4' can be cut from the wire. - A mesh-like structure, preferably a steel wire mesh for
mining applications 1, is formed by welding from theparts 4, 4' cut from thesteel wire 3. Themesh structure 1 is welded at the intersections, where theparts 4, 4' arranged in different directions relative to each other overlap. - In the following is described an example of a steel wire mesh for mining applications manufactured by the method according to the invention.
- The manufacture of the mesh employs a wire rod made of steel, which wire rod has
- an average diameter of 5.5 mm
- an elongation A10 = 25 - 30%
- a tensile strength Rm = 370 - 420 N/mm2
- a yield strength RP0,20 = 320 - 370 N/mm2
- The wire rod is drawn through a drawing stone, which has an aperture of 5.5 mm, or through a rolling unit, which is set for the diameter of 5.5 mm, so that the roll scale can be removed from the surface of the wire rod (so-called calibration stretch). The average diameter of the processed wire rod is not more than 1.5% smaller than the diameter of the unprocessed wire rod.
- After the calibration stretch the smooth surface steel wire is straightened and cut into parts having a desired length. The mesh-like structure having a desired size is welded from the cut parts. The size of the steel wire mesh is for example 2270 mm x 2530 mm, and the mesh size of the mesh is 75 mm x 75 mm, wherein the desired strength and shapability properties of the mesh are achieved.
- The invention is not intended to be limited to the above-presented exemplary embodiments, but the intention is to apply the invention widely within the scope defined by the claims defined below.
Claims (7)
- Method for manufacturing a steel wire mesh (1) for mining applications, from steel wire rod (2), in which method- steel wire rod (2) having a specific diameter is guided to a further processing stage (10) where roll scale and other possible impurities are removed from the surface of the steel wire rod,- the processed steel wire rod (3) is straightened and cut into parts having a desired length,- the desired steel wire mesh (1) is welded from the cut steel wire parts (4, 4'),wherein the method is free from heat treatment stages,
characterized in that- the average diameter of the steel wire rod (2) remains substantially the same in the further processing stage, and the diameter of the steel wire rod is formed more circular, the change of the average diameter of the steel wire rod being 0.01-0.75%,- the steel wire rod is only guided through the further processing stage and the straightening stage before forming the actual mesh structure by welding. - Method according to claim 1, characterized in that the further processing (10) of the steel wire rod is performed by guiding the steel wire rod (2) through at least one drawing stone, the drawing stone aperture having a diameter, which is substantially the same as the diameter of the steel wire rod.
- Method according to claim 1, characterized in that the further processing (10) is performed by guiding the steel wire rod (2) through one or more rolling units.
- Method according to any of the preceding claims, characterized in that the steel wire rod is typically guided directly from the further processing stage to a straightening stage, only through an optional intermediate coiling, but without any intermediate steps which would affect the strength properties of the steel wire.
- Method according to any of the preceding claims, characterized in that the propagation speed of the steel wire rod in the further processing stage is substantially the same as the maximum speed of a wire coiling unit used in the further processing.
- Method according to any of the preceding claims, characterized in that the elongation (A10) of the steel wire rod is 25 - 35% and its tensile strength Rm is 370 - 420 N/mm2.
- Method according to any of the preceding claims, characterized in that the average diameter of the steel wire rod (2) is about 5.5 mm or 6 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14150765T PL2754511T3 (en) | 2013-01-11 | 2014-01-10 | Method for manufacturing a steel wire mesh |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20135036A FI125869B (en) | 2013-01-11 | 2013-01-11 | Method for producing a mine net made of steel wire and use of mine net |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2754511A1 EP2754511A1 (en) | 2014-07-16 |
EP2754511B1 true EP2754511B1 (en) | 2018-08-08 |
Family
ID=49955195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14150765.7A Active EP2754511B1 (en) | 2013-01-11 | 2014-01-10 | Method for manufacturing a steel wire mesh |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2754511B1 (en) |
ES (1) | ES2691123T3 (en) |
FI (1) | FI125869B (en) |
LT (1) | LT2754511T (en) |
PL (1) | PL2754511T3 (en) |
PT (1) | PT2754511T (en) |
SE (1) | SE537141C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108787767A (en) * | 2018-06-15 | 2018-11-13 | 金华市永达金属结构有限公司 | A kind of wire drawing machine and application method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017098082A1 (en) * | 2015-12-07 | 2017-06-15 | Tammet Oy | Mesh for mining and subterranean constructions |
CN107876580B (en) * | 2017-09-30 | 2019-09-27 | 李文华 | A kind of multifunctional steel wire coil winder to derust with straightening |
CN111014318A (en) * | 2019-12-17 | 2020-04-17 | 江西云泰铜业有限公司 | Wire drawing device for copper product production and processing |
CN111691048A (en) * | 2020-07-01 | 2020-09-22 | 海宁艾力针织有限公司 | Conveniently-controlled tufting yarn equidistant cutting equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1281466B1 (en) * | 1995-12-22 | 1998-02-18 | Impianti Industriali Spa | PROCEDURE FOR THE PRODUCTION OF ELECTRO-WELDED MESH AND RELATED DEVICE |
AT408196B (en) * | 1999-03-02 | 2001-09-25 | Evg Entwicklung Verwert Ges | METHOD AND SYSTEM FOR PRODUCING GRID MATS |
AU2002300805B2 (en) * | 2001-08-28 | 2007-02-15 | The Australian Steel Company (Operations) Pty Ltd | Metal mesh and method for producing a wire component therefor |
-
2013
- 2013-01-11 FI FI20135036A patent/FI125869B/en active IP Right Grant
- 2013-03-20 SE SE1350347A patent/SE537141C2/en unknown
-
2014
- 2014-01-10 EP EP14150765.7A patent/EP2754511B1/en active Active
- 2014-01-10 PT PT14150765T patent/PT2754511T/en unknown
- 2014-01-10 ES ES14150765.7T patent/ES2691123T3/en active Active
- 2014-01-10 PL PL14150765T patent/PL2754511T3/en unknown
- 2014-01-10 LT LTEP14150765.7T patent/LT2754511T/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108787767A (en) * | 2018-06-15 | 2018-11-13 | 金华市永达金属结构有限公司 | A kind of wire drawing machine and application method |
Also Published As
Publication number | Publication date |
---|---|
SE1350347A1 (en) | 2014-07-12 |
ES2691123T3 (en) | 2018-11-23 |
PL2754511T3 (en) | 2019-01-31 |
SE537141C2 (en) | 2015-02-17 |
LT2754511T (en) | 2018-11-12 |
FI20135036A (en) | 2014-07-12 |
EP2754511A1 (en) | 2014-07-16 |
FI125869B (en) | 2016-03-15 |
PT2754511T (en) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2754511B1 (en) | Method for manufacturing a steel wire mesh | |
CN111097796B (en) | Production system and production method of high-ductility ribbed steel bar | |
WO2011107848A4 (en) | Improved reinforcing bar and method for manufacturing the same | |
KR20210114031A (en) | Rectangular steel pipe, manufacturing method thereof, and building structure | |
WO2019057335A8 (en) | Method for producing a raw wire from a first metal strip and at least one further metal strip by roll profiling | |
CN105436233A (en) | Processing technology of cold-rolled steel bar | |
JP2024521190A (en) | Equipment and method for producing steel bars | |
RU2709554C1 (en) | Method of wire hardening by plastic deformation | |
RU2070448C1 (en) | Method of periodical shape reinforcing steel production | |
US12115570B2 (en) | Method and device for producing a rod-shaped element | |
JP2004009126A (en) | Electric welded steel pipe for hollow stabilizer | |
RU2498870C1 (en) | Method of producing nano-structured wire from high-carbon steel | |
RU108326U1 (en) | TECHNOLOGICAL TOOL OF A THREE-SWEEL CROSS-SCREW ROLLING MACHINE | |
RU2496592C2 (en) | Method of trilateral die-rolled section profile application on high-strength reinforcing wire surface | |
KR101359114B1 (en) | Apparatus and Method for manufacturing high carbon steel | |
JP2024521840A (en) | Equipment and method for producing steel in wire and/or bar form | |
RU2357822C1 (en) | Method of fabricating wire of oval cross section | |
RU2649610C1 (en) | Method of manufacturing a round wire of carbon steel by drawing | |
RU2357824C1 (en) | Method of fabricating wire of oval cross section | |
RU2514254C1 (en) | Method of straightening of pipes with outer ribs | |
CN106284994A (en) | A kind of novel building plate-like pull bar and preparation method thereof | |
RU2357825C1 (en) | Method of fabricating wire of oval cross section | |
SU1456260A1 (en) | Method of manufacturing longitudinal welded tubes | |
JP5903826B2 (en) | Hot slab sizing rolling method | |
RU2062152C1 (en) | Strip metal straightening method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TAMMET OY |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150116 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180220 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180509 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1026409 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014029789 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2754511 Country of ref document: PT Date of ref document: 20181108 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2691123 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181123 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180808 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E016401 Country of ref document: EE Effective date: 20181015 Ref country code: AT Ref legal event code: MK05 Ref document number: 1026409 Country of ref document: AT Kind code of ref document: T Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181108 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181109 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181108 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014029789 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190110 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190110 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: HC1A Ref document number: E016401 Country of ref document: EE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20231206 Year of fee payment: 11 Ref country code: LT Payment date: 20231219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231214 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240208 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: EE Payment date: 20240125 Year of fee payment: 11 Ref country code: DE Payment date: 20240123 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LV Payment date: 20240122 Year of fee payment: 11 |