EP2752553A1 - Rotorvorrichtung, turbinenrotorvorrichtung und gasturbine sowie turbinenmotor damit - Google Patents
Rotorvorrichtung, turbinenrotorvorrichtung und gasturbine sowie turbinenmotor damit Download PDFInfo
- Publication number
- EP2752553A1 EP2752553A1 EP12823737.7A EP12823737A EP2752553A1 EP 2752553 A1 EP2752553 A1 EP 2752553A1 EP 12823737 A EP12823737 A EP 12823737A EP 2752553 A1 EP2752553 A1 EP 2752553A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine rotor
- prestressed
- turbine
- fiber
- rotor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/03—Annular blade-carrying members having blades on the inner periphery of the annulus and extending inwardly radially, i.e. inverted rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
- F01D5/225—Blade-to-blade connections, e.g. for damping vibrations by shrouding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/34—Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- Embodiments of the present invention generally relate to a turbine engine field and a gas turbine field, particularly to a rotor device wound by prestressed fibers, specifically a turbine rotor device, a gas turbine and a turbine engine having the turbine rotor device.
- the turbine rotor is a key element in the aerospace engine and gas turbine.
- a severe operation condition such as high temperature and high rotating speed
- Complicate loads such as a centrifugal force generated by high rotating speed, a thermal stress, an aerodynamic force of the gas or vapor and vibration load, are exerted on the rotor disc and blades of the turbine rotor, which forms a stress state mainly composed of the tensile stress. Therefore, turbine materials must have a high strength and an excellent fatigue resistance at a high temperature.
- Embodiments of the present invention seek to solve at least one of the problems existing in the prior art to at least some extent.
- a turbine rotor device with enhanced fatigue life and working temperature is provided, thus improving the safety of the turbine rotor device.
- a rotor device with enhanced fatigue life and working temperature is provided, thus improving the safety of the turbine rotor.
- a turbine rotor device including a turbine rotor body; and a prestressed fiber-winding layer disposed on a periphery of the turbine rotor body for exerting a predetermined pre-loading force on the turbine rotor body.
- the working stress of the turbine rotor may be reduced by means of the predetermined preloading force provided by the prestressed fiber-winding layer, so as to improve the service life and the working temperature of the turbine rotor.
- the extension of cracks generated within the turbine rotor body at a high temperature can be prevented, thus providing the turbine rotor device with a cracking prevention performance and further improving the safety of the gas turbine having the turbine rotor device.
- a coefficient of thermal expansion of the prestressed fiber-winding layer is less than or equal to that of the turbine rotor body.
- the predetermined pre-loading force provided by the prestressed fiber-winding layer and an extra pre-loading force generated by different coefficients of thermal expansion of the prestressed fiber-winding layer and the turbine rotor body at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- a gas turbine including the turbine rotor device.
- a turbine engine including the turbine rotor device.
- a rotor device including a rotor body; and a prestressed fiber-winding layer disposed on a periphery of the rotor body for exerting a predetermined pre-loading force on the rotor body.
- the working stress of the turbine rotor may be reduced by means of the predetermined pre-loading force provided by the prestressed fiber-winding layer, so as to improve the service life and the working temperature of the turbine rotor.
- the extension of cracks generated within the turbine rotor body at a high temperature can be prevented, thus providing the turbine rotor device with a cracking prevention performance and further improving the safety of the gas turbine having the turbine rotor device.
- a coefficient of thermal expansion of the prestressed fiber-winding layer is less than or equal to that of the rotor body.
- the predetermined pre-loading force provided by the prestressed fiber-winding layer and an extra pre-loading force generated by different coefficients of thermal expansion of the prestressed fiber-winding layer and the turbine rotor body at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- relative terms such as “central”, “longitudinal”, “lateral”, “front”, “rear”, “right”, “left”, “inner”, “encasing”, “lower”, “upper”, “horizontal”, “vertical”, “above”, “below”, “up”, “top”, “bottom” as well as derivative thereof (e.g., “horizontally”, “downwardly”, “upwardly”, etc.) should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present invention be constructed or operated in a particular orientation.
- first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of the technical features. Thus, the technical feature limited by “first” and “second” may indicate or imply to include one or more technical features.
- “plurality” means two or more than two, unless otherwise specified.
- the present invention is based on the following conceptions of the inventors, i.e., fibers having a low mass density, a high strength and an excellent high-temperature performance are wound on a periphery of the turbine rotor under a predetermined tensile stress, and the fibers exert a predetermined pre-loading force on a rotor, such as the turbine rotor, to reduce the working stress of the rotor, so as to improve a service life and a working temperature of the rotor.
- An extra pre-loading force generated by different coefficients of thermal expansion of the prestressed fiber-winding layer and the rotor body at a high temperature can dramatically improve the service life and the working temperature of the gas turbine.
- the turbine rotor can have a good cracking prevention performance, thus improving the safety of the turbine rotor.
- the pre-stressing technology is a structure design technology aiming at improving a fatigue resistance and a bearing capacity of the structure via changing working stress states of the structure and the material.
- the main working stress state of the whole structure changes into a compressive stress state from a tensile stress state, or the tensile stress is decreased greatly so as to improve the fatigue resistance of the whole structure.
- the wire or fiber with a low mass density, a high strength and a high temperature resistance is adopted as a prestressed winding element.
- the fiber in order to improve the high temperature performance of the fiber, one or more of the carbon fiber, silicon carbide fiber, alumina fiber and boron fiber may be adopted as the fiber.
- the fiber may be a general purpose polyacrylonitrile (PAN) based carbon fiber T700 produced by Toray Industries, in which a density of the PAN based carbon fiber is 1.80g/cm 3 , a tensile strength of the PAN based carbon fiber may reach 4.9GPa, and a working temperature of the PAN based carbon fiber may be retained at over 2000°C under anaerobic conditions without the high temperature creep.
- PAN polyacrylonitrile
- the turbine rotor device used for the gas turbine is taken as an example to describe the present invention, however, the turbine rotor device is only for illustration purpose and cannot be construed to limit the present disclosure. After reading some embodiments of the present invention, those skilled in the art will easily apply the turbine rotor device to other assemblies such as a compressor rotor and a fan propeller of the turbine engine and to other turbine engines, thus improving the performance of the rotor at a high temperature.
- Figs. 1 to 8 are schematic perspective views of the turbine rotor device used for the gas turbine according to some embodiments of the present invention.
- the turbine rotor device for the gas turbine includes a turbine rotor body 1 and a prestressed fiber-winding layer 2, in which the prestressed fiber-winding layer 2 is disposed on a periphery of the turbine rotor body 1 so as to exert a predetermined pre-loading force on the turbine rotor body 1.
- the working stress within the turbine rotor may be reduced by means of the predetermined pre-loading force exerted by the prestressed fiber-winding layer 2, thus improving the service life and the working temperature of the turbine rotor.
- a coefficient of thermal expansion of the prestressed fiber-winding layer 2 is less than or equal to that of the turbine rotor body 1.
- the predetermined pre-loading force provided by the prestressed fiber-winding layer 2 and an extra pre-loading force generated by different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 can be combined to further reduce the working stress of the turbine rotor, thus improving the service life and the working temperature of the turbine rotor.
- the prestressed fiber-winding layer 2 wound by prestressed fibers layer by layer may prevent the extension of cracks generated within the turbine rotor body 1 at a high temperature, thus providing the turbine rotor device with a cracking prevention performance and further improving the safety of the gas turbine.
- a turbine rotor device includes a turbine rotor body 1 and a prestressed fiber-winding layer 2 wound on a periphery of the turbine rotor body 1.
- the turbine rotor body 1 includes a rotor disc 11, a rabbet 12, blades 13 and a shroud 14.
- the blade 13 is fixed on a periphery of the rotor disc 11 via the rabbet 12, and the shroud 14 is disposed on a periphery of the blade 13.
- the prestressed fiber-winding layer 2 includes a receiving trough 21 and prestressed fibers 22.
- the receiving trough 21 is disposed on the periphery of the turbine rotor body 1 and defines a receiving groove 210 extended in a circumferential direction of the receiving trough 21.
- the prestressed fibers 22 are wound within the receiving groove 210 under a predetermined tensile stress.
- a coefficient of thermal expansion of the prestressed fiber-winding layer 2 is less than or equal to that of the turbine rotor body 1.
- the predetermined pre-loading force provided by the prestressed fiber-winding layer 2 and an extra pre-loading force generated by different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- the prestressed fiber-winding layer 2 further includes: a sealing cover plate 23 for sealing the receiving groove 210 of the receiving trough 21 to form a sealing structure, thus isolating the prestressed fiber-winding layer 2 from the ambient air.
- the receiving trough 21 may be manufactured from high-temperature-resisting materials with a low mass density, such as a titanium alloy, a TiAl based alloy, a carbon/carbon composite and an alumina ceramic.
- the receiving trough 21 is substantially manufactured of an annular shape adapted to fit the periphery of turbine motor body 1, and the receiving groove 210 extended in the circumferential direction of the receiving trough 21 is formed on a periphery of the receiving trough 21, as shown in Fig. 3 .
- the prestressed fibers 22 are at least one of carbon fiber, silicon carbide fiber, alumina fiber, boron fiber and other materials having a low mass density, a high strength and an excellent high-temperature performance.
- the prestressed fibers are wound within the receiving trough 21 layer by layer under a tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 having a thickness ranging from 0.5mm to 100mm in a radial direction of the turbine rotor body 1.
- the prestressed fiber-winding layer 2 exerts a predetermined pre-loading force on the turbine rotor body 1 in the radial direction.
- the creation and extension of the cracks within the turbine rotor body 1 at a high temperature can be prevented efficiently, and the fatigue resisting performance of the turbine rotor body 1 and the safety of the gas turbine also are further improved.
- the prestressed fiber-winding layer 2 wound on the periphery of the turbine rotor body 1 can reduce the developing speed of the cracks within itself, thus preventing broken fragments from splashing, and avoiding a secondary damage.
- the coefficient of thermal expansion of the prestressed fibers 22 is less than or equal to that of the turbine rotor body 1 (namely, the rotor disc 11, rabbet 12, blade 13 and shroud 14).
- the coefficient of thermal expansion of the prestressed carbon fibers 22 is about 0.93 ⁇ 10 -6 /°C and the coefficient of thermal expansion of the turbine rotor body 1 ranges from about 11 ⁇ 10 -6 /°C to about 16 ⁇ 10 -6 /°C.
- the actual pre-loading force on the turbine rotor body 1 is greater than the initial pre-loading force due to the thermally induced pre-loading force generated by the different coefficients of thermal expansion of the prestressed fibers 22 and the turbine rotor body 1 and the uneven distribution of the working temperature of the turbine rotor body 1.
- the working tensile stress of the turbine rotor body 1 is further reduced and the load condition of the gas turbine is improved.
- the actual pre-loading force of the prestressed fibers 22 will be increased with the rise of the working temperature of the turbine rotor body 1, thus effectively compensating for the decreasing strength performance of the turbine rotor body 1 at a high temperature.
- the sealing cover plate 23 may also be manufactured from high-temperature-resisting materials with a low mass density, such as the titanium alloy, the TiAl based alloy, the carbon/carbon composite and the alumina ceramic.
- the sealing cover plate 23 is disposed on an outer side of the prestressed fibers 22 wound within the receiving trough 21 to isolate the prestressed fibers 22 from the ambient air, thus preventing the prestressed fibers 22 from being oxidized and ablation at a high temperature.
- the turbine rotor body 1 is formed by assembling the rotor disc 11, the rabbet 12, the blade 13 and the shroud 14 together.
- the receiving trough 21 is fitted over the shrouds 14 of the blades 13 with a gap ranging from 0.001mm to 0.01mm
- the prestressed fibers 22 are wound within the receiving groove 210 of the receiving trough 21 layer by layer with the tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 with the thickness ranging from 0.5mm to 100mm in the radial direction of the turbine rotor body 1.
- the sealing cover plate 23 is disposed in the receiving groove 210 of the receiving trough 21 to cover the prestressed fibers 22.
- the sealing cover plate 23 and the receiving trough 21 are hermetically connected by connecting joints between the sealing cover plate 23 and the receiving groove 210 via electron beam welding, laser welding or sintering.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- the turbine rotor device includes a turbine rotor body 1 and a prestressed fiber-winding layer 2 wound on a periphery of the turbine rotor body 1.
- the turbine rotor body 1 includes a rotor disc 11, a rabbet 12, a blade 13 and a shroud 14.
- the blade 13 is fixed on a periphery of the rotor disc 11 via the rabbet 12, and the shroud 14 is disposed on a periphery of the blade 13, in which two circumferential edges of the shroud 14 are extended outwards in a radial direction to form a receiving groove 140 (equivalent to forming the receiving trough 21 and the shroud 14 in the first embodiment of the present invention integrally).
- the prestressed fibers 22 are at least one of carbon fiber, silicon carbide fiber, alumina fiber, boron fiber and other materials having a low mass density, a high strength and an excellent high-temperature performance.
- the prestressed fibers 22 are wound within the receiving groove 140 layer by layer under a tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 having a thickness ranging from 0.5mm to 100mm in a radial direction of the turbine rotor body 1.
- the prestresed fiber-winding layer 2 exerts a predetermined pre-loading force on the turbine rotor body 1 in the radial direction.
- the creation and extension of the cracks generated within the turbine rotor body 1 at a high temperature can be prevented efficiently, and the fatigue resisting performance of the turbine rotor body 1 and the safety of the gas turbine also are further improved.
- the prestressed fiber-winding layer 2 wound on the periphery of the turbine rotor body 1 can reduce the developing speed of the cracks within itself, thus preventing the broken fragments from splashing, and avoiding a secondary damage.
- the coefficient of thermal expansion of the prestressed fibers 22 is less than or equal to that of the turbine rotor body 1 (namely, the rotor disc 11, rabbet 12, blade 13 and shroud 14).
- the coefficient of thermal expansion of the prestressed carbon fibers 22 is about 0.93 ⁇ 10 -6 /°C and the coefficient of thermal expansion of the turbine rotor body 1 ranges from about 11 ⁇ 10 -6 /°C to about 16 ⁇ 10 -6 /°C.
- the actual pre-loading force on the turbine rotor body 1 is greater than the initial pre-loading force due to the thermally induced pre-loading force generated by the different coefficients of thermal expansion of the prestressed fibers 22 and the turbine rotor body 1 and the uneven distribution of the working temperature of the turbine rotor body 1.
- the tensile working stress of the turbine rotor body 1 is further reduced and the load condition of the gas turbine is improved.
- the actual pre-loading force of the prestressed fibers 22 can be increased with the rise of the working temperature of the turbine rotor body 1, thus effectively compensating for the decreasing strength performance of the turbine rotor body 1 at a high temperature.
- the sealing cover plate 23 may be manufactured from high-temperature-resisting materials with a low mass density, such as the titanium alloy, the TiAl based alloy, the carbon/carbon composite and the alumina ceramic.
- the sealing cover plate 23 is disposed on an outer side of the prestressed fibers 22 wound within the receiving groove 140 to isolate the prestressed fibers 22 from the ambient air, thus preventing the prestressed fibers 22 from being oxidized and ablation at a high temperature.
- the turbine rotor body 1 is formed by assembling the rotor disc 11, the rabbet 12, the blade 13 and the shroud 14 together.
- the prestressed fibers 22 are wound within the receiving groove 140 of the shroud 14 layer by layer under the tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 with the thickness ranging from 0.5mm to 100mm in the radial direction of the turbine rotor body 1.
- the sealing cover plate 23 is disposed in the receiving groove 140 of the shroud 14 to cover the prestressed fibers 22.
- the sealing cover plate 23 and the shroud 14 are hermetically connected by connecting joints between the sealing cover plate 23 and the receiving groove 140 via electron beam welding, laser welding or sintering.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- Figs. 6 and 7 illustrate a structure of a turbine rotor device according to a third embodiment of the present invention.
- a difference between the turbine rotor device in the third embodiment of the present invention and that in the second embodiment of the present invention only is the structure of the prestressed fiber-winding layer 2.
- the following description is focused on the prestressed fiber-winding layer 2, and other structures identical to those in the second embodiment of the present invention are omitted.
- the prestressed fibers 22 are at least one of carbon fiber, silicon carbide fiber, alumina fiber, boron fiber and other materials having a low mass density, a high strength and an excellent high-temperature performance.
- the prestressed fibers 22 are wound within the receiving groove 140 layer by layer under a tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 having a thickness ranging from 0.5mm to 100mm in a radial direction of the turbine rotor body 1.
- the prestressed fiber-winding layer 2 exerts a predetermined pre-loading force on the turbine rotor body 1 in the radial direction.
- the creation and extension of the cracks generated within the turbine rotor body 1 at a high temperature can be prevented efficiently, and the fatigue resisting performance of the turbine rotor body 1 and the safety of the gas turbine also are further improved.
- the prestressed fiber-winding layer 2 wound on the periphery of the turbine rotor body 1 can reduce the developing speed of the cracks within itself, thus preventing the broken fragments from splashing, and avoiding a secondary damage.
- the coefficient of thermal expansion of the prestressed fibers 22 is less than or equal to that of the turbine rotor body 1 (namely, the rotor disc 11, rabbet 12, blade 13 and shroud 14).
- the coefficient of thermal expansion of the prestressed fibers 22 is about 0.93 ⁇ 10 -6 /°C and the coefficient of thermal expansion of the turbine rotor body 1 ranges from about 11 ⁇ 10 -6 /°C to about 16 ⁇ 10 -6 /°C.
- the actual pre-loading force on the turbine rotor body 1 is greater than the initial pre-loading force due to the thermally induced pre-loading force generated by the different coefficients of thermal expansion of the prestressed fibers 22 and the turbine rotor body 1 and the uneven distribution of the working temperature of the turbine rotor body 1.
- the tensile working stress of the turbine rotor body 1 is further reduced and the load condition of the gas turbine is improved.
- the actual pre-loading force of the prestressed fibers 22 can be increased with the rise of the working temperature of the turbine rotor body 1, thus effectively compensating for the decreasing strength performance of the turbine rotor body 1 at a high temperature.
- An anti-oxidation coating such as a silicon carbide coating or an alumina coating is coated on a surface of the prestressed fibers 22, so as to isolate the prestressed fibers 22 from the ambient air, thus preventing the prestressed fibers 22 from being oxidized and ablation at a high temperature.
- the turbine rotor body 1 is formed by assembling the rotor disc 11, the rabbet 12, the blade 13 and the shroud 14 together. Then, the prestressed fibers 22 are wound within the receiving groove 140 of the shroud 14 layer by layer under the tensile stress ranging from 0 to 10.0GPa, so as to form the prestressed fiber-winding layer 2 with the thickness ranging from 0.5mm to 100mm in the radial direction of the turbine rotor body 1.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- Fig. 8 illustrates a structure of a turbine rotor device according to a fourth embodiment of the present invention.
- a difference between the turbine rotor device in the fourth embodiment and those in the first, second and third embodiments is the structure of the turbine rotor body 1.
- the following description is focused on the turbine rotor body 1, and other structures identical to those in the other embodiments of the present invention are omitted.
- the turbine rotor body 1 includes a rotor disc 11, a blade 13 and a shroud 14.
- the blade 13 is disposed on a periphery of the rotor disc 11, and the shroud 14 is disposed on a periphery of the blade 13.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- a gas turbine having the turbine rotor device is provided.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the turbine rotor device, thus improving the service life and the working temperature of the turbine rotor device.
- a turbine engine having the turbine rotor device is provided.
- the pre-loading force provided by the prestressed fiber-winding layer 2 and the extra pre-loading force generated by the different coefficients of thermal expansion of the prestressed fiber-winding layer 2 and the turbine rotor body 1 at a high temperature can be combined to further reduce the working stress of the rotor, thus improving the service life and the working temperature of the turbine engine.
- the turbine rotor device and the gas turbine having the turbine rotor device according to the exemplary embodiments of the present invention are described above. It would be appreciated by those skilled in the art that technical features of the turbine rotor device in the above embodiments of the present invention can be freely combined as long as no conflict occurs.
- the anti-oxidation coatings may be coated on the surfaces of the prestressed fibers 22 of the turbine rotor devices in the first and second embodiments, or the shroud 14 and the receiving trough 21 in the third embodiment of the present invention may be formed separately, as in the first embodiment. All the above combinations should be within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110233574.XA CN102418562B (zh) | 2011-08-15 | 2011-08-15 | 一种纤维缠绕的预应力涡轮转子 |
PCT/CN2012/078518 WO2013023507A1 (zh) | 2011-08-15 | 2012-07-11 | 转子装置、涡轮转子装置、具有其的燃气轮机和涡轮发动机 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2752553A1 true EP2752553A1 (de) | 2014-07-09 |
EP2752553A4 EP2752553A4 (de) | 2015-07-08 |
EP2752553B1 EP2752553B1 (de) | 2018-11-14 |
Family
ID=45943182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12823737.7A Not-in-force EP2752553B1 (de) | 2011-08-15 | 2012-07-11 | Rotorvorrichtung, turbinenrotorvorrichtung und gasturbine sowie turbinenmotor damit |
Country Status (5)
Country | Link |
---|---|
US (1) | US10378365B2 (de) |
EP (1) | EP2752553B1 (de) |
CN (1) | CN102418562B (de) |
ES (1) | ES2711332T3 (de) |
WO (1) | WO2013023507A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3025562A1 (fr) * | 2014-09-04 | 2016-03-11 | Snecma | Disque aubage monobloc pour une turbomachine |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9194259B2 (en) | 2012-05-31 | 2015-11-24 | General Electric Company | Apparatus for minimizing solid particle erosion in steam turbines |
US20140169972A1 (en) * | 2012-12-17 | 2014-06-19 | United Technologies Corporation | Fan with integral shroud |
GB2521588A (en) * | 2013-10-11 | 2015-07-01 | Reaction Engines Ltd | Turbine blades |
US20150285259A1 (en) * | 2014-04-05 | 2015-10-08 | Arthur John Wennerstrom | Filament-Wound Tip-Shrouded Axial Compressor or Fan Rotor System |
US10876407B2 (en) * | 2017-02-16 | 2020-12-29 | General Electric Company | Thermal structure for outer diameter mounted turbine blades |
GB2572360B (en) * | 2018-03-27 | 2020-04-08 | Intelligent Power Generation Ltd | An axial turbine |
US11428160B2 (en) | 2020-12-31 | 2022-08-30 | General Electric Company | Gas turbine engine with interdigitated turbine and gear assembly |
US11761632B2 (en) | 2021-08-05 | 2023-09-19 | General Electric Company | Combustor swirler with vanes incorporating open area |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3095138A (en) * | 1957-05-28 | 1963-06-25 | Studebaker Corp | Rotating shroud |
GB938123A (en) | 1960-05-19 | 1963-10-02 | Studebaker Packard Corp | Improvements in or relating to an axial flow compressor |
IT975329B (it) * | 1972-10-23 | 1974-07-20 | Fiat Spa | Struttura di parti metalliche e nom metalliche statiche o rotanti per ambienti ad alta temperatura particolarmente per rotori e stato ri di turbine a gas |
US4017209A (en) * | 1975-12-15 | 1977-04-12 | United Technologies Corporation | Turbine rotor construction |
GB2065237A (en) * | 1979-12-10 | 1981-06-24 | Harris A J | Turbine blades |
US5429877A (en) * | 1993-10-20 | 1995-07-04 | The United States Of America As Represented By The Secretary Of The Air Force | Internally reinforced hollow titanium alloy components |
DE4411679C1 (de) * | 1994-04-05 | 1994-12-01 | Mtu Muenchen Gmbh | Schaufelblatt in Faserverbundbauweise mit Schutzprofil |
JP3178327B2 (ja) * | 1996-01-31 | 2001-06-18 | 株式会社日立製作所 | 蒸気タービン |
EP1627726A1 (de) | 2004-08-18 | 2006-02-22 | ABB Turbo Systems AG | Verbundfaserverdichter |
FR2877034B1 (fr) * | 2004-10-27 | 2009-04-03 | Snecma Moteurs Sa | Aube de rotor d'une turbine a gaz |
FR2901497B1 (fr) | 2006-05-24 | 2009-03-06 | Snecma Sa | Procede de fabrication d'un disque de rotor de turbomachine |
US7946817B2 (en) * | 2008-01-10 | 2011-05-24 | General Electric Company | Turbine blade tip shroud |
US8527241B2 (en) * | 2011-02-01 | 2013-09-03 | Siemens Energy, Inc. | Wireless telemetry system for a turbine engine |
CN102491128B (zh) | 2011-11-21 | 2013-10-30 | 清华大学 | 一种缠绕束平行联动张力加载装置 |
-
2011
- 2011-08-15 CN CN201110233574.XA patent/CN102418562B/zh active Active
-
2012
- 2012-07-11 ES ES12823737T patent/ES2711332T3/es active Active
- 2012-07-11 WO PCT/CN2012/078518 patent/WO2013023507A1/zh active Application Filing
- 2012-07-11 EP EP12823737.7A patent/EP2752553B1/de not_active Not-in-force
- 2012-07-11 US US14/238,626 patent/US10378365B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3025562A1 (fr) * | 2014-09-04 | 2016-03-11 | Snecma | Disque aubage monobloc pour une turbomachine |
Also Published As
Publication number | Publication date |
---|---|
US20140301858A1 (en) | 2014-10-09 |
WO2013023507A1 (zh) | 2013-02-21 |
ES2711332T3 (es) | 2019-05-03 |
EP2752553B1 (de) | 2018-11-14 |
CN102418562B (zh) | 2014-04-02 |
EP2752553A4 (de) | 2015-07-08 |
US10378365B2 (en) | 2019-08-13 |
CN102418562A (zh) | 2012-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2752553A1 (de) | Rotorvorrichtung, turbinenrotorvorrichtung und gasturbine sowie turbinenmotor damit | |
EP3090148B1 (de) | Gasturbinenmotor mit energieableitungsspalt und eindämmungsschicht | |
US8172541B2 (en) | Internally-damped airfoil and method therefor | |
US10066508B2 (en) | Method for producing, repairing and/or exchanging a housing, in particular an engine housing, and a corresponding housing | |
US7497664B2 (en) | Methods and apparatus for reducing vibrations induced to airfoils | |
US4643647A (en) | Rotor aerofoil blade containment | |
US8079806B2 (en) | Segmented ceramic layer for member of gas turbine engine | |
US4396349A (en) | Turbine blade, more particularly turbine nozzle vane, for gas turbine engines | |
US20100232974A1 (en) | Blade made of composite material comprising a damping device | |
US20080310965A1 (en) | Gas-turbine blade featuring a modular design | |
EP2578553A2 (de) | CMC-Komponente, Stromerzeugungssystem und Verfahren zur Herstellung einer CMC-Komponente | |
US20130294891A1 (en) | Method for the generative production of a component with an integrated damping element for a turbomachine, and a component produced in a generative manner with an integrated damping element for a turbomachine | |
US20110146075A1 (en) | Methods for making a turbine blade | |
US20110150666A1 (en) | Turbine blade | |
US20100129651A1 (en) | Hybrid component for a gas-turbine engine | |
US20110268584A1 (en) | Blades, turbine blade assemblies, and methods of forming blades | |
US7094033B2 (en) | Methods and apparatus for assembling gas turbine engines | |
US8997495B2 (en) | Strain tolerant combustor panel for gas turbine engine | |
EP1026366A1 (de) | Schwingungsdämpfende Beschichtung | |
JP7076960B2 (ja) | 中空セラミックマトリックス複合材料物品、中空セラミックマトリックス複合材料物品を形成するためのマンドレル、および中空セラミックマトリックス複合材料物品を形成するための方法 | |
US8105014B2 (en) | Gas turbine engine article having columnar microstructure | |
US12006841B2 (en) | Hybridization of the fibers of the fibrous reinforcement of a fan blade with elastic fibers | |
US10539028B2 (en) | Method of optimizing the profile of a composite material blade for rotor wheel of a turbine engine, and a blade having a compensated tang | |
US20160222804A1 (en) | A component for a turbomachine and a method for construction of the component | |
KR20150002662A (ko) | 기능성 코팅부를 구비한 터보 기계 부품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140224 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150605 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/34 20060101ALI20150529BHEP Ipc: F01D 5/28 20060101ALI20150529BHEP Ipc: F01D 5/00 20060101AFI20150529BHEP Ipc: F01D 5/14 20060101ALI20150529BHEP Ipc: F01D 5/03 20060101ALI20150529BHEP Ipc: F01D 5/22 20060101ALI20150529BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170411 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180215 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180627 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1065054 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012053581 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1065054 Country of ref document: AT Kind code of ref document: T Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2711332 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012053581 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190711 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190711 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200722 Year of fee payment: 9 Ref country code: FR Payment date: 20200731 Year of fee payment: 9 Ref country code: DE Payment date: 20200716 Year of fee payment: 9 Ref country code: ES Payment date: 20200817 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200715 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120711 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012053581 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210711 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210711 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210712 |